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Marine sponges have been successful in their expansion across diverse ecological
niches around the globe. Pioneering work attributed this success to both a well-
developed aquiferous system that allowed for efficient filter feeding on suspended
organic matter and the presence of microbial symbionts that can supplement host
heterotrophic feeding with photosynthate or dissolved organic carbon. We now know
that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse
nutritional benefits to the host sponge. Despite these advances in the field, many current
hypotheses pertaining to the evolution of these interactions are overly generalized; these
over-simplifications limit our understanding of the evolutionary processes shaping these
symbioses and how they contribute to the ecological success of sponges on modern
coral reefs. To highlight the current state of knowledge in this field, we start with seminal
papers and review how contemporary work using higher resolution techniques has
both complemented and challenged their early hypotheses. We outline different schools
of thought by discussing evidence of symbiont contribution to both host ecological
divergence and convergence, nutritional specificity and plasticity, and allopatric and
sympatric speciation. Based on this synthesis, we conclude that the evolutionary
pressures shaping these interactions are complex, with influences from both external
(nutrient limitation and competition) and internal (fitness trade-offs and evolutionary
constraints) factors. We outline recent controversies pertaining to these evolutionary
pressures and place our current understanding of these interactions into a broader
ecological and evolutionary framework. Finally, we propose areas for future research
that we believe will lead to important new developments in the field.

Keywords: Porifera, microbial symbionts, niche partitioning, competition, Caribbean

INTRODUCTION

Sponges (Phylum Porifera) form one of the earliest branching lineages in the metazoan tree of life
(Feuda et al.,, 2017; Nielsen, 2019). Despite their relatively simple body plan, they have expanded
across diverse ecological niches within the marine environment on a global scale (Reiswig, 1973;
Diaz and Ritzler, 2001; McClintock et al., 2005; Wulff, 2006). With a well-developed aquiferous
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system, sponges are able to efficiently retain living particulate
organic matter (phytoplankton and bacteria), detritus, and
dissolved organic matter from the surrounding water
(Maldonado et al., 2012; McMurray et al, 2018; Rix et al,
2020). Their ecological success on oligotrophic coral reefs (de
Goeij et al., 2013), however, is likely also tied to an evolutionary
investment in microbial symbionts that expand their metabolic
capabilities into new niche dimensions (Easson and Thacker,
2014; Webster and Thomas, 2016; Bart et al, 2020; Freeman
etal., 2020).

High diversity systems like coral reefs often display strong
niche partitioning, with natural selection favoring adaptations
that reduce competition by allowing coexisting organisms
to fill unique ecological niches (Finke and Snyder, 2008;
Northfield et al., 2010). Indeed, dominant functional groups (e.g.,
scleractinian corals, soft corals, sponges) on coral reefs have
divergent heterotrophic feeding strategies (Porter, 1976; Reiswig,
1981) and variable (in both overall abundance and community
composition) interactions with microbial symbionts (Vacelet
and Donadey, 1977; Muscatine and Porter, 1977). In addition,
the presence of slight nuances in host physiology, morphology,
and symbiont productivity or identity across individual species
can facilitate niche diversification within these groups and can
contribute to high biodiversity within these crowded ecosystems
(Porter, 1976; Baker et al., 2015; Freeman et al., 2020).

Pioneering work on sponges identified unique evolutionary
solutions to the environmental challenges of coral reefs across
different sponge species. Sponges were reported to vary in
characteristics such as the complexity of their aquiferous system,
tissue density, pumping rate, abundance of microbial symbionts,
morphology, and exploitation of different nutrient sources
(Reiswig, 1971, 1974; Vacelet and Donadey, 1977; Reiswig, 1981;
Wilkinson, 1983). More contemporary work has expanded this
story by identifying substantial interspecific variation in growth
rates, reproductive effort, community composition and diversity
of microbial symbionts, reliance on different heterotrophic
nutrient pools, microbial symbiont nutrient transformations,
metabolic plasticity, and chemical defense production (Loh and
Pawlik, 2014; Wulff, 2017; McMurray et al., 2018; Pawlik et al,,
2018; Pita et al, 2018; Zhang et al, 2019; Bell et al., 2020).
Despite this wealth of research, both classic and contemporary
papers frequently group species based on one characteristic
(i.e., sponges either host productive symbionts or do not,
have either high or low microbial abundance, or are either
chemically defended or undefended); this trend toward binary
categorizations has led to broad generalizations about sponge
ecology and evolution (Wilkinson and Cheshire, 1990; Loh and
Pawlik, 2014; McMurray et al., 2018). In reality, these binary
categories frequently represent the extreme ends of a continuum.
Thus, we hypothesize that nuanced differences in characteristics
across individual species have allowed sponges to cope with
diverse ecological and evolutionary pressures on coral reefs
(Easson and Thacker, 2014; Freeman et al., 2020; Wulff, 2020).

Sponge microbial ecology is a rapidly advancing and
multidimensional field that requires an integrated view of
the complex interplay between hosts, symbionts, and their
environments (Webster and Thomas, 2016). To date, however,

there has not been a comprehensive synthesis that unites
historical work with contemporary studies employing high-
resolution techniques to elucidate the species-level variation
in these interactions (Paul et al, 2019). This gap in our
understanding is significant and has yielded an increasing
frequency of over-generalizations that limit our understanding
of the complex links between microbial symbionts and the
evolutionary trajectory of individual host species (Freeman et al.,
2015; Webster and Thomas, 2016). In this review, we therefore
aim to synthesize data from both seminal and recent studies,
discuss emerging schools of thought, highlight knowledge gaps,
and propose testable hypotheses that will facilitate an improved
understanding of sponge ecology and evolution on coral reefs.
We will broadly review nascent studies on sponge ecology
and evolution, but will focus mostly in the Caribbean Sea, where
sponges are a dominant structural and functional group that
has been well studied over the past 30 years (Wilkinson, 1987;
Webster and Thomas, 2016). Sponge cover in the Caribbean now
exceeds that of reef building corals, with an average percent cover
of 15.9% (range from ~2 to 75%), and a species richness of
more than 500 species (Diaz and Riitzler, 2001; Miloslavich et al.,
2010; Loh and Pawlik, 2014). Recent reviews have expounded
on the diverse metabolic pathways and biogeochemical cycling
present in marine sponges and their symbionts (Pita et al,
2018; Pawlik and McMurray, 2019; Zhang et al., 2019), so
we will limit our discussion and review of these broad topics
and instead focus on evidence of species-level differences in
holobiont [both sponge hosts and their microbial symbionts
(Zilber-Rosenberg and Rosenberg, 2008)] characteristics. We will
focus mostly on shallow-water (<30 m deep) sponges and will
address four main topics: (1) early work on sponge ecology
and carbon metabolism; (2) microbial symbiont diversity and
expansion of host resource use into niche dimensions beyond
carbon metabolism; (3) ecological variation across host species;
and (4) selective pressures that shape these associations and
impact the evolution of life history strategies and speciation.

PIONEERING WORK IN SPONGE
ECOLOGY AND CARBON METABOLISM

Sponges have advanced, well-developed aquiferous systems that
initiate water flow and remove particulate organic matter (POM)
such as phytoplankton, bacteria, detritus, and even viruses from
the water column (Reiswig, 1971, 1975a; Maldonado et al., 2012).
The ability to efficiently exploit suspended sources of organic
matter has contributed to the ecological success of sponges
and fueled their expansion into diverse aquatic niches on a
global scale (Reiswig, 1975b; Diaz and Riitzler, 2001). Early
work on this group, however, began to recognize that some
sponge species might be better adapted to heterotrophic feeding
on POM than others. In what remain some of the most in-
depth studies on sponge physiology to date, Reiswig (1971; 1974;
1981) assessed the rates of respiration and water transport and
the energy budgets of the Caribbean sponges Mycale laxissima,
Tectitethya crypta, Verongula reiswigi, and Aplysina fistularis (see
Reiswig, 1974, 1981; Pawlik et al., 2015 for original and current
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species names). Of these species, M. laxissima and T. crypta
had low respiration rates, high and moderate water transport
rates, respectively, and high pumping efficiency, indicating they
dedicated a substantial portion of their energy budget [O;
consumed] to pumping water (Reiswig, 1974). In contrast,
V. reiswigi, and A. fistularis extracted up to five times as much
dissolved oxygen from the water as M. laxissima and T. crypta,
had lower pumping rates, and expended less energy on pumping
water. Particulate food resources in the surrounding water were
sufficient to satisfy the energy requirements of M. laxissima and
T. crypta, but V. reiswigi, and A. fistularis were only able to obtain
25 and 14% of their carbon budget from these particulate sources.
This major deficit in their carbon budget was reconciled by the
proposed assimilation of dissolved organic carbon (DOC) from
the water column; abundant microbial symbiont communities
within V. reiswigi, and A. fistularis (termed bacteriosponges;
sensu Reiswig, 1981) were hypothesized to mediate this DOC
assimilation. The use of DOC by V. reiswigi, and A. fistularis
was not tested in his study, but Reiswig (1981) estimated that
bacteriosponges might remove on average 22% of the available
DOC from the surrounding water. This work had important
conclusions that have shaped the trajectory of sponge research for
the last 40 years: (1) microbial symbionts expand the metabolic
capabilities of their host by allowing for the assimilation of
dissolved sources of carbon, (2) there are fitness trade-offs (both
metabolic costs and potential nutritional benefits) associated
with hosting microbial symbionts, and (3) these interactions
vary across host species due to differences in aquiferous system
complexity, host physiology, and the abundance of microbial
symbionts (Reiswig, 1971, 1974, 1981).

Additional work also found variable associations between
microbes and their host sponges. Vacelet and Donadey (1977)
used electron microscopy (Table 1) to survey the microbial
communities within 13 sponge species and reported two
general groups of sponges: (1) those with high bacterial
abundance, dense tissue, and small choanocyte chambers and
(2) species with low bacterial abundance, well-irrigated and low-
density tissue, and well-developed aquiferous systems. Similar
patterns were also observed by Wilkinson (1978a; 1978c), with
considerable variation in microbial abundance and aquiferous
system complexity across four tropical sponge species on the
Great Barrier Reef (GBR). Although sponges were hypothesized
to obtain a greater benefit from the abundant bacterial
communities, the consistency of bacterial morphotypes among
individuals of the same species led Vacelet and Donadey (1977)
to propose that both groups formed true associations with
bacterial symbionts that were distinct from surrounding bacteria
in the water column. In addition, although sponges could be
delineated into two groups based on their overall bacterial
density, unique bacterial morphotypes were also found within
host species from each group (Vacelet and Donadey, 1977;
Wilkinson, 1978a,b,c). These observations, along with evidence
that cultured bacteria (Table 1) from the four sponge species
from the GBR could metabolize a wide range of compounds
(Wilkinson, 1978b), provided initial evidence of functional (host
physiology and symbiont metabolism) divergence across sponge
species that is shaped at least in part by associations with

microbial symbionts (Vacelet and Donadey, 1977; Wilkinson,
1978a,b,c; Reiswig, 1981).

