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ABSTRACT: py-MCMD, an open-source Python software, provides a
robust workflow layer that manages communication of relevant system
information between the simulation engines NAMD and GOMC and
generates coherent thermodynamic properties and trajectories for analysis.
To validate the workflow and highlight its capabilities, hybrid Monte Carlo/
molecular dynamics (MC/MD) simulations are performed for SPC/E water
in the isobaric—isothermal (NPT) and grand canonical (GC) ensembles as
well as with Gibbs ensemble Monte Carlo (GEMC). The hybrid MC/MD
approach shows close agreement with reference MC simulations and has a
computational efficiency that is 2 to 136 times greater than traditional Monte
Carlo simulations. MC/MD simulations performed for water in a graphene
slit pore illustrate significant gains in sampling efficiency when the coupled—decoupled configurational-bias MC (CD—CBMC)
algorithm is used compared with simulations using a single unbiased random trial position. Simulations using CD—CBMC reach
equilibrium with 25 times fewer cycles than simulations using a single unbiased random trial position, with a small increase in
computational cost. In a more challenging application, hybrid grand canonical Monte Carlo/molecular dynamics (GCMC/MD)
simulations are used to hydrate a buried binding pocket in bovine pancreatic trypsin inhibitor. Water occupancies produced by
GCMC/MD simulations are in close agreement with crystallographically identified positions, and GCMC/MD simulations have a
computational efficiency that is S times better than MD simulations. py-MCMD is available on GitHub at https://github.com/
GOMC-WSU/py-MCMD.
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B INTRODUCTION

Molecular dynamics (MD) simulations are an essential tool for
understanding biological structure and function. Simulations of
systems containing 100 000 atoms are routine, and simulations

These systems contain high free energy barriers, which may
prevent reliable sampling of phase space during conventional
MD simulation time scales, or require the use of an open
system, i.e., allowing for changes in the number of molecules.

of up to 2 billion atoms have been made possible through
advances in hardware and MD codes." For moderate-sized
systems, microsecond and even millisecond time scales are
attainable nowadays.”> MD simulations are used routinely for
computational drug discovery," ® determination of lipid
bilayer mechanical and transport properties,”’ ' and
elucidation of protein function."'™"* Since all atomic positions
are known at any moment in time, MD simulations provide
spatial and temporal resolutions that are not currently
achievable with experiments, and therefore, the method can
be viewed as a “computational microscope”’*'* in the quest to
understand biological machinery.

While the MD methodology is broadly applicable to the
study of biological molecules, there are certain problems that
may be better suited to alternative sampling approaches.
Notable examples include diffusion through pores and
membranes,'® the hydration state of buried pockets or
channels in proteins,”_21 the formation of nanodomains,’
and phase separation in multicomponent lipid bilayers.”**
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An alternative strategy to running longer simulations is to
incorporate Monte Carlo (MC) moves into MD simula-
tions.'”'97>"2372¢ In this hybrid approach, trial MC moves are
proposed, which are accepted or rejected on the basis of
statistical mechanical probabilities. These MC moves may use
alternative, or “unphysical”, pathways that allow the system to
traverse high free energy barriers. The inclusion of MC moves
also provides the opportunity to simulate systems in the grand
canonical (GC) ensemble, where the number of constituent
molecules can change during the simulation.

The use of grand canonical Monte Carlo (GCMC) sampling
in MD simulations has been shown to produce significant
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improvements in the accuracy and precision of ligand—protein
binding free energies.””*""***”** GCMC sampling for water in
the binding pocket leads to rapid equilibration, compared with
the slower diffusion observed in MD, particularlgr for buried
sites. GCMC, using dual control volumes,'® has been
combined with Brownian dynamics (GCMC—BD) to simulate
the movement of ions through transmembrane pores.””*° The
inclusion of an MC identitz—exchange move, using either
configurational-bias sampling”* or a combination of alchemical
transformation and nonequilibrium MD,” to sample phase
space has been used to greatly accelerate the equilibration of
multicomponent lipid bilayers.

