Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

DP-Sync: Hiding Update Patterns in Secure Outsourced
Databases with Differential Privacy

Chenghong Wang Johes Bater
Duke University Duke University
chwang@cs.duke.edu johes.bater@duke.edu
ABSTRACT

In this paper, we consider privacy-preserving update strategies for
secure outsourced growing databases. Such databases allow append-
only data updates on the outsourced data structure while analysis
is ongoing. Despite a plethora of solutions to securely outsource
database computation, existing techniques do not consider the in-
formation that can be leaked via update patterns. To address this
problem, we design a novel secure outsourced database framework
for growing data, DP-Sync, which interoperate with a large class of
existing encrypted databases and supports efficient updates while
providing differentially-private guarantees for any single update.
We demonstrate DP-Sync’s practical feasibility in terms of perfor-
mance and accuracy with extensive empirical evaluations on real
world datasets.

CCS CONCEPTS

« Security and privacy — Data anonymization and sanitiza-
tion; Management and querying of encrypted data.
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1 INTRODUCTION

In the last couple of decades, organizations have been rapidly mov-
ing towards outsourcing their data to the cloud. While this brings
in inherent advantages such as lower costs, high availability, and
ease of maintenance, this also results in privacy concerns for or-
ganizations. Hence, many solutions leverage cryptography and/or
techniques such as differential privacy to keep the data private
while simultaneously allowing secure query processing on this
data [6, 9, 10, 25, 34, 42, 45, 68, 70, 76]. However, while most practi-
cal systems require us to maintain dynamic databases that support
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updates, research in the space of private database systems has fo-
cused primarily on static databases [6, 9, 25, 42, 45, 54]. There have
been a few works which consider private database updates and an-
swering queries on such dynamic databases [1, 29, 34, 43, 50, 70, 76].
However, none of these works consider the privacy of when a data-
base is updated. In this work, we consider the problem of hiding
such database update patterns.

Let us consider the following example where an adversary can
breach privacy by using the timing information of updates. Consider
an IoT provider that deploys smart sensors (i.e., security camera,
smart bulb, WiFi access point, etc.) for a building. The provider also
creates a database to back up the sensors’ event data. For conve-
nience, the database is maintained by the building administrator,
but is encrypted to protect the privacy of people in the building. By
default, the sensor will backup immediately when any new sensor
event (i.e. a new connection to WiFi access point) occurs. Suppose
that at a certain time, say 7:00 AM, only one person entered the
building. Afterwards, the building admin observes three backup
requests posted at times 7:00:00, 7:00:10, 7:00:20, respectively. Also
suppose that the admin has access to additional non-private build-
ing information, such as that floor 3 of this building is the only floor
which has three sensors with a 10 second walking delay (for an
average person). Then, by looking at the specific times of updates
(10 second delays) and the number of updates, the building admin
can learn private information about the activity (i.e. the person
went to the 3rd floor), without ever having to decrypt the stored
data. This type of attack generalizes to any event-driven update
where the event time is tied to the data upload time. In order to
prevent such attacks, we must decouple the relationship between
event and upload timings.

There are two straightforward solutions to solve this concern.
The first option is to never upload any sensor data at all. While
such a solution does provide necessary privacy, it does not provide
us with the functionality of a database that supports updates. If an
employee from the IoT provider queries the database to obtain, for
example, the number of sensor events happened in a day, she will
receive an inaccurate result. A second option is to back up the sensor
event record at each time unit, independent of whether the sensor
event actually occurred or not. Again, this does solve the privacy
concern since the update does not depend on the sensor events
at all. However, this introduces performance concerns: If sensor
events occur relatively infrequently, then most updates are likely
to be empty, or “dummy”, updates, meaning that the provider will
waste valuable resources on unnecessary computation. The above
examples illustrate the 3-way trade-off between privacy, accuracy,
and performance in the database synchronization problem. Each
of the three approaches we discussed, immediate synchronization,
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no synchronization, and every time unit synchronization, achieves
precisely two of the three properties, but not the third.

In this work, we build DP-Sync, an append-only database out-
sourced by a data owner to one or more untrusted cloud service
providers (server). In addition, a trusted analyst, possibly the owner,
is allowed to query the database at any point in time. To ensure
consistency of the outsourced data, the owner synchronizes local
records and updates the outsourced data. However, making up-
dates on outsourced data structures may leak critical information.
For instance, the server can potentially detect the size of synchro-
nized records [4, 17, 51, 69]. Cryptographic techniques such as
ORAMs [76] or structured encryption [43] prevent leaking critical
information on updates. However, all these methods are primarily
designed to ensure that when an update occurs, attackers cannot
learn sensitive information by observing changes in the outsourced
data structure and not when these changes happen. If the adver-
sary/cloud server has access to the exact time of the updates, even
if the system employs the techniques described above to protect
individual updates, it can still result in privacy breaches of owner’s
data. The goal of DP-Sync is to prevent such an update pattern leak-
age while still being performant and accurate. We now elaborate
on our key contributions:

Private update synchronization. We introduce and formalize
the problem of synchronizing updates to an encrypted database
while hiding update patterns. Our goal is to provide a bounded
differentially-private guarantee for any single update made to the
cloud server. To navigate the 3-way trade-off between privacy,
accuracy, and performance, we develop a framework where users
can obtain customizable properties by modifying these parameters.
Differentially-private update synchronization algorithms. We
provide two novel synchronization algorithms, DP-Timer and DP-
ANT, that can obtain such trade-offs. The first algorithm, DP-Timer
algorithm, parameterized by time T, synchronizes updates with the
server every T time. Thus, for a fixed parameter T, to achieve a high
amount of privacy, the algorithm asymptotes to never update the
server (and hence, will not achieve accuracy). As we weaken our
privacy, we can gracefully trade it for better accuracy. Similarly, by
modifying T, we can obtain different trade-offs between accuracy
and performance. The second algorithm DP-ANT, parameterized
by a threshold 6, synchronizes with the server when there are ap-
proximately 6 records to update. Thus, for a fixed parameter 6,
when achieving high accuracy, the algorithm asymptotes to updat-
ing the server at each time unit and thus, poor performance. By
reducing the accuracy requirement, we can gracefully trade it for
better performance. Moreover, we can modify the parameter 6 to
obtain different trade-offs. Comparing the two algorithms, DP-ANT
dynamically adjusts its synchronization frequency depending on
the rate at which new records are received while DP-Timer adjusts
the number of records to be updated each time it synchronizes.
Interoperability with existing encrypted databases. We de-
sign our update synchronization framework such that it can inter-
operate with a large class of existing encrypted database solutions.
To be concrete, we provide the precise constraints that should be
satisfied by the encrypted database to be compatible with DP-Sync,
as well as classify encrypted databases based on what they leak
about their inputs.
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Evaluating DP-Sync with encrypted databases. We implement
multiple instances of our synchronization algorithms with two
encrypted database systems: Crypte and ObliDB. We evaluate the
performance of the resulting system and the trade-offs provided by
our algorithms on the New York City Yellow Cab and New York City
Green Boro taxi trip record dataset. The evaluation results show
that our DP strategies provide bounded errors with only a small
performance overhead, which achieve up to 520x better in accuracy
than never update method and 5.72x improvement in performance
than update every time approach.

2 PROBLEM STATEMENT

The overarching goal of this work is to build a generic framework
for secure outsourced databases that limits information leakage
due to database updates. We must ensure that the server, which
receives outsourced data, cannot learn unauthorized information
about that data, i.e., the true update history. We achieve this by
proposing private synchronization strategies that the owner may
use to hide both how many records are currently being outsourced
and when those records were originally inserted. Though there are
simple methods that effectively mask the aforementioned update
history, significant tradeoffs are required. For example, one may
simply prohibit the owner from updating the outsourced database,
or force them to update at predefined time intervals, regardless of
whether they actually need to. Though both approaches ensure
that the true update history is masked, they either entirely sacrifice
data availability on the outsourced database or incur a significant
performance overhead, respectively. Navigating the design space
of private synchronization protocols requires balancing a 3-way
tradeoff between privacy, accuracy, and performance. To tackle this
challenge, we formalize our research problems as follows:

e Build a generic framework that ensures an owner’s database
update behavior adheres to private data synchronization
policies, while supporting existing encrypted databases.

e Design private synchronization algorithms that (i) hide an
owner’s update history and (ii) balance the trade-off between
privacy, accuracy and efficiency.

