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ABSTRACT
In this paper, we consider secure outsourced growing databases
(SOGDB) that support view-based query answering. These databases
allow untrusted servers to privately maintain a materialized view.
This allows servers to use only the materialized view for query pro-
cessing instead of accessing the original data from which the view
was derived. To tackle this, we devise a novel view-based SOGDB
framework, IncShrink. The key features of this solution are: (i) Inc-
Shrink maintains the view using incremental MPC operators which
eliminates the need for a trusted third party upfront, and (ii) to
ensure high performance, IncShrink guarantees that the leakage
satis!es DP in the presence of updates. To the best of our knowl-
edge, there are no existing systems that have these properties. We
demonstrate IncShrink’s practical feasibility in terms of e"ciency
and accuracy with extensive experiments on real-world datasets
and the TPC-ds benchmark. The evaluation results show that Inc-
Shrink provides a 3-way trade-o# in terms of privacy, accuracy and
e"ciency, and o#ers at least a 7,800× performance advantage over
standard SOGDB that do not support view-based query paradigm.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitiza-
tion; Management and querying of encrypted data.
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1 INTRODUCTION
There is a rapid trend of organizations moving towards outsourc-
ing their data to cloud providers to take advantages of its cost-
e#ectiveness, high availability, and ease of maintenance. Secure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526151

outsourced databases are designed to help organizations outsource
their data to untrusted cloud servers while providing secure query
functionalities without sacri!cing data con!dentiality and privacy.
The main idea is to have the data owners upload the encrypted or
secret-shared data to the outsourcing servers. Moreover, the servers
are empowered with secure protocols which allow them to process
queries over such securely provisioned data. A series of works such
as CryptDB [69], Cipherbase [4], EnclaveDB [70], and HardIDX [33]
took the !rst step in the exploration of this scope by leveraging
strong cryptographic primitives or secure hardware to accomplish
the aforementioned design goals. Unfortunately, these solutions fail
to provide strong security guarantees, as recent works on leakage-
abuse attacks [10, 19, 49, 88] have found that they are vulnerable
to a variety of reconstruction attacks that exploit side-channel
leakages. For instance, an adversary can fully reconstruct the data
distribution after observing the query processing transcripts.

Although some recent e#orts, such as [7, 11, 28, 32, 46, 65, 67,
68, 87, 89], have shown potential countermeasures against leakage-
abuse attacks, the majority of these works focus primarily on static
databases. A more practical system often requires the support of
updates to the outsourced data [1, 35, 78, 83], which opens up new
challenges. Wang et al. [83] formulate a new type of leakage called
update pattern that a#ects many existing outsourced database de-
signs when the underlying data is dynamically growing. Tomitigate
such weakness, their solution dictates the data owners’ update be-
havior to private record synchronization strategies, with which it
perturbs the owners’ logical update pattern. However, their solution
only considers a naïve query answering mode such that each query
is processed independently and evaluated directly over the entire
outsourced data. This inevitably leads to a substantial amount of
redundant computation by the servers. For example, consider the
following use case where a courier company partners with a local
retail store to help deliver products. The retail store has its sales data,
and the courier company has its delivery records, both of which
are considered to be the private property of each. Now assume the
retail store owner wants to know how many of her products are
delivered on time (i.e., within 48 hours of the courier accepting the
package). With secure outsourced databases, the store owner and
the courier company have the option to securely outsource their
data and its corresponding computations to cloud servers. However,
in a naïve query processing mode, the servers have to recompute
the entire join relation between the outsourced data whenever a
query is posted, which raises performance concerns.

In this work, we take the next step towards designing a secure
outsourced growing database (SOGDB) architecture with a more
e"cient query answering mechanism. Our proposed framework
employs a novel secure query processing method in which the
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servers maintain a growing size materialized view corresponding
to the owner’s outsourced data. The upcoming queries will be
properly answered using only the materialized view object. This
brings in inherent advantages of view-based query answering [77]
paradigm, such as allowing the servers to cache important interme-
diate outputs, thus preventing duplicated computation. For instance,
with our view-based SOGDB architecture, one can address the per-
formance issues in the aforementioned use case by requiring the
servers tomaintain amaterialized join table between the outsourced
sales and delivery data. Moreover, whenever the underlying data
changes, the materialized join table is updated accordingly. To this
end, the servers only need to perform secure !ltering over the ma-
terialized join table for processing queries, which avoids duplicated
computation of join relations.

There is no doubt one can bene!t in many aspects from the view-
based query answering paradigm. However, designing a practical
view-based SOGDB is fraught with challenges. First, the servers
that maintain the materialized view is considered to be potentially
untrusted. Hence, we must explore the possibility of updating such
materialized view without a trusted curator. A typical way is to
leverage secure multi-party computation (MPC). However, naïvely
applyingMPC for updating view instances over growing data would
expose extra information leakage (i.e., update pattern [83]). For ex-
ample, consider the use case wementioned before where the servers
maintain a join table over the sales and the delivery data. Even with
MPC, one can still obtain the true cardinality of newly inserted en-
tries to the join table by looking at the output size from MPC. This
would allow the adversary to learn the exact number of packages re-
quested for delivery by the local retail store at any given time. Naïve
methods, such as always padding newly generated view tuples to
the maximum possible size or choosing never to update the materi-
alized view, could prevent the aforementioned leakage. However,
such an approach either introduces a large performance burden
or does not provide us with the functionality of database updates.
To combat this, we propose a novel view update methodology that
leverages incremental MPC and di#erential privacy (DP), which
hides the corresponding update leakage using DP while balancing
between the e"ciency and accuracy.

This design pattern helps us to address the extra leakage, but
also raises new challenges. The transformation from outsourced
data to a view instance may have unbounded stability, i.e., an input
record may contribute to the generation of multiple rows in the
transformed output, which could cause unbounded privacy loss. To
address this, we enforce that any individual data outsourced by the
owner only contributes to the generation of a !xed number of view
tuples. As the transformation after applying this constraint has
bounded stability, thus we obtain a !xed privacy loss with respect
to each insertion (logical update) to the owner’s logical data.

Putting all these building blocks together, a novel view-based
SOGDB framework, IncShrink, falls into place. We summarize our
contributions as follows:

• IncShrink is a !rst of its kind, secure outsourced growing
database framework that supports view-based query process-
ing paradigm. Comparingwith the standard SOGDB [83] that
employs naïve query answering setting, IncShrink improves
query e"ciency, striking a balance between the guarantees
of privacy, e"ciency and accuracy, at the same time.

• IncShrink integrates incremental MPC and DP to construct
the view update functionality which (i) allows untrusted
entities to securely build and maintain the materialized view
instance (ii) helps to reduce the performance overhead of
viewmaintenance, and (iii) provides a rigorous DP guarantee
on the leakage revealed to the untrusted servers.

• IncShrink imposes constraints on the record contribution to
view tuples which ensures the entire transformation from
outsourced data to the view object over time has bounded
stability. This further implies a bounded privacy loss with
respect to each individual logical update.

• We evaluate IncShrink on use cases inspired by the Chicago
Police Data and the TPC-ds benchmark. The evaluation re-
sults show at least 7800× and up to 1.5e+5× query e"ciency
improvement over standard SOGDB. Moreover, our evalu-
ation shows that IncShrink provides a 3-way trade-o# be-
tween privacy, e"ciency, and utility while allowing users to
adjust the con!guration to obtain their desired guarantees.

2 OVERVIEW
We design IncShrink to meet three main goals:

• View-based query answering. IncShrink enables view-
based query answering for a class of speci!ed queries over
secure outsourced growing data.

• Privacy against untrusted server. Our framework allows
untrusted servers to continuously update the materialized
view while ensuring that the privacy of the owners’ data is
preserved against outsourcing servers.

• Bounded privacy loss. The framework guarantees an un-
limited number of updates under a !xed privacy loss.

In this section, we !rst outline the key ideas that allow IncShrink
to support the our research goals (Section 2.1). Then brie$y review
the framework components in Section 2.2. We provide a running
example in Section 2.3 to illustrate the overall framework work$ow.

2.1 Key Ideas
KI-1. View-based query processing over secure outsourced
growing data. IncShrink employs materialized view for answering
pre-speci!ed queries over secure outsourced growing data. The
framework allows untrusted outsourcing servers to securely build
and maintain a growing-size materialized view corresponding to
the selected view de!nition. A typical materialized view can be
either transformed solely based on the data provisioned by the
owners, i.e., a join table over the outsourced data, or in combination
with public information, i.e., a join table between the outsourced
data and public relations. Queries posed to the servers are rewritten
as queries over the de!ned view and answered using only the view
object. Due to the existence of materialization, the outsourcing
servers are exempted from performing redundant computations.
KI-2. Incremental MPCwith DP update leakage. A key design
goal of IncShrink is to allow the untrusted servers to privately up-
date the view instance while also ensuring the privacy of owners’
data. As mentioned before, compiling the view update functionality
into the MPC protocol is not su"cient to ensure data privacy, as
it still leaks the true cardinality of newly inserted view entries at
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each time, which is directly tied with the owners’ record update pat-
terns [83]. Although naïve approaches such as exhaustive padding
(EP) of MPC outputs or maintaining a one-time materialized view
(OTM) could alleviate the aforementioned privacy risk. They are
known to either incorporate a large amount of dummy data or
provide poor query accuracy due to the lack of updates to the ma-
terialized view. This motivates our second key idea to design an
incremental MPC protocol for view updates while balancing the
privacy, accuracy, and e"ciency guarantees.