Forty years later, the “bacteriosponges” of Reiswig (1981) and
the sponges hosting dense bacterial communities observed by
Vacelet and Donadey (1977) are now termed High Microbial
Abundance (HMA; sensu Hentschel et al., 2003; Gloeckner
et al., 2014) sponges and include the presence of archaea. HMA
sponges generally have microbial densities exceeding 108-10'°
cells per gram of sponge tissue. In contrast, Low Microbial
Abundance (LMA) sponges have microbial numbers around
10°-10° cells per gram of sponge tissue, a density of microbes
similar to that of seawater (Gloeckner et al., 2014). Broad-
scale trends in holobiont metabolism and host resource use
are increasingly attributed to overall microbial abundance as
HMA sponges generally have denser, less well irrigated tissue,
lower pumping rates, and reduced aquiferous system complexity
compared to LMA sponges. Moreover, high densities of microbes
in HMA species are hypothesized to confer access to microbially
mediated metabolic pathways (Hentschel et al., 2006; Weisz
et al., 2007; Schldppy et al., 2010; Webster and Taylor, 2012;
Poppell et al., 2013).

Heterotrophic Symbionts and Expansion

of Host Carbon Metabolism

Sponges have long been hypothesized to assimilate DOC
(Stephens and Schinske, 1961; Wilkinson and Garrone, 1980;
Reiswig, 1981); this hypothesis has been supported by recent
work (Jaeckle, 1995; Ribes et al., 1999; de Goeij et al., 2008;
Ribes et al., 2012; Mueller et al., 2014; Hoer et al., 2018; Rix
et al., 2020) demonstrating that some sponge species derive a
substantial portion of their total carbon budget from dissolved
compounds (Yahel et al.,, 2003; McMurray et al., 2016, 2018).
Uptake of DOC by the sponge holobiont may have important
implications for reef nutrient cycling as it is a central part of the
‘sponge-loop, where assimilated DOC is ultimately transferred
to the benthic food web through the production and release of
cellular detritus by the sponge (de Goeij et al., 2013). Dissolved
organic matter (DOM) assimilation has been demonstrated by
both sponge cells and microbial symbionts through stable isotope
probing (SIP; Tables 2, 3) by feeding sponges *C- and °N-
labeled compounds (diatom-, algae-, or coral-derived DOM and
glucose) and tracing the incorporation of these isotopic labels
into host and symbiont biomass (de Goeij et al., 2008; van
Duyl et al., 2011; Rix et al., 2018) or using nanoscale Secondary
Ion Mass Spectrometry (nanoSIMS) to visualize (at the cellular
level) the assimilation of DOM by microbial symbionts and
sponge filter feeding cells via pinocytosis (Achlatis et al., 2019;
Rix et al., 2020).

The assimilation of ambient DOM by sponge and/or symbiont
cells provides a rich and reliable nutritional resource not available
to many other animals within reef ecosystems. Most studies
(but see Fiore et al. (2017) and Letourneau et al. (2020) for
higher-resolution studies) that have examined the removal of
ambient DOM by sponges in situ have focused exclusively on
dissolved organic carbon (DOC; Ribes et al., 1999; McMurray
etal,, 2016, 2018), the largest elemental component of DOM, and
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TABLE 1 | Methods for assessing microbial community abundance and composition.

Methods/tool

Results/benefits

Limitations

References

Bacterial culturing

Transmission electron microscopy

(TEM)

Denaturing gradient
gel-electrophoresis (DGGE)

16S clone libraries

Fluorescence in situ hybridization
(FISH)

High-throughput next-generation
amplicon sequencing

Observations of microbial morphology,
physiology and use of different substrates
Detailed descriptions of bacterial morphotypes
and quantitative estimates of microbial
abundance; initial evidence of host specificity in
microbial symbiont composition across host
sponges

Microbial community profile; sponge microbial
communities are distinct from surrounding
environment

Microbial community members identified
without need for culturing

Specific symbionts visualized within sponge
tissue to discern location and abundance
Sponge microbial communities are distinct from
the surrounding environment, specific to
individual sponge species, and linked to the
evolution of the host sponge

A large proportion of microbial
community is unculturable
Provides limited information on
physiology and symbiosis with host
sponge

Limited sampling depth in diverse
microbial communities

Limited sampling depth in diverse
microbial communities

Individual community members require

specific probes.

Limited ability to discern function of
microbial symbionts

Wilkinson, 1978a

Vacelet and Donadey, 1977;
Wilkinson, 1978b; Gloeckner et al.,
2014

Ferris et al., 1996; Webster et al.,
2008

Hentschel et al., 2006; Erwin and
Thacker, 2008
Sharp et al., 2007

Thomas et al., 2016

References provide an introduction to or example of the technique and are not meant to provide an exhaustive list of papers using this method.

TABLE 2 | Methods for assessing ecological benefit of photosymbionts.

Methods/tool

Results/benefits

Limitations

References

Chlorophyll a (Chl a) analysis

Incubation in respirometry
chambers in situ

Incubation under dark and light
conditions (can be a gradient of
irradiances)

Incubation in seawater laced with
inorganic carbon labeled with the
radioactive isotope '4C
(NaH™COy)

Shading experiments: sponges
held under both reduced irradiance
and control (ambient) irradiances

Stable isotope probing (SIP) with
NaH'3CO, (using the stable
isotope ['3C] in place of radioactive
14C) with P:R estimations and cell
separations

Photosymbiont (cyanobacterial) abundance
in sponge tissue

Photosynthetic rates (O2 fluxes) in response
to light intensity changes over 24-h;
determine if there is photosynthetic
compensation (total amount of O»
produced by photosynthesis exceeds that
consumed by respiration); P-I curve and
photokinetic parameters

Instantaneous P:R ratios based on changes
in dissolved oxygen concentrations (P:
gross production as the net O, produced
with the addition of O, respired and R: the
Oo respired); P-I curve and photokinetic
parameters; photosynthetic production
Isolate autotrophic pathways and measure
net 14CO; fixation into organic biomass
and different macromolecule fractions

Impact of a reduced abundance of
photosynthetic symbionts (via chl a values)
on the growth rate of the host sponge

Quantify the presence of fixed carbon (13C)
from photosymbionts in host cells; assess

photosymbiont-derived benefit to the host;
assess reductions in symbiont productivity
following shading experiments

Not an accurate proxy for
photosymbiont-derived benefit to
the host sponge

Carbon assimilation inferred by O»
production

Ex situ; carbon assimilation inferred
by O, production

Use of radioactive isotopes; limited
information on transfer of fixed
carbon to host sponge

Time consuming (>4-week long
experiments); limited information on
transfer of fixed carbon to host
sponge

Ex situ; costly tracer compounds
and analyses

Wilkinson, 1983; Erwin and
Thacker, 2007; Freeman et al.,
2020

Cheshire et al., 1997

Wilkinson, 1983; Cheshire and
Wilkinson, 1991; Thacker et al.,
2007; Erwin and Thacker, 2008

Wilkinson, 1983

Thacker, 2005; Roberts et al.,
2006; Erwin and Thacker, 2008;
Freeman and Thacker, 2011

Freeman et al., 2013, 2015

References provide an introduction to or example of the technique and are not meant to provide an exhaustive list of papers using this method.

measured DOC removal by the sponge holobiont (unit including
both host and symbiont cells) by sampling water prior to and
following its passing through the sponge. However, although

these studies have demonstrated that DOC can make up to 90% of

the organic matter in seawater, many sponge species rely more on
living particulate organic carbon (LPOC like phytoplankton and
heterotrophic bacteria) and/or detritus than DOC to meet their
energy requirements or rely on a combination of two or more of
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TABLE 3 | Emerging techniques to assess sponge and symbiont metabolism.

Methods/tool

Results/benefits

Limitations

References

Genomics/Metagenomics

Transcriptomics/metatranscriptomics

Metabolomics

Stable isotopes; natural abundance
analysis (typically via 8'3C and 8'°N
values)

Stable Isotope Probing (SIP)
experiments with inorganic
(bicarbonate, nitrate) or organic

Provide overview of genomic
potential for host and microbes;
generate metagenome assembled
genomes (MAGs)

Uncover novel metabolic activity by
symbionts and host-microbe
metabolism-based interactions

Reveal diverse natural compounds
present in sponges including minor
and unstable metabolites that are
difficult to isolate

Holobiont metabolism; coupling of
host and symbiont metabolism,
reliance on host vs. symbiont
metabolism

Follow the assimilation and transfer
of nutrients between members of
these symbioses

Indirect capture of metabolic functions
through capture of genomic potential

Captures metabolism at a single time point;
multiple time points and broader scale
analyses become more expensive.

Challenging to sample in small and cryptic
sponges that can dominate reef biomass;
comparison across runs is difficult for
untargeted methods

Logistically complicated to sample all
nutrient sources available to sponges;
sources may overlap in their 5'3C and §'°N
values

Tracer compounds target a single
metabolic pathway; multiple experiments
needed to test different substrates; not all

Slaby et al., 2017

Moitinho-Silva et al., 2017; Botté
et al., 2019

Fiore et al., 2017; Paul et al., 2019

Weisz et al., 2008; Freeman and
Thacker, 2011; Freeman et al.,
2013, 2015, 2020

de Goeij et al., 2013; Freeman
etal., 2013, 2015; Fiore et al.,
2015a; Rix et al., 2020

(glucose, DOM from corals, algae,
diatoms, cyanobacteria) compounds,
and bacteria labeled with the heavy
atoms of C and N ('3C and '°N)

SIP with nanoscale Secondary lon
Mass Spectrometry (nanoSIMS)

Visualize and quantify the
assimilation of enriched
compounds by individual sponge or
microbial cells

Elucidate metabolic interactions
within a host-microbe community
by measuring stable isotope
incorporation into proteins and
identifying microbes using specific
substrates

Protein stable isotope fingerprinting
(protein-SIF) and protein stable isotope
probing (protein-SIP)

elements can be used (e.g., phosphorous);
expensive tracer compounds and analyses;
use of multiple elements beyond C and N
can increase number of analyses and cost

Achlatis et al., 2019; Rix et al.,
2020; Hudspith et al., 2021

Labor and time intensive sample
preparation. Expensive analytical methods
with specialized equipment at few locations
globally.