In addition to the research problems above, we require our design
to satisfy the following principles.

P1-Private updates with a differentially private guarantee.
The proposed framework ensures that any information about a
single update leaked to a semi-honest server is bounded by a differ-
entially private guarantee. We formally define this in Definition 5.

P2-Configurable privacy, accuracy and performance. Rather
than providing a fixed configuration, we develop a framework
where users can customize the level of privacy, accuracy, and per-
formance. For example, users can trade privacy for better accuracy
and/or improved performance.

P3-Consistent eventually. The framework and synchronization
algorithms should allow short periods of data inconsistency be-
tween the logical (held by the owner) and the outsourced (held
by the server) databases. To abstract this guarantee, we follow the
principles in [18] and define the concept of consistent eventually
for our framework as follows. First, the outsourced database can
temporarily lag behind the logical database by a number of records.
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However, once the owner stops receiving new data, there will even-
tually be no logical gaps. Second, all data should be updated to the
server in the same order in which they were received by the owner.
In some cases, the consistent eventually definition can be relaxed
by removing the second condition. In this work, we implement our
framework to satisfy the definition without this relaxation.

P4-Interoperable with existing encrypted database solutions
The framework should be interoperable with existing encrypted
databases. However, there are some constraints. First, the encrypted
databases should encrypt each record independently into a separate
ciphertext. Schemes that encrypt data into a fixed size indivisible
ciphertext (i.e., the ciphertext batching in Microsoft-SEAL [59]) do
not qualify. Since batching may reveal additional information, such
as the maximum possible records per batch. Second, the database
should support or be extensible to support data updates (insertion of
new records). Thus, a completely static scheme [74] is incompatible.
In addition, our security model assumes the database’s update leak-
age can be profiled as a function solely related to the update pattern.
Therefore, dynamic databases with update protocol leaks more than
the update pattern [52, 65] are also ineligible. Third, the correspond-
ing query protocol should not reveal the exact access pattern [38]
or query volume [53] information. Despite these constraints, our
framework is generic enough to support a large number of existing
encrypted databases such as [2, 4, 9, 12, 17, 21, 25, 34, 37, 52, 79, 81].
Later, in Section 6, we provide a detailed discussion on the compat-
ibility of existing encrypted database schemes with DP-Sync.

3 DP-SYNC DESCRIPTION

In this section, we introduce DP-Sync, a generic framework for
encrypted databases that hides update pattern leakage. The frame-
work does not require changes to the internal components of the
encrypted database, but rather imposes restrictions on the owner’s
synchronization strategy. We illustrate the general architecture and
components of DP-Sync in Section 3.1 and Section 3.2, respectively.

3.1 Framework Overview

Our framework consists of an underlying encrypted database with
three basic protocols, edb = (Setup, Update, Query), a synchroniza-
tion strategy Sync, and a local cache ¢. Our framework also defines
a dummy data type that, once encrypted, is indistinguishable from
the true outsourced data. The local cache o is a lightweight storage
structure that temporarily holds data received by the owner, while
Sync determines when the owner needs to synchronize the cached
data to the server (poses an update) and how many records are
required for each synchronization. DP-Sync makes no changes to
the edb and will fully inherit all of its cryptographic primitives and
protocols. Figure 1 illustrates the general workflow of DP-Sync.
Our proposed framework operates as follows. Initially, the owner
sets up a synchronization strategy Sync and a local cache o, then au-
thorizes the analyst. The owner starts with an initial database with
which it invokes Sync to obtain a set of records, yg, to be outsourced
first. The owner then runs the setup protocol (edb.Setup) with yg
as the input. An initial outsourced data structure is then created
and stored on the server. For each subsequent time step, whenever
the Sync algorithm signals the need for synchronization, the owner
reads relevant records from the cache and inputs them to the update
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Figure 1: Overview of DP-Sync’s architecture.

protocol (edb.Update) to update the outsourced structure. When
there is less data than needed, the owner inputs sufficiently many
dummy records in addition to the cached data.

Since all records are encrypted, the server does not know which
records are dummy records and which are true records. The out-
sourced data structure will only change if the owner runs the update
protocol, in other words, if Sync does not signal, then the out-
sourced structure remain unchanged. The analyst independently
creates queries and runs the query protocol (edb.Query) to make
requests. The server evaluates each query and returns the result to
analyst. For simplicity, we assume that all queries arrive instanta-
neously and will be executed immediately.

3.2 Framework Components

3.2.1 Local cache. The local cache is an array o1, 2, 3...] of mem-
ory blocks, where each o[i] represents a memory block that stores
a record. By default, the local cache in DP-Sync is designed as a
FIFO queue that supports three types of basic operations:

(1) Get cache length (len(0)). The operation calculates how
many records are currently stored in the local cache, and
returns an integer count as the result.

(2) Write cache (write(o, r)). The write cache operation takes
as input a record r and appends the record to the end of the
current local cache, denoted as o || r < write(o,r).

(3) Read cache (read(o, n)). Given a read size n, if n < len(o),
the operation pops out the first n records, o [1, ..., n], in the
local cache. Otherwise, the operation pops all records in o
along with a number of dummy records equal to |n—len(o)|.

The FIFO mode ensures all records are uploaded in the same order
they were received by the owner. In fact, the local cache design
is flexible and can be replaced with other design scenarios. For
example, it can be designed with LIFO mode if the analyst is only
interested in the most recently received records.

3.2.2  Dummy records. Dummy records have been widely used in
recent encrypted database designs [3, 6, 7, 9, 34, 44, 54, 64] to hide
access patterns, inflate the storage size and/or distort the query
response volume. In general, dummy data is a special data type that
cannot be distinguished from real outsourced data when encrypted.
Moreover, the inclusion of such dummy data does not affect the
correctness of query results.

3.2.3 Synchronization strategy. The synchronization strategy Sync
takes on the role of instructing the owner how to synchronize the
local data. It decides when to synchronize their local records and
guides the owner to pick the proper data to be synchronized. We
explain in detail the design of Sync in section 5.
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4 DP-SYNC MODEL

In this section, we describe the abstract model of DP-Sync as a
secure outsourced growing database, including the key definitions
(Section 4.1), security model (Section 4.3), privacy semantics (Sec-
tion 4.4) , and evaluation metrics (Section 4.5).

4.1 Secure Outsourced Growing Database

We begin by introducing the main concepts of outsourced growing
databases and the notations used in this work. A summary of key
concepts and notations is provided in Table 1.

Dy | initial logical database
u; | logical update at time ¢; can be a single record or null
Y+ | real update at ¢, can be a set of records or null
D; | logical database at time t; Dy = {DpUu; Uuy...Uus}
D | the logical instance of a growing database
DS; | physical data on the server at time ¢
DS | the physical data on the server over time
q: | list of queries at time ¢
Q | set of queries over time, where Q = {q;}s>0
SOGDB | secure outsourced growing database.

Table 1: Summary of notations.