In our design, we adopt an innovative "Transform-and-Shrink"
paradigm, where the protocol is composed of two sub-protocols,
Transform and Shrink, that coordinate with each other. Transform
generates corresponding view entries based on newly outsourced
data, and places them to an exhaustively padded secure cache to
avoid information leakage. Shrink, runs independently, periodically
synchronizes the cached data to the materialized view. To prevent
the inclusion of a large amount of dummy data, Shrink shrinks
the cached data to a DP-sized secure array such that a subset of
the dummy data is removed whereas the true cardinality is still
preserved. As a result, the resulting protocol ensures any entity’s
knowledge with respect to the view instance is bounded by DP.
KI-3. Fixed privacy loss through constraints on record con-
tributions.When IncShrink releases noisy cardinalities, it ensures
!-DP with respect to the view instance. However, this does not
imply !-DP to the logical data where the view is derived. This
is because an individual data point in the logical database may
contribute to generating multiple view entries. As a result, the
framework either incurs an unbounded privacy loss or has to stop
updating the materialized view after su"ciently many synchro-
nizations. This leads us to our third key idea, where we bound the
privacy loss by imposing constraints on the contributions made by
each individual record to the generation of the view object. Each
data point in the logical database is allocated with a contribution
budget, which is consumed whenever the data is used to generate a
new view entry. Once the contribution budget for a certain record
is exhausted, IncShrink retires this data and will no longer use it to
generate view entries. With such techniques, IncShrink is able to
constantly update the materialized view with a bounded privacy
loss. On the other hand, despite such constraints, IncShrink is still
able to support a rich class of queries with small errors (Section 7).

2.2 Framework Components
Underlying database. IncShrink does not create a new secure
outsourced database but rather builds on top of it. Therefore, as
one of the major components, we assume the existence of an
underlying secure outsourced database scheme. Typically, secure
outsourced databases can be implemented according to di#erent
architectural settings, such as the models utilizing server-aided
MPC [6, 7, 47, 64, 79], homomorphic encryption [22], symmet-
ric searchable encryption [3, 9, 20, 26, 35, 48, 78] or trusted hard-
ware [32, 70, 81, 89]. For the ease of demonstration, we focus ex-
clusively on the outsourced databases built upon the server-aided
MPC model, where a set of data owners secretly share their data
to two untrusted but non-colluding servers S0 and S1. The two
outsourcing servers are able to perform computations (i.e., query
processing) over the secret shared data by jointly evaluating a 2-
party secure computation protocol. More details about this setting

and its corresponding security de!nitions are provided in Section 4.
We stress that, although the protocols described in this paper as-
sumes an underlying database architected under the server-aided
MPC setup, these protocols can be adapted to other settings as well.
Materialized view. A materialized view is a subset of a secure
outsourced database, which is typically generated from a query
and stored as an independent object (i.e., an encrypted or secret-
shared data structure). The servers can process queries over the
view instance just as they would in a persistent secure database.
Additionally, changes to the underlying data are re$ected in the
entries shown in subsequent invocations of the materialized view.
View update protocol. The view update protocol is an incremen-
tal MPC protocol jointly evaluated by the outsourcing servers. It
allows untrusted servers to privately update the materialized view
with bounded leakage. More details can be found in Section 5
Secure outsourced cache. The secure outsourced cache is a secure
array (i.e., memory blocks that are encrypted, secret-shared, or
stored inside trusted hardware) denoted as ! [1, 2, 3, . . .], which is
used to temporarily store newly added view entries that will later
be synchronized to the materialized view. In this work, as we focus
on the server-aided MPC model, thus ! is considered as a secret
shared memory block across two non-colluding servers. Each ! ["]
represents a (secret-shared) view entry or a dummy tuple. Details
on how our view update protocol interacts with the secure cache
(i.e., read, write, and $ush cache) are provided in Section 5.
2.3 IncShrink Work!ow
We now brie$y review the framework architecture and its work$ow
with a running example (Figure 1), where an analyst is interested
in a join query over the outsourced data from two data owners.

Shrink
Shrink cached data then

synchronize

Transform
Compute new join entries!
(with exhaustive padding)

Servers

Owners Analysts

True

Dummy

Materialized join table
>! ⋈ >"

Secure cache
Write A	to cache

Update
Issue

join query

1 3

2

(Secret-shared data)
1!1"

True
Dummy
True

Dummy

Figure 1: Framework work!ow.
Initially, the analyst obtains authentications from the owners and

registers the query with the outsourcing servers. The servers decide
the view de!nition as a join table, set up the initial materialization
structure, the secure cache, and compile the corresponding secure
protocols Transform and Shrink for maintaining the view instance.
Since then, the owners periodically update the outsourced data,
securely provisioning the newly received data since the last update
(through the functionality de!ned by the underlying database). For
demonstration purposes, we assume the owners submit a !xed-size
data block (possibly padded with dummy records) at predetermined
intervals. We discuss potential extensions to support other update
behaviors in a later section. Whenever owners submit new data,
the servers invoke Transform to securely compute new joins. The

Session 11: Database Security, Privacy and Control SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

820



outputs will be padded to the maximum size then placed in a secure
cache. Next, Shrink periodically synchronizes data from the cache
to the join table with DP resized cardinalities. Note that the DP
noise used to distort the true cardinality can be either positive or
negative. If the noise is negative, some of the real tuples in the cache
are not fetched by Shrink. We refer these tuples as the “deferred
data”. On the contrary, if the noise is positive, some deferred data
or additional dummy tuples will be included to synchronize with
the view. On the other hand, the analyst can issue query requests to
the servers, which process the issued queries over the materialized
join table and return the resulting outputs back to the analyst.

3 PRELIMINARIES
Multi-party secure computation (MPC). MPC utilizes crypto-
graphic primitives to enable a set of participants #1, #2, ..., #! to
jointly compute a function $ over private input data %" supplied
by each party #" , without using a trusted third party. The theory
of MPC o#ers strong security guarantee similar as what can be
achieved with a trusted third party [36], i.e., absolutely no infor-
mation leak to each participant #" beyond the desired output of
$ (%1, %2, ..., %!) and their input %" . In this work we focus mainly on
the 2-party secure computing setting.

(&, ')-secret sharing. Given ring Z# , and( = 2ℓ . A (&, ')-secret
sharing ('-out-of-&) over Z# shares a secret value % ∈ Z# with &
parties such that the sharing satis!es the following property:

• Availability Any ' ′ of the & parties such that ' ′ ≥ ' can
recover the secret value % .

• Con"dentiality Any ' ′ of the & parties such that ' ′ < '
have no information of % .

For any value % ∈ Z# , we denote it’s secret sharing as &%'# ←
(%1, %2, ..., %!). There are many existing e#orts to implement such
secret sharing design [8], we focus on XOR-based (2, 2)-secret shar-
ing over Z232 with the following speci!cations.

• Generate shares share(%): Given % ∈ Z# , sample random
values %1

rd←−− Z# , compute %2 ← % ⊕ %1, and return secret
shares &%'# ← (%1, %2).

• Recover shares recover(&%'#): Given secret shares &%'# ←
(%1, %2), compute % ← %1 ⊕ %2, then return % .

4 PRIVACY MODEL
In general, we consider our framework supports dynamic updating
of the materialized view while hiding the corresponding update
leakage. More speci!cally, we consider the participants involved
in the outsourcing phase are a set of data owners and two servers
S0, and S1. We assume there exists a semi-honest probabilistic
polynomial time (p.p.t.) adversaryA who can corrupt any subset of
the owners and at most one of the two servers. Previous work [64]
refers to this type of adversary as the admissible adversary, which
captures the property of two non-colluding servers, i.e., if one is
compromised by the adversary, the other one behaves honestly. Our
privacy de!nition requires that the knowledge A can obtain about
any single data of the remaining honest owners, by observing the
view updates, is bounded by di#erential privacy. In this section,
we !rst provide key terminologies and notations (Section 4.1) then

formalize our privacy model (Section 4.2) using simulation-based
computational di!erential privacy (SIM-CDP) [63].

