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We present a field study of snow settling dynamics based on simultaneous measurements9
of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale10
particle image velocimetry (SLPIV) system using natural snow particles as tracers is deployed11
to quantify the velocity field and identify vortex structures in a 22 m × 39 m field of view12
centered 18 m above the ground. Simultaneously, we track individual snow particles in a13
3 m × 5 m sample area within the SLPIV using particle tracking velocimetry (PTV). The14
results reveal the direct linkage among vortex structures in atmospheric turbulence, the spatial15
distribution of snow particle concentration, and their settling dynamics. In particular, with16
snow turbulence interaction at near-critical Stokes number, the settling velocity enhancement17
of snowparticles ismultifold, and larger thanwhat has been observed in previous field studies.18
SLPIV measurements show higher concentration of snow particles preferentially located on19
the downward side of the vortices identified in the atmospheric flow field. PTV, performed20
on high resolution images around the reconstructed vortices, confirms the latter trend and21
provides statistical evidence of the acceleration of snow particles, as they move toward the22
downward side of vortices. Overall, the simultaneous multi-scale particle imaging presented23
here enable us to directly quantify the salient features of preferential sweeping, supporting it24
as an underlying mechanism of snow settling enhancement in the atmospheric surface layer.25

Key words:26

1. Introduction27

Understanding the settling dynamics of inertial particles in turbulence is important for28
predicting particle transport in the atmosphere, such as aeolian transport of dust and sand29
(Durán et al. 2011), formation and growth of droplets and particle aggregates in clouds (Shaw30
2003), and precipitation of hydrometers, such as raindrops, graupels and snowflakes (Garrett31
et al. 2015; Nemes et al. 2017; Zeugin et al. 2020; Li et al. 2021). Numerous laboratory32
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experiments and numerical simulations have been conducted to investigate the effects of33
turbulence on the behavior of inertial particles. Two evident manifestations of particle-34
turbulence interaction mechanisms are the formation of particle clusters and the modulation35
of their settling velocity (Balachandar and Eaton 2010). These phenomena are observed in36
certain conditions depending on the turbulence (through the Kolmogorov time scale, g[),37
and on the particle size (Dp), density (d?) and aerodynamic properties, contributing to the38
definition of the particle response time, g? (Maxey and Riley 1983). The phenomena of39
clustering and enhanced settling can be described as follows: as particles preferentially40
concentrate in strain-dominated regions (e.g., in between vortices), they settle along the41
downward side of swirling motions as clusters. As a result, the fall speed of the particles on42
the downward side is increased. This mechanism is known as preferential sweeping (Wang43
and Maxey 1993). Studies have shown that the average settling velocity of inertial particles44
in turbulence can be enhanced significantly by the preferential sweeping mechanism (Wang45
and Maxey 1993; Yang and Lei 1998; Aliseda et al. 2002; Good et al. 2014; Falkinhoff et al.46
2020), in particular under critical conditions, i.e. when the Stokes number St = g?/g[ ≈ 147
(Yang and Lei 1998; Aliseda et al. 2002; Ferrante and Elghobashi 2003). There are also other48
mechanisms that have been described to hinder the settling of inertial particles in turbulence49
such as loitering (Nielsen 1993) and vortex trapping (Tooby et al. 1977), but they usually50
tend to be suppressed by preferential sweeping (Good et al. 2014; Rosa et al. 2016).51
Despite the large number of laboratory experiments and simulations, field measurements52

of inertial particles (e.g. snow particles, droplets, and dust) settling in the atmospheric53
turbulence are scarce. The lack of field evidence is mostly due to the fact that field54
measurements are experimentally challenging (Shaw 2003): local turbulent field conditions55
are difficult to parameterize, and the effects of particle interaction and flowReynolds numbers56
on non-Stokesian particle kinematics is far from being clear (see recent advancements by57
Petersen et al. (2019), Tom and Bragg (2019), and Falkinhoff et al. (2020)). Moreover,58
the implementation of particle-turbulence interaction mechanisms in predictive models of59
settling velocity at geophysical scales is also limited, since the field conditions (e.g. wide60
range of turbulence scales, complex particle shape) are often different from those reproduced61
in laboratory experiments and simulations.62
To enable spatially and temporally resolved flow measurements in the field, a super-large-63

scale particle image velocimetry (SLPIV), using natural snow particles as tracers, has been64
recently developed for studying the wake structure downstream of a utility scale wind turbine65
in the atmospheric boundary layer (Hong et al. 2014; Dasari et al. 2019; Abraham and Hong66
2020) and for the study of high Reynolds number wall turbulence (Toloui et al. 2014; Heisel67
et al. 2018). Using the similar setup, Nemes et al. (2017) quantified the settling trajectories68
of 87000 snow particles in a 4 m (width) × 7 m (height) field of view using particle tracking69
velocimetry (PTV), in parallel with a digital inline holography (DIH) system, to characterize70
the size and morphology of snow particles. In the absence of direct estimates of snow particle71
density, the acceleration probability density function (PDF) obtained by PTV was used to72
estimate the Stokes number and the aerodynamic particle response time of snow particles73
(Mordant et al. 2004; Bec et al. 2006; Ayyalasomayajula et al. 2006). Nemes et al. (2017)74
found that the settling velocity of snow particles measured using PTV showed multifold75
enhancements in the atmospheric turbulence, in comparison to the still-air terminal velocity76
Wp = g? ·6 predicted using the acceleration-based aerodynamic response time. Employing the77
same setup, Li et al. (2021) investigated the settling and clustering of snow particles under78
various turbulence and snow conditions. They observed intense clustering and enhanced79
settling velocity during near-critical Stokes conditions, showing statistical evidence of the80
correlation between enhanced settling velocity and local preferential concentration, thus81
indirectly supporting the preferential sweeping mechanism. Despite these major findings,82
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Figure 1: (a) The experiment setup of simultaneous super-large-scale PIV (SLPIV) and PTVmeasurements;
(b) sample images showing the fields of view of SLPIV (left) and PTV (right).

both contributions could not simultaneously provide flow measurements and trajectories of83
snow particles.84
In the present study, we leverage on the ability of SLPIV to measure large scale flows85

and PTV to observe and track individual particles, allowing us to unveil the direct, local,86
linkages between coherent vortex structures, snow concentration distribution, and settling87
velocity at Re_ ∼ O(103). We quantify here both the preferential concentration around88
vortices and enhanced settling velocity on the downward side of vortices, thus highlighting89
the fundamental mechanism of preferential sweeping. The experiment setup, atmospheric90
conditions, and turbulence properties are introduced in §2. In §3, results are presented for91
the quantification and visualization of preferential sweeping mechanism. Conclusions and92
discussion follow in §4.93