A growing database consists of an initial database Dy and a set
of logical updates U = {u; }+>0 to be appended to Dy, where u; € U
is either a single record or 0. The former corresponds to the data
received at t, while () indicates no data arrives. We consider the
case where at most one record arrives at any time unit for the sake
of simplicity, however this can be generalized to the case where
multiple records arrive in one time unit. We define the growing
database as D = {D; };>0, where Dy is the logical database at time
t,and Dy = {Do Uug Uuy...Uus}. We stress that when we say
a growing database has length L, it means that there could be up
to L logical updates in U, that is [U| = L. We consider databases
that support select (search), project, join and aggregations. We use
Q = {q:}+>0 to denote the set of queries evaluated over a growing
database, where g; is the query over D;.

There are three entities in the secure outsourced data model:
the owner, the server, and the analyst. The owner holds a logical
database, encrypts and outsources it to the server, and continually
updates the outsourced structure with new data. The server stores
the outsourced structure, on which it processes queries sent by an
authorized analyst. For growing databases, all potential updates
posted by the owner will be insertions only. We denote the records
to be updated each time as y;, which can be a collection of records,
or empty (no update has occurred). We use DS = {DS;};>0 to
represent the outsourced structure over time, where DS; is an
instance of outsourced structure at time t. Typically, an instance
of the outsourced structure contains a set of encrypted records as
well as an optional secure data structure (i.e., secure index [22]). We
now define the syntax of a secure outsourced database as follows:

Definition 1 (Secure Outsourced Growing Database). A secure
outsourced database is a suite of three protocols and a polynomial-
time algorithm with the following specification:

(L, DSy, L) « ]_[Setup((/l, Dy), L, 1): is a protocol that takes as
input a security parameter A, and an initial database Dy from the
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owner. The protocol sets up the internal states of the SOGDB system
and outputs an outsourced database DSy to the server.

(L, DS}, 1) « Tlupdate(v; DSt L): is a protocol that takes an
outsourced structure DS; from the server, and a collection of
records y from the owner, which will be inserted into the outsourced
data. The protocol updates the outsourced structure and outputs
the updated structure DS to server.

(L, L,ar) < Tlquery (L, DSt q:): is a protocol that takes an out-
sourced database DS from the server and a set of queries g; from
the analyst. The protocol reveals the answers a; to the analyst.

Sync(D): is a (possibly probabilistic) stateful algorithm that takes
as input a logical growing database D. The protocols signals the
owner to update the outsourced database from time to time, de-
pending on its internal states.

The notation (Cout, Souts @out) — protocol(Cin, Sin, ain) is used
to denote a protocol among the owner, server and analyst, where
Cins Sin»> and aj, denote the inputs of the owner, server and analyst,
respectively, and cout, Sout, and agyt are the outputs of the owner,
server and analyst. We use the symbol L to represent nothing input
or output. We generally follow the abstract model described in [53].
However, the above syntax refers to the dynamic setting, where the
scheme allows the owner to make updates (appending new data)
to the outsourced database. The static setting [53] on the other
hand, allows no updates beyond the setup phase. We assume that
each record from the logical database is atomically encrypted in
the secure outsourced database. The outsourced database may, in
addition, store some encrypted dummy records. This model is also
referred to as atomic database [53]. In addition, we assume that
the physical updates can be different from the logical updates. For
instance, an owner may receive a new record every 5 minutes, but
may choose to synchronize once they received up to 10 records.

4.2 Update Pattern Leakage

We now introduce a new type of volumetric leakage [11] called
update pattern leakage. In general, an update pattern consists of the
owner’s entire update history transcript for outsourcing a growing
database. It may include information about the number of records
outsourced and their insertion times.

Definition 2 (Update Pattern). Given a growing database 9 and
a SOGDB scheme X, the update pattern of ¥ when outsourcing D
is UpdtPatt(2, D) = {UpdtPatt, (2, D¢)}ren+arer, with:

UpdtPatt, (3, D) = (¢, |y:])

where t’ = {t{, tz’, ..., 17} denotes the set of timestamps ti’ when the
update occurs, and y; denotes the set of records synchronized to
the outsourcing database at time ¢. We refer to the total number of
records |y;| updated at time ¢ as the corresponding update volume.

EXAMPLE 4.1. Assume an outsourced database setting where the
owner synchronizes 5 records to the server every 30 minutes and the

minimum time span is 1 minute. Then the corresponding update
pattern can be written as {(0, 5), (30, 5), (60, 5), (90, 5)...}.

4.3 Privacy Model

Recall that in DP-Sync, there are three parties: the owner (who
outsources local data), the server (who stores outsourced data),
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and the analyst (who queries outsourced data). Our adversary is
the server, whom we want to prevent from learning unauthorized
information about individuals whose records are stored in the local
data. We assume a semi-honest adversary, meaning that the server
will faithfully follow all DP-Sync protocols, but may attempt to
learn information based on update pattern leakage.

Update pattern leakage may reveal the number of records in-
serted at each time step, as the server can keep track of the insertion
history. To ensure privacy, we need to strictly bound the informa-
tion the server can learn. In this section, we formally define the
privacy guarantee for update pattern leakage in DP-Sync.

Definition 3 (e-Differential Privacy [33]). A randomized mech-
anism M satisfies e-differential privacy (DP) if for any pair of
neighboring databases D and D’ that differ by adding or removing
one record, and for any O C O, where O is the set of all possible
outputs, it satisfies:

Pr[M(D) € O] < e“Pr [M(D’) € O]

With DP, we can provide provable, mathematical bounds on
information leakage. This allows us to quantify the amount of
privacy leaked to the server in our scheme.

Definition 4 (Neighboring growing databases). D and D’ are
neighboring growing databases if for some parameter 7 > 0, the
following holds: (i) D; = D] for t < r and (i) D; and D, differ by
the addition or removal of a single record when t > 7.

In practice, Definition 4 defines a pair of growing databases that
are identical at any time before t = 7, and differ by at most one
record at any time after ¢ = 7. After defining neighboring growing
databases, we now follow the definition of event level DP [33] under
continual observation, and generalize it to SOGDB setting. This
allows us to describe and bound the privacy loss due to update
pattern leakage in DP-Sync.

Definition 5 (SOGDB with DP update pattern). Let L be the
update leakage profile for a SOGDB system X. The SOGDB X has a
differentially-private (DP) update pattern if £y can be written as:

Ly(D) = L' (UpdtPatt(Z, D))

where £’ is a function, and for any two neighboring growing
databases D and D', and any O C O, where O is the set of all
possible update patterns, L (D) satisfies:

Pr[Ly(D) € 0] <e-Pr[Ly(D’) €0

Definition 5 ensures that, for any SOGDB, if the update leakage
is a function defined as UpdtPatt(Z, D), then the information re-
vealed by any single update is differentially private. Moreover, if
each update corresponds to a different entity’s (owner’s) record
then privacy is guaranteed for each entity. The semantics of this
privacy guarantee are discussed further in Section 4.4. Note that
although Definition 5 provides information theoretic guarantees
on update pattern leakage, the overall security guarantee for DP-
Sync depends on the security of the underlying encrypted database
scheme. If the encrypted database provides information theoretic
guarantees, then DP-Sync also provides information theoretic DP
guarantees. If the encrypted database is semantically secure, then
DP-Sync provides computational differential privacy, i.e., Defini-
tion 5 only holds for a computationally bounded adversary.
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4.4 Privacy Semantics

In this section, we explore the privacy semantics of Definition 5
from the perspective of disclosing secrets to adversaries. To achieve
this, we utilize the Pufferfish [56] framework to interpret the pri-
vacy semantics. One can show that if a SOGDB satisfies Definition 5,
then for any single user u, and any pair of mutually exclusive se-
crets of u’s record that span a single time step, say ¢, (¢), and ¢, (¢)
(an example of such pair of secrets is whether u’s data was inserted
or not to an growing database), the adversary’s posterior odds of
¢u (1) being true rather than ¢, (¢) after seeing the SOGDB’s update
pattern leakage is no larger than the adversary’s prior odds times
e€. Note that this strong privacy guarantee holds only under the
assumption that the adversary is unaware of the possible correla-
tion between the user’s states across different time steps. Recent
works [55, 61, 82] have pointed out that with knowledge of such cor-
relations, adversaries can learn sensitive properties even from the
outputs of differentially private algorithms. Nevertheless, it is still
guaranteed that the ratio of the adversary’s posterior odds to the
prior odds is bounded by e/¥€ [19, 75], where [ is the maximum pos-
sible number of records in a growing database that corresponds to a
single user. The actual privacy loss may be much smaller depending
on the strength of the correlation known to the adversary [19, 75].
We emphasize that our algorithms are designed to satisfy Defini-
tion 5 with parameter €, while simultaneously satisfying all the
above privacy guarantees, though the privacy parameters may dif-
fer. Thus, for the remainder of the paper, we focus exclusively on
developing algorithms that satisfy Definition 5.