4.1 Notations
Growing database. A growing database is a dynamic relational
dataset with insertion only updates, thus we de!ne it as a collection
of (logical) updates, D = {)" }"≥0, where )" is a time stamped data.
WewriteD = {D% }% ≥0, such thatD% denotes the database instance
of the growing database D at time ' and ∀D% ,D% ⊆ D.
Outsourced data. The outsourced data is denoted as DS, which
stores the secret-shared entries corresponding to the records in the
logical database, with the possibility to include additional dummy
data. Similarly, we write DS = {DS% }% ≥0, where DS% ⊆ DS is
the outsourced data at time ' .
Materialized view. We use V to denote the materialized view
instance which is a collection of secret-shared tuples. Each tuple
inV is transformed from the outsourced data DS or in combina-
tion with public information. We de!neV = {V% }% ≥0, whereV%
denotes the materialized view structure at time ' , and ΔV% denotes
the changes between (newly generated view entries) V% andV%−1

Query. Given a growing databaseD and a corresponding material-
ized viewV , we de!ne the logical query posted at time ' as *% (D% )
and the re-written view-based query as *̃% (V% ). We refer the L1
norm of the di#erence between *̃% (V% ) and *% (D% ) as the L1 query
error, denoted as +&! ← | |*̃% (V% ) − *% (D% ) | |1, which measures the
di#erence between the server responded outputs and their corre-
sponding logical results. Additionally, we call the elapsed time for
processing *̃% (V% ) as the query execution time (QET) of *% . In this
work, we use L1 error and QET as the main metrics to evaluate the
accuracy and e"ciency of our framework, respectively.

4.2 Privacy De"nition
Based on the formalization of update pattern in [83], we !rst pro-
vide a more generalized de!nition of update pattern that captures
updates to view instances.

Definition 1 (Update pattern). Given a growing database
D, the update pattern for outsourcing D is the function family of
UpdtPa!(D) = {UpdtPa!% (D)}% ∈N+ , with:

UpdtPa!% (D) = (', |,% (D|))
where ,% is a transformation function that outputs a set of tuples (i.e.,
new view entries) been outsourced to the server at time ' .

In general, De!nition 1 de!nes the transcript of entire update
history for outsourcing a growing database D. It may include in-
formation about the volume of the outsourced data and their corre-
sponding insertion times. Moreover, if ,% (D) ← D% −D%−1, then
this simply indicates the record insertion pattern [83].

Definition 2 (Neighboring growing databases). Given a pair
of growing databasesD andD ′, such that there exists some parameter
- ≥ 0, the following holds: (i) ∀ ' ≤ -,D% = D ′% (ii) ∀ ' > - , D% and
D ′% di!er by the addition or removal of a single logical update.

Definition 3 (DP mechanism over growing data). Let . to
be a mechanism applied over a growing database. . is said to satisfy
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!-DP if for any neighboring growing databases D and D ′, and any
/ ∈ O, where O is the universe of all possible outputs, it satis"es:

Pr [. (D) ∈ /] ≤ 0'Pr
[
. (D ′) ∈ /

]
(1)

De!nition 3 ensures that, by observing the output of . , the infor-
mation revealed by any single logical update posted by the owner
is di#erentially private. Moreover, if the logical update corresponds
to di#erent entity’s (owner’s) data, the same holds for . over each
owner’s logical database (privacy is guaranteed for each entity).
Additionally, in this work, we assume each logical update)" ∈ D as
a secret event, therefore such mechanism . achieves !-event level
DP [30]. However, due to the group-privacy property [53, 58, 86] of
DP, one can achieve privacy for properties across multiple updates
as well as at the user level as long as the property depends on a
!nite number of updates. An overall !-user level DP can be achieved
by setting the privacy parameter in De!nition 3 to '

ℓ , where ℓ is the
maximum number of tuples in the growing database owned by a
single user. In practice, if the number of tuples owned by each user
is unknown, a pessimistic large value can be chosen as 2 . More-
over, recent works [18, 76] have provided methods for deriving an
! < ! ′ ≤ ℓ×! , such that !-event DP algorithms provide an ! ′ bound
on privacy loss when data are correlated. For certain correlations,
! ′ can be even close to ! and much smaller than ℓ ×! . In general, we
emphasize that for the remainder of the paper, we focus exclusively
on developing algorithms that ensure event-level privacy with pa-
rameter ! , while simultaneously satisfying all the aforementioned
privacy guarantees, with possibly a di#erent privacy parameter.

Definition 4 (SIM-CDP viewupdate protocol). A view update
protocol Π is said to satisfy !-SIM-CDP if there exists a p.p.t. simulator
S with only access to a set of public parameters pp and the output
of a mechanism . that satis"es De"nition 3. Then for any growing
database instance D, and any p.p.t. adversary A, the adversary’s
advantage satis"es:

Pr
[
A

(
VIEWΠ (D, pp) = 1

)]

≤ Pr
[
A

(
VIEWS (. (D), pp)

)
= 1

]
+ negl(3)

(2)

where VIEWΠ , and VIEWS denotes the adversary’s view against
the protocol execution and the simulator’s outputs, respectively. And
negl(3) is a negligible function related to a security parameter 3.

De!nition 4 de!nes the secure protocol for maintaining the ma-
terialized view such that as long as there exists at least one honest
owner, the privacy of her data’s individual records is guaranteed. In
addition, the remaining entities’ knowledge about honest owner’s
data is preserved by di#erential privacy. In other words, any p.p.t.
adversary’s knowledge of such protocol Π is restricted to the out-
puts of an !-DP mechanism . . We refer to the mechanism . as the
leakage pro!le of protocol Π, and a function related to the update
pattern, i.e., . (D) = $ (UpdtPa!(D)). In the rest of this paper, we
focus mainly on developing view update protocols that satisfy this
de!nition. Moreover, De!nition 4 is derived from the SIM-CDP
de!nition which is formulated under the Universal Composition
(UC) framework [17]. Thus De!nition 4 leads to a composability
property such that if other protocols (i.e., "ery protocol) de!ned
by the underlying databases also satisfy UC security, then privacy
guarantee holds under the composed system.

5 PROTOCOL DESIGN
In general, our view update protocol is implemented as an incremen-
tal MPC across two non-colluding outsourcing servers. Speci!cally,
this incremental MPC is composed of two sub-protocols, Transform,
and Shrink that operate independently but collaborate with each
other. The reason for having this design pattern is that we can
decouple the view transformation functionality and its update be-
havior, which provides $exibility in the choice of di#erent view
update strategies. For example, one may want to update the materi-
alized view at a !xed interval or update it when there are enough
new view entries. Each time when one needs to switch between
these two strategies, she only needs to recompile the Shrink pro-
tocol without making any changes to the Transform protocol. In
this section, we discuss the implementation details of these two
protocols, in Section 5.1and 5.2, respectively. Due to space concerns,
for theorems in this section, we defer the proofs to the appendix.

5.1 Transform Protocol
Whenever owners submit new data, Transform is invoked to con-
vert the newly outsourced data to its corresponding view instance
based on a prede!ned view de!nition. Although, one could simply
reuse the query capability of the underlying database to gener-
ate the corresponding view tuples. There are certain challenges
in order to achieve our targeted design objectives. Here are two
examples: (i) The view transformation might have unbounded sta-
bility which further leads to an unbounded privacy loss; (ii) While
existing work [7] implements a technique similar to !rst padding
the output and then reducing its size, they compile the functionality
as a one-time MPC protocol, which makes it di"cult for them to
handle dynamic data. Our design of constructing “Transform” and
“Shrink” as independent MPC protocols overcome this problem and
introduce $exibility in the choice of view update policy, but it raises
a new challenge in that the two independently operating protocols
still need to collaborate with each other. By default, the Shrink pro-
tocol is unaware of how much data can be removed from the secure
cache, therefore Transform must privately inform Shrink how to
eliminate the dummy records while ensuring DP. To address these
challenges, we employ the following techniques:

• We adopt a truncated view transformation functionality to
ensure that each outsourced data contributes to a bounded
number of rows in the transformed view instance.

• We track important parameters in the Transform phase, se-
cretly share them inside the Transform protocol and store
the corresponding shares onto each server. The parameters
are later passed to Shrink protocol as auxiliary input and
used to generate the DP resized cardinalities.

Algorithm 1 provides an overview of Transform protocol. At the
very outset, Transform is tasked to: (i) convert the newly submitted
data into its corresponding view entry from time to time; (ii) cache
the new view entries to an exhaustively padded secure array; and
(iii) maintain a cardinality counter of how many new view entries
have been cached since the last view update. This counter is then
privately passed (through secret shares) to the Shrink protocol.

At the very beginning, Transform initializes the cardinality counter
4 = 0 and secret shares it to both servers (Alg 1:1-2). Transform
uses trans_truncate (Alg 1:3) operator to obliviously compute the
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Algorithm 1 Transform protocol
Input: 5 (truncation bound); DS% ; ! .

1: if t == 0 then
2: &4'# = (% rd←−− Z#, % ⊕ 0), &4'# =⇒ (S0,S1)
3: ΔV ← trans_truncate(DS% ,5)
4: &4'# ⇐= (S0,S1), 4 ← recover(&4'#)
5: 4 ← 4 +∑

(" ∈ΔV∧("≠dummy
6: &4'# ← share(4), &4'# =⇒ (S0,S1)
7: ! ← ! | |ΔV

new view tuples and truncate the contribution of each record at the
same time. More speci!cally, we assume the output of this operator
is stored in an exhaustively padded secure array ΔV , where each
ΔV["] is a transformed tuple with an extra isView bit to indicate
whether the corresponding tuple is a view entry (isView=1) or a
dummy tuple (isView=0). Additionally, the operator ensures that

∀67" ∈ DS% , | |8) (DS% ) − 8) (DS% − {67" }) | | ≤ 5 (3)

where 8) (·) ← truncate (new_entry(·),5). This indicates any in-
put data only a#ects at most 5 rows in the truncated ΔV . Once the
truncated outputs are available, Transform updates and re-shares
the cardinality counter 4 , then appends the truncated outputs to
the secure cache ! (Alg 1:5-7).
*-stable transformation. We now provide the following lemmas
with respect to the *-stable transformation.