Protein-SIF: Kleiner et al., 2018;
Proteomics-SIP: Bryson et al., 2016

Only one element can be used in each
experiment; expensive tracer compounds
and analytical methods; specialized
equipment

References provide an introduction to or example of the technique and are not meant to provide an exhaustive list of papers using this method.

these sources of heterotrophic carbon (Figures 1, 2; McMurray
et al, 2016, 2018; Morganti et al,, 2017; Hoer et al.,, 2018;
Wooster et al., 2019). This, along with variation in POC and DOC
fluxes that is uncoupled to microbiome community structure
across sponge species (Gantt et al., 2019), suggests that sponge
species vary in their exploitation of different heterotrophic
carbon pools and that these interspecific differences are shaped by
characteristics of both the host and symbionts (Rix et al., 2020).

Photosymbionts and the Expansion of
Host Carbon Metabolism

Early work in sponge microbiology reported the presence of
cyanobacterial cells (Vacelet and Donadey, 1977; Wilkinson,
1978a,b,c) that were hypothesized to supplement heterotrophic
feeding with inputs of fixed carbon. To survey host sponge
reliance on cyanobacterial symbionts, Wilkinson (1983)
measured gross photosynthesis to respiration (P:R) ratios and
14CO; fixation (Table 2) across ten of the most dominant sponge
species present on the reefs of the Great Barrier Reef (GBR).
These ten species varied in the abundance of photosynthetic
symbionts in their tissue (measured by chlorophyll a [chl
a] analysis), their shape, ratio of surface area to weight, and

thickness. Seven of these species had instantaneous P:R values
exceeding compensation (P:R of 1.0) at an irradiance of 200 pE
m~2 s~ ! (equivalent to 200 umol photons m~2 s~ !; future units
in this review reported only in umol photons m~2 s~ !) and six of
these species had P:R values exceeding 3.0 at an irradiance level
of 400 pmol photons m~2 s~ ! (the highest irradiance at 20 m
depth, where these sponges are abundant). Productive sponge
species generally had a thin, encrusting or dish/fan morphology,
high surface area, an abundant photosymbiont community,
and high rates of carbon fixation (counts of *C in their tissue;
Table 2; Wilkinson, 1983). Species lacking photosymbionts
had lower P:R values and were unable to access this source of
inorganic carbon.

Early work on the GBR eventually resulted in the delineation
of three groups of sponges that vary in their reliance on
photosymbiont-derived nutrition: phototrophic: small, thin,
flattened species with P:R ratios of more than 1.5 suggesting
that photosymbionts within these sponges provide more carbon
than is needed to satisfy the respiration requirements of the host;
mixotrophic: photosynthetic symbionts are present, but hosts
have more diverse growth forms and have P:R < 1.5 suggestive of
a reliance on a combination of photosymbiont-derived nutrition
and heterotrophic filter feeding to meet their energy demands;
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FIGURE 1 | Ternary plot showing the % total carbon uptake (the percent contribution of each food type to the total organic carbon retained by each species). Food
types are: dead organic carbon (detritus), living particulate organic carbon (LPOC), and dissolved organic carbon (DOC) (McMurray et al., 2016, 2018). Green
symbols denote species or congeners that host communities of photosynthetic symbionts (Erwin and Thacker, 2007; Freeman et al., 2020). Multiple symbols for a
species represent variation due to sample collection from different locations or times.

and heterotrophic: massive and variable growth forms with no
Cyanobacteria and P:R less than compensation point of 1.0
(Wilkinson and Trott, 1985).

Other methods for assessing photosymbiont metabolism
(Table 2) have also revealed a continuum of host sponge
reliance on photosymbiont-derived carbon. For instance, shading
experiments have identified both obligate mutualisms and
commensalism as some sponges held under reduced irradiance
undergo substantial reductions in growth rate or experience
mortality, while others experience a reduction in growth, but are
able to maintain positive growth rates (Wilkinson and Vacelet,
1979; Roberts et al., 2006; Erwin and Thacker, 2008; Freeman
and Thacker, 2011). In addition, although productivity (via P:R

measurements) and photosymbiont-derived benefit to the host
(via 1BC enrichment of host cells) (Table 2) was minimal in
a sponge species that did not host photosymbionts (Niphates
erecta in the Caribbean) (Freeman et al., 2013), P:R values and
host cell 1*C enrichment was significantly elevated in five other
species that host photosymbionts at an average concentration
of ~40x that found in N. erecta (Freeman et al., 2013). These
five host species varied in their reliance on photosymbiont
metabolism, with a potential link to the productivity and
community composition of their photosymbionts (Aful and Acau
in Figure 2; Erwin and Thacker, 2007, 2008; Thacker et al., 2007;
Freeman and Thacker, 2011; Freeman et al., 2013). These recent
results underscore that delineating sponge species into discrete
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FIGURE 2 | Conceptual model of 12 common sympatric sponge species in the Caribbean Sea. Caribbean sponges possess a diversity of morphologies and
microbial symbioses that have helped them adopt novel strategies for obtaining nutrition from a variety of sources including particulate organic matter (POM),
dissolved organic matter (DOM), and solar irradiance (yellow arrows). Relative average reliance on DOM and POM carbon sources is denoted with arrows from these
clouds to two species Xestospongia muta (Xmut) and Callyspongia aculeata (Cacu) derived from McMurray et al. (2018). Relative reliance on carbon from
photosymbionts is derived from Freeman and Thacker (2011). Continuous diversity values for the inverse Simpson’s Index (D) are represented by a color gradient in
circles (HMA sponges) and squares (LMA sponges) below each sponge. Sponges that host abundant photosymbionts are denoted by a green outline of the circles

or squares representing D.

categories based on P:R values alone has likely oversimplified the
complexities of host reliance on photosymbiont metabolism.

Photosymbionts and Sponge Distribution

Wilkinson (1987) hypothesized that if photosymbionts reduce
host sponge requirement for carbon derived from POM, then
these symbionts may allow for the expansion of phototrophic
sponges into oligotrophic waters where POM is limiting. To
test this, extensive surveys were carried out across a transect
from inshore to oceanic reefs on the Great Barrier Reef
(GBR) (Wilkinson, 1987; Wilkinson and Cheshire, 1990). Sponge
biomass was high on inner-shelf reefs (~17 km from shore) but
was up to 12x lower on mid-shelf (70 km from shore), outer-
shelf (120 km from shore), and oceanic (220 km from shore)
reefs (Wilkinson, 1987; Wilkinson and Cheshire, 1989, 1990).
Small phototrophic sponges with flattened, foliose growth forms
and high P:R values (Wilkinson, 1983) were absent from inshore
reefs where sediment and nutrient loads were elevated (Done,
1982; Wilkinson and Trott, 1985; Wilkinson and Cheshire,
1989). Instead, there was a dominance of heterotrophic (63%
of the biomass at 15 m) and mixotrophic species (37% of
the biomass at 15 m) on these inner-shelf reefs. Phototrophic

sponges represented more of the community by biomass on
mid-shelf (40% phototrophic, 50% heterotrophic, and 10%
mixotrophic), and at 20 m on outer-shelf (40% phototrophic,
44% heterotrophic, and 16% mixotrophic) and oceanic (68%
phototrophic, 26% heterotrophic, and 6% mixotrophic) reefs
(Figure 3A; Wilkinson, 1987; Wilkinson and Cheshire, 1990).

These sponge distribution data highlight an important point
that is often missed when referencing these studies. Although
phototrophic sponges may generally increase in abundance along
this inshore-offshore gradient, there is considerable variation in
their abundance across individual sites and also the continued
presence of heterotrophic and mixotrophic sponges on mid-,
outer-self, and oceanic reefs that were assumed to largely be
oligotrophic in terms of the abundance of particulate carbon
(Figure 3B; Wilkinson, 1987; Wilkinson and Cheshire, 1989,
1990; Cheshire and Wilkinson, 1991; but see Wilkinson and
Cheshire, 1988). This pattern suggests that sponges on the
outer reefs of the GBR are either not carbon limited, there
is unexplored interspecific variation in filter feeding efficiency
within “heterotrophic” sponges, or there is reliance on microbial
symbionts for other sources of carbon on these reefs (e.g., DOC);
these hypotheses remain untested.
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FIGURE 3 | (A) Abundance patterns of phototropic sponges across an inshore to offshore gradient in the Pacific (including Great Barrier Reef and Fiji; light gray box)
and Caribbean using data from Wilkinson (1987) and Wilkinson and Cheshire (1990). Abundance is represented as the proportion of overall sponge biomass
composed of phototrophic (P:R > 1.5) sponges and each point represents data from a single site within each reef category or ocean basin. Low and high particulate
organic matter (POM) predictions are based on Wilkinson and Cheshire (1990). (B) Prevalence of phototrophic sponges (proportion of overall sponge cover from
phototrophic species) in the Caribbean (both within Bocas del Toro, Panama [BDT] and Caribbean-wide) based on contemporary methods (Thacker et al., 2007;
Erwin and Thacker, 2008; Freeman et al., 2013) and distribution data from Loh and Pawlik (2014) and Easson et al. (2015).

Similar cross-shelf surveys were carried out in the Caribbean  there was more sponge biomass on the inner-shelf reefs, and there
(47 km wide survey in Belize compared to 220 km wide on  was a higher incidence of species with photosynthetic symbionts
the GBR) and 20 Caribbean sponge species were screened for from inner to outer reefs in Belize (31, 49, and 76% of the
photosynthetic activity by measuring oxygen consumption under  total sponge biomass on reefs from inner-shelf to outer-shelf and
dark and light conditions at a variety of irradiances (Wilkinson, oceanic reefs) (Wilkinson and Cheshire, 1989, 1990). Unlike the
1987; Wilkinson and Cheshire, 1990; Table 2). As on the GBR, GBR, however, sponge biomass in Belize and other sites across the
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Caribbean was between 2 and 12x greater than on comparable
reefs on the GBR (Wilkinson and Cheshire, 1990). In addition,
there was a lack of the thin, flattened foliose growth forms
found on the GBR (Caribbean sponges adopt more massive,
rope, or encrusting morphologies) and almost all (except for
phototrophic boring sponges that host dinoflagellate symbionts)
of the Caribbean sponges surveyed were considered to be
heterotrophic (Figure 3A), with no “significant increase” above
dark respiration rate when exposed to the highest irradiance
level of 600 pwmol photons m~2 s~! (Wilkinson and Cheshire,
1990). These authors did not measure productivity in the GBR or
Caribbean (see Figure 1 map in Koblentz-Mishke et al., 1970),
but came to the general conclusion that phototrophic sponges
were common in oligotrophic systems and absent from more
productive reefs in the Caribbean (Wilkinson, 1987; Wilkinson
and Cheshire, 1988; Wilkinson and Cheshire, 1990; Pawlik et al.,
2015; Figure 3A).