4.5 Evaluation Metrics

4.5.1 Efficiency metrics. To evaluate SOGDB’s efficiency, we use
two metrics: (1) query execution time (QET) or the time to run
[Tquery and (2) the number of encrypted records outsourced to
the server. Note that in some cases the QET and the number of
outsourced data may be positively correlated, as QET is essentially
a linear combination of the amount of outsourced data.

4.5.2  Accuracy metrics. Ideally, the outsourced database should
contain all records from the logical database at every point in time.
In practice, for efficiency and privacy reasons, an owner can only
sync records intermittently. This temporary data inconsistency may
result in some utility loss. To measure this utility loss, we propose
two accuracy metrics as follows:

Logical gap. For each time ¢, the logical gap between the out-
sourced and logical database is defined as the total number of
records that have been received by the owner but have not been
outsourced to the server. We denote it as LG(t) = |Dy — D N @t ,
where D; = {yo Uy1 U ...y} denotes the set of records that have
been outsourced to the server until time ¢. Intuitively, a big logical
gap may cause large errors on queries over the outsourced database.

Query error. For any query q;, query error QE(q;) is the L1
norm between the true answer over the logical database and the
result obtained from []query- Thus, QE(q¢) = | [1query (DS¢, qr) —
q:(D;)|. While query error is usually caused by the logical gap,
different types of query results may be affected differently by the
same logical gap. Hence, we use query error as an independent
accuracy metric.
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G Pri Logical Total number of
roup rivacy ogical gap outsourced records
SUR | co-DP 0 | D]
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SET | 0-DP 0 [ Dol +1
DP-Timer | ¢-DP ck+ 0(¥) | D + 0(#) +1
ANT | eDP c§*+O(161§gt) IDt|+O(161§gt)+'7

Table 2: Comparison of synchronization strategies. cl,

counts the number of record received since last update, k
denotes the number of synchronization posted so far, f is
cache flush span, s is the cache flush size, and = s|t/f].

5 RECORD SYNCHRONIZING ALGORITHMS

In this section, we discuss our secure synchronization strategies,
including naive methods (section 5.1) and DP based strategies (sec-
tion 5.2). A comparison concerning their accuracy, performance,
and privacy guarantees is provided in Table 2.

5.1 Naive Synchronization Strategies

We start with three naive methods illustrated as follows:

(1) Synchronize upon receipt (SUR). The SUR policy is the most
adopted strategy in real-world applications, where the owner
synchronizes new data to the server as soon as it is received,
and remains inactive if no data is received.

One time outsourcing (OTO). The OTO strategy only allows
the owner to synchronize once at initial stage t = 0. From
then on, the owner is offline and no data is synchronized.
Synchronize every time (SET). The SET method requires the
owner to synchronize at each time unit, independent of
whether a new record is to be updated. More specifically, for
any time ¢, if u; # 0, the owner updates the received record.
If u; = 0, owner updates a dummy record to server.

@

®)

Given a growing database D = {Dg, U}. SUR ensures any newly
received data is immediately updated into the outsourcing database,
thus there is no logical gap at any time. Besides, SUR does not
introduce dummy records. However, SUR provides zero privacy
guarantee as it leaks the exact update pattern. OTO provides com-
plete privacy guarantees for the update pattern but achieves zero
utility for all records received by the owner after t = 0. Thus the
logical gap for any time equals to |D;| — |Dy|. Since OTO only out-
sources the initial records, the total amount of data outsourced by
OTO is bounded by O(|Dy|). SET provides full utility and complete
privacy for any record, and ensures 0 logical gap at any time. How-
ever, as a cost, SET outsources a large amount of dummy records,
resulting in significant performance overhead. In addition, all of
the methods provide fixed privacy, performance, and/or utility. As
such, none of them comply with the P3 design principle. OTO also
violates P2 as no data is outsourced after initialization.

5.2 Differentially Private Strategies

5.2.1 Timer-based synchronization (DP-Timer). The timer-based
synchronization method, parameterized by T and €, performs an
update every T time units with a varying number of records. The
detailed algorithm is described in Algorithm 1.
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Algorithm 1 Timer Method (DP-Timer)

Input: growing database D = {Dy, U}, privacy budget €, timer
T, and local cache o.
e 0,50
: Yo « Perturb(|Dy|, €, 0)
: Signal the owner to run [setup(yo)-
. fort «— 1,2,3,...do
if u; # 0 then
write(o, us) (store u; in the local cache)
7 if t mod T =0 then
8: c— ?(_[_TH xi | (x; « 0,ifu; =0, else x; «— 1)
9 Yt < Perturb(c, €, 0)
Signal the owner to run [Tupdate (v, DSt¢)-

S W o W oy =

Initially, we assume the owner stores Dy in the local cache o.
DP-Timer first outsources a set of data yg to the server (Alg 1:1-3),
where yy is fetched from o using Perturb (defined in Algorithm 2)
operator. Perturb takes as input a count ¢, a privacy parameter € and
a local cache o to be fetched from. It first perturbs the count ¢ with
Laplace noise Lap(%), and then fetches as many records as defined
by the noisy count from o. When there is insufficient data in the
local cache, dummy data is added to reach the noisy count. After the
initial outsourcing, the owner stores all the received data in the local
cache o (Alg 1:5-7), and DP-Timer will signals for synchronization
every T time steps. Whenever a synchronization is posted, the
owner counts how many new records have been received since the
last update, inputs it to the Perturb operator, and fetches y;. The
fetched data is then synchronized to the server via the [Typdate
protocol (Alg 1:8-11). The logic behind this algorithm is to provide
a synchronization strategy with a fixed time schedule but with
noisy record counts at each sync. The DP-Timer method strictly
follow the policy of updating once every T moments, but it does not
synchronize exactly as much data as it receives between every two
syncs. Instead, it may synchronize with additional dummy data, or
defer some data for future synchronization.

Algorithm 2 Perturbed Record Fetch

1: function Perturb(c, €, o)

2 ¢ c+lap(d)

3 if ¢ > 0 then

4 return read(o, ¢) (read records with noisy size)
5 else

6

return 0 (return nothing if ¢ < 0)

THEOREM 6. Given privacy budget e, and k > 4log 1 where k de-
notes the number of times the owner has synchronized so far, f € (0,1),
and a = % klog L. This satisfies Pr [LG(t) > a +c!,| < B, where
LG(t) is the logical gap at time t under DP-Timer method, and c},
counts how many records received since last update.

Theorem 6 provides an upper bound on the logical gap incurred
by DP-Timer, due to space concerns we defer the proof in the
complete full version. As a direct corollary of Theorem 6, the logical
gap is always bounded by O(2Vk/e). Knowing that, the logical gap
can also be used to denote the total records that are on-hold by
the owner, thus we can conclude that the local cache size of DP-
Timer is also bounded by 0(2Vk/€). However, if we consider an
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indefinitely growing database, then the local cache size (logical gap)
grows indefinitely. Thus to prevent the local cache (logical gap)
from getting too large, we employ a cache flush mechanism which
refreshes the local cache periodically. The cache flush mechanism
flushes a fixed size data with a fixed interval (usually far greater than
T). The flushed data will be synchronized to the server immediately.
If there is less data than the flush size, the mechanism empties
the cache, and synchronizes with additional dummy records. This
further guarantees every time when flush is triggered, it always
incurs a fixed update volume. Moreover, Theorem 6 also reveals that
it is possible to get a bounded local cache size. For example, if we set
the flush size s = C, and the flush interval f < T(eC)?/4log(1/p),
where C > 0,C € Z*. Then at any time ¢, with probability at least
1 — f, the cache size is bounded by O(C). Next, we discuss the
performance overhead with respect to the DP-Timer.