Lemma 1. (*-Stable Transformation [62, De!nition 2]). Let
, : D→ D to be a transformation, we say, is *-stable, if for any two
databasesD1,D2 ∈ D, it satis"es | |, (D1)−, (D2) | | ≤ * | |D1−D2 | |

Lemma 2. Given , is *-stable , , and an !-DP mechanismM. The
composite computation M ◦, implies *!-DP [62, Theorem 2].

According to Lemma 1, it’s clear that protocol Transform is *-
stable, and thus by Lemma 2, applying an !-DP mechanism over
the outputs of Transform protocol (the cached data) implies *!-DP
over the original data. Therefore, if * is constant, then the total
privacy loss with respect to the input of Transform is bounded.
Contribution over time. According to the overall architecture,
Transform is invoked repeatedly for transforming outsourced data
into view entries at each time step. Thus having a*-stable Transform
does not immediately imply bounded privacy loss with respect to
the logical database. There are certain cases where one record may
contribute multiple times over time as the input to Transform. For
example, suppose the servers maintain a join table on both Alice’s
and Bob’s data. When Alice submits new data, the servers need to
compute new join tuples between her new data and Bob’s entire
database, which results in some of Bob’s data being used multiple
times. This could eventually lead to unbounded privacy loss.

Theorem 3. Given a set of transformations , = {," }"≥0, where
each ," is a *" -stable transformation. Let {M" }"≥0 be a set of mech-
anisms, where each M" provides !" -di!erential privacy. Let another
mechanism M(D) that executes each M" using independent ran-
domness with input ," (D). Then M satis"es !-DP, where

! = max
*,D

()
*

∑
" : +" (*)>0

*"!"
,-
.

(4)

and -" ()) = | |," (D) − ," (D − {)}) | |, denotes the contribution of
record ) to the transformation ," ’s outputs.

Theorem 3 shows that the overall privacy loss may still be in!nite
when applying the DP mechanisms over a composition of *-stable
transformations (i.e. repeatedly invoke Transform). However, if the
composed transformation, is also*-stable, then one can still obtain
bounded privacy loss asmax*,D

(∑
" : +" (*)>0 *"!"

)
≤ *max(!" ). In-

spired by this, the following steps could help to obtain !xed privacy
loss over time: First we assign a total contribution budget 9 to each
outsourced data 67" ∈ DS. As long as a record is used as input
to Transform (regardless of whether it contributes to generating
a real view entry), it is consumed with a !xed amount of budget
(equal to the truncation limit 5). Then Transform keeps track of
the available contribution budget for each record over time and
ensures that only data with a remaining budget is used. According
to this design, the “life time” contribution of each outsourced data
to the materialized view object is bounded by 9.
Implementation of trans_truncate operator. Naïvely, this op-
erator can be implemented via two separate steps. For example,
one may !rst apply an oblivious transformation (i.e. oblivious !l-
ter [7, 22], join [32, 89], etc.) without truncation over the input
data. The results are stored to an exhaustively padded array. Next,
truncation can be implemented by linearly scanning the array and
resets the isView bit from 1 to 0 for a subset of the data in the array
such that the resulting output satis!es Eq 3. In practice, truncation
can be integrated with the view transformation so that the protocol
does not have to run an extra round of linear scan. In what follows,
we provide an instantiated implementation of oblivious sort-merge
join where the output is truncated with a contribution bound 9, and
we continue to provide more implementations for other operators
such as !lter, nested-loop join, etc. in our complete full version.

Example 5.1 (9-truncated oblivious sort-merge join). As-
sume two tables,1,,2 to be joined, the algorithm outputs the join table
between ,1 and ,2 such that each data owns at most 9 rows in the
resulting join table. The "rst step is to union the two tables and then
obliviously sort [5] them based on the join attributes. To break the ties,
we consider ,1 records are ordered before ,2 records. Then similar to
a normal sort-merge join, where the operator linearly scans the sorted
merged table then joins ,1 records with the corresponding records in
,2. There are some variations to ensure obliviousness and bounded
contribution. First, the operator keeps track of the contribution of each
individual tuple. If a tuple has already produced 9 join entries, then
any subsequent joins with this tuple will be automatically discarded.
Second, for linear scan, the operator outputs 9 entries after accessing
each tuple in the merged table, regardless of how many true joins
are generated. If there are fewer joins, then pad them with additional
dummy data, otherwise truncate the true joins and keep only the 9
tuples. Figure 2 illustrates the aforementioned computation work#ow.

Secret-sharing inside MPC. When re-sharing the new cardinali-
ties (Alg 1:5-6), we must ensure none of the two servers can tamper
with or predict the randomness for generating secret shares. This
can be done with the following approach: each outsourcing server
S" chooses a value :" uniformly at random from the ring Z232 , and
contributes it as the input to Transform. The protocol then com-
putes &4'# ← {40 ← :0 ⊕ :1, 41 ← 40 ⊕ 4} internally. By applying
this, S0’s knowledge of the secret shared value is subject to the two
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Figure 2: Oblivious truncated sort-merge join.
random values :0, :1 while S1’s knowledge is bounded to 4 ⊕ :0
which is masked with a random value unknown to S1. A complete
security proof of this technique can be found in our full version.

5.2 Shrink Protocol
We propose two secure protocols that synchronize tuples from the
secure cache to the materialized view. Our main idea originates
from the private synchronization strategy proposed in DP-Sync [83],
but with non-trivial variations and additional design. Typically, DP-
Sync enforces trusted entities to execute private synchronization
strategies, whereas in our scenario, the framework is supposed to
allow untrusted servers to evaluate the view update protocol. There-
fore, naïvely adopting their techniques could lead to additional
leakage and exposure to untrusted servers, such as the internal
states (i.e., randomness) during protocol execution. Furthermore,
DP-Sync considers that the subjects evaluating the synchronization
strategies have direct access to a local cache in the clear, whereas
in our setup the protocol must synchronize cached view tuples
from an exhaustively padded (with dummy entries) secure array
without knowing how the real data is distributed. To address these
problems, we incorporate the following techniques:

• We utilize a joint noise-adding mechanism to generate DP
noise, which ensures that no admissible adversary can obtain
or tamper with the randomness used to generate the noise.

• We implement a secure cache read operation that enforces
the real data is always fetched before the dummy tuples
when a cache read is performed.

In what follows, we review the technical details of two view
update protocols, sDPTimer and sDPANT.
5.2.1 Timer-based approach (sDPTimer). sDPTimer is a 2PC pro-
tocol among S0, and S1, parameterized by , , ! and 9, where it
updates the materialized view every , time units with a batch of
DP-sized tuples. Algorithm 2 shows the corresponding details.
Algorithm 2 sDPTimer

Input: ! ; 9 (contribution budget); , (update interval); ! ;V;
1: for ' ← 1, ... do
2: if ' mod , == 0 then
3: recover 4 internally
4: (:0, :1) ⇐= (S0,S1), s.t. ∀:"

rd←−− Z232
5: : ← :0 ⊕ :1, ; ← fixed_point(:), s.t. ; ∈ (0, 1)
6: sz← 4 + ,

' ln ; × sign(msb(:)) ⊲ sz← Lap( ,' )
7: !̂ ← ObliSort(! , key = "7< "0=)
8: o← !̂ [0, 1, 2, .., sz − 1],V ← V ∪ o, ! ← !̂ [sz, ...]
9: reset 4 = 0 and re-share it to both servers.
For every , time steps sDPTimer obtains the secret-shared car-

dinality counter from both servers, and recovers the counter 4
internally. The protocol then distort this cardinality with Laplace

noise sampled from Lap( ,' ). To prevent information leakage, we
must ensure none of the entities can control or predict the random-
ness used to generate this noise. To this end, inspired by the idea
in [29], we implement a joint noise generation approach (Alg 2:4-
6), where each server generates a random value :" ∈ Z232 uni-
formly at random and contributes it as an input to sDPTimer. The
protocol computes : ← :0 ⊕ :1 internally, and converts : to a
!xed-point random seed ; ∈ (0, 1). Finally, sDPTimer computes
Lap( ,' ) ← ,

' ln ; × sign, using one extra bit of randomness to de-
termine the sign, i.e. the most-signi!cant bit of :. By applying this,
as long as one server honestly chooses the value uniformly at ran-
dom and does not share it with any others (which is captured by
the non-colluding server setting), she can be sure that no other
entity can know anything about the resulting noise. In our design,
this joint noise adding technique is used whenever the protocol
involves DP noise generation. For ease of notation, we denote this
approach as %̃ ← JointNoise(S0,S1,Δ, !, %), where %̃ ← Lap( Δ' ).