These early papers have formed the basis for our
understanding of sponge nutritional patterns at the level of
entire ocean basins, but there are limitations to this work that
should be discussed. First, the irradiance levels of 600 pwmol
photons m~2 s~ ! used in Wilkinson and Cheshire (1990) on
sponges in the Caribbean are not ecologically relevant. Caribbean
sponges are regularly exposed to irradiances up to 1000 pmol
photons m~2 s~! even at a depth of 10 m (Vermeij and Bak,
2002). Thus, photosynthesis-irradiance (P-I) curves of Caribbean
sponges do show P:R values above 1.5 when exposed to these
higher irradiances and four “phototrophic” (based on P:R > 1.5)
sponge species have now been identified in the Caribbean
(Xestospongia bocatorensis, Haliclona walentinae, Aplysina fulva,
and Neopetrosia subtriangularis; Thacker et al., 2007; Erwin and
Thacker, 2008; Freeman et al., 2013). These species represent
25% of the sponge community on reefs in the Bocas del Toro
(BDT) archipelago of Panama (a region highly influenced by
allochthonous inputs from land; Aronson et al., 2014; Easson
et al,, 2015) and 5.6% of the entire sponge community in this
ocean basin (Figure 3B; Loh and Pawlik, 2014). In addition, with
over 30% of dominant Caribbean sponges hosting abundant
photosymbiont communities (Wilkinson, 1987; Riitzler, 1990;
Erwin and Thacker, 2007, 2008; Thacker et al., 2007; Bell et al,,
2020) and evidence that many of these symbionts fix inorganic
sources of carbon and translocate fixed carbon to their host
(Freeman et al., 2013), it is likely that more Caribbean sponges
are heavily reliant on their photosymbionts. Finally, as the GBR
and Caribbean Sea are now recognized to have comparable levels
of POM, DOM, and inorganic nutrients (de Goeij et al., 2017),
interocean differences in sponge biomass, morphologies, and
reliance on photosymbionts are likely shaped by factors beyond
just perceived nutrient limitation.

Although our understanding of sponge carbon metabolism
has become more multidimensional in recent years (Freeman
et al., 2013; Gantt et al., 2019; Rix et al., 2020), no studies to
date have adopted a comprehensive analysis of the contribution
of fixed carbon (Wilkinson, 1983; Freeman et al., 2013), and
diverse pools of dissolved and particulate organic matter and
detritus (Figures 1-3; Reiswig, 1981; Morganti et al, 2017;
McMurray et al., 2018; Rix et al., 2020) to sponge holobiont

carbon budgets. Without these data and standardized analyses
across ocean basins, it is impossible to draw conclusions as
to whether “heterotrophic” sponges are truly nutrient-limited
or whether these species can meet their energy demands and
expand into oligotrophic systems by assimilating DOC or hosting
photosynthetic symbionts (Wilkinson et al., 1988; Wilkinson and
Cheshire, 1990; Rix et al., 2020). For example, when considering
only heterotrophic carbon sources, the sponge Xestospongia
testudinaria appears to be nutrient limited on offshore sites of
the Red Sea where DOC levels are low, but X. testudinaria
and many other sponge species that assimilate DOC also host
photosymbionts that likely contribute to the sponge carbon
budget and may prevent nutrient limitation (Figure 1; McMurray
etal., 2018; Wooster et al., 2019).

Specific Knowledge Gaps in Sponge
Phototrophy and Carbon-Focused

Nutrition in Sponges

Although studies on nutrient limitation in sponges have
classically focused largely on carbon metabolism, it is increasingly
apparent that there are diverse sources of carbon (dissolved,
particulate, organic, and inorganic) that can be exploited by
sponges on coral reefs (Rix et al., 2020). More holistic assessments
of sponge carbon budgets are therefore needed along with a
better understanding of how sponges supplement heterotrophic
feeding with other metabolites from their symbionts or even
phagotrophy of symbionts (Fiore et al., 2015a; Leys et al,
2017). This work will also improve our ability to elucidate
potential fitness trade-offs associated with host reliance on
photosynthetic and heterotrophic symbionts. In addition,
the major heterotrophic resources described above can be
further subdivided, so individual sponge species may exploit
unique portions of these pools (Maldonado et al., 2012).
Lastly, while photosymbionts and, in particular, Cyanobacteria
have received considerable attention, there are many other
symbiont groups that contribute to sponge metabolism and
influence the exploitation and cycling of other elements.
These points underscore the likely scenario that multiple
selective pressures have shaped the evolution of sponge-
microbe interactions and sponge species have diverged across
multiple niche dimensions due to interactions with their
microbial symbionts.

SPONGE-MICROBE INTERACTIONS
AND HOST EXPANSION INTO NEW
NICHE DIMENSIONS

Coral reefs are generally considered to lack abundant organic
matter needed to fuel heterotrophic metabolism, but these
are complex and dynamic ecosystems with multidimensional
nutritional niches. Hosting microbial symbionts thus greatly
expands the ability of sponges to exploit additional resource pools
and elements beyond just carbon. In this section, we highlight
the complexities and nuances of both sponge microbial symbiont
communities and resource pools on coral reefs.
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Diversity in Sponge Microbial

Communities

Sponges host a richness and diversity of microorganisms
that is unparalleled in other marine organisms, with 52
phyla and candidate phyla across Bacteria, Archaea, and
Eukarya (Thomas et al., 2016; Freeman et al,, 2020). A few
dominant groups within sponges include Gammaproteobacteria
(relative abundance mean =+ standard deviation; 31% + 19%),
Alphaproteobacteria (11% =£ 17%), Chloroflexi (9% £ 11%),
Thaumarchaeota (5% =+ 7%), and Cyanobacteria (4% £ 7%;
data from: Thomas et al., 2016; Table 4). Within each of these
phyla are numerous individual taxa (often defined as Operational
Taxonomic Units [OTUs] or more recently Amplicon Sequence
Variants [ASVs]) that often form distinct clades (based on 16S
rRNA gene sequencing) or “sponge-specific clusters” only found
in sponges (Hentschel et al., 2006) or in low abundance within the
environment (Taylor et al., 2013). Although sponges vary in the
absolute abundance of their symbionts, species within both the
HMA and LMA groups can differ substantially in the diversity,
richness, and composition of their microbial communities and
there is increasing evidence of high host specificity across
individual species (Figure 2; Easson and Thacker, 2014; Thomas
etal., 2016).

Diversity of Resources and Symbiont
Metabolism

Dissolved organic matter is largely comprised of refractory
material derived from abiotic reactions and potentially some
microbial activity (Ogawa et al., 2001; but see Kujawinski et al.,
2016), while a small portion of the pool consists of labile
biomolecules (i.e., metabolites) (<1% of total DOC, Nagata,
2000). The labile fraction is considered to be largely derived
from phytoplankton exudates and cell lysates, and with a
short turnover time (<hours to days, Cherrier et al,, 1999
Figure 2), is critical to microbial metabolism and biological
production (Nagata, 2000). The composition of this labile

TABLE 4 | Top Phyla present in sponges (data source: Thomas et al., 2016; 81
sponge species). Proteobacteria is separated into classes and unclassified (only
classified to phylum).

Phylum Mean + SD Range (n = 81)
Acidobacteria 3.6% + 4.4% 0-16.7%
Actinobacteria 2.8% + 3.6% 0-15.4%
Alphaproteobacteria 10.9% £ 17.4% 0.1-90.5%
Betaproteobacteria 2.3% + 8.5% 0-61.5%
Chloroflexi 9.3% + 11.2% 0-38.8%
Cyanobacteria 41% + 7.9% 0-41.8%
Deltaproteobacteria 2.7% £ 2.9% 0.03-16.9%
Gammaproteobacteria 31.3% + 19.5% 0.9-94.9%
Nitrospirae 1.1% £ 2.5% 0-20.5%
Poribacteria 0.2% + 0.4% 0-2.4%
Thaumarchaeota* 4.6% £+ 7.0% 0-26.1%
Unclassified Proteobacteria 13.7% £+ 21.6% 0.1-90.1%

*Classified as Crenarchaeota in dataset.

DOC is not fully characterized, but contains dissolved free
amino acids (DFAA), vitamins, nucleosides/nucleotides, sugars,
among other structurally diverse compounds (e.g., Suttle et al.,
1991; Amon and Benner, 1996; Fiore et al., 2015b; Kujawinski
et al., 2016). Sponges remove specific components of the labile
pool of DOC (i.e., glycerol-3 phosphate, pantothenic acid, 5'-
methylthioadenosine; Fiore et al, 2017) and release DOM in
the exhalent seawater leaving their bodies (Fiore et al., 2017;
Letourneau et al., 2020). In general, sponge microbes are well
suited to assimilate and/or respire diverse labile metabolites
(e.g., amino acids) and might even consume semi-labile to
recalcitrant compounds (i.e., cellulose; Pawlik et al., 2016). For
example, genes and transcripts involved in methylotrophy and
other C; metabolism were observed in several high throughput-
sequencing based studies of sponge symbionts (Thomas et al.,
2010; Fan et al, 2012; Radax et al, 2012; Li et al, 2014;
Moitinho-Silva et al., 2014; Fiore et al,, 2015a). Additionally,
recent metagenomic analysis of six sponge microbiomes of
the class Demospongiae supports the presence of functional
guilds that target DOM like sialic acids derived from sponge
tissue and carbohydrates derived from coral and algal DOM
(Robbins et al., 2021). Symbiont-specific examples include the
ability to consume diverse carbon sources including chitin,
cellulose, and/or N-acetylglucosamine by Entotheonella (Liu
et al., 2016) and Poribacteria (Siegl et al., 2011), and steroids by
Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria
in sponges (Holert et al, 2018). Lastly, the ability to utilize
carnitine and sulfated polysaccharides were among the noted
metabolic traits of sponge symbiont genome analysis for
the sponge Aplysina aerophoba (Slaby et al, 2017). These
examples are not an exhaustive list of microbial symbiont DOM
metabolism but demonstrate the diversity of metabolic substrates
available for sponge hosts and their symbionts.

