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Abstract. We propose in this paper a data driven state estimation scheme for gener-
ating nonlinear reduced models for parametric families of PDEs, directly providing
data-to-state maps, represented in terms of Deep Neural Networks. A major constituent
is a sensor-induced decomposition of a model-compliant Hilbert space warranting ap-
proximation in problem relevant metrics. It plays a similar role as in a Parametric
Background Data Weak framework for state estimators based on Reduced Basis con-
cepts. Extensive numerical tests shed light on several optimization strategies that are
to improve robustness and performance of such estimators.
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1 Introduction

Understanding complex “physical systems” solely through observational data is an at-
tractive but unrealistic objective if one insists on certifiable accuracy quantification. This,
in turn, is an essential precondition for prediction capability. In fact, unlike application
scenarios where an abundance of data are available, data acquisition for “Physics In-
formed Learning Task” typically relies on sophisticated sensor technology and is often
expensive or even harmful. Therefore, a central task is to develop efficient ways for fus-
ing the information provided by data with background information provided by physical
laws governing the observed states of interest, typically represented by partial differen-
tial equations (PDEs). In principle, this falls into the framework of “Physics Informed
Neural Networks” (PINN), however, with some noteworthy distinctions explained next.

The central objective of this note is to explore a machine learning approach to state
estimation in the above sense. Our contributions concern two major aspects:
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(i) In contrast to typical PINN formulations, we employ loss functions that are equiv-
alent to the error of the estimator in a norm that is imposed by the continuous mathemat-
ical model. More precisely, this norm corresponds to a stable variational formulation of the
PDE family. In other words, the generalization error for this loss function measures the
accuracy of the estimator in a problem intrinsic norm without imposing any additional
regularity properties.

(ii) When employing estimators, represented as Deep Neural Networks (DNNs), one
has to accept a significant and unavoidable uncertainty about optimization success. Due
to (i), one can at least measure the achieved accuracy at any stage of the optimization.
We therefore take this fact as a starting point for a systematic computational exploration of
a simple optimization strategy that seems to be particularly natural in combination with
ResNet architectures.

Regarding (i), the proposed approach is, in principle, applicable to a much wider
scope of problems than discussed below. Last but not least, in order to facilitate compar-
isons with other recovery schemes, specifically with methods that are based on Reduced
Basis concepts, the numerical experiments focus on elliptic families of PDEs with param-
eter dependent diffusion fields. However, for this problem class we discuss in detail two
rather different scenarios, namely diffusion coefficients with an affine parameter depen-
dence, as well as log-normal parameter dependence. It is well known that the first scenario
offers favorable conditions for Reduced Basis methods which have been well studied for
this type of models and can therefore serve for comparisons. While in this case nonlin-
ear schemes using neural networks do not seem to offer decisive advantages in terms of
achievable certifiable estimation accuracy nor computational efficiency we see an advan-
tage of the DNN approach in the second scenario because it seems that they can be better
adapted to the challenges of this problem class.

It should be noted though that the present approach shares some conceptual con-
stituents with so called One-Space methods or PBDW (Parametric Background Data Weak)
methods (see [2, 4, 10]). We therefore briefly recollect some related basic ideas in Sec-
tion 2.4. An important element is to represent the sensor functionals as elements of the
trial space U for the underlying PDE. The U-orthogonal projection to their span, termed
“measurement space”, provides a natural “zero-order approximation” to the observed
state. To obtain an improved more accurate reconstruction, the data need to be “lifted”
to the complement space. We view the construction of such a “lifting map” as “learn-
ing” the expected “label” associated with a given observation, see Section 2. This, in
turn, is based on first projecting “synthetic data” in terms of parameter snapshots, to
the U-orthogonal complement of the measurement space. We then extract via SVD from
these projected data a sufficiently accurate “effective” complement space that captures
corresponding components of the solution manifold with high accuracy in U. The lifting
map is then expressed in terms of the coefficients of a U-orthogonal basis of the effective
complement space which, in turn, are represented by a neural network. The fact that
we learn the coefficients of a U-orthogonal basis allows us to control the accuracy of the
estimator in the problem-relevant norm. Thus, the proposed method is based on combin-
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ing POD based model reduction with neural network regression. In this regard, it shares
similar concepts with the recent work in [13] and [9]. However, a major distinction is
that in [9,13] the whole parameter-to-solution map is constructed while the present work
focuses on generating directly a data-to-state map through regression in sensor coordinates
(see Section 2.3).

Concerning (ii), successfully training a neural network remains a serious issue. Nei-
ther can one guarantee to actually exploit the expressive power of a given network archi-
tecture, nor does it seem possible to estimate the required computational cost. Therefore,
it is more important to measure a given optimization outcome in a problem-relevant met-
ric for making it possible to enable the assessment of the estimation quality obtained in
the end. In the second part of the paper we computationally explore a natural training
strategy that, as will show, renders optimization more reliable, stable and robust with
regard to varying algorithmic parameters like depth, width or learning rates. To counter
gradient decay when increasing depth, we opt for ResNet architectures. Moreover, we
systematically compare stochastic gradient descent applied to all trainable parameters,
termed “plain Gl-ResNN training” to an expansion strategy that starts with a shallow net-
work and successively adds further blocks in combination with a blockwise optimization.
That is, at every stage we optimize only the trainables in a single block while freezing the
remaining parameters. In that sense we do not fix any network architecture beforehand
but expand it dynamically while monitoring loss-decay, see Subsection 3.2. Section 4 is
then devoted to extensive numerical studies comparing plain Gl-ResNN and the expan-
sion strategy for both application scenarios.

2 Problem Formulation and Conceptual Preview

2.1 Parametric PDE models

For a wide scope of applications, the underlying governing laws can be represented by a
family of partial differential equations (PDEs)

F (u,y; f )=0, y∈Y , (2.1)

with data f and coefficients depending on parameters y ranging over some compact pa-
rameter domain Y ⊂R

dy . Focusing on linear problems, what matters in the present con-
text is to identify first a stable variational formulation for (2.1), i.e., to identify a(n infinite-
dimensional) trial-space U and a test-space V, such that

F (u,y; f )(v)=0= f (v)−(Byu)(v), v∈V, (2.2)

is well-posed, meaning that the bilinear form

b(u,v;y)=(Byu)(v), u∈U,v∈V, (2.3)
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satisfies the conditions of the Babuska-Necas Theorem (continuity-, inf-sup-, surjectivity-
condition), [12].

When y traverses Y the respective solutions u(y) mark the viable states of interest
and form what is often often called the solution manifold

M :={u(y) :F (u(y),y; f )=0, y∈Y}⊂U, (2.4)

which is in most relevant cases a compact subset of U. The central task considered in this
work is to recover, from a moderate number of measurements, a state u∈U under the
prior u∈M.

Stable formulations are available for a wide scope of problems to which the following
approach then applies. To be specific, we focus as a guding example second order elliptic
problems

F (u,y; f )= f −Byu := f +div(a(·;y)∇u), in Ω⊂R
dx , u|∂Ω =0, (2.5)

where f is a forcing term. Examples are Darcy’s equation for the pressure in ground-
water flow or electron impedance tomography. Both involve second order elliptic equa-
tions as core models and parameter dependent diffusion coefficients that describe perme-
ability or conductivity, respectively, where in the latter case the model is complemented
by Robin-type boundary conditions. A large parameter dimension dy reflects substantial
model complexity. In a probabilistic framework, the parametric representations of the
coefficients could arise, for instance, from Karhunen-Loève expansions of a random field
that represent numerically “unresolvable” features. In this case the number of parame-
ters is ideally infinite and parameter truncation causes additional model bias.

For (2.5) a proper choice of trial- and test-spaces is U=V=H1
0(Ω), provided that one

has uniform ellipticity, namely there exist constants 0< r≤R<∞ such that

r≤ a(·,y)≤R, in Ω, y∈Y . (2.6)

For other problem types, such as convection dominated problems or time-space formula-
tions for parabolic problems, one may have to choose V differently from U, see e.g. [7,8].

Later in our numerical examples we consider two types of diffusion coefficients:

(S1) Piecewise constant coefficients: Given {Ωj}j∈I a non-overlapping partition of Ω,
⋃

j∈I Ωj=
Ω, the diffusion coefficient in the model (2.5) is assumed to be of the following form:

a(x;y)= a0(x)+∑
j∈I

yjχj(x), (2.7)

where yj, the j-th component of y, obeys a uniform distribution and χj(x) is the
characteristic function that takes the values 1 in Ωj and 0 in its complement Ω\Ωj.
This correponds to the affine parameter representation (2.7). We assume for sim-
plicity a0(x)=1 and yj ∼U[−1/2,1/2] so that the diffusion coefficient is piecewise
constant while the uniform ellipticity (2.6) of the problem is guaranteed with a mod-
erate condition of the variational formulation.