True
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Dummy

True

Dummy

Dummy
True

Dummy

Oblivious
Sort

Fetch
Data

Read size sz Read size sz

True

Dummy

Secure cache Sorted cache Secure cache Fetched data

Figure 3: Cache read operation.
Next, sDPTimer obliviously sorts the exhaustively padded cache

! based on the "7< "0= bit, moving all real tuples to the head and all
dummy data to the tail, then cuts o# the !rst sz elements from the
sorted array and stores them as a separate structure o. sDPTimer
then updates the materialized view V by appending o to the old
view instance. Figure 3 shows an example of the aforementioned
operation. Such secure array operation ensures that the real data
is always fetched before the dummy elements, which allows us to
eliminate a subset of the dummy data and shrink the size of the
updated view entries. Finally, after each update, sDPTimer resets 4
to 0 and re-shares it secretly to both participating servers.

Note that query errors of IncShrink are caused by two factors,
namely, the valid data discarded by the Transform due to truncation
constraints and the total amount of unsynchronized data in the
cache. When the truncation bound is set too small, then a large
number of valid view entries are dropped by Transform, resulting
in inaccurate query answers. We further investigate how truncation
bound would a#ect query errors in a later section (Section 7.4).

However, one could still choose a relatively large truncation
bound to ensure that no data is discarded by Transform. As a result,
query errors under such circumstances will be caused primarily by
unsynchronized cached view tuples. Typically, less unsynchronized
cached data that satisfy the requesting query implies better accuracy
and vice versa. For instance, when IncShrink has just completed a
new round of view update, the amount of cached data tends to be
relatively small, and thus less data is missing from the materialized
view. Queries issued at this time usually have better accuracy.

Theorem 4. Given !,9, and 2 ≥ 4 log 1
- , where > ∈ (0, 1). The # of

deferred data 4. after2-th updates satis"es Pr
[
4. ≥ 2,

'

√
2 log 1

-

]
≤ > .

As per Theorem 4, we can derive the upper bound for total
cached data at any time as 4∗ +/ ( 2,

√
/

' ), where 4∗ refers to the
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number of newly cached entries since last update, and the second
term captures the upper bound for deferred data. The data in the
cache, although stored on the server, is not used to answer queries.
Therefore large amounts of cached data can lead to inaccurate query
results. Although one may also adopt strategies such as returning
the entire cache to the client, or scanning the cachewhile processing
the query so that no data is missing. This will not break the security
promise, however, will either increase the communication cost or
the runtime overhead as the secure cache is exhaustively padded
with dummy data. Moreover, in later evaluations (Section 7.1), we
observe that even without using the cache for query processing,
the relative query errors are small (i.e. bounded by 0.04).

It’s not hard to bound 4∗ by picking a smaller interval, , however
the upper bound for deferred data accumulates when 2 increases. In
addition, at each update, the server only fetches a batch of DP-sized
data, leaving a large number of dummy tuples in the cache. Thus, to
ensure bounded query errors and prevent the cache from growing
too large, we apply an independent cache $ushing mechanism to
periodically clean the cache. To $ush the cache, the protocol !rst
sorts it, then fetches a set of data by cutting o# a !xed number
of tuples from the head of the sorted array. The fetched data is
updated to the materialized view immediately and the remaining
array is recycled (i.e. freeing the memory space). As per Theorem 4,
we can set a proper $ush size, such that with at most (a relatively
small) probability > there is non-dummy data been recycled.

Theorem 5. Given !,9, and2 ≥ 4 log 1
- , where > ∈ (0, 1). Suppose

the cache #ush interval is $ with size 7 . Then the number of data in-
serted to the view after the 2-th update is bounded by/ ( 2,

√
/

' ) + 0/1
2 .

5.2.2 Above noisy threshold. (sDPANT). The above noise threshold
protocol (Algorithm 3) takes ? , ! and 9 as parameters and updates
the materialized view whenever the number of new view entries is
approximately equal to a threshold ? .
Algorithm 3 sDPANT

Input: ! ; 9; ? (sync threshold); ! ;V;
1: !1 = !2 = '

2
2: ?̃ ← JointNoise(S0,S1,9, !1/2, ? ) ⊲ distort the threshold
3: &?̃'# ← share(?̃ ), &?̃'# =⇒ (S0,S1)
4: for ' ← 1, ... do
5: recover 4 , and ?̃ internally
6: 4̃ ← JointNoise(S0,S1,9, !1/4, 4)
7: if 4̃ ≥ ?̃ then ⊲ updates if greater than noisy threshold
8: sz← JointNoise(S0,S1,9, !2, 4)
9: !̂ ← ObliSort(! , key = "7< "0=)
10: o← !̂ [0, 1, 2, .., sz − 1],V ← V ∪ o, ! ← !̂ [sz, ...]
11: ?̃ ← JointNoise(S0,S1,9, !1/2, ? )
12: &?̃'# ← share(?̃ ), &?̃'# =⇒ (S0,S1)
13: reset 4 = 0 and re-share it to both servers.
Initially, the protocol splits the overall privacy budget ! to two

parts !1, and !2, where !1 is used to construct the noisy condi-
tion check (Alg 3:7) and !2 is used to distort the true cardinalities
(Alg 3:8). The two servers then involve a joint noise adding protocol
that securely distort ? with noise Lap( 2,'1 ). This noisy threshold
will remain unchanged until sDPANT issues a new view update. An
important requirement of this protocol is that such noisy threshold

must remain hidden from untrusted entities. Therefore, to cache
this value, sDPANT generates secret shares of ?̃ internally and
disseminates the corresponding shares to each server (Alg 3:3).

From then on, for each time step, the protocol gets the secret
shares &4'# (true cardinality) and &?̃'# from S0 and S1, which
are subsequently recovered inside the protocol. sDPANT distorts
the recovered cardinality 4̃ ← Lap( 4,'1 ) and compares the noisy
cardinality 4̃ with ?̃ . A view update is posted if 4̃ ≥ ?̃ . By issuing
updates, sDPANT distorts 4 with another Laplace noise Lap( ,'2 ) to
obtain the read size sz. Similar to sDPTimer, it obliviously sorts the
secure cache and fetches as many tuples as speci!ed by sz from
the head of the sorted cache. Note that, each time when an update
is posted, sDPANT must re-generate the noisy threshold with fresh
randomness. Therefore, after each updates, sDPANT resets 4 = 0,
produces a new ?̃ , and updates the corresponding secret shares
stored on the two servers (Alg 3:11-13). In addition, the same cache
$ush method in sDPTimer can be adopted by sDPANT as well. The
following theorem provides an upper bound on the cached data at
each time, which can be used to determine the cache $ush size.

Theorem 6. Given !,9, and let the cache #ushes every $ time steps
with "xed #ushing size 7 , the number of deferred data at any time
' is bounded by / ( 16, log %

' ) and the total number of dummy data
inserted to the materialized view is bounded by / ( 16, log %

' ) + 7 5 %2 6.

6 SECURITY PROOF
We provide the security and privacy proofs in this section.

Theorem 7. IncShrink with sDPTimer satis"es De"nition 4.

Proof. We prove this theorem by !rst providing a mechanism
M that simulates the update pattern leakage of the view update
protocol and proving thatM satis!es !-DP. Second, we construct
a p.p.t simulator that accepts as input only the output of M which
can simulate the outputs that are computationally indistinguish-
able compared to the real protocol execution. In what follows, we
provide the Mtimer that simulates the update pattern of sDPTimer.
Mtimer
∀ ' :

return count(@%−1<%!"# (D)) + Lap( ,' ), if 0 ≡ ' (mod , )
return 0, otherwise

where '%". denotes the time stamp when tuple ;"6 is inserted to
D, and @%−1<%!"# is a !lter operator that selects all tuples inserted
within the time interval (' − , , ']. In general, Mtimer can be for-
mulated as a series of '

, -DP Laplace mechanisms that applies over
disjoint data (tuples inserted in non-overlapping intervals). Thus by
parallel composition theorem [31],Mtimer satis!es '

, -DP.Moreover,
by Lemma 2 given a *-stable transformation ,̂ such that * = 9 (i.e.
the Transform protocol), then Mtimer (,̂ (D)) achieves 9 × '

, = !-
DP. We abstract Mtimer’s output as {(', A% )}% ≥0, where A% is the
number released byMtimer at time ' . Also we assume the following
parameters are publicly available: ! , Z# , B3 (batch size of owner
uploaded data), 9 (contribution bound), 7 (cache $ush size), $ (cache
$ush rate), , (view update interval). In what follows, we construct
a p.p.t. simulator S that simulates the protocol execution with only
access to Mtimer’s outputs and public parameters (Table 1).

Initially, S initializes the internal storage C. Then for each time
step, S randomly samples 2 batches of data C1, C2 from Z# , where
the cardinality of C1, and C2 equals to B3 , and 9B3 , respectively.
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Simulator S (% , (! , ',4$ ,,, 0, 2 ,1 )
1. Initialize internal storage 5 ← {∅}.