Although many sponge species rely heavily on dissolved
organic matter (McMurray et al., 2018; Rix et al,, 2020), the C:N
ratio of DOM can vary depending on how labile or refractory
it is (de Kluijver et al., 2021) and can be greater than 10 on
oligotrophic reefs (Lesser et al., 2019). Thus, sponge species
relying on DOM may need to supplement their diet with
POM (Hadas et al., 2009) or form interactions with microbial
symbionts that provide access to novel sources of nitrogen in
order to prevent nutrient limitation (Southwell et al., 2008;
Freeman and Thacker, 2011; de Goeij et al, 2017; Morganti
et al, 2017; Pita et al,, 2018; Paul et al,, 2019; Zhang et al,
2019). The ability to fix nitrogen (N;) or assimilate exogenous
nitrate (NO3) or ammonia (NH3) and recycle host-derived waste
NHj3 could therefore provide an adaptive advantage to some host
species (Southwell et al., 2008; Liu et al.,, 2012; Zhang et al.,
2014; Radecker et al., 2015). Although nitrogen cycling is likely
a core function of these communities (e.g., Fan et al., 2012),
sponge species vary in their ability to utilize different nitrogen
resource pools (PON/DON; e.g., Morganti et al., 2017) or carry
out microbial transformations like nitrification, nitrogen fixation,
nitrate assimilation, and transfer of organic nitrogen to the host
(e.g., Mohamed et al., 2008; Southwell et al., 2008; Hoffmann
et al., 2009; Freeman et al., 2013; Webster and Thomas, 2016;
Steinert et al., 2020). Thus, nitrogen metabolism may be a critical
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component of niche partitioning among sponge species (e.g.,
Morganti et al., 2017; Freeman et al., 2020).

Sulfur metabolism, whether through oxidation and reduction
of sulfur compounds for energy and the subsequent fixation of
carbon or through assimilation of organic sulfur compounds
(e.g., APS, DMSP), appears to be prevalent in sponge-microbe
systems (Hoffmann et al., 2005a,b; Fiore et al., 2015a; Zhang D.
et al, 2015; Li et al., 2016; Jensen et al., 2017; Lavy et al,
2018; Podell et al., 2019; Zhang et al., 2019; Engelberts et al,,
2020). Sulfur-based symbioses have been documented in other
invertebrates (e.g., Cavanaugh et al., 1981; Southward et al,
1981; Fisher and Childress, 1984; Dubilier et al., 2001) and have
potential to be a common trait in marine invertebrate systems
(Fiore et al., 2020). Work characterizing phosphorus cycling in
sponges is at a nascent stage (see Zhang et al., 2019), but multiple
studies have identified phosphorus cycling and metabolism of
organic phosphorus-containing compounds as an important
component in sponge-microbe systems (Zhang F. et al., 2015;
Podell et al., 2019; Engelberts et al., 2020; Fiore et al., 2020) and
further work is needed on this topic.

Microbial symbionts may also facilitate survival on coral reefs
by supplying organic compounds like amino acids and vitamins
that host sponges cannot synthesize or obtain from their diet.
This form of metabolic interaction has been demonstrated in
other systems (e.g., insects, Bennett and Moran, 2013; Salem
et al., 2014; vertebrates, review by Neish, 2009; Degnan et al.,
2014), and the potential for transfer of amino acids (e.g., lysine),
vitamins (e.g., riboflavin, biotin), and other metabolites has
been suggested by studies based on ‘omics’ analysis of sponge
holobionts or sponge symbiont genomes (Hallam et al., 2006;
Thomas et al., 2010; Liu et al., 2011, 2012; Siegl et al., 2011; Fan
et al,, 2012; Radax et al,, 2012; Kamke et al., 2014; Fiore et al,,
2015a; Moitinho-Silva et al., 2017; Bayer et al., 2020; Engelberts
et al., 2020). This has been highlighted in recent reviews on the
sponge holobiont (Taylor et al., 2007; Webster and Taylor, 2012;
Webster and Thomas, 2016), but no studies that we are aware
of have demonstrated transfer of specific nutrients to the host
experimentally. Targeted experimental work is needed to uncover
complex metabolic interactions between hosts and symbionts and
how this varies across host species; this represents a significant
gap in our understanding of the role of microbial symbionts in
the survival of their hosts.

Specific Knowledge Gaps in Sponge
Symbiont Diversity and Metabolism

Here, we have highlighted the taxonomic and functional diversity
of microbial symbionts within sponges, but there is a need
for additional work to understand the complex nutritional
relationships between microbial symbionts within a sponge
host. This includes the evolutionary origins of these microbe-
microbe interactions and how they vary among diverse sponge
species and over space and time. This will help to elucidate the
ecological forces structuring microbial community composition
and function across different species. Additionally, more work
is needed to resolve microbially mediated benefits to the host
sponge. For instance, DOM consumption by microbial symbionts

could benefit the host in three ways: (1) excretion of essential
metabolites for the host (e.g., vitamins, amino acids), (2)
nutritional support for microbes that consume host waste (e.g.,
ammonium), and (3) nutritional support for microbes that
are consumed by the host (i.e., farming’ symbionts; Ilan and
Abelson, 1995; Vacelet and Boury-Esnault, 1995; Hudspith et al.,
2021). Lastly, while we have a basic understanding of overall
biogeochemical cycling in sponges, we are still limited in our
understanding of nitrogen, sulfur, and phosphorus metabolism
by sponge symbionts, the potential connections between cycles
of different elements (but see de Kluijver et al., 2021), and the
potential intersections of these microbes and cycles with host
metabolism and ecology.

ECOLOGICAL VARIATION AMONG HOST
SPECIES

As emergent techniques better resolve the nuances of sponge-
microbe associations and sponge holobiont metabolism, it is
increasingly clear that individual sponge species have unique
solutions to the ecological challenges on coral reefs (e.g.,
obtaining food). Sponge species vary in the abundance, diversity,
and community composition of their microbial communities
(Figure 2; Easson and Thacker, 2014; Thomas et al., 2016; Gantt
et al., 2019; Freeman et al., 2020) and host physiology [tissue
density, pumping rates, and width of choanocyte chambers
(Weisz et al, 2008; Poppell et al., 2013; Morganti et al,
2021)], exploit nutrient pools that are unique from sympatric
sponge species (Freeman et al., 2020), converge on some specific
metabolic pathways (Fan et al., 2012; Ribes et al., 2012; McMurray
et al., 2018), and have varying levels of plasticity in both
their microbial community structure and holobiont metabolism
(McMurray et al., 2018). In this section, we highlight this
variation and provide evidence that sponge species are filling
unique functional or nutritional “niches” on coral reefs.

Host Specificity in Microbial

Communities and Holobiont Metabolism
Host specificity in microbial community composition is
increasingly reported in sponges across a variety of spatial
(Anderson et al.,, 2010; Erwin et al., 2011, 2012a; Schottner
et al., 2013; Thomas et al., 2016; Dat et al., 2018; Easson et al,,
2020; Freeman et al., 2020) and temporal (Erwin et al., 2012b;
Cardenas et al., 2019) scales. In fact, several recent studies have
observed that up to 80% of the variation in microbial community
structure is shaped by the identity of the host sponge (Easson
and Thacker, 2014; Thomas et al., 2016; Freeman et al., 2020).
In contrast, only about 19% of this variation can be attributed to
the overall microbial abundance (HMA or LMA) within a host
species (Figure 2; Freeman et al., 2020). With host specificity in
microbial community composition and a strong phylogenetic
signal between microbiome diversity and host phylogeny at
local, regional, and global scales (Easson and Thacker, 2014;
Thomas et al., 2016; Gantt et al., 2019; Freeman et al., 2020), this
observed variation among host species might have important
implications for sponge ecology and evolution. However, host
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specificity and microbiome diversity could also be driven by
unique host characteristics that influence microbial habitats and
differ among host species; therefore, experimental work is needed
to better characterize the mechanisms by which microbiomes
influence host sponge ecology and evolution. The fact that
intraspecific variation in host sponge population genetics is
linked to microbial community structure (Swierts et al., 2018;
Griffiths et al., 2019; Easson et al., 2020) is also intriguing and
implies a strong influence of the host sponge on its microbial
community (see below).

Early work using stable isotopes (Table 3) by Weisz et al.
(2007, 2008) demonstrated that species vary in their 31°N and
813C values, with HMA species having depleted (lower) 3'°N
values than LMA species. This divergence in nitrogen metabolism
was ascribed to microbial transformations of nitrogen in the
HMA species and comparatively higher levels of heterotrophic
feeding on organic matter in the water column in the LMA
sponges (Weisz et al., 2008). In addition, evidence of variation
in physiological traits (e.g., pumping rates and tissue density)
among HMA and LMA species suggested that total microbial
abundance might drive niche divergence across these sponge
species (Weisz et al., 2007, 2008). Freeman and Thacker (2011)
analyzed the stable isotope ratios of isolated sponge and microbial
fractions and found that three HMA species each had a unique
interaction with their microbial symbionts. For instance, transfer
of nitrogen from symbionts to the host was documented in
Aplysina fulva and A. cauliformis but not in N. subtriangularis
or the LMA sponge Niphates erecta (Freeman and Thacker,
2011). Furthermore, experiments using inorganic compounds
enriched in '3C and '°N found that photosymbiont carbon and
nitrogen metabolism was highly variable across different HMA
species (Freeman et al., 2013) and interspecific differences in host
reliance on photosymbiont metabolism was also supported by
shading experiments (Erwin and Thacker, 2008; Freeman and
Thacker, 2011; Freeman et al., 2015).

More recently, Morganti et al. (2017) demonstrated trophic
niche separation through a combination of variation in
heterotrophic efficiency (bacterial retention) and uptake of
DON/DOC across five sympatric Mediterranean species. Stable
isotope surveys of 15 of the most common sponge species in
the Caribbean have also indicated strong host specificity in
broad scale trends of holobiont carbon and nitrogen metabolism,
with 70-90% of the variation in the 3'°N and $'*C values of
sponge tissue driven by host identity (Freeman et al., 2014, 2020).
Interestingly, although §!°N values of sponge tissue displayed
a strong host-phylogenetic signal that is conserved across the
Caribbean (Freeman et al., 2020), these patterns were not
mirrored in 8'3C values. This, along with Gantt et al. (2019)
reporting that microbiome structure was uncoupled from C
(POC/DOC fluxes) cycling and PO4 and NOy fluxes but was
correlated with NHy flux, suggests that it may benefit sponges
to be flexible in carbon metabolism, but more constrained in
their exploitation of nitrogen (see below for more discussion
of this). Together, recent studies suggest that fine-scale trends
in resource use are shaped at least in part by microbial
community composition, but more work is needed to understand
the functional importance of microbiome specificity in these

interactions, the potential tradeoffs between host physiology and
symbiont metabolism, and the role of both symbionts and the
host in this divergence.