2. Methodology94

2.1. Field experiment setup95

The field deployment was conducted to acquire data on Jan. 13, 2020 between 18:00 and96
21:00 local time, at the Eolos Wind Energy Research Field Station in Rosemount, MN. The97
light sheet-based super-large-scale particle image velocimetry (SLPIV) and particle tracking98
velocimetry (PTV), described in Hong et al. (2014) and Nemes et al. (2017), respectively,99
have been applied to capture the turbulent flow field, the trajectories and the concentration100
distribution of snow particles. We used a 5-kW search light with a curved mirror expanding101
the beam vertically into a light sheet to illuminate the snow particles. For our current102
measurements, the light sheet thickness is restricted to be 10 cm (different from our103
previous measurements with 30 cm diameter light beam) at the ground and it increases104
to about 12 cm at 10 m considering the divergence angle of our search light. The light105
sheet was oriented to be parallel with the average wind direction and minimize the out-of-106
plane motion. Throughout the deployment, the instantaneous wind direction relative to the107
light sheet varied from -25 degrees to 15 degrees. An 11-minute duration dataset has been108
selected for the measurement presented in this paper: within the selected period of time the109
wind direction was stable and well-aligned with the light sheet direction with a deviation110



4

Figure 2: (a) Instantaneous flow field sample from SLPIV; (b) and snow particle trajectory samples from
PTV.

of less than five degrees, and the snowfall intensity was steady, providing adequate seeding111
density of around 150 snow particles per m2.112
ANikon D600 (Nikon Inc.) camera and a Sony A7RII (Sony Corp.) camera were equipped113

to record the overall flow field at 30 fps and 1080 × 1920 pixel2, and the motion of snow114
particles at 120 fps and 720 × 1280 pixel2 respectively (referred as SLPIV and PTV in the115
following sections). The start time of each recording for both cameras is documented, and116
a large-scale turbulent structure visible as a void at the beginning of both videos is used to117
further confirm the synchronization of the two datasets. Both cameras were placed on tripods118
with measured tilt angles from the horizontal direction (table 1). The relative locations of the119
two cameras and the light sheet are illustrated in figure 1a with the defined coordinate system120
(x, y, z) and corresponding velocity components (u, v, w). The specifications (e.g. duration,121
field of view (FOV) elevation, size and distance to the camera, etc.) for the two cameras are122
shown in table 1.123
Sample images for SLPIV (Nikon camera) and PTV (Sony camera) are shown in figure124

1b, and sample results are shown in figure 2. PIV analysis is conducted using LaVision Davis125
8.2.0. A multi-pass setting was adopted with a final pass of 32 × 32 pixel2 and 50% overlap.126
Around 700 vectors are obtained from each image pair. For PTV, we apply the learning-based127
trackingmethod fromMallery et al. (2020) using a long short-termmemory (LSTM) network128
to acquire individual trajectories. Specifically, we first implement tracking methods from129
Crocker and Grier (1996) and Ouellette et al. (2006) to our PTV data. However, due to130
the lower quality of field data and relatively high particle concentration, the conventional131
methods generate substantially less tracks compared to those can be determined through132
manual examination, potentially causing sampling bias (i.e., preferentially shorter tracks,133
sampling only downward tracks). Therefore, good quality trajectories generated by the134
conventional methods are manually selected as the training set for the learning-based135
method. After iterations of training process, the well-trained model generates significantly136
more tracks regardless of their direction (upward or downward). In total, there are around137
460,000 trajectories longer than ten times of the Kolmogorov time scale being identified138
by the tracking algorithm. After the flow field and trajectories are obtained, we further139
identify the distribution of potential vortical structures in the flow field based on swirling140
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SLPIV/PTV setup

Deployment
datasets

Duration
(min)

Elevation
(m)

FOV size
(m2)

Resolution
(mm/pixel)

Camera angle
(deg.)

Camera-to-light
distance (m)

SLPIV 11 18.4 39.2 × 22.1 20.5 19.9 52.5
PTV 11 7.9 5.3 × 3.0 4.15 18.4 19.1

Table 1: Summary of key parameters of the SLPIV and PTV measurement setups for the
deployment dataset used in the present paper.

U Drms Frms '1 !OB *g I/!OB L g! n [ g[ _ Re_
m/s m/s m/s - m m/s - m s cm2/s3 mm ms mm -
5.47 1.07 0.64 0.16 1651 0.48 0.0062 6.22 5.79 355 0.51 19.4 80.7 6478

Table 2: Estimated meteorological and turbulence conditions from the sonic anemometer
at I = 10m. See the text for the definition of the symbols.

strength (Zhou et al. 1999) and calculate the Lagrangian velocity and acceleration using the141
trajectory information. The swirling strength is defined as _28 , the imaginary part of the142
complex eigenvalues of the velocity gradient tensor (D = ∇u). Under two-dimensional143
measurement, D have either two real eigenvalues (_A ) or a pair of conjugate complex144
eigenvalues (_2A ± 8_28), where _2A and _28 are absolute values. Thus, the vortices can be145
identified with finite _28 (Adrian et al. 2000). Three threshold values of the swirling strength146
(0.4 s−1, 0.5 s−1 and 0.65 s−1) are applied for detecting the vortices, and the concentration147
and settling velocity are analyzed using all three threshold values. In the result section, we148
will show the preferential concentration and enhanced settling with the 0.4 s−1 threshold,149
and figures with the other thresholds will be shown in the supplementary material.150
Following the same procedures as in our previous studies (Toloui et al. 2014; Hong et al.151

2014), the traceability of snow particles for our SLPIV measurement is analyzed. Specif-152
ically, the spatial resolution of the SLPIV is usually limited by the smallest interrogation153
window size and light sheet thickness (whichever is larger), i.e., ; = 0.66 m in our current154
SLPIV measurements. Correspondingly, the flow time scale that our measurements can155
resolve is estimated as g 5 = ;/Drms = 0.62 s, where Drms = 1.07 m/s is the r.m.s. of the156
streamwise velocity fluctuations. Thus, the particle Stokes number based on the particle157
response time (g? = 1.7− 20 ms, from acceleration PDF in §3.1) and g 5 is estimated to be158
St = g?/g 5 = 0.0028−0.032, much smaller than the typical threshold for good traceability159
(i.e., 0.1 according to Tropea et al. (2007)). As a result, turbulent flows above the spatial and160
temporal resolution limits (i.e., 0.66 m and 0.62 s, respectively) are reasonably captured161
in our measurements. Note also that the mean settling velocity of the snow particles is162
subtracted from the SLPIV flow field.163
A digital inline holography (DIH) (Nemes et al. 2017) system was deployed, and around164