2. ∀% > 0

i. (51,52)
rd←− Z% : |51 | = 4$ , |52 | = ,4$

ii. 53 ← rd_fetch(52 ∪ 5) : |53 | = (!
iii. reveal (51,52,53,6

rd←− Z%) if 0 ≡ % (mod1 )
a. 5′ ← rd_fetch(5) : |5′ | = 0

iv. if 0 ≡ 2 (mod % ) b. 5 ← {∅}
c. reveal (51,52,53,5′,6

rd←− Z%)
v. reveal (51,52,53) otherwise

Table 1: Simulator construction (sDPTimer)
These two batches simulate the secret shared data uploaded by
owners and the transformed tuples placed in cache at time ' . Next,
S appends C2 to C and then samples C3 from C such that the result-
ing cardinality of C3 equals to A% (if A% = 0 then S sets C3 = {∅}).
This step simulates the data synchronized by Shrink protocol. Fi-
nally, if ' (mod , ) = 0, S generates one additional random value
% to simulate the secret share of the cardinality counter and re-
veals % together with the generated data batches to the adversary
(2.iii). If 0 ≡ $ (mod '), then S performs another random sample
from internal storage C to fetch C′ such that |C′ | = 7 , followed by
resetting C to empty. S reveals C1,C2,C3,C′ and one additional ran-
dom value % to the adversary. These steps (2.iv) simulate the cache
$ush. Otherwise S only reveals C1,C2 and C3. The computational
indistinguishability between the C1, C2, C3, % and the messages the
adversary can obtain from the real protocol follows the security of
(2, 2)-secret-sharing scheme and the security of secure 2PC [57].

!Theorem 8. IncShrink with sDPANT satis"es De"nition 4.

Proof. Following the same proof paradigm, we !rst provide
Mant that simulates the view update pattern under sDPANT.

Mant
∀ ' :

?̃ ← ? + Lap( 4,' ), if ' = 0
4% ← count(@%∗<%!"# ≤% (D)), 4̃% ← 4% + Lap( 8,' )
return 4% + Lap( 4,' ), ? + Lap( 4,' ), if 4̃% ≥ ?̃
return 0, if 4̃% < ?̃

where @%∗<%!"# ≤% is a !lter that selects all data received since last
update. In general, Mant is a mechanism utilizes sparse vector
techniques (SVT) to periodically release a noisy count. According
to [83] (Theorem 11), this mechanism satis!es '

, -DP (interested
readers may refer to our full version for complete privacy proof of
Mant). As per Lemma 2 we can obtain the same conclusion that
Mant (,̂ (D)) achieves !-DP, if ,̂ is *-stable and * = 9. Similarly, we
abstractMant’s output as {(', A% )}% ≥0 and we assume the following
parameters are publicly available: ! , B3 , 9, 7 , $ , ? (threshold). For
simulator construction one can reuse most of the components in
Table 1 but with the following modi!cations: (i) For step 2.iii, one
should replace the condition check as whether A% > 0. (ii) For
step 2.iii and 2.iv, the simulator outputs one additional random
value D rd←−− Z#) which simulates the secret shares of refreshed
noisy threshold. Similar, the indistinguishability follows the security
property of XOR-based secret-sharing scheme.

!
7 EXPERIMENTS
In this section, we present evaluation results of our proposed frame-
work. Speci!cally, we address the following questions:

• Question-1: Do the view-based query answering approaches
have e"ciency advantages over the non-materialization (NM)

approach? Also, how does the DP-based view update proto-
col compare with the naïve ones?

• Question-2: For DP-protocols, is there a trade-o# between
privacy, e"ciency and accuracy? Can we adjust the privacy
parameters to achieve di#erent e"ciency or accuracy goals?

• Question-3: How do sDPTimer compare to the sDPANT?
Under what circumstances is one better than the other one?

Implementation and con"guration.We build the prototype Inc-
Shrink based on Shrinkwrap [7], a typical secure outsourced data-
base under the server-aidedMPC setting. Shrinkwrap only supports
static data and a standard query answeringmode. IncShrink extends
it to a view-based SOGDB. In addition, we also implement client pro-
grams that consume data from a given dataset and outsource them
to the server. This simulates how real-world data owner devices
would receive and outsource new data. We implement all secure
2PC protocols using EMP-Toolkit-0.2.1 and conduct all experiments
on the GCP instance with 3.8GHz Xeon CPU, 32Gb RAM.
Data.We evaluate the system using two datasets: TPC Data Stream
(TPC-ds) [71], and Chicago Police Database (CPDB) [23]. TPC-ds
collects the retail records for several product suppliers over a !ve-
year period. In our evaluation, we mainly use two relational tables,
the Sales and the Return table. After eliminating invalid data points
with incomplete or missing values, the Sales and Return tables
contain 2.2 million and 270,000 records, respectively. CPDB is a
living repository of public data about Chicago’s police o"cers and
their interactions with the public. We primarily use two relations,
the Allegation table, which documents the results of investigations
into allegations of police misconduct, and the Award table, which
collects awards given to certain o"cers. The cleaned data contains
206,000 and 656,000 records for Allegation and Award, respectively.
Execution scenario & Testing query. For TPC-ds data, we dele-
gate each relational table to a client program, which then indepen-
dently outsources the data to the servers. We multiplex the sales
time (Sales table) or return time (Return table) associated with each
data as an indication of when the client received it. In addition, we
assume that the client program uploads a batch of data every single
day and the uploaded data is populated to the maximum size. In
addition, we pick the following query for evaluating with TPC-ds.

• Q1-Count the total number of products returned within
10 days after purchasing: “SELECT COUNT(*) FROM Sales
INNER JON Returns ON Sales.PID = Returns.PID
WHERE Returns.ReturnDate - Sales.SaleDate <= 10”

Moreover, we set the materialized view as a join table for all prod-
ucts that returned within 10 days. As Q1 has multiplicity 1, thus
we set 5 = 1 (truncation bound), 9 = 10 (total contribution budget).

For CPDB data, we consider only Allegation table is private and
is delegated to a client program. The Award table will be treated
as a public relation. Again, we use the investigation case end time
to indicate when the client program received this record, and we
assume that the client outsource data once every 5 days (minimum
time span is 5 days), and the data is padded to maximum possible
size as well. For evaluation, we select the following query.

• Q2-Count how many times has an o"cer received an award
from the department despite the fact that the o"cer had
been found to have misconduct in the past 10 days: “SELECT
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Comparison Cat. DP-Timer DP-ANT OTM EP NM
Average query error

L1 Error 40.02 32.01 2008.92 0 0
TPCds Relative Error 0.03 0.029 1 N/A N/A

Imp.† 50× 63× 1×‡ N/A N/A
L1 Error 61.93 52.45 6595.6 0 0

CPDB Relative Error 0.043 0.038 1 N/A N/A
Imp. 107× 126× 1× N/A N/A

Average execution time (s)
Transform 9.72 9.69 N/A 9.71 N/A
Shrink 0.34 0.37 N/A N/A N/A

TPC-ds QET 0.051 0.052 0 5.84 7982
Imp. (over NM) 1.5e+5× 1.5e+5× N/A 1366× 1×
Imp. (over EP) 115× 112× N/A 1× N/A
Transform 2.93 2.91 0 2.93 N/A
Shrink 3.93 3.77 N/A N/A N/A

CPDB QET 0.17 0.17 0 51.36 1341
Imp. (over NM) 7888× 7888× N/A 26.1× 1×
Imp. (over EP) 302× 302× N/A 1× N/A

Materialized view size (Mb)
TPC-ds Avg. Size 2.01 2.04 0.01 229.65 N/A

Imp. 114× 113× N/A 1× N/A
CPDB Avg. Size 6.63 6.68 0.01 2017.38 N/A

Imp. 304× 302× N/A 1× N/A
† Imp. denotes the improvements; ‡ 1× denotes the comparison baseline;
Table 2: Aggregated statistics for comparison experiments

COUNT(*) FROM Allegation INNER JON Award ON
Allegation.officerID = Award.officerID
WHERE Award.Time - Allegation.officerID <= 10”.

Similarly, the materialized view is a join table that process Q2. We
set the truncation bound 5 = 10 and budget for each data as 9 = 20.
Default setting. Unless otherwise speci!ed, we assume the fol-
lowing default con!gurations. For both DP protocols, we set the
default privacy parameter ! = 1.5, and cache $ush parameters as
$ = 2000 ($ush interval) and 7 = 15 ($ush size). We !x the sDPANT
threshold ? as 30 for evaluating both datasets. Since the average
number of new view entries added at each time step is 2.7 and 9.8,
respectively for TPC-ds and CPDB, thus for consistency purpose we
set the timer , to 10← 5 302.7 6 and 3← 5 309.8 6. For each test group,
we issue one test query at each time step and report the average L1
error and query execution time (QET) for all issued testing queries.