Convergence on Common Metabolic
Pathways

Some metabolic pathways may be so critical to survival on
coral reefs that different sponge species have evolved unique
mechanisms to gain access to a specific resource or pathway. For
instance, although two HMA species hosted unique communities
of microbial symbionts, both species had high levels of
nitrification, as well as DOC and NHy uptake (Ribes et al.,
2012). In addition, Fan et al. (2012) reported striking functional
convergence in the microbiomes of six sponge species, implying
the presence of core functions (e.g., nitrogen metabolism) of
microbial symbionts across different sponge species. Finally,
although HMA sponges are generally considered to assimilate
DOM more efficiently than LMA sponges (McMurray et al.,
2018) due to assimilation by their microbial symbionts (Rix
et al., 2020), recent work has found that LMA species in the Red
Sea (Dysidea avara) and the Indo Pacific (Cliona orientalis) are
also able to exploit DOM directly via pinocytosis in specialized
cells (choanocytes) within their aquiferous systems (Achlatis
et al, 2019; Rix et al, 2020). Thus, sponges with different
physiologies and interactions with microbial symbionts have
unique adaptations for the exploitation of DOM.

Plasticity in Metabolism and
Microbiomes

Flexibility in physiological traits that mediate resource use can
be adaptive for organisms on coral reefs if it allows for the
exploitation of temporally or spatially variable resource pools.
Plasticity in pumping rates, the filtration rates of POC and
DOC, and fluxes of dissolved nutrients (e.g., Carballo et al,
2006; Morley et al., 2016; Morganti et al., 2017; Wooster et al,,
2019) have been demonstrated in some sponge species. In
addition, intraspecific plasticity in sponge symbiotic microbial
communities has been found (e.g., Burgsdorf et al, 2014;
Sacristan-Soriano et al., 2020; and see review by Kiran et al,,
2018) and may allow sponges to rapidly adapt to environmental
conditions at a new site or over time. To expand on this, we
highlight four examples of phenotypic and microbiome plasticity:
(1) multiple studies on Xestospongia muta, (2) Ircinia felix,
(3) Halisarca caerulea, and (4) a Caribbean-wide profile of
11 sponge species.

Arguably, one of the most well-studied sponges in the
Caribbean is the giant barrel sponge, X. muta. Xestospongia
muta harbors a diverse microbial community, including a high
proportion of Cyanobacteria (Steindler et al., 2005; Montalvo
and Hill, 2011; Fiore et al., 2013b). The symbiotic community
of X. muta and nutrient fluxes from X. muta varied across
multiple locations within the Caribbean (Fiore et al., 2013a,b;
McMurray et al., 2016). Specifically, X. muta in the Florida
Keys were a net sink for NOx, while those sampled in the
Bahamas and Little Cayman Island were a net source of NOx
(Fiore et al., 2013b). Relatively high individual variability was
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observed at each of these locations (Fiore et al., 2013b) and
similar observations were made about X. muta pumping activity
within one location (McMurray et al., 2014). Similarly, fluxes
of DOC were net negative from X. muta in the Florida Keys
and net positive from conspecifics at Carrie Bow Cay in Belize
(McMurray et al., 2018). The ambient concentration of DOC was
also higher in the Florida Keys compared to Belize (McMurray
et al,, 2018) and other studies have observed similar patterns
between nutrient concentration and nutrient uptake by sponges
(Morganti et al., 2017; Wooster et al, 2019). In some of the
initial work on X. muta that included both nutrient fluxes
and microbial community analysis, it was difficult to relate
specific environmental variables, physiological traits, and the
microbiome community composition to each other (e.g., Fiore
et al., 2013a,b); however, later work uncovered several correlative
relationships. For example, ammonium concentrations in the
ambient seawater were higher in the Florida Keys than in the
Bahamas and archaeal ammonia oxidation gene expression was
higher in the X. muta samples from the Florida Keys than
in the Bahamas (Fiore et al, 2015a). Additionally, while the
microbiome of X. muta showed a consistent ‘core’ microbial
community profile with depth, there was a shift in the relative
proportion of several taxa over depth at two locations, notably
Cyanobacteria and Chloroflexi (Olson and Gao, 2013; Morrow
et al.,, 2016). Abiotic factors, including light and temperature,
were likely driving the relative decrease and increase in
Cyanobacteria and Chloroflexi, respectively, with depth at Little
Cayman Island (Morrow et al., 2016). In contrast, inorganic
nutrients were higher in the ambient seawater and there was
a less observable difference in the symbiont community of
X. muta over depth in the Bahamas (Morrow et al, 2016).
These studies point to an inherent flexibility that X. muta
maintains in its symbiotic community composition and function
as well as in physiological traits when presented with different
environmental variables.

Shifts in microbial composition and function were also
demonstrated for the sponge I felix at three locations in
the Caribbean (Archer et al, 2017). Fluxes of DOC and
inorganic nitrogen and phosphate generally correlated with
the concentrations in ambient seawater, where sponges acted
as a sink with higher ambient concentrations (Archer et al,
2017). Additionally, predicted functional genes of the symbiotic
community differed by location; for genes associated with
nitrogen metabolism, increases in predicted gene abundance
correlated with higher ambient seawater concentrations of
DIN. Similar to the work by Morrow et al. (2016) with
X. muta, Archer et al. (2017) observed that abiotic factors were
significantly correlated with changes in nutrient fluxes from
I felix and illustrate the context-dependent manner in which the
functional profile of the microbial community and host-microbe
interactions can change.

The encrusting sponge, H. caerulea, also exhibited plasticity
in physiological traits and microbiome community composition
(Lesser et al., 2019). Lesser et al. (2019) transplanted sponges
between shallow (~10 m) and deep (~50 m) sites and observed
correlative changes in detritus production, nutrient fluxes,
nitrogen stable isotope signal, and microbiome composition

in the transplanted sponges. Natural abundance stable isotope
analysis revealed nutritional differences between shallow and
deep sponges. This result, combined with shifts in detritus
production, microbiome composition, and ambient POM and
DOM concentrations over the depth profile indicate a plastic
response by the sponge and microbial community to efficiently
utilize available nutrients (Lesser et al., 2019). More work is
needed, however, to assess how host reliance on symbionts and
external sources of nutrients varies across these depth gradients.

Finally, to further visualize plasticity in sponge metabolism
across different species, we leveraged data from 11 sponge species
in Freeman et al. (2020) for which both stable isotope 313C
and 3'°N) and microbiomes were measured (Supplementary
Figure 1) to provide proxies for broad-scale trends in metabolism
and microbial community composition. Sponges were sampled
from two reefs in Panama and one in the Florida Keys,
United States that vary in their environmental conditions (Easson
et al., 2015; Freeman et al., 2020). Variation in §'3C and §°N
values and microbiome community composition were calculated
at two spatial scales (within site and Caribbean-wide) and
visualized as a comparison of the mean distance to a species
centroid (MDC) at individual sites compared to MDC across the
Caribbean (Supplementary Figure 1).

The MDC for all three metrics was greater at the level
of the Caribbean than within a site for all species, but the
magnitude of this variation at different spatial scales varied across
individual species (Supplementary Figure 1). For example, at
the level of the Caribbean the species A. cauliformis showed
low variability in 8!*C, but moderate to high variability in §!°N
and microbiome composition compared to co-occurring species.
Aplysina cauliformis receives approximately 75% of its carbon
from its photosynthetic symbionts (Freeman and Thacker,
2011), so a tightly conserved relationship with symbionts may
buffer against variation in §!°C across large spatial scales. In
contrast, Iotrochota birotulata exhibits low variability in §!°N
and is dominated by a single symbiont group across all sites;
this symbiont taxon may play an important role in nitrogen
exploitation or cycling in this species. Although there are other
interesting patterns in these figures, in short, these results clearly
demonstrate that sympatric sponge species each have unique
responses to the same environmental gradient.

Specific Knowledge Gaps in Ecological
Variation Across Host Species

As evidence of intraspecific genetic variation of host sponges
increases, it is unclear whether the plasticity or divergence
documented above is actually caused by cryptic speciation. For
instance, although three species of barrel sponges within the
genus Xestospongia are recognized across the globe, there is
new evidence that there are actually 17 different genotypes
(Swierts et al, 2017). On a smaller scale, Deignan et al.
(2018) found two unique genetic clusters of X. muta on
Conch Reef in the Florida Keys. Thus, the ecological plasticity
in X. muta outlined above may actually reflect ongoing
ecological speciation. As a preliminary test of theories of niche
differentiation under sympatric speciation, Kelly etal. (2021)
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examined the microbiomes associated with Panamanian species
of Ircinia. Four newly described species of Ircinia were
clearly differentiated from two known species using SNPs
obtained from a 2bRAD protocol (Wang et al, 2012) and
all six species displayed significant divergence in microbiome
community structure, with an average of 38% within group
Bray-Curtis dissimilarity (BCD) and an average of 46%
between group BCD. Additional preliminary evidence from
metagenomic sequencing of these Ircinia spp. suggests that each
of these species hosts distinct microbial pathways for carbon
fixation, nitrogen metabolism, and phosphorus metabolism,
supporting predictions from theories of niche differentiation
that may drive cryptic speciation. Finally, microbial community
composition varied across unique populations of the sponges
Cliona delitrix and Ircinia campana in the Caribbean (Chaves-
Fonnegra et al., 2015; Griffiths et al., 2019; Easson et al,
2020), suggesting that divergence in microbial communities
may occur as hosts are undergoing speciation over large spatial
scales and adapting to new environmental conditions (Griffiths
et al,, 2019; Easson et al., 2020). More work is needed to
test for cryptic speciation in other sponge species and to
broaden our understanding of the selective pressures driving
this speciation.

NEW INSIGHTS AND ECOLOGICAL AND
EVOLUTIONARY IMPLICATIONS

Numerous selective pressures shape trait evolution in organisms
on coral reefs and different sponge species appear to have unique
evolutionary solutions to these ecological challenges. In this
section, we will place some of the patterns we have highlighted
above into a broader evolutionary framework and provide novel
insights into the ecological importance of microbial symbionts
to sponge hosts.