1580 snow particles are captured during the 11 min of the SLPIV and PTV data. The mean165
snow particle equivalent diameter is measured to be 0.39 mm with a standard deviation of166
0.29mm, and the average aspect ratio of the fitted minor and major ellipsoid axis is 0.62. The167
sample volume for the DIH measurement is 42 cm3, thus the mean snow particle number168
concentration is around 28,460 m−3, and the volume fraction is 3.8 × 10−6.169
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2.2. Atmospheric turbulence conditions170

The atmospheric and turbulence conditions during the deployment are determined using a171
meteorological tower instrumented with wind velocity, temperature and humidity sensors at172
50 m downstream of the light sheet. Four sonic anemometers (20 Hz sampling rate, 5.8 cm173
horizontal measurement path length and 10 cm vertical measurement path length,CSAT3,174
Campbell Scientific) are installed at elevations of 10, 30, 80 and 129 m, and six cup-and-vane175
anemometers (1 Hz sampling rate) are installed at elevations of 7, 27, 52, 77, 102 and 126176
m. Note that the measurement uncertainty of the sonic anemometer is ±0.08 m/s (Toloui177
et al. 2014), corresponding to 1.4% of the average wind speed. Thus, we estimate that the178
uncertainties for the turbulence properties would be less than 4%. The key parameters are179
listed in table 2. The atmospheric stability is estimated using the bulk Richardson number180
'1 and the Monin-Obukhov length !OB:181

'1 = −|6 |Δ\EΔI/
(
\E

[
(Δ+# )2 + (Δ+, )2

] )
(2.1)182

!$� = −*3
g\E/^6F′\ ′E (2.2)183

In the equations, g is the gravitational acceleration; \E is the virtual potential temperature;184
+# and +, are the average wind velocity components to the North and West respectively185
measured by the sonic anemometers; ^ is the von Kármán constant;*g is the shear velocity186

estimated from the Reynolds stresses (Stull 1988), where *g =
(〈
+ ′
#
+ ′
/

〉2 +
〈
+ ′
,
+ ′
/

〉2
)1/4

.187

The average velocity differences are calculated from the sonic anemometers at top (129 m)188
and bottom (10 m) which yields a height difference Δz of 119 m. The Monin-Obukhov189
length and all other turbulence conditions are measured with the data from the 20 Hz sonic190
sensor at 10 m. For the duration of the analyzed dataset, the bulk Richardson number and the191
Monin-Obukhov length indicate that the atmospheric boundary layer during the experiment192
is near-neutrally stratified (typically for the near neutrally stratified atmospheric boundary193
layer, '1 ranges from 0 to 0.25 and stability parameter (I/!OB) ranges from 0 to 0.1194
(Högström et al. 2002; Stull 1988)).195
The turbulence conditions are estimated using the methods described in Nemes et al.196

(2017) and Li et al. (2021). Velocity data from the sonic anemometer at 10 m are used for197
the flow characterization, consistent with the sample area elevation ranges of the SLPIV198
(from 3 m to around 40 m) and PTV (from 5.3 m to 10.6 m) measurements. The integral199
time scale g! and the length scale L are estimated based on the temporal autocorrelation200
function dDD:201

dDD (g) = 〈D′(C)D′(C + g)〉 /D′2 (2.3)202

g! =

∫ )0

0
dDD (g)3g (2.4)203

! = Drmsg! (2.5)204

In these equations, t is the variable time, g is the time difference, and )0 is the first zero-205
crossing point the auto-correlation function. The turbulence dissipation rate n is estimated206
using the second-order structure function of the streamwise velocity component, applying207
the Taylor hypothesis to convert the measured time series into spatial velocity variations:208
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�11(g) =
〈
[D′(C + g) − D′(C)]2

〉
(2.6)209

�11(A) = �2n
2/3A2/3 (2.7)210

With the Kolmogorov prediction for the second-order structure function in the inertial211
range (equation 2.7), where�2 is a constant of around 2 in high-Reynolds number turbulence212
(Saddoughi and Veeravalli 1994), we can estimate the turbulence dissipation rate n =213 (
�11/

(
�2A

2/3) )3/2. Furthermore, we calculated the Kolmogorov time and length scale,214

g[ = (E/n)1/2 and [ =
(
E3/n

)1/4, the Taylor microscale, _ = Drms(15E/n)1/2, and the215
Reynolds number, Re_ = Drms_/a, where a is the kinematic viscosity of air, and Drms is the216
root mean square (r.m.s.) of the velocity fluctuations D′.217

3. Results218

3.1. Snow particle acceleration and Stokes number219

The snow particle acceleration and vertical velocity obtained fromPTV analysis are evaluated220
in this section. Figure 3a shows the probability density function (PDF) of the fluctuations of221
the snow particle acceleration normalized by their r.m.s. value. The PDF is compared with222
data from previous laboratory experiments and numerical simulations of tracers and inertial223
particles in isotropic turbulence (Mordant et al. 2004; Bec et al. 2006; Ayyalasomayajula224
et al. 2006). In figure 3a, the exponential tail of the in-plane acceleration PDF curve of snow225
particles lies in between the curves with Stokes numbers of 0.16 and 1.01 from Bec et al.226
(2006), while a comparison of streamwise acceleration with Ayyalasomayajula et al. (2006),227
in a similar boundary layer flow, seem to narrow the range to 0.09-0.15. As discussed in228
Nemes et al. (2017), the acceleration kurtosis manifests the tendency of inertial particles to229
experience only a portion of the high acceleration events sustained by fluid parcels. The direct230
numerical simulation (DNS) by Ireland et al. (2016) showed that the kurtosis of acceleration231
becomes insensitive to the change of Reynolds number with St > 0.1 and Re_ > 398 (e.g.,232
as Re_ changes from 398 to 597 at St = 0.1, the kurtosis of acceleration increases only233
3%, and the change becomes smaller at higher St). Therefore, following the reasoning in234
our previous studies (Nemes et al. 2017; Li et al. 2021), we extend the comparison of the235
acceleration PDFs to the atmospheric turbulence case with high Re_ investigated here,236
and conservatively estimate the Stokes number in the range of 0.09-1.01.237
With the estimated St, the aerodynamic particle response time of the observed snow238