7.1 End-to-end Comparison
We address Question-1 by performing a comparative analysis be-
tween the DP (sDPTimer, sDPANT), naïve (one-time materializa-
tion and exhaustive padding), and the non-materialization [83]
approaches. The results are summarized in Table 2 and Figure 4.
Observation 1. View-based query answering provides a sig-
ni"cant performance improvements over NM method. As
per Table 2, we observe that the non-materialization method is
the least e"cient group among all groups. In terms of the aver-
age QET, the DP protocols achieve performance improvements of
up to 1.5e+5× and 7888× on TPC-ds and CPDB data, respectively,
in contrast to the NM approach. Even the EP method provides a
performance edge of up to 1366× over NM approach. This result
further demonstrates the necessity of adopting view-based query
answering mechanism. A similar observation can be learned from
Figure 4 as well, where in each !gure we compare all test candidates
along with the two dimensions of accuracy (x-axis) and e"ciency
(y-axis). In all !gures, the view-based query answering groups lie
beneath the NM approach, which indicates better performance.
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Figure 4: End-to-end comparison.
Observation 2. DP protocols provide a balance between the
two dimensions of accuracy and e#ciency. According to Ta-
ble 2, the DP protocols demonstrate at least 50× and 107× accu-
racy advantages (in terms of L1-error), respectively for TPC-ds and
CPDB, over the OTM. Meanwhile, in terms of performance, the DP
protocols show a signi!cant improvement in contrast to the EP.
For example, in TPC-ds group, the average QETs of both sDPTimer
(0.051s) and sDPANT (0.052s) are almost 120× smaller than that of
EP method (5.84s). Such performance advantage is even evident
(up to 302×) over the CPDB data as testing query Q2 has join multi-
plicity greater than 1. Although, the DP approaches cannot achieve
a complete accuracy guarantee, the average relative errors of all
tested queries under DP protocols are below 4.3%. These results are
su"cient to show that DP approaches do provide a balance between
accuracy and e"ciency. This conclusion can be better illustrated
with Figure 4, where EP and OTM are located in the upper left and
lower right corners of each plot, respectively, which indicates that
they either completely sacri!ce e"ciency (EP) or accuracy (OTM)
guarantees. However, both DP methods lie at the bottom-middle
position of both !gures, which further reveals that the DP protocols
are optimized for the dual objectives of accuracy and e"ciency.

7.2 3-Way Trade-o$
We address Question-2 by evaluating the DP protocols with dif-
ferent ! ranging from 0.01 to 50.
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Figure 5: Trade-o$ experiment.

Observation 3. sDPTimer and sDPANT exhibit di$erent privacy-
accuracy trade-o$. The accuracy-privacy trade-o# evaluation is
summarized in Figure 5a and 5c. In general, as ! increases from
0.01 to 50, we observe a consistent decreasing trend in the average
L1 error for sDPTimer, while the mean L1 error for sDPANT !rst
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increases and then decreases. According to our previous discus-
sion, the error upper bound of sDPTimer is given by 4∗ +/ ( 2,

√
/

' ),
where 4∗ denotes the cached new entries since last update, and
/ ( 2,

√
/

' ) is the upper bound for the deferred data (Theorem 4). As
sDPTimer has a !xed update frequency, thus 4∗ is independent of
! . However, the amount of deferred data is bounded by / ( 2,

√
/

' ),
which leads to a decreasing trend in the L1 error of sDPTimer as
! increases. On the other hand, the update frequency of sDPANT
is variable and will be a#ected accordingly when ! changes. For
example, a relatively small ! (large noise) will result in more fre-
quent updates. As large noises can cause sDPANT to trigger an
update early before enough data has been placed in the secure
cache. As a result, a relatively small ! will lead to a correspond-
ingly small 4∗, which essentially produces smaller query errors.
Additionally, when ! reaches a relatively large level, its e#ect on
sDPANT’s update frequency becomes less signi!cant. Increasing
! does not a#ect 4∗ much, but causes a decrease in the amount of
deferred data (bouned by / ( 16 log %' ) as shown in Theorem 6). This
explains why there is a decreasing trend of sDPANT’s L1 error after
! reaches a relatively large level. Nevertheless, both protocols show
a privacy-accuracy trade-o#, meaning that users can actually adjust
privacy parameters to achieve their desired accuracy goals.
Observation 4. DP protocols have similar privacy-e#ciency
trade-o$. Both DP protocols show similar trends in terms of ef-
!ciency metrics (Figure 5b and 5d), that is when ! increases, the
QET decreases. It is because with a relatively large ! , the number
of dummy data included in the view will be reduced, thus resulting
in a subsequent improvement in query e"ciency. As such, DP pro-
tocols also allow users to tune the privacy parameter ! in order to
obtain their desired performance goals.
7.3 Comparison Between DP Protocols
We address Question-3 by comparing the two DP protocols over
di#erent type of workloads. In addition to the standard one, for
each dataset, we create two additional datasets. First, we sample
data from the original data and create a Sparse one, where the total
number of view entries is 10% of the standard one. Second, we
process Burst data by adding data points to the original dataset,
where the resulting data has 2× more view entries.
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Figure 6: DP protocols under di$erent workloads.

Observation 5. sDPTimer and sDPANT show accuracy advan-
tages in processing Sparse and Burst data, respectively. Accord-
ing to Figure 6, sDPTimer shows a relatively lower L1 error in the

Sparse group than sDPANT. It is because it can take a relatively long
time to have a new view entry when processing Sparse data. Apply-
ing sDPANTwill cause some data to be left in the secure cache for a
relatively long time. However, sDPTimer’s update schedule is inde-
pendent of the data workload type, so when the load becomes very
sparse, the data will still be synchronized on time. This explains
why sDPTimer shows a better accuracy guarantee against sDPANT
for sparse data. On the contrary, when the data becomes very dense,
i.e., there is a burst workload, the !xed update rate of sDPTimer
causes a large amount of data to be stagnant in the secure cache.
And thus causes signi!cant degradation of the accuracy guarantee.
However, sDPANT can adjust the update frequency according to
the data type, i.e., the denser the data, the faster the update. This
feature gives sDPANT an accuracy edge over sDPTimer when deal-
ing with burst workloads. On the other hand, both methods show
similar e"ciency for all types of test datasets.
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Figure 7: DP approaches under di$erent workload.
Additionally, we also compare the two protocols with varying

non-privacy parameters, i.e., and ? , where we !x the ! then change
, from 1-100, and correspondingly set ? according to , (As men-
tioned before, the average new view entries per moment are 2.7
and 9.8 for TPC-ds and CPDB data, respectively, thus we set ? to 3,
and 10, ). We test the protocols with three privacy levels ! = 0.1, 1
and 10 and report their comparison results in Figure 7.
Observation 6.When ! is small, twoDPprotocols have di$er-
ent biases in terms of accuracy and performance. According
to Figure 7a and 7d, when ! = 0.1, the data points for the sDPANT
locate in the upper left corner of both !gures, while the sDPTimer
results fall on the opposite side, in the lower right corner. This im-
plies that when ! is relatively small (privacy level is high), sDPANT
tends to favor accuracy guarantees more, but at the expense of a
certain level of e"ciency. On the contrary, sDPTimer biases the
e"ciency guarantee. As per this observation, if users have strong
demands regarding privacy and accuracy, then they should adopt
sDPANT. However, if they have restrictive requirements for both
privacy and performance, then sDPTimer is a better option. More-
over, the aforementioned deviations decrease when ! increases
(Figure 7b). In addition, when ! reaches a relatively large value,
i.e ! = 10, both DP protocols essentially o#er the same level of
accuracy and e"ciency guarantees.
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7.4 Evaluation with Di$erent 5
In this section, we investigate the e#ect of truncation bounds by
evaluating IncShrink under di#erent5 values. Since the multiplicity
of Q1 is 1, the 5 for answering Q1 is !xed to 1. Hence, in this
evaluation, we focus on Q2 over the CPDB data. We pick di#erent
5 values from the range of 2 to 32 and set the contribution budget
as 9 = 25 . The result is reported in Figure 8.
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Figure 8: Evaluations with di$erent truncation bound 5 .
Observation 7. As 5 grows from a small value, accuracy in-
creases and e#ciency decreases quickly. After 5 reaches a
relatively large value, sDPTimer and sDPANT exhibit di$er-
ent trends in accuracy, but the same tendency in e#ciency.
As per Figure 8, the average L1 error decreases when 5 grows
from 5 = 2. This is because when 5 is small, many true view
entries are dropped by the Transform protocol due to truncation
constraint, which leads to larger L1 query errors. However, when
5 reaches a relatively large value, i.e., greater than the maximum
record contribution, then no real entries are discarded. At this point,
increasing 5 only leads to the growth of injected DP noises. As we
have analyzed before, the accuracy under sDPANT can be better for
relatively large noise, but the accuracy metric will be worse under
sDPTimer method. On the other hand, dropping a large number
of real entries (when 5 is small) leads to a smaller materialized
view, which consequently improves query e"ciency. When 5 is
greater than the maximum record contribution, based on our anal-
ysis in Observation 4, keep increasing 5 leads to both methods to
introduce more dummy data to the view and causes its size to keep
growing. As such, the e"ciency continues decreasing.
Observation 8. The average Shrink execution time increases
alongwith the growth of5 , while the average execution time
of Transform tends to be approximately the same. The reason
for this tendency is fairly straightforward. The execution time of
both Transform and Shrink are dominated by the oblivious input
sorting. The input size of Transform only relates to the size of data
batches submitted by the users. Thus, changing 5 does not a#ect
the e"ciency of Transform execution. However, the input size of
Shrink is tied to 5 , so as 5 grows, the execution time increases.
7.5 Scaling Experiments
We continue to evaluate our framework with scaling experiments.
To generate data with di#erent scales, we randomly sample or repli-
cate the original TPC-ds and CPDB data (We assign new primary
key values to the replicated rows to prevent con$icts). According
to Figure 9, for the largest dataset, i.e., the 4× groups, the total MPC

time are around 24 and 6 hours, respectively for TPC-ds and CPDB.
However, it is worth mentioning that for the 4× group, TPC-ds
has 8.8 million and 1.08 million records in the two testing tables,
and CPDB has 800K and 2.6 million records for EFF08G'"H& and
E=G;6 tables, respectively. This shows the practical scalability of
our framework. In addition, the total query time for 4× TPC-ds and
4× CPDB groups are within 400 and 630 seconds, respectively.
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Figure 9: Scaling experiments