5

(S2) Lognormal case: Suppose the diffusion coefficient has the following parameterized
form:

a(x;y)= a0(x)+a1ez(x,y), (2.8)

where a0 is a continuous non-negative function on Ω, a1 is a positive constant and
z(x,y) is a zero-mean Gaussian random field

z(x,y)=
∞

∑
j=1

√
µjξ j(x)ηj(y), x∈Ω and y∈Y .

Here, {ηj}j≥1 form an orthogonal system over Y where the components of y are
i.i.d. N (0,1), and the sequence {(µj,ξ j)}j≥1 are real eigenpairs of the covariance
integral operator

(Cv)(x)=
∫

D
c(x,x′)v(x′)dx′

associated with the Matérn model

c(x,x′)=σ2 21−ν

Γ(ν)
(2
√

νr)νKν(2
√

νr),

in which σ2 is the marginal variance, ν> 1
2 is the smoothness parameter of the ran-

dom field, Γ is the Gamma function, r =

√
(x1−x′2)

2

λ2
x1

+
(x2−x′2)

2

λ2
x2

, λx1
and λx2 are the

correlation lengths along x1- and x2-coordinates, and Kν the modified Bessel func-
tion of second kind.

At the discrete level, to generate realizations of the stationary Gaussian process over
the grid points of Ω, we use the circulant embedding approach in [14, 17]. Its main
idea is to embed the covariance matrix to a block circulant matrix so that FFT can
be applied for a fast evaluation.

The reason for considering these two scenarios lies in the following principal dis-
tinctions: In scenario (S1) the choice of Y ensures that the diffusion parameter always
satisfies (2.6) so that

a(u,v;y) :=
∫

Ω
a(·;y)∇u·∇vdx= f (v), v∈U. (2.9)

is stable over U= H1
0(Ω)=V and possesses for each y∈Y a unique weak solution u=

u(y)∈U. However, the condition of (2.9) depends on R/r and deteriorates when this
quotient grows. In scenario (S2) this latter aspect is aggravated further because (2.6) holds
only with high probability. Moreover, in contrast to scenario (S1), the diffusion coefficient
no longer is affine in y ∈ Y which is known to poses challenges to the construction of
certifiable Reduced Bases, see e.g. [11].
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2.2 Sensors and Data

In addition to the model assumption that an observed state u∈U (nearly-) belongs to M
we wish to utilize external information in terms of measurements or data. Throughout
this note we will assume that the number m of measurements o=(o1,. . .,om)⊤∈R

m of an
unknown state u is fixed and of moderate size. We will always assume that the data are
produced by sensors

oi = ℓi(u), i=1,.. .,m, ℓ :=(ℓ1,. . .,ℓm)∈ (U′)m, (2.10)

i.e., we assume, for simplicity, in what follows the ℓi to be bounded linear functionals.
Estimating u from such data is ill-posed, already due to a possible severe under-

sampling. Under the assumption that u (at least nearly) satisfies the PDE for some pa-
rameter y∈Y one may also ask for such a parameter y that explains the data best. Since
the parameter-to-solution map y → u(y) is not necessarily injective, this latter parameter
estimation problem is typically even more severely ill-posed and nonlinear.

A common approach to regularizing both estimation tasks is Bayesian inversion. An
alternative is to fix from the start a presumably good enough discretization, say in terms
of a large finite element space Uh to then solve (a large scale optimization) problem

min
y∈Y ,uh∈Uh

{
‖o−ℓ(uh)‖2+λ‖Fh(uh,y; f )‖2+µ‖Rh(uh)‖2

}
, (2.11)

where ‖·‖ is just the Euclidean norm, λ and µ are weight parameters and the last sum-
mand represents a regularization term which is needed since dy+dimUh is typically
much larger than the number of measurements m. Questions arising in this context
are: How to choose λ,µ and the regularization operator Rh; perhaps, more importantly,
should one measure deviation from measurements and the discrete residual - closeness
to the model - in the same metric?

Moreover, for each new data instance o′ one has to solve the same large-scale problem
again. Thus, employing a reduced model [15,16] for approximating the parameter-to-solution
map y 7→u(y) would serve two purposes, namely mitigating under-sampling and speed-
ing forward simulations. Specifically, we apply similar concepts as in [2, 4, 6, 10] to base
state estimation on reduced modeling, as described next.

2.3 Sensor-Coordinates

Rather than tying a discretization directly to the estimation task, and hence to a specific
regularization, as in (2.11), reduced order modeling methods such as the Reduced Basis
Methods (RBM) first prepare in an offline phase a reduced order model that requires the
bulk of computation. It typically takes place in a “truth-space” Uh ⊂U, usually a finite
element space of sufficiently large dimension that is expected to comply with envisaged
estimation objectives (which could be even adjusted at a later stage). In particular, the
reduced order model can be adapted to the solution manifold and the sensor system. As
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such it is only used indirectly in the recovery process and should be viewed as represent-
ing “computing in U”. A first important ingredient of the methods in [2, 4, 6, 10] is to
Riesz-lift the functionals in ℓ from U

′ to U, thereby subjecting them to the same metric as
the states u. The obtained Riesz-representers φi∈U of ℓi∈U

′ then span an m-dimensional
subspace W⊂U, referred to as mesurement space. Thus, U-orthogonal projections PWu of
some u∈U to W encode the same data-information about u as o=ℓ(u). This induces the
decomposition

U=W
⊕

W
⊥, u=PWu+P

W⊥u, (2.12)

so to speak representing any state u in “sensor coordinates” w=PWu, and “labels” w⊥=
P

W⊥u.
In these terms, recovering a state u from its measurement w=PWu, means to approx-

imate the label P
W⊥u∈W

⊥. Thus, the state estimation can be viewed as seeking a map

A : w 7→A(w), A(w)=w+B(w), (2.13)

where, in principle, B : W→W
⊥ could be any map that hopefully exploits the fact that

w=PWu for some u∈M in an effective way.

2.4 Affine Recovery Map

The methods in [2, 4, 10] determine the lifting-map B : W→W
⊥ as a linear or affine map,

termed as “One-Space-Methods”, and in [6] as a piecewise affine map combining One-
Space concepts with parameter domain decomposition and model selection. As shown
in [4], any affine map B is characterized by an affine subspace Un = ū+Ũn ⊂U, where
ū is a suitable chosen offset state and Ũn is a linear space of dimension n, for which the
estimator A=AUn satisfies

u∗(w) :=AUn(w)=argmin{u∈w+W
⊥ :‖u−PUn u‖U}. (2.14)

Moreover, u∗(w) can be computed efficiently as a linear least-squares problem in Un

followed by a simple correction in W. Uniqueness is ensured if

µ(Ũn,W) := sup
v∈Un

‖v‖U

‖PWv‖U

<∞, (2.15)

which is the case if and only if Un∩W
⊥= {0}. µ(Ũn,W) is actually computable as one

over the smallest singular value of the cross-Gramian of an basis for Un and W. Hence,
it has a geometric interpretation because it relates to the angle between the spaces Ũn and
W, tending to infinity when this angle approaches π/2. This affects estimation accuracy
directly since

sup
u∈M

‖u∗(PUn u)−u‖U ≤µ(Ũn,W)εn, when dist(M,Un)U := sup
u∈M

inf
z∈Un

‖u−z‖U ≤ εn.

(2.16)
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This is actually best possible when using, as sole prior, the knowledge that u∈M also
belongs to the convex set K(Un,εn) := {u∈U : infz∈Un ‖u−z‖U ≤ εn}, [2]. Thus, overall
estimation accuracy involves a competition between the approximation property of the
space Un and “visibility” from W. In fact, Un can have at most dimension n=m since
otherwise µ(Ũn,W)=∞. Hence, the rigidity of an affine space severly limits estimation
quality. In fact, it is shown in [6] that restricting to such convex priors will generally fail to
meet natural estimation benchmarks which calls for employing nonlinear reduced models.

In this regard, the following comments will provide some orientation. One-space-
methods appear to nevertheless perform very well for problems where the solution man-
ifold M has rapidly decaying Kolmogorov n-widths

dn(M)U := inf
dimVn≤n

dist(M,Vn)U. (2.17)

For elliptic problems (2.5) this is known to be the case, even in high parameter dimen-
sional regimes, when (2.6) holds and the diffusion coefficients depend affinely on the pa-
rameters, as is the case in scenarion (S1), (2.7). Approximations from judiciously chosen
linear spaces can then be very effective. Moreover, affine parameter-dependence is also
instrumental in the greedy construction methods of Reduced Bases for rate-optimal re-
duced linear models which play a central role in one-space-methods, [1, 5–7, 11]. It is
therefore interesting to see how the nonlinear estimators proposed in the present paper
compare with affine recovery methods in scenarios where the latter are known to perform
well. For this reason we include scenario (S1) in our numerical tests.