THEOREM 7. Given privacy budget €, flush interval f, flush size
s,and f € (0,1). Let a = % klog % and n = s|t/f]. Then for
any t > 4T log ([%), the total number of records outsourced under

DP-Timer, | DS/, satisfies Pr [|DS;| > |D¢| +a + 1] < p.

Theorem 7 provides an upper bound for the outsourced data
size at each time t. Moreover, it shows that the total amount of
dummy data incorporated is bounded by 7 + 0(2Vk/e). Due to the
existence of the cache flush mechanism, DP-Timer guarantees that
for a logical database with length L, all records will be synchro-
nized before time ¢ = f X L/s. Recall that a FIFO based local cache
preserves the order of incoming data, thus DP-Timer satisfies the
strong eventually consistency property (P3). In addition, as shown
by Theorem 6 and 7, both accuracy and performance metrics are
related to %, which shows that DP-Timer satisfies the P2 principle.

5.2.2  Above noisy threshold (DP-ANT). The Above noisy threshold
method, parameterized by 0 and €, performs an update when the
owner receives approximately 6 records. The detailed algorithm is
described in Algorithm 3.

Similar to DP-Timer, DP-ANT starts with an initial outsourcing
(Alg 3:1-2) and the owner then stores all newly arrived records in
the local cache o (Alg 3:6-9). After the initial outsourcing, DP-ANT
splits the privacy budget to two parts €1, and ez, where €; is used
to distort the threshold as well as the counts of records received
between two updates, and €3 is used to fetch data. The owner keeps
track of how many new records received since the last update at
every time step, distorts it with DP noise, and compares the noisy
count to a noisy threshold (Alg 3:10,11). The owner synchronizes if
the noisy count exceeds the noisy threshold. After each synchro-
nization, the user resets the noise threshold with fresh DP noise
(Alg 3:14) and repeats the aforementioned steps.

DP-ANT synchronizes based on how much data the owner re-
ceives. However, it does not simply set a fixed threshold for the
owner to synchronize whenever the amount of data received ex-
ceeds that threshold. Instead, it utilizes a strategy that allows the
owner to synchronize when the amount of received data is ap-
proximately equal to the threshold. Below, we analyze DP-ANT’s
accuracy and performance guarantees.

THEOREM 8. Given privacy budget € and let a = M.
Then for f € (0,1), it satisfies Pr [LG(t) >a +c§*] < p. where
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Algorithm 3 Above Noisy Threshold (ANT)

Input: growing database D = {Dy, U}, privacy budget e,
threshold 6, and the local cache o.
1: yo < Perturb(|Dyl, €, 0)
2: Signal the owner to run [Tsetup (v0)-
3: €1 ¢« %6,62 — %6
4 0—0+ Lap(2/e1),c « 0,t* < 0
5. fort «— 1,2,... do
6: vy < Lap(4/e1)
7 if u; # 0 then
8 store uy in the local cache, write(o, uy)
9 c Zz{<—t*+l xi | (x; < 0,ifu; « 0, else x; < 1)
if c+oup > 6 then
vt < Perturb(c, €2, 0)
Signal the owner to run [Typdate (v2, DSt)

13: é<—9+Lap(2/el),c<—0, et

LG(t) is the logical gap at time t under DP-ANT method, and c},
counts how many records received since last update.

The above theorem provides an upper bound for DP-ANT’s
logical gap as well as its local cache size, which is ¢}, +O(16log t/€).
Similar to DP-Timer, we employ a cache flush mechanism to avoid
the cache size grows too large. We use the following theorem to
describe DP-ANT’s performance:

THEOREM 9. Given privacy budget €
s,and f € (0,1). Leta = M, andn = s|t/f]. Then for
any time t, it satisfies Pr [|DS¢| 2 |D¢| + a + n] < B, where |DS;|
denotes the total number of records outsourced until time t.

flush interval f, flush size

This theorem shows that the total overhead of DP-ANT at each
time ¢ is bounded by s|t/f] + O(16logt/e). Note that both the
upper bound for the logical gap and the performance overhead
is related to 1/e, which indicates a trade-off between privacy and
the accuracy or performance. With different values of ¢, DP-ANT
achieves different level of accuracy and performance (P2 principle).
And the FIFO cache as well as the flush mechanism ensures the
consistent eventually principle (P3). We provide the related proofs
of Theorem 8 and 9 in the full version. Later in Section 8 we further
evaluate how different parameters would affect the accuracy and
performance of DP strategies, where readers can better understand
how to set these parameters according to the desired goals.

6 CONNECTING WITH EXISTING EDBS

Interoperability of DP-Sync with an existing encrypted database
is an important requirement (P4 design principle). In this section,
we discuss how to connect existing encrypted databases with DP-
Sync. Since our privacy model constrains the update leakage of
the encrypted database to be a function only related to the update
pattern, in this section we mainly focus on query leakage asso-
ciated with the encrypted database to discuss the compatibility
of our framework. Inspired by the leakage levels defined in [20],
we categorize different encrypted database schemes based on our
own leakage classification. Then we discuss which schemes under
those categories can be directly connected with DP-Sync and which
databases need additional improvements to be compatible with our
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Leakage groups ‘ Encrypted database scheme
VLH/AVLH [51], ObliDB [34], SEAL [31]
L-0 | Opaque [85], CSAGR19 [27]
dp-MM [67], Hermetic [83], KKNO17 [54]
L-DP | Crypte [25], AHKM19 [1], Shrinkwrap [9]
L-1 | PPQED, [72], StealthDB [79], SisoSPIR [47]
CryptDB [70], Cipherbase [5], Arx [68]
L-2 | HardIDX [35], EnclaveDB [71]

Table 3: Summary of leakage groups and corresponding en-
crypted database schemes

framework. In Table 3, we summarize some notable examples of en-
crypted databases with their respective leakage groups. We focus on
two types of leakage patterns: access pattern [38] and query response
volume [53]. The access pattern is the transcript of entire memory
access sequence for processing a given query, and query response
volume refers to the total number encrypted records that matches
with a given query. The four leakage categories are as follows:

L-2: Reveal access pattern. Encrypted databases that reveal the
exact sequence of memory accesses and response volumes when
processing queries fall into this category. These include many
practical systems based only on searchable symmetric encryption,
trusted execution environments (TEE), or on deterministic and
order-preserving encryption. Recent leakage-abuse attacks [11, 20,
63] have pointed out that attackers can exploit the access pattern
to reconstruct the entire encrypted database. Databases in this cat-
egory are not compatible with DP-Sync. If we add our techniques
to these systems, then due to the leakage from these databases, our

update patterns will be leaked as well.
L-1: Reveal response volume. To hide access patterns, some

schemes perform computations obliviously, e.g., using an obliv-
ious RAM. However, many databases in this category still leak
the query response volume (since obliviousness does not protect
the size of the access pattern). Example databases in this category
include HE-based PPQED, [72] and ORAM-based SisoSPIR [47].
Moreover, recent research [39, 53, 58, 63, 69] has shown that data-
base reconstruction attacks are possible even if the system only
leaks response volume. Therefore, there is still a risk that such sys-
tems will leak information about the amount of dummy data. Thus,
to be compatible with DP-Sync, necessary measures must be taken
to hide the query volume information, such as naive padding [27],
pseudorandom transformation [51], etc.