8 EXTENSIONS
We discuss potential extensions of the original IncShrink design.
Connecting with DP-Sync. For ease of demonstration, in the pro-
totype design, we assume that data owners submit a !xed amount
of data at !xed intervals. However, IncShrink is not subject to this
particular record synchronization strategy. Owners can choose
other private update policies such as the ones proposed in DP-Sync,
and can also adapt our framework. Additionally, the view update
protocol requires no changes or recompilation as long as the view
de!nition does not change. On the other hand, privacy will still be
ensured under the composed system that connects IncShrink with
DP-Sync. For example, assume the owner adopts a record synchro-
nization strategy that ensures !1-DP and the server is deployed with
IncShrink that guarantees !2-DP with respect to the owner’s data.
By sequential composition theorem [31], revealing their combined
leakage ensures (!1 + !2)-DP over the owner’s data. Similarly, such
composability can also be obtained in terms of the accuracy guar-
antee. For instance, let’s denote the error bound for the selected
record synchronization policy as I3 (total number of records not
uploaded in time). Then by Theorem 4 and 6, the combined system
ensures error bounds / (9I3 + 2,

'

√
2) and / (9I3 + 16, log %

' ) under
sDPTimer and sDPANT protocol, respectively.
Support for complex query workloads.We discuss how to gen-
eralize the view update protocol for complex query workloads, i.e.
queries that can be written as a composite of multiple relational al-
gebra operators. Apparently, one can directly replicate the design of
this paper to support complex queries, by re-designing Transform
protocol so that it computes the view tuples based on the speci!ed
query plan. However, there exists another design pattern that uti-
lizes multi-level “Transform-and-Shrink” protocol. For example, we
can disassemble a query into a series of operators and then con-
struct an independent "Transform-and-Shrink" protocol for each
individual operator. Moreover, the output of one "Transform-and-
Shrink" protocol can be the input of another one, which eventually
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forms a multi-level view update protocol. There are certain bene!ts
of the multi-level design, for instance, one can optimize the system
e"ciency via operator level privacy allocation [7]. Recall that in
Section 5.2 we discussed that the choice of privacy budget a#ects
the number of dummy records processed by the system, with a
higher proportion of dummy records reducing overall performance
and vice versa. To maximize performance, one can construct an
optimization problem that maximizes the e"ciency of all opera-
tors in a given query, while maintaining the desired accuracy level.
With a privacy budget allocation determined by the optimization
problem, each operator can carry out its own instance of IncShrink,
minimizing the overall computation cost while satisfying desired
privacy and accuracy constraints. Note that optimization details are
beyond the scope of this paper but may be of independent interest
and we leave the design of these techniques to future work.
Expanding to multiple servers. In what follows, we summarize
the major modi!cations that would extend our current design to
a J servers setup such that J ≥ 2. Firstly, the owners need to
share their local data using the (J ,J )-secret-sharing scheme, and
disseminate one share per participating server. In addition, for
all outsourced objects, such as the secure cache, the materialized
view, and parameters passed between view update protocols, must
be stored on the J servers in a secret shared manner. Secondly,
both Transform and Shrink protocol will be compiled as a general
MPC protocol where J parties (servers) provide their con!dential
input and evaluate the protocol altogether. Finally, when generating
DP noises, each server needs to contribute a random bit string to
the MPC protocol, which subsequently aggregates the J random
strings to obtain the randomness used for noise generation. Note
that our joint noise addition mechanism ensures to produce only
one instance of DP noise, thus expanding to J servers setting does
not lead to injecting more noise. According to [51, 52], such design
can tolerate up to J − 1 server corruptions.

9 RELATEDWORK
Secure outsourced database and leakage abuse attacks. There
have been a series of e#orts under the literature of secure out-
sourcing databases. Existing solutions utilize bucketization [40–42],
predicate encryption [59, 75], property and order preserving en-
cryption [2, 9, 12, 13, 66, 68, 69], symmetric searchable encryption
(SSE) [3, 11, 20, 26, 35, 45, 46, 48, 50, 67, 78], functional encryp-
tion [15, 74], oblivious RAM [6, 24, 28, 43, 65, 89], multi-party secure
computation (MPC) [6, 7, 14, 79], trusted execution environments
(TEE) [32, 70, 81, 87] and homomorphic encryption [16, 22, 34, 72].
These designs di#er in the types of supported queries and the
provided security guarantees. Although the initial goal was to con-
ceal the record values [2, 6, 9, 12, 13, 15, 40, 42, 59, 66, 69, 69, 75],
researchers soon discovered the shortcomings of this security as-
surance. Recent works have revealed that these methods may be
subject to certain leakage through query patterns [84, 88], access
patterns [27, 49] and query response volume [37–39, 49], which
makes them vulnerable to leakage-abuse attacks [10, 19]. Thus,
more recent works on secure outsourced databases not only con-
sider concealing record values but also hiding associated leak-
ages [3, 6, 7, 11, 20, 24, 28, 32, 35, 43, 45, 46, 50, 65, 67, 78, 87, 89].
Unfortunately, few of the aforementioned e#orts consider the po-
tential leakage when data is dynamic [3, 20, 35, 50]. Wang et al. [83]

formalize a general leakage named update pattern that may a#ect
many existing secure databases when outsourcing dynamic data.
Di$erentially-private leakage. Existing studies on hiding data-
base leakage with DP can be divided into two main categories: (i)
safeguarding the query results from revealing sensitive informa-
tion [1, 22, 25, 56, 60], and (ii) obscuring side-channel leakages such
as access pattern [7, 21, 50, 61, 73, 82], query volume [11, 67] and
update patterns [83]. The !rst category consists of works that en-
able DP query answering over securely provisioned (and potentially
dynamic) data. Since these e#orts typically focus solely on query
outputs, side-channel leakages are not considered or assumed to
be eliminable by existing techniques. Works in the second group
focus on hiding side-channel information with DP, which is per-
tinent to our study. Among those, [7] and [83] are the two most
relevant works to our study. [7] extends the work of [6], both of
which use MPC as the main tool to architect secure outsourced
databases. However, [6] fails to address some important leakages
associated with intermediate computation results (i.e., the size of
some intermediate outputs may leak sensitive information about
the underlying data). Thus, [7] is proposed to !ll this gap. [7] im-
plements a similar resizing technique as IncShrink that ensures
the volume leakage per secure operator is bounded by di#erential
privacy, however, their system is restrictively focused on processing
static data. [83] considers hiding update patterns when outsourc-
ing growing data with private update strategies. However, they
mandate that the update strategies must be enforced by trusted
entities, while IncShrink allows untrusted servers to privately syn-
chronize the materialized view. Additionally, [83] considers the
standard mode that processes queries directly over outsourced data,
which inevitably incurs additional performance overhead. Inter-
ested readers may refer to Sections 5.1 and 5.2, where we provide
more in-depth comparisons between IncShrink and [7, 83], and
highlight our technical contributions.
Bounding privacy loss. There is a series of work investigating ap-
proaches to constrain the privacy loss of queries or transformations
with unbounded stability [44, 54, 55, 62, 80, 85]. However these
works are conducted under the scope of standard databases rather
than secure outsourced databases. Moreover, most of the works
consider to bound the privacy loss of a single query or one-time
transformation [44, 62, 80, 85]. In this work, we consider constrain-
ing the privacy loss of a composed transformation, which may
contain an in!nite number of sub-transformations.

10 CONCLUSION
In this paper, we present a framework IncShrink for outsourcing
growing data on untrusted servers while retaining the query func-
tionalities over the outsourced data. IncShrink not only supports
an e"cient view-based query answering paradigm but also ensures
bounded leakage in the maintenance of materialized view. This is
achieved by (i) utilizing incremental MPC and di#erential privacy
to architect the view update protocol and (ii) imposing constraints
on record contributions to the transformation of view instances.
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