particles is predicted to be in the range from 1.7 ms to 19.6 ms, where g? = St · g[ , leading239
to a still-air terminal velocity defined by Wp = g? · 6 and estimated between 0.02 m/s and240
0.19 m/s. The estimated Stokes number indicates a near critical condition (St ∼ O(1)),241
anticipating the occurrence of preferential concentration (clustering) and sweeping, as well242
as enhanced settling velocity. In figure 3b, we compare the vertical velocity distribution (solid243
line) from PTV (the average vertical velocity (〈F?〉) of 0.73 m/s is indicated as a dashed line)244
with the estimated terminal velocity range accounting for the uncertainty in Stokes number245
(grey region). The increase is evident and multifold (around seven times larger on average,246
〈F?〉/, ?). This enhancement is consistent with what has been observed in the previous247
study by Nemes et al. (2017) (around three times enhancement on average). However, since248
our estimated range for St is closer to the critical value, the observed enhancement here is249
higher.250
Note that the corresponding particle Reynolds number Re = 〈F?〉�/a based on the251

measured settling velocity and particle size is ∼16.8, implying that a non-Stokesian drag252
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Figure 3: (a) PDFs of in-plane snow particle acceleration from PTV (triangles), compared to St = 0 from
Mordant et al. (2004) (dots), and Bec et al. (2006) (St = 0.16, solid line; St = 0.37, dotted line; St = 1.01,
dash-dotted line; St = 2.03, dashed line); (b) comparison of the measured distribution (solid line) and average
(dashed line) of settling velocity with the estimated range of still-air terminal velocities (grey region).

correction is required. Due to the disk-like shape of the observed snow particles, the Schiller-253
Neumann approach based on the Reynolds-corrected sphere drag is not recommended, which254
in part justifies the estimation of Stokes number from the acceleration PDF with no explicit255
dependency on density, and size. The only option to account for snowmorphology is to use the256
semi-empirical j number approach proposed by Böhm (1989), corrected by Heymsfield and257
Westbrook (2010), and also employed in Nemes et al. (2017). The resulting parameterization258
leads to j = 997 and a drag coefficient of�D = 3.53, which is not unusual given the relatively259
low particle Reynolds number (Westbrook and Sephton 2017). It is important to stress that the260
j number accounts for the snow morphology effects on drag (Garrett et al. 2015; Dunnavan261
et al. 2019), not necessarily for the effect of ambient turbulence, which is the main point of262
this work.263

3.2. Preferential distribution of snow particle concentration264

Snow particle concentration around vortices in the flow is first evaluated using the SLPIV265
data. As shown in an instantaneous flow sample (figure 4a), the vortices are identified using266
the swirling strength derived from the velocity fields of SLPIV as described in detail in §2.1.267
Subsequently, the particle number concentration within and around the vortices is estimated268
using the image intensity (� (G, I, C)) of the SLPIV data. The estimation of concentration269
using image intensity is supported byRaffel et al. (2018)which shows that the image intensity270
of PIV is proportional to the concentration of particles with the same averaged diameters.271
However, factors such as stochastic light attenuation by particles within the light sheet272
and in between the light sheet and the cameras, as well as the power fluctuation of the273
search light might lead to non-linear relationship between the light intensity and local274
particle concentration (Kalt et al. 2007; Banko et al. 2019). Nevertheless, due to relatively275
low volume fraction, the light attenuation by particles between the light sheet and the276
cameras is not inferred to be dominant as compared to the other two factors. Furthermore,277
to minimize the spatial and temporal non-uniformity in background image intensity due to278
the decay of light intensity with height and its fluctuation over time, relative concentration279
�∗ = � (G, I, C)/� (G, I)10s,avg is defined according to Li et al. (2021), where � (G, I)10s,avg is an280
average of the intensity of images recorded in a 10 s moving window. Figure 4b shows the281
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Figure 4: (a) Swirling strength contour of an instantaneous sample (threshold 0.4 s−1 applied) with relative
flow velocity vectors (white arrows, subtracted by the convective velocity of 3.4 m/s of the prograde vortex
at the center left of the field of view). (b) Corresponding snow particle concentration colormap (�∗ is the
relative concentration) with vortices detected from (a). Note that the white dashed lines represent vortex
boundaries, red arrows indicate prograde vortices and blue arrow indicates the retrograde vortex, black circle
and arrow define the coordinate system of the local vortex.

relative concentration of the flow sample corresponding to figure 4a. In particular, we observe282
that snow concentration is low within the vortex cores. The phenomenon is considered to be283
a result of the inertia bias (Maxey 1987), i.e., inertial particle trajectories are biased towards284
the region of low vorticity. Remarkably, for all three strong vortices (i.e., vortices with high285
swirling strength values) highlighted in the figure, including both prograde and retrograde286
vortices, the particle concentration is preferentially higher on the downward flow side of the287
vortices (referred to as preferential concentration hereafter).288
It is worth noting that the relative concentration map in figure 4b seems to suggest the289

clustering of snow particles in the atmospheric surface layer similar to those studied in290
our previous work (Li et al. 2021). However, the clusters in figure 4b are on smaller scales291
and do not exhibit a clear preferential orientation in comparison to those presented in Li292
et al. (2021) with the January 2019 dataset. The difference is mainly caused by relatively293
lower turbulence and snow concentration in the current cases which lead to a weaker294
interaction between particles and turbulence. In addition, since the current study focuses295
on elucidating the connection between the vortical structures in the turbulent flow and296
settling of individual snow particle, the PTV was designed to have a more focused field297
of view (3 m × 5 m, smaller than the integral scale), limiting our ability to quantify the298
large-scale clusters that extend beyond our region of interest.299
To substantiate the observation of preferential concentration associated with presence300

of vortices in the flow, the ensemble-averaged concentration contours are calculated for301
prograde (28,700 prograde vortices identified) and retrograde vortices (9,700 retrograde302
vortices), respectively. As shown in figure 5, the averaged concentration is determined for303

both the central region defined as the region within half effective radius ('eff =
√
�/c, where304