That said, the effectivity of one-space-methods depends in a rather sensitive way on
the above favorable conditions, namely rapid decay of n-widths, uniform ellipticity, and
affine parameter dependence. We therefore include scenario (S2) with log-normal param-
eter dependence. In fact, affine dependence no longer holds, the behavior of n-widths is
much less clear, and the coefficient field may nearly degenerate, challenging the validity
of (2.6).

2.5 A Regression Framework

To avoid monitoring pointwise errors in high-dimensions we opt now for a mean-square
accuracy quantification which responds in a less sensitive way to high parameter di-
mensionality and blends naturally into a learning context. A natural probabilistic model
could be based on a probability measure µ on U with support on M. u=(w=PWu,w⊥=
P

W⊥u), is then viewed as a random variable. The optimal estimator would then be the
nonlinear map

A∗(w)=w+B∗(w), (2.18)

where the conditional expectation B∗(w)=
∫

w+W⊥ P
W⊥udµ(u|w) is the regression function

minimizing
∫

U

‖u−A(PWu)‖2
Udµ(u)=

∫

W

∫

w+W⊥
‖w⊥−B(w)‖2

Udµ(u|w)dµ(w) (2.19)
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over all mappings of the form A(w)=w+B(w), B :W→W
⊥.

The central goal in what follows is to construct numerical estimators that approximate
B∗ well. Note that this approximation should take place in U for the estimator to respect
the natural problem metrics.

3 State Estimation Algorithm

3.1 Computational Setting

We describe next in more details how to set up a learning problem in the problem com-
pliant norm ‖·‖U. We adhere to the sensor-induced decomposition (2.12). Of course,
the underlying Riesz-lifts of the measurement functionals ℓ cannot be computed exactly
but need to be approximated within controllable accuracy. In the spirit of Reduced Basis
methodology, we employ a sufficiently large “truth space” Uh⊂U, which we choose here
as a conforming finite element space. The scheme is based on the following steps.

(1) The Measurement Space: As a major part of the offline stage, one then solves the m
Galerkin problems

(φ̃i
h,vh)U = ℓi(vh), ∀vh ∈Uh, and i=1,.. .,m, (3.1)

providing (approximate) Riesz representers φ̃i
h∈Uh of the linear functionals ℓi. Then define

Wh :=span{φ1
h,. . .,φm

h } (3.2)

where the {φ1
h,. . .,φm

h } result from orthonormalizing the lifted functionals {φ̃1
h,. . .,φ̃m

h }.
Hence,

PWh
u :=

m

∑
i=1

(u,φi
h)Uφi

h, (3.3)

is the orthogonal projector from Uh onto Wh that encodes the information provided by
the sensor system as elements of the trial space Uh.

Specifically, given an observation vector ℓ(u)∈R
m of some observed state u∈U, we

can determine PWh
(u) as follows. Let Φ̃, Φ ∈U

m
h denote the column vectors, obtained

by lining up the functions φ̃i
h,φi

h, i = 1,.. .,m. Moreover let C ∈R
m×m denote the (lower

triangular) matrix that realizes the change of bases CΦ̃=Φ. One readily checks that

w :=Cℓ(uh)=
(
(uh,φ1

h)U,. . .,(uh,φm
h )U

)⊤
, (3.4)

i.e., the U-orthogonal projection of u to the measurement space Wh is given by

PWh
u=

m

∑
i=1

wiφ
i
h =: Φ

⊤w, (3.5)
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providing the best approximation to an observed space from Wh. This can therefore be
viewed already as a “zero-order” reconstruction of the observed space in Wh ⊂U.

Note that the problems (3.1) are always elliptic Galerkin problems, regardless of the
nature of (2.1). The Riesz-lift (as a mapping from U

′ to U) has condition number equal
to one. Therefore, these preparatory offline calculations are stable and often a posteriori
error estimates allow one assess the accuracy of Riesz-lifts, controlled by the choice of the
truth space Uh⊂U. This should not be confused with the accuracy of PWh

u with respect
to u which is primarily limited by the number and type of sensors.

So far, we have ignored noise of the data o= ℓ(u). Noise in the observation vector o

carries over to noise in the coefficients w from (3.4) possibly inflated by the condition of
the transformation matrix C, see [6] for a more detailed discussion of this issue.

Our subsequent numerical experiments refer to the model problem (2.5) where the
sensors are given by the local averages of u over subdomains Bi ⊂Ω

ℓi (u(x,y))=
1

|Bi|
∫

Bi

u(x,y)dx, (3.6)

with local neighborhoods Bi, and where the diffusion coefficients are piecewise constants
on a 4×4 checkerboard partition of Ω, see (2.7). Thus the parametric dimension is 16.

Specifically, in subsequent experiments we realize those by taking the average value
of the FE solutions at the four points of a small square Bi enclosing the sensor location.
Denoting these four points by {xpj

}4
j=1, we have

ℓi(uh(y))=
1

4

4

∑
j=1

uh(xpj
,y), (3.7)

entering the right hand side of (3.1). A numerical illustration of selected normalized
basis, φ1

h,φ6
h,φ11

h ,φ16
h , is given in Figure 1, where the normalized basis vectors are obtained

by the SVD of the matrix formed by the finite element coefficient vectors of the lifted
functionals with respect to the inner product weighted by (vh,vh)U.

(2) Generating Synthetic Data: We randomly pick a set of parameter samples ys, for s=
1,.. .,N̂, and and employ a standard solver to compute the FE solutions us

h=uh(x;ys)∈Uh

as “snapshots” at the selected parameter values. These FE solutions provide the high-
fidelity “truth” data to be later used for training the estimator towards minimizing the
regression objective (2.19). Corresponding synthetic measurements then take the form

wj =(w
j
h,1,. . .,w

j
h,m)

⊤, w
j
h :=PWh

u
j
h =

m

∑
i=1

wt
h,iφ

i
h, j=1,.. .,N̂. (3.8)

as detailed by (3.4) and (3.5).
In addition we need the “training labels” providing complement information

zs
h =(I−PWh

)us
h, s=1,.. .,N̂. (3.9)
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(a) φ1
h (b) φ6

h

(c) φ11
h (d) φ16

h

Figure 1: Example basis functions of the measurement space Wh.

(3) Approximate W
⊥
h : To extract the essential information provided by zs

h, we perform
next a singular value decomposition to the resulting point-cloud of finite-element coeffi-
cient vectors zs

h ∈R
Nh . Suppose we envisage an overall estimation target tolerance η>0.

We then retain only those k left singular vectors corresponding to singular values larger
than or equal to a value η̃ which is typically less than η, for the following reason. First,
incidentally, the SVD and the decay of singular values indicate whether the complement
information of M can be adequately captured by a linear space of acceptable size within
some target tolerance. While the H1-norms of the zs

h are uniformly bounded, the coeffi-
cients zs

h in their respective finite element representation convey accuracy only in L2, and
so does the truncation of singular values. Strictly speaking, employing standard inverse
inequalities, one should take η̃≤hη, where h is the mesh-size in Uh.

We next U-orthonormalize the finite element functions corresponding to the retained
left singular vectors, arriving at a U-orthonormal basis Ψ= {ψ1

h,. . .,ψk
h}⊂W

⊥
h . We then
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define
W̃

⊥
h :=span{ψ1

h,. . .,ψk
h} (3.10)

as our effective complement space that accommodates the training labels cs
h given by

cs
h(x) :=P

W⊥
h

us
h =

k

∑
i=1

cs
i ψ

i
h =Ψ

⊤cs, cs
i :=(us

h,ψs
h)U, s=1,.. .,N̂. (3.11)

Note that cs
h is essentially a compression of zs

h.
In brief, after projecting the snapshot data into the complement of the measurement

space, we determine a set of orthogonal basis ψ
j
h that optimally approximates the data in

the sense that

min
{ψ1

h,...,ψk
h}

1

N̂

N̂

∑
s=1

∥∥∥∥∥zs
h−

k

∑
j=1

(
zs

h,ψ
j
h

)
U

ψ
j
h

∥∥∥∥∥

2

U

subject to the conditions (ψ
j
h,ψi

h)U = δi,j, 1≤ i, j≤ k, where δi,j is the Kronecker delta func-

tion. A numerical illustration of the normalized basis of W̃
⊥
h , ψ1

h,ψ6
h,ψ11

h ,ψ16
h , is shown in

Figure 2.

Remark 1.

Approximation in U is now realized by training coefficient vectors in the Euclidean
norm of R

k because ∥∥∥
k

∑
j=1

ajψ
j
h

∥∥∥
2

U

=
k

∑
j=1

a2
j =:‖a‖2

2, a∈R
k. (3.12)

In other words, the estimator respects the intrinsic problem metrics which is a major
difference from common approaches involving neural networks.