Basic GC functionality is present in a number of MD
codes' 19252631 in 3 variety of forms: either integrated into
the code, as has been done in CHARMM, """ AMBER,"” and
LAMMPS,* or interfaced through external Python codes for
GROMACS* and OPENMM.* Additional MC moves are
available in OpenMM™ through the OpenMMTools pack-
age.”* Some implementations use the cavity-bias method to
improve acceptance rates for the transfer of water molecules,*®
while in others only random insertions are possible.

This work describes hybrid MC/MD simulations that utilize
NAMD for MD and GOMC for MC. These codes are linked
with py-MCMD, an open-source Python program that
oversees information transfer and the execution of each
code*® By linking of GOMC with NAMD, it is possible to
perform hybrid GCMC/MD simulations that utilize the full
suite of advanced configurational-bias sampling algorithms that
are available in GOMC.”’™* With py-MCMD, it is also
possible to integrate MD sampling of configurational space
into MC simulations, such as Gibbs ensemble (GE),*' leading
to enhanced sampling efficiency over standard Gibbs ensemble
Monte Carlo (GEMC) simulations.*”

To validate the py-MCMD program and assess its
computational efficiency, a series of MC/MD simulations
were performed for water in the isothermal—isobaric (NPT)
and GC ensembles as well as with the GE method. Additional
hybrid MC/MD simulations were performed in the canonical
(NVT) ensemble with an intrabox swap move for water in a
graphene slit pore and in the GC ensemble to determine the
hydration state of a buried binding site in bovine pancreatic
trypsin inhibitor (BPTI). Notably, NVT MC/MD simulations
of water in a graphene slit pore, performed with coupled—
decoupled configurational-bias MC (CD—CBMC), equili-
brated in 25 times fewer cycles than simulations without
CD—CBMC and 66 times fewer cycles than hgrbrid MC/MD
simulations using the cavity-bias method."”” GCMC/MD
simulations of the BPTI system showed rapid hydration of
the buried binding pocket with a S-fold improvement in
computational efficiency compared with standard MD
simulations.

B METHODS

Workflow. py-MCMD defines a hybrid MC/MD workflow
that facilitates information transfer between GOMC and
NAMD (Figure 1).*° An additional Python analysis script
was also created that combines the simulation trajectories and
thermodynamic properties reported by NAMD and GOMC
into several compact files for postsimulation analysis and
visualization. GOMC version 2.70*" was modified to read and
write binary coordinate, velocity, and extended system control
files in NAMD native format, which improves the accuracy of
the hybrid simulations and reduces simulation startup time and

Python manager
control file

{"total_cycles_namd_gomc_sims": 10,
"starting_at_cycle_namd_gomc_sims": 0,
"gomc_use_CPU_or_GPU": "GPU" ,
"simulation_type": "GCMC",
"no_core_box_0": 8,

"no_core_box_1" : 0,
nsimulation_temp_k": 298,
"simulation_pressure_bar": 1.01325,

NAMD |«—

NVT
equilibrium

Figure 1. Schematic of the hybrid MC/MD workflow. In the initial
cycle, MD simulations with or without restraints are used to minimize
the energy of the system and perform a short dynamics simulation to
eliminate unfavorable configurations. This is followed by alternating
cycles of MC and MD simulations. During the MC simulations, a
variety of MC moves are utilized in each ensemble to satisfy
equilibrium conditions, e.g., swap (transfer of a molecule between
phases), intraswap (deletion and reinsertion of a molecule in a
random new location in the same phase), or volume change
(perturbing the volume of the system). MD simulations in the
NVT ensemble are used for efficient sampling of configurations and
conformations. Control of the simulation parameters, ensemble, and
MC moves are possible through NAMD and GOMC control files
(hexagons). Transfer of information between the MC and MD
engines is overseen by the py-MCMD Python software.

disk space requirements. These modifications are available in
the recently released GOMC version 2.75. py-MCMD was
designed to work with NAMD version 2.14. The py-MCMD
software and its documentation are available on GitHub at
https://github.com/GOMC-WSU/py-MCMD.