A is the area of the vortex region detected through the swirling strength criterion) from the305
center of the vortex, and in the rest of proximity defined as the region from 0.7'eff to 1.4'eff306
from the center. The latter is divided into twelve angular sectors with angle of c/6. For307
both prograde (figure 5a) and retrograde vortices (figure 5b), it is observed that the particle308
concentration is higher on the downward side, than that on the upward side and in the center309
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Figure 5: Comparison between the ensemble-averaged concentration from the SLPIV dataset in the central
region (dashed lines), defined as the region within half 'eff from the vortex center where 'eff is the effective
radius of the vortices, and in the proximity (solid lines), defined as the region from 0.7'eff to 1.4'eff from
the center spanning a circumferential angle range of c/6, for (a) prograde vortices, (b) retrograde vortices,
and (c) reference background. For each prograde/retrograde vortex, the reference background is defined as
a circular region that has a radius equal to the 'eff of the prograde/retrograde vortex with a center at a
randomly selected location in the SLPIV measurement field of view.

of vortices. For reference, the averaged concentration distribution in the background (figure310
5c) does not exhibit any appreciable preferential concentration. For each prograde/retrograde311
vortex, the reference background is defined as a circular region that has a radius equal to312
the 'eff of the prograde/retrograde vortex with a center at a randomly selected location in313
the SLPIV measurement field of view. In addition, the averaged particle concentration314
is relatively higher at the bottom of the downward side for retrograde vortices, possibly315
due to gravity and downward fluid motion causing a stronger preferential concentration316
effect. But for prograde vortices, relative concentration is more uniformly distributed on317
the downward side. Such a discrepancy can be explained by the different organizations318
of prograde and retrograde vortices in the atmospheric surface layer. Specifically, the319
prograde vortices tend to form in packets (Christensen and Adrian 2001), predominantly320
located in the internal shear layers in atmospheric surface layer, the interaction between321
snow particles around a certain prograde vortex with adjacent vortices may smooth out322
the particle concentration on the downward side.323
It is well known that preferential concentration in turbulent flows is a multi-scale324

phenomenon. As shown in (Baker et al. 2017), particles start clustering at the Kolmogorov325
scale when they preferentially sample the high strain regions in the flow. As the clusters326
yield larger response time than that of individual particles, they can subsequently interact327
with larger scale flow structures and grow in size up to the integral scale (see examples in328
Li et al. (2021)). However, due to the limit of the SLPIV resolution, we can only resolve329
vortices above a certain size (∼ 66 cm) in our measurements. Therefore, the preferential330
concentration statistics shown in figure 5 are captured only by sampling large, energetic331
vortices leaving a signature several times larger than the Taylor microscale in our coarsely332
resolved turbulent flow. Nevertheless, the estimated Stokes number in §3.1 (with the upper333
range close to the critical condition) suggests strong interaction between the particles and334
flow structure at the Kolmogorov scales, causing preferential concentration and clustering335
that cannot be resolved with the current SLPIV measurement. We thus acknowledge336
resolving a limited range of scale contributing to particle clustering, but capturing the key337
mechanism governing preferential sweeping at the resolved scale.338
Furthermore, we examine the images from the PTV measurements in which individual339

snow particles can be counted and tracked within and around the vortices (seemovies 1 and340
2 in the supplementary material), supporting the observation of preferential concentration341
based on the change in the intensity of images from SLPIV. We first select the vortices342
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Figure 6: (a) A schematic showing the box counting process to determine the change of snow particle
concentration due to the presence of a vortex (gray solid and dashed contours) in the PTV sample area
(black solid line). The vortex is determined from the corresponding SLPIV measurement at the same time
instant as the PTV. A fixed counting box (black dashed line, 100 × 200 pixel2) is selected at the center of the
PTV area. The relative displacement (red arrow) between the vortex center (Gvor, Ivor) and box center (Gbox,
Ibox) is defined by equation 3.1. (b) The ensemble-averaged particle concentration (〈�∗〉0.6'eff ) at different
relative displacements with respect to the vortex center. In total, 550 prograde (red line) and 380 retrograde
(blue line) vortices are selected for the ensemble average, respectively. The bin of relative displacement (Δ3)
used in ensemble average has a width of 0.6'eff and spaced 0.4'eff from adjacent bins (∼33% overlap). The
bin size and spacing are determined to ensure sufficient statistical convergence of the data.

determined from the corresponding SLPIV measurements at the same time instant as the343
PTV with overlapping field of view. Most of these vortices have an equivalent diameter &1.3344
m and are only partially inside the PTV images as they move across the small (relative to345
SLPIV) sample area of PTV. As a result, the previous method (that for SLPIV) for estimating346
particle concentration cannot be applied. Instead, as illustrated in figure 6a, a box counting347
method is used to determine the change of snow particle concentration due to the presence348
of vortices in the PTV sample area (note that the uncertainty of particle concentration349
associated with the changing light sheet thickness within the PTV field is estimated to be350
less than 9%). A fixed counting box (100 × 200 pixel2) is selected at the center of the PTV351
area. When the vortex appears in the sample area of PTV, the total number of snow particles352
in the box is counted. The relative displacement (d) between the vortex center (Gvor, Ivor) and353
box center (Gbox, Ibox) is calculated as:354

3 =
Gbox − Gvor
|Gbox − Gvor |

√
(Gbox − Gvor)2 + (Ibox − Ivor)2 (3.1)355

Particularly, the sign of the relative displacement indicates which side the particles are located356
with respect to the moving vortex. Similar to that in the SLPIV data processing, to account for357
the variation of snow particle concentration in the background, the relative concentration for358
PTV data (�∗) is estimated using total particle number counts in the box at each time instant359
divided by the averaged total particle counts for the time duration during which each vortex360
is present in the sample area of PTV. Subsequently, the ensemble averaged �∗ in a bin of a361
width of 0.6'eff (〈�∗〉0.6'eff ) at different relative displacements is determined for prograde362
(550 in total) and retrograde (380 in total) vortices, respectively (figure 6b). As the figure363
shows, for prograde vortices, the 〈�∗〉0.6'eff is evidently higher on the downward side of the364
vortices (positive 3). For retrograde vortices, the 〈�∗〉0.6'eff also yields larger values on the365
downward side (negative 3), though the difference in 〈�∗〉0.6'eff between two sides appears366
to be smaller than that observed for prograde vortices. To determine the significance of the367
difference in 〈�∗〉0.6'eff , we conduct a t-test to the concentration distribution at the two sides368
of vortices: the particle concentration on the downward side is in general 13%-22% higher369
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(at 95% confidence level) than that at the upward side for both prograde and retrograde370
vortices. These trends (see also the supplementary material) provide further support of371
the preferential concentration. Nevertheless, due to the limited number of vortices that can372
be simultaneously detected by SLPIV and PTV, the standard deviation of the 〈�∗〉0.6'eff373
presented in the current analysis is considerable. In addition, we would like to point out374
that the statistical signature of preferential concentration observed in PTV is likely to be375
underestimated potentially due to the relatively large counting box size used in the analysis376
in comparison to the size of vortices.377