As argued earlier, we wish to construct a nonlinear map that recovers from data w∈
Wh a state w+B(w)∈w+W̃

⊥
h for an appropriate B :Wh→W̃

⊥
h . More specifically, for any

wh =∑
m
i=1 wiφ

i
h =: w⊤

Φ∈Wh, the envisaged mapping B has the form

B(wh)=w⊥(w)⊤Ψ, (3.13)

where
w⊥(w)=(w1

⊥,h(w),. . .,wk
⊥,h(w))⊤∈R

k, (3.14)

and
w⊥(w)=NN (w) (3.15)

will be represented as a neural network with input data w∈R
m and output dimension k.

(4) Loss Function and Training the Neural Network (NN): We randomly select a subset

Utrain = {u1
h,. . .,uNtrain

h } from the “truth” FE data Usample = {us
h : s= 1,.. .,N̂}, generated in
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(a) ψ1
h (b) ψ6

h

(c) ψ11
h (d) ψ16

h

Figure 2: Example basis functions of the complement space W̃
⊥
h .

step (1), for training purpose and leave the rest Ughost := Usample\Utrain for testing. The

associated coefficient vectors {w1,. . .,wNtrain} and {c1,. . .,cNtrain} are used as the training
data for minimizing the natural empirical loss analogous to (2.19)

Loss=R(Θ) :=
1

Ntrain

Ntrain

∑
t=1

‖ct−NN (wt;Θ)‖2
2, (3.16)

where we assume in what follows that the NN depends on a collection Θ of trainable or
hyper-parameters, over which Loss is to be minimized.

Once the training of NN is completed, for any new measurement ℓ(u(·,y)) with
coefficient vector w∈R

m, defined by (3.4), (3.5), the observed state u(·,y) is approximated
by

u≈Φ
⊤
h w+Ψ

⊤
h NN (w).

A natural question would be now to analyze the performance of the estimator ob-
tained by minimizing the loss. This could be approached by employing standard ma-
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chine learning concepts like Rademacher complexity in conjunction with more specific
assumptions on the network structure and the solution manifold. We postpone this task
to forthcoming work and address in the remainder of this paper instead a more elemen-
tary issue, namely “optimization success” which is most essential for a potential merit of
the proposed schemes.

3.2 A Closer Look at Step (4)

It is a priori unclear which specific network architecture and which budget of trainable
parameters is appropriate for the given recovery problem. Even if such structural knowl-
edge were available, it is not clear whether the expressive potential of a given network
class can be exhausted by the available standard optimization tools largely relying on
stochastic gradient descent (SGD) concepts. Aside from formulating a model-compliant
regression problem, our second primary goal is to explore numerical strategies that, on
the one hand, render optimization stable and less sensitive on algorithmic settings whose
most favorable choice is usually not known in practice. On the other hand, we wish to
incorporate and test some simple mechanisms to adapt the network architecture, inspired
by classical “nested iteration” concepts in numerical analysis. Corresponding simple
mechanisms can be summarized as follows: (a) A ResNet architecture with its skip-
connections is known to mitigate “gradient damping” which impedes the adjustment
of trainable parameters in lower blocks when using deep networks. (b) Each block in a
ResNet can be viewed as a perturbation of the identity and may therefore be expected
to support a stable incremental accuracy upgrade. (c) Instead of “plain training” of an
ResNet, where a stochastic gradient descent is applied to all trainable parameters simul-
taneously, we study an iterative training strategy that optimizes only single blocks at a
time while freezing trainable parameters in all other blocks. Part of the underlying ratio-
nale is that training a shallow network is more reliable and efficient than training a deep
network. We discuss these issues next in more detail.

Neural Network Setting: Specifically, we consider the following Residual Neural Net-
work (ResNet) structure with i blocks:

NN [i](x;θ[0],θ[1],··· ,θ[i]) :=N [i]
(
NN [i−1](x;θ[0],θ[1],··· ,θ[i−1]);θ[i]

)
. (3.17)

with each block defined by

N [1](x;θ[0],θ[1]) :=W
[1]
3 σ
(
W

[1]
2 σ(W

[1]
1 x+b

[1]
1 )+b

[1]
2

)
+W [0]x,

N [i](x,θ[i]) :=W
[i]
3 σ
(
W

[i]
2 σ(W

[i]
1 x+b

[i]
1 )+b

[i]
2

)
+x, i=2,3,···

where θ[i]={W
[i]
1 ,W

[i]
2 ,W

[i]
3 ,b

[i]
1 ,b

[i]
2 } for i=1,2,··· and θ[0]={W [0]}, σ(·) is some pointwise

nonlinear function. In the numerical experiments of Section 4, we specifically take the
activation function σ to be tanh. See Figure 3 for an descriptive diagram of the ResNet
structure.
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Figure 3: ResNet with i blocks

An Expansion Strategy: As indicated earlier, we will not approximate the recovery map
using a fixed network architecture. We rather start with training a single hidden layer
until saturation. We then proceed approximating residual data with another shallow
network, and iterate this process which results in a ResNet structure. The basic rationale
is similar to “full multigrid” or “nested iteration” in numerical analysis.

To describe the procedure in more detail, let

D :={wi : i=1,.. .,Ntrain}×{ci : i=1,.. .,Ntrain}

denote the set of training data, as described before. In view of (3.12), we employ simple
mean-squared loss functions. In these terms we may rewrite (3.16) as

LD [ f ] :=
1

#D ∑
(w,c)∈D

‖c− f (w)‖2
2. (3.18)

In these terms, the procedure can be described as follows: At the initial step f is taken

as a shallow network NN [1](·;θ[0],θ[1]) and solve first the optimization problem:

OP-1 : min
(θ[0],θ[1])∈Θ[1]

LD [NN [1](·;θ[0],θ[1])],

where Θ[1] denotes the budget of hyper-parameters used at this first stage, encoding in
particular, the widths. OP-1 is treated with SGD-based optimizers until the loss stagnates

or reaches a (local) minimum. The resulting hyper-parameters are denoted by (θ
[0]
∗ ,θ

[1]
∗ ).

In a next step, we expand the neural network by introducing a new block and solve

OP-2 : min
(θ[0],θ[1],θ[2])∈Θ[2]

LD [NN [2](·;θ[0],θ[1],θ[2])],

over an extended global budget of hyper-parameters Θ[2]. Moreover, OP-2 itself is solved
by sweeping over sub-problems as follows. Fixing the values of the trained parameters

θ[1]=θ
[1]
∗ and θ[0]=θ

[0]
∗ we apply gradient descent first only over the newly added trainable

parameters θ[2]. That is, we solve,

OP-2∗ : min
θ[2]

LD [NN [2](·;θ[0]∗ ,θ
[1]
∗ ,θ[2])].
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Due to the ResNet structure, upon defining the data

D1 :={
(
NN [1](w;θ

[0]
∗ ,θ

[1]
∗ ),c−NN [1](w;θ

[0]
∗ ,θ

[1]
∗ )
)
| (w,c)∈D},

this is equivalent to optimizing

min
θ[2]

LD1
[NN [2](·;θ[2])]

with a NN [1]− projected input and a residual from OP-1 as output.

We can thus expect NN [2] to perform better than NN [1] in terms of learning the map
between the observation w and state-labels c because adding an approximate residual
presumably increases the overall accuracy of the estimator.

Once a new block has been added, the parameters in preceding blocks presumably
could be further adjusted. This can be done by repeating a sweep over all blocks, i.e.,
successively optimizing each block while freezing the hyper-parameters in all remaining
blocks.

The retained ghost-samples in Ughost can now be used to assess the generalization er-
ror. If this is found unsatisfactory, the current ResNet can be expanded by a further block,
leading to analogous optimization tasks OP-k. Moreover, for k > 2, the advantages of
training shallow networks can be exploited by performing analogous block-optimization
steps freezing the hyper-parameters in all but one block. In addition, we are free to design
various more elaborate sweeping strategies to cover all trainable parameters need to be
updated. For instance, one could add a round of updates toward all trainable parameters
at the end of the training process. We refer to §5.4 for related experiments.

Another way of viewing this process is to consider the infinite optimization problem

OP: min
θ∈R∞

LD[NN (·;θ)].

where NN (·;θ) := limiNN [i](·;θ[0],θ[1],··· ,θ[i]) is an idealized ResNet with an infinite
number of blocks. Then the above block expanding scheme can be interpreted as a greedy
algorithm for approximately solving the infinite problem OP

OP-i = min
θ[0],θ[1],···,θ[i]

LD[NN (·;θ[0],θ[1],··· ,θ[i],0)].

successively increasing i until the test on ghost-samples falls below a set tolerance.