L-DP: Reveal differentially-private response volume. Some
secure outsourced database schemes guarantee the leakage of only
differentially-private volume information. These schemes either
ensure that both access patterns and query volumes are protected us-
ing differential privacy, or they completely hide the access patterns
and distort the query response volume with differential privacy.
Databases with L-DP leakage are directly compatible with DP-Sync,
as such schemes prevents attackers from inferring information
about dummy data through the query protocol.

L-0: Response volume hiding. Some encrypted databases sup-
port oblivious query processing and only leak computationally-
secure response volume information. These schemes are usually
referred to as access pattern and volume hiding schemes. Encrypted
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Mtimer(D’ €, f’ S, T)
Msetup:  output (0, | Do + Lap(é))
Mupdate: Vi € N*,run Myt (U[i - T, (i+1)T],€,T)
M nit: output (i -T, Lap(é) + ZI(;:)TZ 1| ug # 0)
Miush: Vj € N* output (j - f, s)
MANT(D> E,f,S, 9)
Msetup:  output (0, Dol + Lap(é))
Mupdate: €1 =€ = %: repeatedly run Msparse(el,ez,G)'
Msparse:
0=0+ Lap(?zl), t* « last time Msparse’s output # L.
Vi € N*, output {(t* +i,¢; + Lap(eiz)) ifoj+c¢; >0,
L otherwise.
where ¢; = Z,t::tﬂ 1|ug # 0,and v; = Lap(eil).
abort the first time when output #.1.
Maush:  Vj € NT, output (J 'fs s)

Table 4: Mechanisms to simulate the update pattern

databases in this category can be directly used with our framework
as well, as there is no efficient way for attackers to identify dummy
data information via their query protocols.

In addition, most methods that fall in L-DP and L-0 category
support dummy data by default [34, 54, 67, 83], as they use dummy
data to populate the query response volume or hide intermediate
sizes. In this case, our framework can directly inherit the dummy
data types defined in the corresponding database scheme with no
additional changes. For those schemes that do not support dummy
data by default (e.g. [25]), we can either let the scheme return both
dummy and real data, and let the analyst to filter true records after
decryption, or we can extend all records with a isDummy attribute
and then apply query re-writing to eliminate the effect of dummy
data.We continue to provide query re-writing examples in our full
version. To concretely demonstrate the compatibility of DP-Sync
with existing encrypted databases, we choose database schemes
ObliDB[34] and Crypte[25] in L-0 and L-DP groups respectively
and evaluate the resulting implementation in Section 8.

7 SECURITY PROOFS

In this section, we provide a sketch of the security proof for our
proposed DP-Sync implemented with DP strategies.

THEOREM 10. The update pattern of an DP-Sync system imple-
mented with the DP-Timer strategy satisfies Definition 5.

ProoF. (Sketch) To capture the information leakage of the up-
date pattern, we rewrite the DP-Timer algorithm to output the total
number of synchronized records at each update, instead of signaling
the update protocol. The rewritten mechanism Mjmer (see Table 4)
simulates the update pattern when applying the DP-Timer strategy.
We prove this theorem by illustrating that the composed privacy
guarantee of Myjmer satisfies e-DP.

The mechanism Mjmer is @ composition of several separated
mechanisms. We now discuss the privacy guarantees of each. Msetup
is a Laplace mechanism, thus its privacy guarantee satisfies e-DP.
Meiysh reveals a fixed value with fixed time span in a non data-
dependent manner, thus it’s output distribution is fully computa-
tional indistinguishable (satisfies 0-DP). Mpdate is @ mechanism
that repeatedly calls Mypnit. Muynit acts on a fixed time span (T). It
counts the total number of received records within the current time
period, and outputs a noisy count with Lap( é) at the end of the
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current time period. Thus Myt satisfies e-DP guarantee. Since
Mupdate Tepeatedly calls Myt and applies it over disjoint data,
the privacy guarantee of Myt follows parallel composition [49],
thus satisfying e-DP. The composition of Msetup and Mypdate also
follows parallel composition and the composition of Mgj,sp, follows
simple composition [49]. Thus the entire algorithm Myje, satisfies
(max(e, €) + 0) -DP, which is e-DP.

O

THEOREM 11. The update pattern of an DP-Sync system imple-
mented with the ANT strategy satisfies Definition 5.

PRrOOF. (Sketch) Similar to the proof of Theorem 7, we first pro-
vide ManT (Table 4) that simulates the update pattern of ANT
strategy. We prove this theorem by illustrating the composed pri-
vacy guarantee of ManT satisfies e-DP.

The mechanism MaNT is a composition of several separated
mechanisms. Msetyp and Myyysh satisfy e-DP and 0-DP, respec-
tively. We abstract the Mypdate as a composite mechanism that
repeatedly spawns Msparse on disjoint data. Hence, in what fol-
lows we show that Miparse, and thus also Mypdate (repeatedly call
Msparse), satisfies e-DP guarantee.

Assume a modified version of Msparse, say M”sparse, where it
outputs T once the condition v; + ¢; > 0 is satisfied, and out-
puts L for all other cases. Then the output of M’sparse can be
written as O = {01,02,...,0m}, where V1 < i < m, 0; = 1,
and o, = T. Suppose that U and U’ are the logical updates of
two neighboring growing databases and we know that for all i,
Pr[é <x] <Pr [5[’ <x+ 1] is satisfied, where ¢; and ¢/ denotes
the it" noisy count when applying M’ sparse over U and U’ respec-
tively, such that:

Pr [ M,sparse(U) = O]

/_:Pr[é=x]( [T prici<xl

1<i<m

< [mee/ZPr [é=x+l]

S[:ee/zPr[é=x+l]( [ Pr[5;<x+1])

1<i<m
xe€/?pr [om +cpy > x+1] dx

:/_.:eePr[é:x+l]( l_[ Pr (& <x+1]

1<i<m

= eepr[M,sparse(U,) =0]

)Pr [6m = x] dx

)Pr[E;an+l]dx

1

Thus M’sparse satisfies e-DP, and Msparse is essentially a com-
position of a M”sparse satisfying %e—DP together with a Laplace
mechanism with privacy parameter equal to %e. Hence by applying
simple composition [49], we see that Msparse satisfies ( %e+%e) -DP.
Knowing that Mypdate Tuns Msparse repeatedly on disjoint data,
with parallel composition [49], the Mypdate then satisfies e-DP. Fi-
nally, combined with Msetup and Mgjysh, we conclude that ManT
satisfies e-DP, thus the theorem holds. m]

( l_[ Pr[5;<x+l])Pr[vm2x—cm]dx
1<i<m
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8 EXPERIMENTAL ANALYSIS

In this section, we describe our evaluation of DP-Sync along two
dimensions: accuracy and performance. Specifically, we address the
following questions in our experimental studies:

e Question-1: How do DP strategies compare to naive meth-
ods in terms of performance and accuracy under a fixed level
of privacy? Do DP strategies guarantee bounded accuracy?
Question-2: What is the impact on accuracy and perfor-
mance when changing the privacy level of the DP strategies?
Can we adjust privacy to obtain different levels of accuracy
or performance guarantees?

Question-3: With a fixed level of privacy, how does accu-
racy and performance change if we change the non-privacy
parameters T or 6 for DP-Timer and DP-ANT, respectively?

Implementation and configuration. To answer the above ques-
tions, we implement multiple instances of DP-Sync, execute them
with real-world datasets as inputs, and run queries on the deployed
system to evaluate different metrics. We implement the DP-Sync us-
ing two encrypted database schemes, ObliDB [34], and Crypte [25],
from L-0 group and L-DP group, respectively. All experiments are
performed on IBM Bare metal servers with 3.8GHz Intel Xeon
E-2174G CPU, 32Gb RAM and 64 bit Ubuntu 18.04.1. The ObliDB
system is compiled with Intel SGX SDK version 2.9.1. We implement
the client using Python 3.7, which takes as input a timestamped
dataset, but consumes only one record per round. The client sim-
ulates how a real-world client device would receive new records
over time. In our experiment, we assume the time span between
two consecutive time stamps is 1 minute.