3.3. Enhanced settling velocity due to preferential sweeping378

In this subsection, we investigate how the settling velocity of snow particles is influenced by379
the presence of the vortical structures in the flow. Consistent with the method presented in380
the last section, the vortices are first identified using SLPIV data. Subsequently, the particle381
trajectories around these identified vortices are extracted fromPTV for the following analysis.382
For the prograde vortex (figure 7a), the settling velocity of particles increases when moving383
toward the downward side (right side in the sample) of the vortex. Similarly, for the retrograde384
vortex (figure 7c), the settling of snow particles slows down; some particles are even lifted385
upward, as they travel to the upward side (right side in the sample) of the vortex. Both cases386
illustrate clearly higher settling velocities of the snow particles situating on the downward387
side of vortices.388
To further substantiate these observations, the average vertical accelerations conditioned389

on the downward (0?,−) and the upward (0?,+) sides of prograde and retrograde vortices are390
calculated, and the histograms of settling velocity difference between the downward (F?,−)391
and upward (F?,+) sides of vortices, i.e., F?,− − F?,+, normalized by the ensemble average392
snow particle vertical velocity (〈F?〉 = 0.73 m/s) are presented for all prograde (figure393
7b) and retrograde (figure 7d) vortices, respectively. The 0?,−, 0?,+, F?,− and F?,+ are394
calculated by averaging the vertical velocities of particles within boxes ranging from 0.5'eff395
to 1.5'eff to the center of vortices in the x direction and covering the whole diameter (2'eff)396
in the vertical direction at the two sides of vortices. Specifically, for prograde vortices, the397
two conditionally averaged accelerations are 0?,− = −0.16 ± 2.20m/s2 on the downward398
side and 0?,+ = 0.0065 ± 2.54m/s2 on the upward side. While for retrograde vortices,399
0?,− = −0.33± 2.93m/s2 and 0?,+ = 0.12± 2.09m/s2. These conditional averages support400
the fact that particles on the downward side of vortices would accelerate with the flow401
and particles falling on the upward side would decelerate, or even be lifted up. Note that402
the variability in acceleration (e.g. the standard deviation) is much higher than that for403
the settling velocity due to the higher order derivative in the acceleration calculation.404
Moreover, the settling velocity differences display a near Gaussian distribution with the405
mean value above zero. As compared to Gaussian distribution with the same mean value406
and standard deviation, the PDFs of settling velocity difference exhibit higher probability407
near the mean values and heavier tails on the right side for both prograde and retrograde408
vortices, indicating statistically higher settling velocities on the downward side of vortices.409
Specifically, about 78% of the prograde vortices yield a higher settling velocity on the410
downward side with an average settling velocity differences of 0.56〈F?〉, and the proportion411
is about 73% for the retrograde vortices with an average settling velocity difference of412
0.48〈F?〉.Note that the total number of vortices identified in figure 7 is larger than that for413
particle concentration in figure 6. It is because we identify individual vortex from the PTV414
field for settling velocity analysis, while vortices selected for preferential concentration in415
figure 6 are tracked across the region of interest.416
However, not every single occasion is observed with higher settling velocity at the417
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Figure 7: (a, c) Samples of snow particle trajectories around a prograde vortex (a) and a retrograde vortex
(c) (see also movie 1 and 2 uploaded in the supplementary material). Black dashed lines represent vortex
boundaries, and trajectories are colored based on the dimensionless times C∗, defined as the difference
between the timestamps of snow particles and that of a selected vortex at one time instant normalized
by the Kolmogorov time scale. (b, d) Histograms of the differences between the settling velocities on the
downward sides and upward sides for (b) prograde and (d) retrograde vortices (A total of 4300 prograde and
1700 retrograde vortices are identified), normalized by the average vertical velocity 〈F?〉 of snow particles
tracked with zeros marked by the dash-dotted lines, and the dashed lines represent the average velocity
difference in each case. The bin size is chosen to be one fifth of 〈F?〉. The histograms are compared with
the Gaussian distributions marked by the solid lines.

downward side of vortices, due to the fact that the vortices detected in the current study418
are planar projections of highly complex three-dimensional vortices. In addition, the419
snow particles interacting with one vortex can also be affected by adjacent vortices in420
atmosphere, which are usually weaker and less appreciable in the SLPIV data as compared421
to the vortices analyzed. Nevertheless, we observe an increasing percentage of events422
showing such a trend when we sample vortices with higher swirling strength and the423
percentage for prograde vortices is consistently higher than that for retrograde vortices.424
Such discrepancies are likely due to the difference in self-organization characteristics for425
prograde and retrograde vortices (i.e., prograde vortices are found to be predominantly426
located in the proximity of internal shear layers as shown in the field PIV measurement427
in the atmospheric surface layer by Heisel et al. (2018)). Therefore, prograde vortices428
could have a cumulative and stronger effect on the enhanced settling of nearby snow429
particles compare to retrograde vortices. Nevertheless, with the observed preferential430
concentration from §3.2 and statistically higher settling velocity on the downward side431
of the vortices, we conclude that under near critical conditions (St ∼ O(1)) observed in our432
field measurements, preferential sweeping plays a significant role in controlling the settling433
velocity of hydrometeors in the atmospheric turbulence.434
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4. Conclusions and discussion435

In this paper, we present the first field study of snow settling dynamics based on simultane-436
ous measurements of the atmospheric flow field using a super-large-scale particle image437
velocimetry (SLPIV) and snow particle trajectories using particle tracking velocimetry438
(PTV) within the SLPIV sample area. Our results reveal the direct linkage among the439
coherent vortex structures in the atmospheric turbulence, and the concentration distribution440
and settling dynamics of snow particles in the field. Specifically, we observe a settling441
velocity enhancement of around seven folds on average compared to the estimated still-air442
terminal velocity. This value is larger than what has been observed in our previous field443
study (Nemes et al. 2017), potentially due to the fact that the Stokes number associated with444
the snow particles in the present deployment is closer to the critical condition (St ∼ O(1)).445
Using the SLPIV, we are able to detect the strong vortices present in the atmospheric446
turbulent flow, and we show that the snow concentration (represented by the variation in the447
particle image intensity in SLPIV) is preferentially higher on the downward side for both448
prograde and retrograde vortices in the flow. This observation is further substantiated by449
counting individual snow particles around the vortices using PTV data. The result indicates450
an average of 18% higher concentration on the downward side of the detected strong vortices451
present in our study. In addition, the samples of snow particle trajectories around vortices452
from PTV demonstrate that snow particles accelerate as they move toward the downward453
side of vortices and decelerate or even are lifted upward when traveling to the upward side.454
Based on the histograms of snow settling velocity from PTV, we show that the snow particles455
on the downward side of vortices yield a statistically higher settling velocity than that at the456
upward side, with an average difference of about 52% of the mean settling velocity.457