In Section 6, we will first present the accuracy of the recovered solutions with the
nonlinear map learned with a ResNet compared to solutions obtained with the Reduced
Basis Method (RBM). We showed that in piece-wise constant case, ResNet can reach sim-
ilar accuracy as RBM. In log-normal case, while the RBM can not be applied to obtain
reasonable solutions, we showed that ResNet can still be used to obtain a nonlinear solu-
tion with L2 lifting (see Section 4.3).



17

4 Numerical Results

The above description of a state estimation algorithm is so far merely a skeleton. Concrete
realizations require fixing concrete algorithmic ingredients such as batch sizes, learning
rates, and the total number of training steps (whose meaning will be precisely explained
later in this section). The numerical experiments reported in this section have two ma-
jor purposes: (I) shed some light on the dependence of optimization success on specific
algorithmic settings, in particular, regarding two different principal training strategies.
The first one represents standard procedures and applies Stochastic Gradient Descent
(SGD) variants to all trainable parameters, defining a given DNN with ResNet architecture.
Schemes of this type differ only by various algorithmic specifications listed below and
will be referred to as Gl-ResNN and “training” then refers to the corresponding global
optimization. The second strategy does not aim at optimizing a fixed network but inter-
twines optimization with a blockwise network expansion. This means that initially only a
shallow network is trained which is subsequently expanded in a stepwise manner by ad-
ditional blocks in a ResNet architecture. Such schemes are referred to by Exp-ResNN. The
corresponding training, referred to as blockwise training, applies SGD only to the currently
newly added block, freezing all parameters in preceding blocks. Comparisons between
Gl-ResNN and Exp-ResNN concern achievable generalization error accuracies, stability,
robustness with regard to algorithmic settings, and efficiency. (II) compare the perfor-
mance of neural networks with estimators that are based on Reduced Basis concepts for
Scenario (S1) of piecewise constant affine parameter representations of the diffusion co-
efficients, introduced in §2.1. (S1) is known to be a very favorable scenario for Reduced
Basis methods that have been well studied for this kind of problems exhibiting excellent
performance, [4, 6].

Furthermore, we explore the performance of the ResNet-based estimator for scenario
(S2), involving log-normal random diffusion parameters. In this case the performance of
Reduced Basis is much less understood and hard to certify. Corresponding experiments
are discussed in Section 4.3. To ease the description of the experiment configurations, we
list the notations in Table 1.

4.1 Numerical Set Up

ResNets defined as in (3.17) with activation functions tanh are used for all experiments.
These networks will be optimized with the aid of the Proximal Adagrad algorithm. This
is essentially a variant of SGD which is capable of adapting learning rates per parame-
ter. We further provide in Section 5.6 a comparison between Adagrad with the Adam
algorithm to justify this choice.

To ensure all experiments results are fair comparisons, for each set of experiments,
we will fix the number of total training steps (T). “Training step” means one iteration in
Adagrad algorithm, which we sometimes also refer to as one update step of the trainable
parameters. In particular, if the ResNet is trained in a block-wise sense (Exp-ResNN),
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Abbreviation Explanation Comments

ResNet Residual neural network General architecture is defined as in (3.17). Activa-
tion function σ= tanh.

Training
Scheme

Gl-ResNN A deep network with ResNet architecture
is trained by standard SGD methods ap-
plied in a global fashion to the full collec-
tion of trainable parameters.

Exp-ResNN Deep networks with ResNet architecture
are generated and trained by successively
expanding the current network by a new
block, confining SGD updates to a single
block at a time

ResNet Con-
figurations

B Number of blocks
W Width of hidden layers Random parameter initialization drawn from a

Gaussian distribution

O Output dimension of c Number of orthogonal basis taken in W̃
⊥
h

Training
Hyper-
parameters

l l1 regularization weight of trainable learn-
ing parameters

0.00001 if not specified

b Batch size 100 if not specified
lr Learning rate
T Number of total training steps

Data Type

Train Training data type
pwc Piecewise constant case training set (S1) 10,000 samples subject to 16 uniformly distributed

sensors
log-normal Log-normal case training data (S2) 1,000 samples when 16 sensors; 5,000 samples

when 49 sensors
sen Number of uniformly distributed sensors

POD-H1 Dimension reduction of W̃
⊥
h with POD in

H1 sense

POD-L2 Dimension reduction of W̃
⊥
h with POD in

L2 sense

Table 1: Abbreviations

then each block will be attributed an equal number of T/B steps to update the trainable
parameters in this block. The choice of T will be specified in the loss history figures as
well as in the error tables for each set of experiments.

With Exp-ResNN it is, in principle, possible to apply in the course of the training
process SGD repeatedly to blocks that had been added at an earlier stage of the expansion
process. In most numerical examples, only one round of parameter updating will be
applied to the newly added last block. These blocks will not be revisited at a later time.
The only exception takes place in Section 5.4, where global updates are carried out in
addition to the block-wise training for the ResNet. Here we wish to see whether Exp-
ResNN provides favorable initial guesses for a subsequent Gl-ResNN. We often refer
to any arrangement of the order of blockwise updates and revisiting blocks as training
schedule.

For measurement of the errors, we wish to estimate the relative analogue to the ideal



19

regression risk (2.19):

E :=

(
Ey∈Ytest

||u(y)−upred(y)||2U
Ey∈Ytest

||u(y)||2
U

) 1
2

,

where upred :=Φhw+Ψhcpred. In particular, if the norm is taken to be the problem compli-
ant norm ||·||U, due to Remark 1, evaluating its empirical counter part:

Ê=
(

∑s ||cs−cs
pred||22

∑s ||w||22+||cs||22

) 1
2

.

just requires computing Euclidean norms for the predicted coefficients {cs
pred}. Of course,

we expect sufficient large sample sizes provide accurate estimates

Ê ≈E .

If one would like to evaluate the accuracy of the recovered solution upred(y) in a norm
that is different form the natural norm (||·||U), quadrature in the truth space Uh is re-
quired to approximately evaluate the respective norm of the functions.

4.2 The Piecewise Constant Case (S1)

We first consider the aforementioned diffusion problem (2.5) with f =1 and a piecewise
constant diffusive parameter within Ω = [0,1]2. More specifically, we consider a non-
overlapping, 4×4 uniform decomposition {Ωj}16

j=1 of Ω. The diffusion coefficient is a

constant on each Ωj as defined in (2.7) .

4.2.1 Gl-ResNN vs. Exp-ResNN

The first group of experiments concerns a general performance comparison between the
ResNet expansion strategy - in short Exp-ResNN, outlined above and a global update
strategy which updates the whole network with the same architecture, termed Gl-ResNN
in what follows. By “performance” we mean training efficiency as well as corresponding
achieved training and generalization losses. Specifically, we consider first the case where
m=16 sensors are placed uniformly in Ω (see Figure 4) and the corresponding measure-
ments are evaluated by averaging the solution at the four vertices of a square of side 0.001
centered at the sensor location, see (3.7). Thus, the number of sensors equals in this case
the parametric dimension so that there is a chance that the measurements determine the
state uniquely.

We use in total 10,000 snapshots represented in the truth-space that serve as syn-
thetic data, 500 of which are used for testing purposes. To draw theoretical conclusions a
larger amount of test data would be necessary. However, intense testing has revealed that
larger test sizes have no significant effect on the results in the scenarios under considera-
tion. Based on computations, using these data we find that k=28 basis functions suffice
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to reserve 99.5% of the H1-energy in W̃
⊥
h , represented by the Hilbert-Schmidt norm of a

full orthonormal basis in W̃
⊥
h . The case studies documented by subsequent figures are

referenced as follows: “pwc” refers to “piecewise constant diffusion coefficients” in sce-
nario (S1); “POD-H1” indicates that the sensors have been Riesz-lifted to H1(Ω) which
accommodates the measurement space W. The SVD truncation threshold is chosen to
ensure accuracy in H1(Ω); recall also that “sen16” means that the recovery is based on
data from 16 sensors.

Figure 4: 16 uniformly distributed sensors.

The numerical results, shown in Figure 5, indicate that the training loss resulting from
Exp-ResNN decays faster than the standard Gl-ResNN training in this case. The relative
generalization errors for both approaches after 12×105 steps of training are displayed in
Table 2, where the generalization errors are evaluated on the test set of 500 samples. The
result shows that Exp-ResNN outperforms Gl-ResNN in a sense detailed later below. In
particular, the training loss for Exp-ResNN drops faster to a saturation level which can
be achieved by Gl-ResNN only at the expense of a significantly larger training effort.
We also compare the estimated generalization error in H1 with the achieved (expectedly
smaller) error in the weaker L2-norm.