Data. We evaluate the two systems using Fune 2020 New York City
Yellow Cab taxi trip record and June 2020 New York City Green Boro
taxi trip record. Both data sets can be obtained from the TLC Trip
Record Project [78]. We multiplex the pickup time information of
each data point as an indication of when the data owner received
this record. We process the raw data with the following steps: (1)
Delete invalid data points with incomplete or missing values; (2)
Eliminate duplicated records that occur in the same minute, keeping
only one.! The processed data contains 18,429 and 21,300 records
for Yellow Cab and Green Taxi, respectively. (3) Since the monthly
data for June 2020 should have 43,200 time units in total, for those
time units without associated records, we input a null type record
to simulate absence of received data.

Testing query. We select three queries in our evaluation: a linear
range query, an aggregation query and a join query.

Q1-Linear range query that counts the total number of records in
Yellow Cab data with pickupID within 50-100: “SELECT COUNT (*)
FROM YellowCab WHERE pickupID BETWEEN 5@ AND 100”

Q2-Aggregation query for Yellow Cab data that counts the num-
ber of pickups grouped by location:“SELECT pickupID, COUNT(*)
AS PickupCnt FROM YellowCab GROUP BY pickupID”

Q3-Join query that counts how many times both providers have
assigned trips: “SELECT COUNT(x) FROM YellowCab INNER JOIN
GreenTaxi ON YellowCab.pickTime = GreenTaxi.pickTime”.

Default setting. Unless specified otherwise, we assume the fol-
lowing defaults. For both DP methods, we set the default privacy

1 At most one record occurs at each timestamp.
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Observation 1. The query errors for both DP strategies are Figure 3: Total and dummy data size.
bounded, and such errors are much smaller than that of OTO. Observation 2. The DP methods introduce a small perfor-
Figure 2 shows the L1 error and QET for each testing query, the mance overhead compared to SUR, and achieve performance
aggregated statistics, such as the mean L1 error and mean QET gains up to 5.72x compared to the SET method. We show the
for all testing queries is reported in Table 5. First we can observe total and dummy data size under each method in Figure 3. Accord-
from Figure 2a and 2c that the L1 query error of Q1 for both DP ing to Figure 3a and 3c, we find that at all time steps, the outsourced
strategies fluctuate in the range 0-15. There is no accumulation data size under both DP approaches are quite similar to that of SUR
of query errors as time goes by. Similarly, Figure 2b, 2d, and 2e approach, with at most 6% additional overhead. However, the SET
show that the errors for both Q2 and Q3 queries are limited to 0-50 method outsources at least twice as much data as the DP methods
under the DP strategies. Note that the query errors in the Crypte under all cases. In total (Table 5), SET outsources at least 2.24x and
group are caused by both the unsynchronized records at each time 2.10x more data than DP-Timer and DP-ANT, respectively. OTO
as well as the DP noise injected when releasing the query answer, always have fixed storage size (0.056 and 0.016 Mb for Crypte and
but the query errors under ObliDB group are caused entirely by ObliDB group) as it only outsources once. Note that the amount of
unsynchronized records at each time step. This is why, under the outsourced data under the SUR schema at any time is identical to
Crypte group, the SET and SUR methods have non-zero L1 query the amount of data in the logical database. Thus, any oversize of out-
errors even if these two methods guarantee no unsynchronized data sourcing data in contrast to SUR is due to the inclusion of dummy
at any time. For the OTO approach, since the user is completely data. According to Figure 3b, 3d, and Table 5, SET introduces at
offline after the initial phase, the outsourced database under OTO least 11.5x, and can achieve up to 35.6x, more dummy records than
misses all records after ¢ = 0, resulting in unbounded query errors. DP approaches. Adding dummy data not only inflates the storage,
According to Table 5, the average L1 errors under OTO method are but also results in degraded query response performance. As DP
1929.47, 9214.47, and 3702.6, respectively for Q1, Q2, and Q3, which approaches much fewer dummy records, they exhibit little degrada-
are at least 520x of that of the DP strategies. tion in query performance compared to the SUR method. The SET
method, however, uploads many dummy records, thus its query
2Crypte does not support join operators, thus we only test Q1 and Q2 for Crypte performance drops sharply. According to Figure 2f, 2h, 2g, 2i, 2j, at
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almost all time steps, the server takes twice as much time to run Q1
and Q2 under the SET method than under DP strategies and take at
least 4x more time to run Q3. Based on Table 5, the average QET for
Q1 and Q2 under SET are at least 2.17x and 2.3x of that under the
DP methods. It’s important to point out that both Q1 and Q2 have
complexity in O(N), where N is the number of outsourced data.
Thus for queries with complexity of O(N?), such as Q3, the perfor-
mance gap between the DP strategies and the SET is magnified, in
this case boosted to 5.72x. Furthermore, the number of records that
SET outsources at any time ¢ is fixed, |Dy| + ¢. Thus, if the growing
database D = {Dy, U} is sparse (most of the logical updates u; € U
are (), the performance gap in terms of QET between SET and DP
strategies will be further amplified. The the ratio of (|Dg| +1t)/|D¢|
is relatively large if D is sparse.

" 4
10°1A 4 DP-Timer: Q2 10°1A
= DP-ANT: Q2 .
2 10° 4 0TO:Q2 g10°
o A SET: Q2 v
S 102 A SUR:Q2 D02
el 2
3100 £
T 10 T 10 A
c c 4
g 3
=100 =100
0 A A 0 A A

0 2 4 6 0 50 100 150 200
Mean query execution time (s) Mean query execution time (s)

(a) ObliDB group
Figure 4: QET v.s. L1 error

(b) Crypte group

Observation 3. DP strategies are optimized for the dual ob-
jectives of accuracy and performance. To better understand the
advantage of DP strategies, we compare the default query (Q2) re-
sults with respect to DP strategies and naive methods in Figure 4,
where the x-axis is the performance metric (mean query QET for
all queries posted over time), and the y-axis is the accuracy metric
(mean query L1 error). Though it seems that SUR is ideal (least
query error and no performance overhead), it has no privacy guar-
antee. Both SET and OTO provide complete privacy. We observe
that, the data points of SET fall in the lower right corner of each
figure, indicating that the SET method completely sacrifices per-
formance in exchange for a better accuracy guarantee. Thus SET
is a private synchronization method that is optimized solely for
accuracy. Another extreme case is the OTO method, where the
corresponding data points fall in the upper left corner. This means
that OTO completely sacrifices accuracy for performance, thus it
is optimized for performance only. DP strategies provide privacy
guarantees bounded by €, and we observe that the corresponding
data points fall in the lower left corner of the figure (close to SUR),
indicating that the DP strategies provide considerable accuracy
guarantees (or bounded error) at a small sacrifice in performance.
This is further evidence that DP strategies are optimized for the
dual objectives of accuracy and performance.