Our results provide direct evidence and underlying mechanisms for the preferential458
concentration and preferential sweeping during snow particles settling in the atmospheric459
surface layer. While the presented results focus on the quantification of particle-turbulence460
interaction mechanisms at the scale of individual vortices, we recognize that atmospheric461
turbulence in the near-neutrally stratified boundary layer in our study contains vortices over462
a broad range of scales and intensity. Therefore, we hypothesize that the preferential paths of463
highly concentrated particles along layers of vortices are likely to produce a cumulative464
effect on enhancing the settling of the snow particles. This conceptual framework has465
not been considered in current snow settling models. Under this framework, our observed466
results of preferential concentration and preferential sweeping may be critical to inform a467
stochastic model to reproduce the observed fall speed under specific micrometeorological468
conditions. By incorporating the framework, it may be possible to model the settling of469
snow particles starting from the still-air terminal velocity with specific drag coefficient and470
sampling a population of vortices consistent with the inertial range in the air column. Under471
the assumption of accelerated preferential paths, each snow particle has a large probability to472
sample a number of vortices, and the effects of both the drag force and vortex flow sweeping473
will progressively enhance the settling velocity to a certain value. With this perspective, it is474
reasonable to hypothesize that the multifold increase in observed settling velocity compared475
with the still-air terminal velocity, as well as its large variability, is a result of the cumulative476
effect of particles settling through the turbulent air column occupied by many vortices. In477
addition, the disparity in settling velocities observed on the downward and upward sides of478
vortices of 0.4 m/s might also be directly affected by the azimuthal velocity of the flow479
around vortices, manifested in vertical velocity fluctuations that are more readily available480
from the measured flow field.481

In the end, we acknowledge the uncertainties involved in our concentration measurement482
using box counting from the PTV data. Such uncertainties are largely caused by the483



15

limited data of synchronized SLPIV and PTV measurements from our field deployment.484
Nevertheless, the main observations related to the snow particle concentration and settling485
dynamics present in our study are still statistically significant. A second relevant uncertainty486
is in the estimate of the snow particle velocity in still air. While the Stokes number range is487
conservatively defined, it would still be important to provide a direct estimate of the snow488
particle density, combining measurements of single particle volume with the weighing of489
particle ensemble in time. We expect that more converged trends can be obtained with an490
increasing number of deployments. In particular, we expect to extend our current field PTV491
to a three-dimensional imaging system using multiple cameras. Such upgraded system will492
allow us to quantify, more accurately, the particle concentration and distribution, particle493
setting kinematics (e.g., curvature of the trajectories) and dynamics (e.g., acceleration,494
inertial response) associated with the presence of three-dimensional vortex structures in495
the atmospheric turbulence.496

Supplementary data. Supplementary material and movies are available at ...497

Acknowledgements. The authors thank engineers from St Anthony Falls Laboratory, including J. Tucker, J.498
Mullin, C. Ellis, J. Marr, C. Milliren and D. Christopher, for their assistance in the experiments.499

Funding. This work is supported by the National Science Foundation (Program Manager, Nicholas500
Anderson) under grant NSF-AGS-1822192.501

Declaration of interests. The authors report no conflict of interest.502

Author ORCID.503
Jiaqi Li https://orcid.org/0000-0002-1201-7489504
Aliza Abraham https://orcid.org/0000-0002-6584-3661505
Michele Guala https://orcid.org/0000-0002-9788-8119506
Jiarong Hong https://orcid.org/0000-0001-7860-2181507

REFERENCES

Abraham, A. and Hong, J. 2020Dynamicwakemodulation induced by utility-scalewind turbine operation,508
Appl. Energy, 257, 114003.509

Adrian, R. J., Christensen, K. T. and Liu, Z. C. 2000 Analysis and interpretation of instantaneous510
turbulent velocity fields, Exp. Fluids, 29 (3), 275-290.511

Aliseda, A., Cartellier, A., Hainaux, F. and Lasheras, J. C. 2002 Effect of preferential concentration512
on the settling velocity of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech., 468,513
77-105.514

Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. and Warhaft, Z. 2006515
Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence,516
Phys. Rev. Lett., 97 (14), 144507.517

Baker, L., Frankel, A., Mani, A. and Coletti, F. 2017 Coherent clusters of inertial particles in518
homogeneous turbulence, J. Fluid Mech., 833, 364-398.519

Balachandar, S. and Eaton, J. K. 2010 Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech.,520
42, 111-133.521

Banko, A. J., Villafañe, L., Kim, J. H., Esmaily, M. and Eaton, J. K. 2019 Stochastic modeling of522
direct radiation transmission in particle-laden turbulent flow, J. Quant. Spectrosc. Radiat. Transf.,523
226, 1-18.524

Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. and Toschi,525
F. 2006 Acceleration statistics of heavy particles in turbulence, J. Fluid Mech., 550, 349-358.526

Böhm, H. P. 1989 A general equation for the terminal fall speed of solid hydrometeors, J. Atmos. Sci., 46527
(15), 2419-2427.528

Christensen, K. T. and Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets inwall turbulence,529
J. Fluid Mech., 431, 433-443.530

Crocker, J. C. and Grier, D. G. 1996 Methods of digital video microscopy for colloidal studies, J. Colloid531
Interface Sci., 179 (1), 298-310.532



16

Dasari, T., Wu, Y., Liu, Y. and Hong, J. 2019 Near-wake behaviour of a utility-scale wind turbine, J. Fluid533
Mech., 859, 204-246.534

Dunnavan, E. L., Jiang, Z., Harrington, J. Y., Verlinde, J., Fitch, K. and Garrett, T. J. 2019 The535
shape and density evolution of snow aggregates, J. Atmos. Sci., 76 (12), 3919-3940.536

Durán, O., Claudin, P. and Andreotti, B. 2011On aeolian transport: Grain-scale interactions, dynamical537
mechanisms and scaling laws, Aeolian Res., 3 (3), 243-270.538

Elghobashi, S. and Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic539
turbulence, J. Fluid Mech., 242, 655-700.540