One observes though that increasing network depth, i.e., employing a higher number
of ResNet blocks does not increase accuracy significantly in either model. This indi-
cates that a moderate level of nonlinearity suffices in this scenario. This is not surprising
considering the moderate number of POD basis functions needed to accurately capture
complement information.
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Figure 5: Exp-ResNN(red)/Gl-ResNN(blue) training loss comparison. Train-pwc-sen16-
POD-H1, B6-W200-O28-lr0.03.

(a) Gl-ResNN training loss (b) Exp-ResNN training loss

Figure 6: Training loss of Gl-ResNN/Exp-ResNN v.s. different number of Blocks.
Train-pwc-sen16-POD-H1, W200-O28-lr0.03.

Ê Relative L2 Error of upred

# of blocks #of trainable Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

1 49,648 9.76% 9.76% 3.01% 3.01%
2 101,248 9.77% 10.13% 3.01% 3.13%
3 152,848 9.76% 13.53% 3.01% 4.09%
6 307,648 9.78% 16.85% 3.01% 5.27%

Table 2: Generalization error v.s. different number of ResNet blocks (fixed total train-

ing steps 12×105). Train-pwc-sen16-POD-H1, Exp-ResNN/Gl-ResNN-W200-O28-lr0.03.
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Figure 7: Train-pwc-sen16-POD-H1, B6-W200-O28-lr0.03. Upper row: reference projected
solution zs

h =P
W̃⊥

h
us

h; Middle row: Prediction of zs
h with Gl-ResNN; Lower row: Predic-

tion of zs
h with Exp-ResNN.

To conclude, our findings can be summarized as follows: When using larger widths,
e.g. 200, Exp-ResNN leads to a faster convergence and a somewhat smaller generaliza-
tion error in comparison with plain Gl-ResNN training. In fact, while in Exp-ResNN the
generalization error at least does not increase when increasing network complexity, plain
Gl-ResNN shows a degrading performance reflecting increasing difficulties in realizing
expressive potential. On the other hand, for smaller widths, such as 20, the performance
of both variants is comparable. It should be noted that already a single block and width
=20 achieves an “empirical accuracy level” that is improved only slightly by more com-
plex networks (compare Table 2 with Table 3). A significant increase in the number of
trainable parameters has not resulted in a significant decrease of training and general-
ization losses, indicating that the global update strategy does not exhaust the expressive
power of the underlying networks. This may rather indicate that larger neural network
complexity widens a plateau of local minima of about the same magnitude in the loss
landscape while parameter choices realizing higher accuracy remain isolated and very
hard to find. Of course, this could be affected by different (more expensive) modelities in
running parameter updates which incidentally would change the implicit regularization
mechanism.
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Ê Relative L2 Error of upred

# of blocks #of trainable Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

1 1,768 9.76% 9.76% 3.01% 3.01%
2 3,328 9.76% 9.76% 3.01% 3.01%
3 4,888 9.76% 9.77% 3.01% 3.01%
6 9,568 9.76% 9.76% 3.01% 3.01%

Table 3: Generalization error v.s. different number of ResNet blocks (fixed total train-

ing steps 12×105). Train-pwc-sen16-POD-H1, Exp-ResNN/Gl-ResNN-W20-O28-lr0.03.

4.3 Log-normal case

As indicated earlier, uniform ellipticity in conjunction with affine parameter dependence
of the diffusion coefficients offers very favorable conditions for the type of affine space
recovery schemes described in Section 2.4. In particular, affine parameter dependence as
well as rapidly decaying Kolmogorov n-widths (2.17) are quite important for methods,
resorting to Reduced Bases, to work well, while neural networks are far less dependent
on these preconditions. Therefore, we turn to scenario (S2) which is more challenging in
both regards.

Specifically, we consider the case with a0 =0 and a1 =1 in (2.8). Recall that we aim to
learn the map form w→ c where c is the POD coefficient vector of the solution in W

⊥
h .

First, since the diffusion coefficients no longer depend affinely on the parameters y,
rigorously founded error surrogates are no longer computable in an efficient way. This
impedes the theoretical foundation as well as the efficiency of methods using Reduced
Bases and therefore provides a strong motivation exploring alternate methods. Second,
it is not clear whether the solution manifold M still have rapidly decaying n-widths, so
that affine spaces of moderate dimension will not give rise to accurate estimators. In

fact, computing the SVD of the snapshot projections {z1
h,. . .,zN̂

h }, based on the Riesz rep-
resentations of the measurement functionals in U=H1, shows only very slowly decaying
singular values. This indicates that P

W⊥
h
(M) cannot be well approximated by a linear

space of moderate dimension. Thus, when following the above lines, we would have
to seek coefficient vectors c in a space of dimension comparable to N̂, which renders
training Gl-ResNN prohibitive. Finally, the diffusion coefficients may near-degenerate
degrading uniform ellipticity. This raises the question whether H1 is still an appropriate
space to accommodate a reasonable measurement space W which is at the heart of the
choice of sensor coordinates (2.12). These adverse effects are reflected by the numerical
experiments discussed below.

Therefore, we choose in scenario (S2) U = L2(Ω) which means we are content with
a weaker metric for measuring accuracy. As a consequence, the representation of the
functionals ℓ(u) in L2(Ω) is the L2-orthogonal projection of these functionals to the truth-
space Uh which then, as before, span the measurement space Wh ⊂ Uh. As indicated
earlier, we give up on quantifiable gradient information but facilitate a more effective
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approximation of P
W⊥

h
(M) where the projection is now understood in the L2-sense. In

fact, for N̂=1000 snapshot samples, with the original H1-Riesz-lifting, one needs the 1000
dominant POD modes to sustain 99.5% of the H1 energy. Instead, only 21 dominating
modes are required to realize the same accuracy in L2(Ω). All results presented in this
section will be subject to this change. Nevertheless, for comparison we record below in
each experiment also the relative H1-error which, as expected, is larger by an order of
magnitude.

4.3.1 Exp-ResNN vs. Gl-ResNN (16 sensors)

We are interested to see whether, or under which circumstances, the advantages of Exp-
ResNN over plain Gl-ResNN training persists also in scenario (S2) where several problem
characteristics are quite different. We consider similar test conditions as before, namely
16 uniformly distributed sensors. In total, 1000 snapshots are collected providing 1000
synthetic data points, of which 950 are used for training while 50 are reserved for evalua-
tion in this case. The dimension of observational data w is then m=16, while according to
the preceding remarks, the effective complement space dimension, accommodating the
coefficients c, is k=21.

The history of training losses is shown in Figure 8, where we observe again that the
training of Exp-ResNN is more efficient than that of Gl-ResNN. Specifically, when a new
block is introduced in Exp-ResNN, the training loss decays more rapidly (see the cor-
ner of the loss curve in Figure 8 at step 1×105). Thus, the expansion strategy is clearly
beneficial in this case. Moreover, perhaps not surprisingly, we observe that Gl-ResNN
suffers from a slow down in loss decay when training a larger number of parameters si-
multaneously (Figure 6a). By contrast, for the block by block optimization in Exp-ResNN
and fixed width, the number of simultaneously updated parameters stays constant so
that even for larger (deeper) networks, one reaches a similar level of training loss at a
smaller number of updates (see Figure 6b). Correspondingly, a slightly better overall ac-
curacy of Exp-ResNN can be observed in terms of the generalization error (Table 4). One
should keep in mind though that we have allotted a fixed budget of training steps to all
variants in this experiment. Thus, increasing depth, reduces the training effort spent on
each block which may explain the relatively large generalization error obtained for B12.
Hence, when favoring accuracy improvements at the expense of more training steps,
Exp-ResNN offers a clearly better potential while a global training seems to be rather
limited. One the other hand, the results in Table 4 also indicate that not much gain in
accuracy should be expected in this test case by using more than one or two blocks.

In summary, Exp-ResNN appears to offer advantages in training neural networks
with larger depth compared with plain Gl-ResNN. The relatively coarse information pro-
vided by the 16 measurement data seems to leave more room for an enhanced nonlinear-
ity of deeper networks to capture the manifold component in W

⊥. This will be seen in
Section 4.3.2 to change somewhat when a larger number of sensors increases the accuracy
of the “zero-order approximation” provided by the projection P

W⊥
h

.
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Figure 8: Exp-ResNN(red)/Gl-ResNN(blue) training loss comparison. Train-log-
normal-sen16-POD-L2, B6-W20-O21-lr0.02.

(a) Gl-ResNN training loss (b) Exp-ResNN training loss

Figure 9: Training loss of Gl-ResNN/Exp-ResNN v.s. different number of Blocks.
Train-log-normal-sen16-POD-L2, W20-O21-lr0.02.

4.3.2 Exp-ResNN vs. Gl-ResNN (49 sensors)

In this subsection, we consider 49 uniformly distributed sensors for measurements. In
total, 6000 snapshots are collected. Among them, 5950 samples are used for training
while 50 are reserved for evaluation. The dimension of the latent space accommodating
cs is now k=22 after applying SVD and keeping 99.5% energy in the L2 sense.