8.2 Trade-off with Changing Privacy Level

We address Question-2 by evaluating the DP policies with different
€ ranging from 0.001 to 10. For other parameters associated with
DP strategies, we apply the default setting and evaluate them with
the default testing query Q2 on the default system (ObliDB based
implementation). For each €, we report the mean query error and
QET. We summarize our observations as follows.
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Comparison DP DP
Categories SUR SET oTo Timer | ANT
Crypte
Mean L1 Err 0.75 0.71 1929.47 3.04 0.99
Q1 | Max L1 Err 2 3 8079 11 5
Mean QET 20.94 41.70 0.33 22.51 23.54
Mean L1 Err 3.36 3.39 9464.14 7.45 4.56
Q2 | Max L1 Err 13 15 18446 27 21
Mean QET 76.34 208.47 0.72 88.75 98.58
Mean logical gap 0 0 9214.5 10.91 4.8
Total data (Mb) 943.5 2211.79 0.052 979.10 | 1027.31
Dummy data (Mb) | N/A 1268.29 N/A 35.6 83.8
ObliDB
Mean L1 Err 0 0 1929.47 2.95 0.91
Q1 | Max L1 Err 0 0 8801 10 5
Mean QET 5.39 14.18 0.041 5.69 6.48
Mean L1 Err 0 0 9214.51 9.25 2.25
Q2 | Max L1 Err 0 0 18429 44 8
Mean QET 2.32 5.76 0.071 2.46 2.80
Mean L1 Err 0 0 3702.6 4.93 1.43
Q3 | Max L1 Err 0 0 7407 15 10
Mean QET 2.77 17.86 0.095 3.12 3.86
Mean Logical gap 0 0 9214.5 10.73 2.96
Total data (Mb) 301.90 707.79 0.016 316.68 337.09
Dummy data (Mb) | N/A 405.89 N/A 14.78 35.19
Table 5: Aggregated statistics for comparison experiment
104 T T = £
5 100 +-- DP-Timer — --+-- SET =6
5 102 DP-ANT == SUR é il
— o +-- 0TO E
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< 100 s
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(a) Avg. L1 error v.s. Privacy
Figure 5: Trade-off with changing privacy.

Observation 4. DP-Timer and DP-ANT exhibit different trends
in accuracy when e changes. Figure 5a illustrates the evaluation
results for privacy versus accuracy. In general, we observe that, as €
increases from 0.01 to 1, the mean query error of DP-ANT increases
while the error of DP-Timer decreases. Both errors change slightly
from € = 1to € = 10. Recall that DP-Timer’s logic gap consists of the
number of records received since the last update,cg .» and the data
delayed by the previous synchronization operation (bounded by
0(2Vk/e)). Since the update frequency of the DP-Timer is fixed, cﬁ*
is not affected when € changes. However, when the € is smaller, the
number of delayed records increases, which further leads to higher
query errors. For the DP-ANT though, when the € is very small, the
delayed records increases as well (bouned by O(161logt/€)). How-
ever, smaller € (large noise) will result in more frequent updates for
the DP-ANT. This is because the large noise will cause the DP-ANT
to trigger the upload condition early before it receives enough data.
As a result, the number of records received since last update, cf o
will be reduced, which essentially produces smaller query errors.
In summary, for DP strategies, we observe that there is a trade-off
between privacy and accuracy guarantee.

(b) Avg. execution time v.s. Privacy

Observation 5. Both DP strategies show decreasing perfor-
mance overhead when ¢ increases. Both DP methods show sim-
ilar tendencies in terms of the performance metrics (Figure 5b).
When € increases, the QET decreases. This can be explained by
Theorem 7 and 9. That is, with a relatively large €, the dummy
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records injected at each update will be reduced substantially. As
a result, less overhead will be introduced and the query response
performance is then increased. Similarly, for DP strategies, there is
a trade-off between privacy and performance.

8.3 Trade-off with Fixed Privacy Level

We address Question-3 by evaluating the DP policies with default
€ but changing T and 6 for DP-Timer and DP-ANT, respectively.

10* 10% 4
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S 103 S 1034
£ -+- 0TO -3 SUR NE: -+- 0TO -+ SUR
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(c) Avg. execution time v.s. T (d) Avg. execution time v.s.

Figure 6: Trade-off with non-privacy parameters

Observation 6. Even with fixed privacy, the DP strategies can
still be tuned to obtain different performance or accuracy by
adjusting non-privacy parameters. From Figure 6a and 6b, we
observe that the mean query errors for both methods increase when
T or 0 increases. This is because once T or 6 is increased, the owner
waits longer before making an update, which increases the logical
gap. Also Figure 6¢ and 6d shows that the performance metric
decreases as T or 0 increases. This is because as T or @ increases,
the owner updates less frequently, which reduces the number of
dummy records that could be injected into the outsourced database.

9 RELATED WORK

Encrypted databases and their leakage. Encrypted databases
is a broadly studied research topic. Existing solutions utilize tech-
niques such as bucketization [42, 45, 46], predicate encryption [62,
74], oblivious RAM [8, 26, 31, 47, 65], structural encryption and
symmetric searchable encryption (SSE) [4, 21, 29, 37, 50-52, 67, 76],
functional encryption [15, 73], property-preserving encryption [2,
10, 12, 66], order-preserving encryption [2, 13], trusted execution en-
vironments [34, 71, 79] and homomorphic encryption [16, 25, 36, 72].
Recent work has revealed that these methods may be subject to
information leakage through query patterns [11, 20], identifier pat-
terns [11], access patterns [20, 30, 53] and query response vol-
ume [11, 39-41, 53]. In contrast, our work analyzes information
leakage for encrypted databases through update patterns. Recent
work on backward private SSE [4, 17, 37, 77], which proposes search
(query) protocols that guarantee limits on information revealed
through data update history, shares some similarity with our work.
However, this approach is distinct from our work as they hide the
update history from the query protocol. Moreover, backward pri-
vate SSE permits insertion pattern leakage, revealing how many
and when records have been inserted. In contrast, our work hides
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insertion pattern leakage through DP guarantees. Similar to our
work, Obladi [26] supports updates on top of outsourced encrypted
databases. However, it focuses on ACID properties for OLTP work-
loads and provides no accuracy guarantees for the analytics queries.

Differentially-private leakage. The concept of DP leakage for
encrypted databases was first introduced by Kellaris et al. [54]. In-
teresting work has been done on DP access patterns [9, 23, 64, 80],
DP query volume [67] and DP query answering on encrypted
data [1, 25, 60]. However, most of this work focuses on the static
database setting. Agarwal et al. [1] consider the problem of answer-
ing differentially-private queries over encrypted databases with
updates. However, their work focuses mainly on safeguarding the
query results from revealing sensitive information, rather than
protecting the update leakage. Lécuyer et al. [60] investigate the
method to privately update an ML model with growing training
data. Their work ensures the adversary can not obtain useful in-
formation against the newly added training data by continually
observing the model outputs. However, they do not consider how
to prevent update pattern leakage. Kellaris et al. [54] mention dis-
torting update record size by adding dummy records, but their
approach always overcounts the number of records in each update,
which incorporates large number of dummy records. Moreover,
their main contribution is to protect the access pattern of encrypted
databases rather than hiding the update patterns. In addition, none
of these approaches formally defined the update pattern as well
as it’s corresponding privacy, and none of them have considered
designing private synchronization strategies.

Differential privacy under continual observation. The prob-
lem of differential privacy under continual observation was first
introduced by Dwork et al. in [33], and has been studied in many
recent works [14, 24, 28, 32, 84]. These approaches focus on design-
ing DP streaming algorithms and are not specific to outsourced
databases. In particular, although [28] analyzes privacy for growing
databases, unlike our work, their model assumes that the server
has full access to all outsourced data.

10 CONCLUSION

In this paper, we have introduced a new type of leakage associated
with modern encrypted databases called update pattern leakage.
We formalize the definition and security model of SOGDB with DP
update patterns. We also proposed the framework DP-Sync, which
extends existing encrypted database schemes to SOGDB with DP
update patterns. DP-Sync guarantees that the entire data update
history over the outsourced data structure is protected by differ-
ential privacy. This is achieved by imposing differentially-private
strategies that dictate the owner’s synchronization of local data.

Note that DP-Sync currently only supports single table schema.
Supporting multi-relational table databases require additional secu-
rity models, data truncation techniques [57] and secure protocols
to compute the sensitivity [48] over multiple tables. We leave the
design of these techniques for future work.
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