Photosymbionts and Competition for

Space With Corals

Although pioneering work by Wilkinson (1987) and Wilkinson
and Cheshire (1990) attributed patterns of sponge biomass
and nutrition to inshore-offshore resource gradients, other
factors may certainly contribute to these patterns. For instance,
competitive interactions between sponges and anthozoans are
common (Bell et al, 2020) and may be influencing sponge
distribution and evolution. On the GBR, sponges are common
on inner sites where corals are rare (Done, 1982; Wilkinson
and Cheshire, 1988), but sponges are a minor component
(6.8% of bottom cover) of the benthic community on offshore
sites compared to hard and soft corals (31 and 12.4% cover,
respectively) (Reichelt et al,, 1986; Wismer et al, 2009). In
addition, there is an inverse relationship between coral and
sponge cover within sites as the percent cover of sponges
increases from 0.7 to 6.8% down the fore-reef slope to 20 m
while the opposite is the case for hard corals (decreasing
from 58.5 to 31.1% at 20 m, Wilkinson, 1981; Reichelt et al.,
1986). On central and outer-shelf sites of the GBR, this shift
with depth generally reflected an increase in the abundance

of thin, foliose Dictyoceratid sponges that are predominantly
phototrophic (Wilkinson, 1981; Wilkinson and Trott, 1985)
down to 30 m (their 24-h compensation point) (Cheshire and
Wilkinson, 1991). With irradiance levels on the GBR that can
approach 600 pmol photons m~2 s~!, 430 pwmol photons
m~2 57!, and 300 pumol photons m~2 s~ ! at noon at 10, 20, and
18 m depths, respectively (Wilkinson, 1981; Cheshire et al., 1997),
these obligate phototrophs must be well adapted for eflicient
photosynthesis at low irradiances (Cheshire and Wilkinson,
1991). Indeed, the irradiance at which there is photosynthetic
compensation (where Pgpayx [gross oxygen production] equals
R [respiration rate]) varies from 235 to 335 pmol photons
m~2 s7! and the irradiance at which 95% photosynthetic
saturation occurs (the photokinetic parameter Iy) varied from
85 to 423 pmol photons m~2 s~! depending on the sponge
species and location on the GBR (Wilkinson, 1987; Cheshire
and Wilkinson, 1991; Cheshire et al., 1997; Bannister et al,
2011). This variability, along with evidence that high hard coral
cover on these reefs leaves only small (0 to <1 cm) substrate
gaps between corals or between corals and sponges implies
that competition between sponges and productive calcifying
organisms is high and may be shaping sponge distribution and
nutrition on the GBR (Wilkinson, 1981; Done, 1982; Reichelt
et al., 1986).

Interocean variation in sponge biomass, morphology,
and nutrition may be shaped by the fact that sponges in the
Caribbean and GBR have evolved under unique selective
pressures due to lower coral cover in the Caribbean than
on the mid-shelf and outer reefs on the GBR (Done, 1982;
Roft and Mumby, 2012). Although less is known about the
photophysiology of Caribbean sponges, phototrophic sponges
in this ocean do not reach photosynthetic saturation at low
irradiances, are frequently found in shallow water (less than
15 m), and adopt a variety of growth forms (predominantly
rope and encrusting and not the thin, foliose growth form
of phototrophic sponges on the GBR) (Thacker et al., 2007;
Erwin and Thacker, 2008; Pawlik et al,, 2015). Interestingly,
some of the most abundant phototrophic sponges on offshore
and oceanic portions of the GBR (Phyllospongia lamellosa
[now Phyllospongia foliascens] and Dysidea herbacea [now
Lamellodysidea herbacea]) host the filamentous cyanobacteria
Hormoscilla spongeliae, but this symbiont is comparatively
rare across common sponges in the Caribbean. H. spongeliae
has, however, been found in phototrophic sponges within
the Caribbean (Diaz et al, 2007; Erwin and Thacker,
2007; Thacker et al, 2007). Thus, reduced niche space
and high competition with corals may have selected for
obligate interactions with photosymbionts in some sponge
species on outer reefs of the GBR. In contrast, although
Caribbean sponges obtain a nutritional benefit from their
photosymbionts (Thacker et al., 2007; Erwin and Thacker,
2008; Freeman et al, 2013) they appear to be under less
selective pressure to adopt growth forms that allow for
efficient light capture at low irradiances and at the cost of
reduced heterotrophic capacity. Lower coral cover in the
Caribbean may also provide ideal conditions for adaptive
radiation that fuels niche expansion, diversification, and growth
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(potentially leading to higher biomass) in groups like sponges
(Gavrilets and Losos, 2009).

Microbial Symbionts and Resource
Competition

Coral reefs represent a paradox of incredible biodiversity and
productivity in low-nutrient ecosystems (de Goeij et al., 2013);
an enduring challenge in coral reef ecology is to identify
the ecological and evolutionary processes that support this
biodiversity and facilitate species coexistence. Ecological theory
posits that competition for limiting resources can lead to the
exclusion of a species by a more efficient competitor (Gause,
1934). It is thus parsimonious to attribute the successful
coexistence of sponges in the Caribbean, with all their different
morphologies, physiologies, microbial symbiont communities,
and nutrition to a lack of nutrient limitation (Wilkinson and
Cheshire, 1990; Pawlik et al., 2015, 2018). However, competition
also drives trait evolution, ecological divergence, and ultimately
niche partitioning that can favor coexistence (Schoener, 1974).
The sponge communities we see on present-day coral reefs
(and all of their traits however similar or different) have been
shaped by past competition and some of the species involved
in past competitive interactions were likely driven to extinction.
These “ghosts of competition past” may have helped to drive
ecological divergence that contributes to the coexistence and low
apparent interspecific competition for resources on modern reefs.
Divergence in microbiome composition, along with strong host
specificity and the exploitation of distinct nutritional niches by
coexisting sponge species, suggests that microbial symbionts play
an important role in host niche expansion and differentiation
(Joy, 2013) and that ecological divergence across sponge species
is maintained by strong selective pressure from competition
(Easson and Thacker, 2014; Freeman et al., 2014, 2020).

Similar work on corals in the Caribbean demonstrates
that this group also adopts diverse morphologies (Santavy
et al.,, 2013) that influence their productivity and heterotrophic
capacity. For instance, hard corals with low SA:V (surface
area: volume) have larger polyps and are better adapted to
heterotrophic feeding, while individuals with small polyps have
high SA:V and are better adapted to capturing light and
obtaining benefits from photosynthetic symbionts (Porter, 1976).
Substantial differences in polyp size, productivity (P:R values),
and host coral enrichment in 13C from SIP experiments (Table 2)
were also demonstrated by Baker et al. (2015) across 11 Caribbean
gorgonian species. These results imply that niche diversification
is occurring in other dominant groups within this ocean basin.

Recent work suggests that competition can also drive
clustering of species by traits that allow them to exploit a
particularly plentiful or high-quality resource (D’Andrea et al.,
2019). Although species within each cluster are competing with
each other, they also experience competitive release from species
within other clusters that are exploiting different resource pools
or niches (D’Andrea et al., 2020). This hypothesis for coexistence
is particularly interesting considering evidence of ecological
convergence among marine sponges. For instance, species form
clusters in broad scale trends of microbial abundance (HMA

vs. LMA), reliance on specific nitrogen transformations, and
DOC/LPOC/detritus assimilation (Fan et al., 2012; Ribes et al.,
2012; McMurray et al., 2018). In particular, sponge species appear
to cluster by their relative exploitation of three heterotrophic
carbon pools (Figure 1), providing evidence of niche partitioning
via heterotrophic feeding on different carbon sources.

Of course, species coexistence on coral reefs will be shaped
by differentiation across multiple niche dimensions, so sponges
that share the same heterotrophic carbon niche may differ in
other traits. For instance, several species may form a cluster that
exploits the DOC pool on Caribbean reefs, but species within
this cluster also have unique microbiomes and/or physiologies
that allow them to vary in their production, retention, or
recycling of other elements (such as nitrogen) that might be
more limiting on coral reefs (Easson and Thacker, 2014; Thomas
et al., 2016; McMurray et al., 2018). More work is needed to
test this hypothesis with traits like photosymbiont abundance
and productivity, nitrogen metabolism, or chemical defense
production, but the clustering of species along multidimensional
resource axes for one element (Figure 1) and divergence when
multiple elements are considered (Freeman et al., 2020) provides
support for multidimensional niche partitioning in sponges.

The dissimilarity in sponge species traits that we see on
modern reefs may also not be shaped solely by external
evolutionary pressures like competition. Instead, because energy
is finite, species are under intense selective pressure to optimize
their life history strategy by balancing fitness tradeoffs associated
with characteristics that influence their growth, survival, and
reproduction (Pianka, 1970; Grime, 1977; Darling et al., 2012).
Reiswig (1974) was the first to report variation in sponge
life history strategies and relate these patterns to differential
ecological success or habitat specialization. For instance, Mycale
laxissima was well adapted for rapid colonization of new habitat
due to its ability to efficiently acquire food, rapid growth, and
allocation of substantial energy to reproductive effort at the
expense of body size (Reiswig, 1974). In contrast, Tectitethya
crypta and Verongula reiswigi, had lower reproductive rates and
instead allocated energy to production and the maintenance
of large, energy rich, and long-lived individuals (Reiswig,
1974). These results led Reiswig (1974) to assess that niche
partitioning in sponges was “by means of energy channeling and
reproduction.” Fitness trade-offs have since been reported across
different sponge species, with perhaps the most well-known
example pertaining to the production of chemical defenses
in Caribbean sponges. Although the production of chemical
defenses may come with an ecological benefit on reefs with high
levels of predators (Loh and Pawlik, 2014), their production also
comes with a cost that leads these species to have slower growth
and reproductive rates (Pawlik et al.,, 2008; Leong and Pawlik,
2010). In contrast, chemically undefended sponges allocate more
energy to reproduction and growth and are therefore able to
rapidly recruit to new substrates (Pawlik et al., 2008).