However, in this case, from Figure 11, we can see that although the training loss of
Exp-ResNN decays faster compared to Gl-ResNN at the beginning, both ended up at a
similar level. We also do not observe significant changes in decay rates of the loss when
employing the expansion strategy Exp-ResNN (see Figure 11 at step 6×105). In fact, the
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Ê relative H1 Error of upred

# of blocks #of trainable Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

1 1,516 7.89% 7.89% 47.61% 47.61%
2 2,796 7.65% 7.94% 47.33% 48.26%
3 4,076 7.60% 8.00% 47.08% 48.31%
6 7,916 7.60% 8.12% 47.08% 48.65%
12 15,596 7.76% 8.42% 47.42% 49.28%

Table 4: Generalization error v.s. different number of ResNet blocks (fixed total train-

ing steps 6×105). Train-log-normal-sen16-POD-L2, Exp-ResNN/Gl-ResNN-W20-O21-
lr0.02.

Figure 10: Train-log-normal-sen16-POD-L2, B6-W20-O21-lr0.02. Upper row: reference
projected solution zs

h = P
W⊥

h
us

h; Middle row: Prediction of zs
h with Gl-ResNN; Lower

row: Prediction of zs
h with Exp-ResNN.

generalization error of Exp-ResNN is only slightly smaller than that of Gl-ResNN (Table
5). In addition, it is seen that, within the fixed total number of training steps, the best
performance is already achieved using a shallow Gl-ResNN. This indicates that, within
the achievable accuracy range, the map of interest is close to a linear one, given that the
“zero-order” approximation PWh

u is now already rather accurate. However, we do notice
that when applying a block by block training strategy in Exp-ResNN, while the difference
in generalization error is small, the savings in training are huge because only one block
is trained at a time, and thus the number of parameters under training is fixed. Thus,
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for deep neural networks, such a sequential training scheme is expected to be beneficial
compared to updating all parameters simultaneously.

Figure 11: Exp-ResNN(red)/Gl-ResNN(blue) training loss comparison. Train-log-
normal-sen49-POD-L2, B6-W20-O22-lr0.03.

(a) Gl-ResNN training loss (b) Exp-ResNN training loss

Figure 12: Training loss of Gl-ResNN/Exp-ResNN v.s. different number of Blocks.
Train-log-normal-sen49-POD-L2, W20-O22-lr0.03.

5 Robustness of Exp-ResNN With Regard to Algorithmic Set-

tings

In this section we further examine how sensitively Exp-ResNN depends on various al-
gorithmic settings such as different learning rates or neural network architecture. We
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Ê H1 Error of upred

# of blocks #of trainable Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

1 2,983 3.08% 3.08% 52.66% 52.66%
2 4,258 3.10% 3.13% 52.64% 52.71%
3 5,578 3.31% 3.34% 52.82% 53.06%
6 9,538 3.60% 3.69% 53.27% 53.90%

Table 5: Generalization error v.s. different number of ResNet blocks (fixed total train-

ing steps 12×105). Train-log-normal-sen49-POD-L2, Exp-ResNN/Gl-ResNN-W20-O22-
lr0.03.

Figure 13: Upper row: reference projected solution zs
h =P

W⊥
h

us
h; Middle row: Prediction

of the zs
h with Gl-ResNN; Lower row: Prediction of zs

h with Exp-ResNN.

also wish to see whether extra steps of optimization over all trainable parameters can
improve the overall performance, especially the generalization accuracy of Exp-ResNN.
To be consistent, we stick to the example in Section 4.3.1, where a log-normal case is con-
sidered and 16 uniformly placed sensors give rise to the space Wh and the corresponding
complement W

T
h in the truth space Uh.

5.1 Sensitivity to Learning Rate

We first check how different learning rates affect the performance of Exp-ResNN in com-
parison with Gl-ResNN. In particular, the different learning rates considered are merely
an initialization of the learning rates that are applied during the training process. The op-
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timizer of our choice (AdaGrad, the adaptive gradient algorithm) is a modified stochastic
gradient descent algorithm which will automatically adjust the learning rate per param-
eter as the training proceeds. Corresponding findings can be summarized as follows (see
Figure 14 and Table 6):

• The training loss of Exp-ResNN converges faster for a wide range of constant initial
learning rates.

• The generalization errors for Exp-ResNN are smaller.

Ê Relative H1 Error of upred

lr Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

0.002 10.75% 14.50% 54.25% 61.29%
0.02 7.60% 8.00% 47.08% 48.31%
0.2 14.78% 16.66% 60.62% 62.96%

(a) B3

Ê Relative H1 Error of upred

lr Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

0.002 11.76% 13.38% 55.66% 60.13%
0.02 7.60% 8.12% 47.08% 48.65%
0.2 14.53% 23.44% 60.80% 76.68%

(b) B6

Table 6: Generalization error v.s. different learning rates (fixed total training steps

6×105). Train-log-normal-sen16-POD-L2,W20-O21.

5.2 Dependence on Neural Network Architecture

In this Subsection we explore the effect of varying the architecture again for the applica-
tion in scenario (S2).

5.2.1 Width

As indicated by Figure 15 and as expected, neural networks of equal depth but larger
widths require more training iterations to converge and each update is computationally
more intense than for narrow ones. For both narrow and wide neural networks, Exp-
ResNN appears to entail a faster decay of the loss during the training process as well as
a more accurate prediction.
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(a) B3 (b) B6

Figure 14: Training loss of Gl-ResNN(doted)/Exp-ResNN(solid) v.s. different learning

rate (blue: lr=0.2, red: lr=0.02, yellow: lr=0.2). Train-log-normal-sen16-POD-L2, W20-
O21.

(a) B3 (b) B6

Figure 15: Training loss of Gl-ResNN(doted)/Exp-ResNN(solid) v.s. different width

(blue: W20, red: W200). Train-log-normal-sen16-POD-L2, O21-lr0.02

5.2.2 Dependence on Depth

Similar to what can be observed from Figure 9, we observe that, for the given test prob-
lems, deeper Exp-ResNNs can converge at a similar rate as shallower ones. By contrast,
perhaps not surprisingly, the convergence of plain Gl-ResNNs will generally slow down
as depth increases. In other words, the deeper, the slower is the convergence of Gl-
ResNN. see Figure 16.
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Ê Relative H1 Error of upred

Width Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

W20 7.60% 8.00% 47.08% 48.31%
W200 11.41% 25.10% 55.17% 77.85%

(a) B3

Ê Relative H1 Error of upred

Width Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

W20 7.60% 8.12% 47.08% 48.65%
W200 12.06% 24.94% 56.24% 75.99%

(b) B6

Table 7: Generalization error v.s. different neural network width (fixed total training

steps 6×105). Train-log-normal-sen16-POD-L2, O21-lr0.02.

Figure 16: Training loss of Gl-ResNN(doted)/Exp-ResNN(solid) v.s. different depth (#

of blocks, blue: B6, red: B12, yellow: B14). Train-log-normal-sen16-POD-L2, W20-O21-
lr0.02

5.3 Duration of Training

The above discussion of the influence of width and depth on the learning outcome is
based on an assumption that a fixed number of training steps is applied. It is, in gen-
eral, completely unclear whether such a budget of training steps suffices to exploit the
expressive power of the network. We are therefore interested to see how Exp-ResNN and
Gl-ResNN compare when lifting the complexity constraints. This is the more interesting
as an optimization step on a single block is not quite comparable with a descent step over
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Ê Relative H1 Error of upred

# of Blocks Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

B6 7.60% 8.12% 47.08% 48.65%
B12 7.76% 8.42% 47.42% 49.28%
B14 8.17% 9.40% 47.78% 51.00%

Table 8: Generalization error v.s. different number of ResNet blocks (fixed total train-

ing steps 6×105). Train-log-normal-sen16-POD-L2, W20-O21-lr0.02.

the whole network. This discrepancy increases of course with increasing depth. As a first
step in this direction, we inspect the effect of quadrupling the total number of training
steps to 2.4×106.

It turns out that earlier findings are confirmed. Eventually, given enough training
time and effort, Gl-ResNN can achieve about the same accuracy as Exp-ResNN which in-
dicates that the “achievable” expressivity offered by the Gl-ResNN architecture has been
exploited by both optimization strategies. There is a slight gain of accuracy in compari-
son with the previous cap of 6×105, namely 0.02%∼0.03%.

Ê Relative H1 Error of upred

Total training steps Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

6×105 7.60% 8.12% 47.08% 48.65%
24×105 7.75% 7.74% 47.10% 47.09%

Table 9: Generalization error v.s. different number of training steps. Train-log-normal-
sen16-POD-L2, B6-W20-O21-lr0.02.