Falkinhoff, F., Obligado, M., Bourgoin, M. and Mininni, P. D. 2020 Preferential concentration of541
free-falling heavy particles in turbulence, Phys. Rev. Lett., 125 (6), 064504.542

Ferrante, A. and Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden543
isotropic turbulence, Phys. Fluids, 15 (2), 315-329.544

Garrett, T. J., Yuter, S. E., Fallgatter, C., Shkurko, K., Rhodes, S. R. and Endries, J. L. 2015545
Orientations and aspect ratios of falling snow, Geophys. Res. Lett., 42 (11), 4617-4622.546

Good, G. H., Ireland, P. J., Bewley, G. P., Bodenschatz, E., Collins, L. R. and Warhaft, Z. 2014547
Settling regimes of inertial particles in isotropic turbulence, J. Fluid Mech., 759 (R3).548

Heisel, M., Dasari, T., Liu, Y., Hong, J., Coletti, F. and Guala, M. 2018 The spatial structure of the549
logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers, J. Fluid550
Mech., 857, 704-747.551

Heymsfield, A. J. and Westbrook, C. D. 2010 Advances in the estimation of ice particle fall speeds using552
laboratory and field measurements, J. Atmos. Sci., 67 (8), 2469-2482.553

Högström, U., Hunt, J. C. R. and Smedman, A. S. 2002 Theory and measurements for turbulence spectra554
and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103 (1), 101-124.555

Hong, J., Toloui, M., Chamorro, L.P., Guala, M., Howard, K., Riley, S., Tucker, J. and Sotiropoulos,556
F. 2014 Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine,557
Nat. Commun., 5, 4216.558

Ireland, P. J., Bragg, A. D. and Collins, L. R. 2016 The effect of Reynolds number on inertial particle559
dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects, J. Fluid Mech.,560
796, 617-658.561

Kalt, P. A., Birzer, C. H. and Nathan, G. J. 2007 Corrections to facilitate planar imaging of particle562
concentration in particle-laden flows using Mie scattering, Part 1: Collimated laser sheets., Appl.563
Opt., 46 (23), 5823-5834.564

Li, C., Lim, K., Berk, T., Abraham, A., Heisel, M., Guala, M., Coletti, F. and Hong, J. 2021 Settling565
and clustering of snow particles in atmospheric turbulence, J. Fluid Mech., 912 (A49).566

Mallery, K., Shao, S. and Hong, J. 2020 Dense particle tracking using a learned predictive model, Exp.567
Fluids, 61 (10), 1-14.568

Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random569
flow fields., J. Fluid Mech., 174, 441-465.570

Maxey, M. R. and Riley, J. J. 2020 Equation of motion for a small rigid sphere in a nonuniform flow,571
Phys. Fluids, 26 (4), 883-889.572

Mordant, N., Crawford, A. M. and Bodenschatz, E. 2004 Experimental Lagrangian acceleration573
probability density function measurement, Physica D, 193 (1-4), 245-251.574

Nemes, A., Dasari, T., Hong, J., Guala, M. and Coletti, F. 2017 Snowflakes in the atmospheric surface575
layer: observation of particle–turbulence dynamics, J. Fluid Mech., 814, 592-613.576

Nielsen, P. 1993 Turbulence effects on the settling of suspended particles, J. Sediment. Res., 63 (5), 835-838.577
Ouellette, N. T., Xu, H. and Bodenschatz, E. 2006 A quantitative study of three-dimensional578

Lagrangian particle tracking algorithms, Exp. Fluids, 40 (2), 301-313.579
Petersen, A. J., Baker, L. and Coletti, F. 2019 Experimental study of inertial particles clustering and580

settling in homogeneous turbulence, J. Fluid Mech., 864, 925-970.581
Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T. and Kompenhans, J. 2018582

Particle Image Velocimetry: A Practical Guide. Springer.583
Rosa, B., Parishani, H., Ayala, O. and Wang, L. P. 2016 Settling velocity of small inertial particles in584

homogeneous isotropic turbulence from high-resolution DNS, Int. J. Multiph. Flow, 83, 217-231.585
Saddoughi, S. G. and Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds586

number, J. Fluid Mech., 268, 333-372.587
Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds, Annu. Rev. Fluid Mech., 35 (1),588

183-227.589



17

Stull, R. B. 1988 An introduction to boundary layer meteorology. Kluwer Academic Publishers.590
Toloui, M., Riley, S., Hong, J., Howard, K., Chamorro, L. P., Guala, M. and Tucker, J. 2014591

Measurement of atmospheric boundary layer based on super-large-scale particle image velocimetry592
using natural snowfall, Exp. Fluids, 55 (5), 1-14.593

Tom, J. and Bragg, A. 2019 Multiscale preferential sweeping of particles settling in turbulence, J. Fluid594
Mech., 872, 995-995.595

Tooby, P. F., Wick, G. L. and Isaacs, J. D. 1977 The motion of a small sphere in a rotating velocity field:596
a possible mechanism for suspending particles in turbulence, J. Geophys. Res., 82 (15), 2096-2100.597

Tropea, C., Yarin, A. L. and Foss, J. F. 2007 Springer handbook of experimental fluid mechanics. Berlin:598
Springer.599

Vaillancourt, P. A. and Yau, M. K. 2000 Review of particle-turbulence interactions and consequences600
for cloud physics, Bull. Am. Meteorol. Soc., 81 (2), 285-298.601

Wang, L. P. and Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in602
homogeneous isotropic turbulence, J. Fluid Mech., 256, 27-68.603

Westbrook, C. D. and Sephton, E. K. 2017 Using 3-D-printed analogues to investigate the fall speeds604
and orientations of complex ice particles, Geophys. Res. Lett., 44 (15), 7994-8001.605

Yang, C. Y. and Lei, U. 1998 The role of the turbulent scales in the settling velocity of heavy particles in606
homogeneous isotropic turbulence, J. Fluid Mech., 371, 179-205.607

Zeugin, T., Krol, Q., Fouxon, I. and Holzner, M. 2020 Sedimentation of snow particles in still air in608
stokes regime, Geophys. Res. Lett., 47 (15), e2020GL087832.609

Zhou, J., Adrian, R. J., Balachandar, S. and Kendall, T. M. 1999 Mechanisms for generating coherent610
packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 353-396.611


	Introduction
	Methodology
	Field experiment setup
	Atmospheric turbulence conditions

	Results
	Snow particle acceleration and Stokes number
	Preferential distribution of snow particle concentration
	Enhanced settling velocity due to preferential sweeping

	Conclusions and discussion