There are surprising similarities between the conclusions of
Reiswig (1974) and Pawlik et al. (2008) and classic ecological
theory pertaining to the evolution of life history strategies. For
instance, sponge species appear to broadly fit the -K selection
dichotomy, with some species allocating energy to fast growth
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and colonization (r-selected species) and other species adopting
a strategy that optimizes longevity and survival in crowded
ecosystems (K-selected species) (Pianka, 1970; Stearns, 1977). In
addition, with a more in-depth consideration of traits, sponge
species may fit within the classic C-S-R model proposed by Grime
(1977). In this example, fast growing, fecund, and/or chemically
undefended species that rapidly recruit to new habitat could be
considered ruderal (R) or “weedy” species that favor disturbance,
whereas slower growing, chemically defended sponges may be
better suited for environments favoring competitive (C) or stress
tolerant (S) life history strategies (Grime, 1977). Observations
of primary succession on a shipwreck in the Florida Keys
(Pawlik et al., 2008) have also provided preliminary support for
classic ecological theory by documenting initial colonization by
chemically undefended sponges followed 18 months later by the
colonization by chemically defended sponges. These observations
match predictions that pioneer species will be replaced over
time by slower growing species that are better adapted for
competitive environments (Connell, 1978; Grime, 1977). These
differences in overall life history strategies represent another
mechanism for niche divergence that could facilitate coexistence
on Caribbean coral reefs (Schoener, 1974) and highlight the
fact that community composition on Caribbean coral reefs is
impacted by diverse ecological processes including competition,
predation, and symbiosis (see recent debate on this outlined by
Pawlik et al., 2018).

Although recent work has used trait-based classification to
identify distinct life history strategies in corals (Darling et al.,
2012), similar trait data is either unavailable or incomplete
across sponge species. For example, the proximate biological
composition of sponge taxa is expected to be highly correlated
with feeding mode. However, although we found a set of 57
taxa with published information on carbohydrate, lipid, and
protein composition, only 8-12 of these taxa have been examined
in studies of feeding on detritus, living particulate organic
carbon (LPOC) or DOC (see Supplementary Table 2). Despite

these limitations, we can find evidence of multiple interesting
correlations among sponge life-history traits (Figure 4). For
example, energy content increases with increasing microbiome
diversity (left panel Figure 4), while palatability is negatively
correlated with energy (right panel Figure 4). Notably, when
comparing palatability (a proxy for chemical defense) and
microbiome diversity, we found no sponges with high palatability
and high microbiome diversity, suggesting that metabolites
inherent to high diversity microbiomes could substantially
impact palatability (center panel Figure 4). It is also worth
noting here that there are clear trends between overall microbial
abundance (HMA vs. LMA) and palatability as many, but not
all, sponges with low palatability were HMA species and some
HMA species were also highly palatable (center panel Figure 4).
These figures provide preliminary evidence of links and potential
tradeoffs between individual life history characteristics of
sponges, but more work is needed to both accumulate additional
data on these characteristics and test for tradeofts.

Importantly, many major life-history traits of sponges display
strong phylogenetic signal, implying that traits like palatability (a
proxy for chemical defense), tissue energy content, microbiome
diversity, and HMA/LMA status are linked to the evolutionary
history of the host sponge (Figure 5 and Supplementary
Tables 1, 2). However, this compilation of trait data also
clearly shows the differential investigation of traits by sponge
researchers. While many studies have examined palatability
and proximate biochemical composition across multiple species,
relatively few have quantified feeding on dissolved carbon
vs. living particulate organic carbon or compared pumping
rates with NOx production (Figure 5 and Supplementary
Tables 1, 2). This data gap provides a clear priority for
future work to better document life-history variation across
a broader array of sponge diversity. For example, although
multiple datasets measure microbiome diversity (Moitinho-Silva
et al, 2017; Gantt et al., 2019; Freeman et al., 2020), few of
these studies measure additional life history traits, limiting the
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integration of microbiome datasets into a broader understanding
of sponge biology.

Speciation

If microbiome metabolism is essential for the expansion and
establishment of a host’s ecological niche (Phillips et al., 2017;
Freeman et al., 2020), then the formation of sibling species at a
single location (termed sympatric speciation) might be facilitated
by changes in microbiome composition that yield different
functional traits (Schluter, 2009), as predicted by theories
of niche differentiation (D’Andrea and Ostling, 2016) that
examine within-community, or alpha, niche differences (Ackerly
et al., 2006). Alternatively, if speciation occurs subsequent to
geographic isolation (termed allopatric speciation), differences in

environmental conditions and selective pressures might select for
larger differences in microbiome composition, particularly those
associated with the new habitat (Loo et al., 2019). These between-
community, or beta, niche differences are often associated with
large-scale changes in environmental conditions (Ackerly et al.,
2006). In instances where multiple speciation events occur in
parallel, we might expect that these environmental forces act
similarly across multiple host species.

The term “phylosymbiosis” has been proposed to describe the
congruence of host phylogeny and dissimilarity (beta diversity)
of microbiome community composition, without presuming that
this pattern arises from coevolution or cospeciation (Brooks
et al., 2016). For example, a recent survey of coral microbiomes
found support for phylosymbiosis, but only limited support for
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codiversification of host and symbiont phylogenies, suggesting
that changes in host habitat and recruitment of environmental
microbes have a stronger impact on microbiome composition
(Pollock et al., 2018). For sponges, a review of globally sampled
hosts and microbiomes found strong support for phylosymbiosis
(Thomas et al, 2016), but few studies have examined co-
diversification among sponge and symbiont lineages, and have
generally found weak support (Thacker et al., 2007; Reveillaud
etal., 2014).

In addition, few studies have provided evidence of speciation
being associated with changes in microbiome composition
and functional traits. Kelly et al. (2021) examined multiple
Ircinia spp. in the Caribbean, finding unique microbiomes
associated with 12 distinct host lineages and suggested that
these metagenomes code for distinct nutritional strategies. This
study also found evidence for on-going hybridization among
host sponge lineages, suggesting that the forces selecting for
distinct microbiomes are stronger than neutral processes such
as dispersal and hybridization. Likewise, Diez-Vives et al. (2020)
found microbiome divergence correlated with population genetic
differentiation within Petrosia ficiformis, while Easson et al.
(2020) documented a similar pattern among populations of
Cliona delitrix.

Specific Knowledge Gaps in Evolutionary
Pressures and Life History Strategies

Many reported trends in sponge life-history evolution are driven
by the relatively small number of species for which these
traits have been quantified (Pawlik et al., 2018; Wulff, 2020).
Indeed, surprisingly few of the more than 9,000 described sponge
species can be included in our current comparisons. These
preliminary results suggest that there are multiple dimensions
of the ecological niches of sponges that are not related to
nutrition and that sponge life history strategies are under
pressure from diverse evolutionary forces including predation,
competition, and mutualism (Pawlik, 2011; Pawlik et al., 2015;
Wulff, 2020).

Our review of recent literature found few studies that
explicitly compare genetic variation within species to variability
in life-history traits, including microbiome composition and
palatability. A clear priority for future research is to not
only broaden the taxonomic coverage of surveys of life-history
traits, but to examine how these traits vary within species.
Identifying trade-offs within species would greatly facilitate
studies connecting genotype to phenotype and the discovery
of gene regulatory networks (Nuzhdin et al, 2012). When
comparing among species, although several previous studies
document phylosymbiosis, few studies have examined individual
symbiont lineages in attempts to measure co-diversification
or host switching, suggesting additional avenues for future
research. Finally, as humans continue to impact reef habitats
around the globe, additional work is also needed to determine
how environmental disturbances shape host evolution and the
role of microbial symbionts in host response or resilience
to these stressors (Glasl et al., 2018; O’Brien et al., 2019;
Ramsby et al., 2020).

CONCLUSION AND FUTURE RESEARCH

In our discussion above, we have outlined evidence that supports
the notion that microbial symbiont communities have an
important role in shaping the ecology and the evolutionary
trajectory of host sponge species. We also highlight the multiple
factors involved in contextualizing sponge evolution and the
role of sponges in coral reef ecology. Here, we delineate
five overarching research needs and themes derived from our
synthesis. Two of these address necessary changes to specific
experimental factors. First, it is critical to use appropriate
irradiance values in experimental conditions to accurately assess
photophysiology of photosymbionts and functional roles of
these symbionts in hospite. If experiments cannot be carried
out in situ and at depth, then irradiances used should be
ecologically relevant and based on measured values at depth.
Second, standardized combinations of modern analytical tools
(Tables 1-3) are needed to assess how both hosts and symbionts
contribute to the ecological success of sponges in different ocean
basins and untangle the relationship between sponge community
assemblages and nutrient composition and concentration. These
methods should aim to provide detailed carbon and nitrogen
budgets for (at least initially) the most ecologically dominant
sponge species on reefs across regional environmental gradients
and in different ocean basins. These studies should also assess the
nutritional environments where these sponge species are found
by measuring the concentrations of organic (both particulate
and dissolved) and inorganic nutrients. In addition to these
two experimental research needs, it is critical to broaden
nutrient-focused geographic comparisons beyond carbon, as
nitrogen in particular, but also sulfur, phosphorus, iron,
and other trace nutrients likely have biologically meaningful
consequences in sponge and microbial symbiont physiologies.
More specifically, the decades-long focus on carbon has hindered
our understanding of and constrained the conversation around
sponges and reef nutrient dynamics. In addition, as we move
beyond analyses of single traits toward variation in multiple
nutritional niche dimensions, there is a clear need to address
evolutionary questions pertaining to the selective pressures
that help to form and maintain host-symbiont and symbiont-
symbiont interactions, as well as variation in host specificity or
plasticity in these interactions. Finally, more experimental studies
are needed to test hypotheses being developed from the many
descriptive-based studies, particularly involving high-throughput
sequencing and large-scale ‘omics work (Mohanty et al., 2021).
This will likely include the development and application of new
tools that can facilitate such experimental studies (e.g., novel
microscopy tools). Some of these research themes have been
similarly highlighted in previous reviews; here we have built on
these conversations with a historical perspective.

In summary, sponges have unique evolutionary solutions to
the diverse ecological challenges on coral reefs. There is still
a need for a variety of experimental approaches and scope
including those targeting a particular factor of interest. However,
we argue that the corresponding results should be placed
in the context of the broader and more complicated picture
of sponge holobiont ecology rather than viewed in isolation
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as a single factor (e.g., top-down vs. bottom-up processes).
Furthermore, the field of sponge ecology should weave together
the individually discovered narratives on molecular and genomic
functional attributes of sponges and/or microbial symbionts
(e.g., Letourneau et al., 2020; Robbins et al., 2021), underlying
evolutionary patterns (e.g., Freeman et al.,, 2020; Kelly et al.,
2021), and ecological interactions (e.g., Loh and Pawlik, 2014;
Pawlik et al., 2018; Wulff, 2020), to better develop a framework
for understanding ecological and molecular mechanisms relevant
to the success of extant poriferans. This work is likely to have
implications beyond the field of sponge biology.
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