5.4 Training Schedules

In this example, we add an additional 2×105 training steps to update all trainable param-
eter simultaneously in addition to a block-wise training. Compared with a pure block by
block training schedule (see Figure 8), the additional global optimization effort does not
seem to improve on the training success but rather worsens it (see Figure 18).

5.5 Wide Neural Network Subject to Long-term Training

We check at last whether the neural networks can do better than in previous experiments
in terms of approximating the map between Wh and W

⊥
h when significantly increas-

ing training time. The results show that earlier findings persist. Table 11 shows that,
while with Exp-ResNN there is no real benefit of larger width, at least estimation quality
does not apper to degrade over long training periods. Instead, Gl-ResNN seems to be
adversely affected by larger network complexity.
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Figure 17: Training loss of Gl-ResNN(red)/Exp-ResNN(blue) for large number of train-

ing steps (2.4×106). Train-log-normal-sen16-POD-L2, B6-W20-O21-lr0.02

Ê Relative H1 Error of upred

Total training steps Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

6×105 block-wise updates 7.60% 8.12% 47.08% 48.65%
6×105 block-wise updates +
2×105 global updates

7.75% 7.99% 47.10% 47.91%

Table 10: Generalization error with/without 2×105 global updates. Train-log-normal-
sen16-POD-L2, B6-W20-O21-lr0.02.

Ê Relative H1 Error of upred

Total training steps Exp-ResNN Gl-ResNN Exp-ResNN Gl-ResNN

short (6×105) & narrow (W20) 7.60% 8.12% 47.08% 48.65%
long (24×105) & narrow (W20) 7.75% 7.74% 47.10% 47.09%
short (6×105) & wide (W200) 12.06% 24.94% 56.24% 75.99%
long (24×105) & wide (W200) 8.82% 23.09% 49.66% 78.19%

super long (96×105) & wide (W200) 7.77% 21.83% 47.17% 71.95%

Table 11: Generalization error v.s. different number of training steps. Train-log-
normal-sen16-POD-L2, B6-O21-lr0.02.

More specifically, Table 11 shows that the smallest generalization error is achieved
by the relatively low training effort for narrow networks. Much larger networks, in-
stead, seem to achieve about that same accuracy level only at the expense of a signifi-
cantly larger training effort, leaving little hope for substantial further accuracy improve-
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Figure 18: Training loss of Exp-ResNN(red)/Gl-ResNN(blue) with 2×105 steps of

global updates. Train-log-normal-sen16-POD-L2, B6-W20-O21-lr0.02
.

Figure 19: Training loss of Exp-ResNN(red)/Gl-ResNN(blue) for large number of train-

ing steps (9.6×106) of wide neural network (W200). Train-log-normal-sen16-POD-L2,
B6-W200-O21-lr0.02

ments by continued training. In contrast, globally updating corresponding networks
achieves the best result again for narrow networks but, in agreement with earlier tests,
at the expense of four times as many training steps than for block-wise training. For
wide networks even extensive training effort does not seem to reproduce accuracy lev-
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els, achieved earlier for smaller networks.

5.6 Optimizer

Here we present a comparison of the Proximal Adagrad with Adam. From Figure 20 we
also observe that the training process of Exp-ResNN is more stable than Gl-ResNN. From
Figure 21 and Table 12, we can further see that both optimizers seem to provide similar
results by the end of the training process. But Adam seems to be overall a little less stable.
The reason for taking the learning rate for Adam to be 0.001 is because larger rates like
0.01 appear to produce meaningless results.

Figure 20: Training history using Adam. Train-pwc-sen16-POD-H1, Exp-
ResNN(red)/Gl-ResNN(blue)-W20-O21-lr0.02/0.002.

Ê Relative L2 Error of upred

# of blocks learning rate eResNet ResNet eResNet ResNet

Proximal Adagrad 0.02 7.76% 8.42% 47.42% 49.28%
Adam 0.002 7.47% 7.82% 47.14% 47.23%

Table 12: Generalization error v.s. different optimizer(fixed total training steps 6×105).

Train-pwc-sen16-POD-H1, eResNet/ResNet-W20-O21-lr0.02/0.002.
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(a) Gl-ResNN (b) Exp-ResNN

Figure 21: Training history using Adam v.s. Proximal Adagrad. Train-pwc-sen16-POD-
H1, Gl-ResNN/Exp-ResNN-W20-O21-lr0.02/0.002.

6 Comparison with Affine Reduced Basis Estimators

As discussed earlier in more detail, we have run these experiments with varying choices
of learning rates and architecture modifications consistently obtaining essentially the
same magnitude of training loss and generalization error. This indicates a certain sat-
uration effect as well as reliability in generating consistent results. Nevertheless, one
wonders to what extent the actual expressive power of the networks is at least nearly ex-
hausted and how to gauge the results in comparison with alternate approaches. We have
therefore compared the accuracy achieved by Exp-ResNN with results for Affine Space
estimators from [5], mentioned earlier in Section 2.4. For the sake of such a comparison
we consider the same type of up to 50 randomly distributed sensors depicted in Figure
22). We generate again 10,000 data points 9000 of which are are used for training while the
rest is used for evaluation. Based on the experiences gained in previous experiments we
have used a B2-W100 Exp-ResNN as a model for learning the observation-to-state map-
ping. That is, the Gl-ResNN of 2 blocks is trained in the expansion manner. We confine
the training of the Exp-ResNN to a fixed number of 100,000 steps. The dependence of the
tested generalization error on the number of sensors is shown in Figure 23. As expected,
an increasing number of sensors provides more detailed information on P

W̃⊥
h
(M). The

green and blue curve show that further increasing the number of training data has little
effect on the achieved accuracy. For the given fixed budget of 10,000 steps the evaluation
shows an H1-error of about 10−2.

The performance of several versions of Affine Space estimators under the same test
conditions has been reported in [5]. The computationally most expensive but also most
accurate Optimal Affine Space estimator achieves in this experiment roughly an H1-error
of size 3×10−3 which is slightly better than the accuracy 8×10−3, observed for Exp-
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Figure 22: An illustration of 50 random sensors.

ResNN. However, when lifting the cap of at most 10,000 training steps, the observed
maximal H1-error for Exp-ResNN drops also to 5×10−3 in the 50-sensor case, which is
at the same level as what the best affine estimator achieves. In summary, it seems that
for this type of problems both types of estimators achieve about the same level of es-
timation accuracy and nonlinearity of the neural network lifting map does not seem to
offer substantial advantages for scenario (S1). There is instead a noteworthy difference
regarding computational cost in relation to predictable training success. The above ex-
ample shows that neural networks may have significant disadvantages with regard to
optimization success and incurred computational cost in comparison with affine-space
recovery schemes where, however, Exp-ResNN shows a consistent level of reliability that
avoids degrading accuracy under over-parametrization.

Figure 23: Max reconstruction H1 errors among 1000 testing samples with Exp-ResNN.
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(a) Exact solution (b) Prediction (c) Error

Figure 24: An example of of exact vs. Exp-ResNN predicted solution in W
T
h for 50 ran-

dom sensors case.
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7 Summary

Overall, the experiments for the two application scenarios (S1), (S2) reflect the following
general picture. Regardless of a specific training mode accuracy improves rapidly at the
beginning and essentially saturates at a moderate network complexity. Beyond that point
further improvements require a relatively substantial training effort which may not even
be rewarded in the Gl-ResNN mode. Instead, Exp-ResNN usually responds with slight
improvements and essentially never with an accuracy degradation. While in a number
of cases Exp-ResNN achieves a smaller generalization error than plain Gl-ResNN, by
and large, the differences in accuracy are not overly significant. Once the generaliza-
tion error curve starts flattening, additional increases of network complexity seem to just
increase over-parametrization and widen a flat plateau fluctuating around “achievable”
local minima. Instead a realization of theoretically possible expressive power seems to re-
main highly improbable. Aside from an increased robustness with respect to algorithmic
settings, the main advantage of Exp-ResNN over Gl-ResNN seems to lie in substantial
savings of computational work needed to nearly realize an apparently achievable gen-
eralization accuracy. This is illustrated by Figure 25, (b), recording the work needed
to achieve 10/9 of the smallest generalization error achieved by the respective training
modality. It is also interesting to note that the generalization errors at various optimiza-
tion stages are not much larger than the corresponding relative loss-size, reflecting relia-
bility of the schemes, see Figure 25, (a).
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(a) B6: Train/Evaluation Error history

(b) B1/B6: Evaluation Error History. Horizontal lines: 10/9 level of the terminal evaluation error
(blue: Gl-ResNN-B1, red: Exp-ResNN-B6, yellow: Gl-ResNN-B6)

Figure 25: Train-log-normal-sen16-POD-L2, W20-O21-lr0.02.
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