The hybrid MC/MD workflow starts with a short conjugate-
gradient energy minimization and NVT MD simulation to
stabilize the system, which is followed by cycles of alternating
MC and MD steps. Following the strategy of Gartner et al., the
results of the MD simulation are always accepted,” while all
MC moves follow strict detailed balance. The choice to use
nonmetropolized hybrid Monte Carlo was based on the
following criteria: it produces correct results for reasonable
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choices of simulation parameters; it is computationally more
efficient than metropolized hybrid Monte Carlo;** and the
algorithm is straightforward to implement. It should be noted,
however, that using the Brooks—Briinger—Karplus (BBK)
integrator™ in Langevin dynamics simulations with a large
time step will introduce a time-step-dependent bias** due to
finite integration time step error. % Despite this bias, the
BBK integrator does produce a configuration-space average
that is close to the true ensemble average. In order to more
accurately sample the exact configuration space, the BBK
integrator should be used with an integration time step of <1
fs, or alternatively, the BAOAB integrator47 can be used for
better conservation of the configuration-space average with a 2
fs time step.*¥*¢

py-MCMD generates control files for GOMC and NAMD,
sets run-time parameters, launches the appropriate simulation
engine at each point in the sequence, and checks the total
system energies for consistency when switching between
engines. Relative energy differences between NAMD and
GOMC greater than 1 X 107 produce a warning message.
Typical relative energy differences observed between GOMC
and NAMD were on the order of 1 X 107 to 1 X 107°. To
maintain continuity of system dynamics, velocity information is
passed through GOMC, even though it is not required for MC
simulations. Any atoms that are moved or inserted during the
Monte Carlo phase have their velocities initialized using a
Maxwell—Boltzmann distribution,***’

All of the simulations were performed using a switched
potential for Lennard—Jones (LJ) interactions using a 12 A
cutoff and a 10 A switch distance. No long-range corrections
were used for LJ interactions. Electrostatic interactions were
calculated using the Ewald summation®®' in GOMC and
particle-mesh Ewald®>>® in NAMD. A tolerance of 10~ and a
real-space cutoff of 12A were used for electrostatic
interactions. Molecule-transfer and intrabox swap moves
were performed with the CD—CBMC method®” using 16
trial positions for the first atom and eight trial positions for all
remaining atoms.”* A derivation of the CD—CBMC algorithm
for flexible and rigid-body molecules is provided in the
Supporting Information. A hard inner cutoff was used to reject
any MC moves that placed atom centers closer than 1 A.>° In
both MC and MD simulations, water was treated as a rigid-
body molecule, with covalent bonds to hydrogen atoms
constrained using the SETTLE algorithm®® in the MD
simulations. All of the simulations were performed using
periodic boundary conditions with the minimum image
convention. MD simulations were performed in the NVT
ensemble using Langevin dynamics®” with the BBK integrator
scheme** to simulate the heat bath. For the MD simulations,
the multiple-time-step r-RESPA algorithm®® was used with a 2
fs integration time step, where short- and long-range forces
were evaluated every 2 and 4 fs, respectively.

Workflow Validation: SPC/E Water. To validate the
workflow, hybrid MC/MD simulations were performed for
SPC/E water’ in the NPT, GC, and Gibbs ensembles, and the
results were compared to reference MC simulations. A variety
of Monte Carlo moves were used, which include rigid-body
translation (translate), rigid-body rotation (rotate), volume
exchange (volume), molecule transfer between phases (swap),
and configurational-bias regrowth (regrowth). A summary of
the MC move fractions and lengths of the MC and MD
components for each system is provided in Table 1. A
description of the MC moves used in this work, such as rigid-

Table 1. Summary of Simulation Parameters

simulation parameters

cycle (MCS: ps)

N/A

distribution of MC moves

simulation type

output freq.
1000 MCS
500 MCS + 2 ps

20 MCS + 1.96 ps
1500 MCS

1500 MCS

no. of replicas
S
S
S
S
S

(20: 1.96)
N/A
(500: 2.0)

N/A

run length”
3 x 107 MCS

3x10*C
1.5 X 10° MCS

1x10°C
5 % 10" MCS

1.3 x 10* C

0.2
0.20
20

regrowth
0.

rotate
0.25
0.15
0.20

translate
0.25
0.15
0.19

intraswap
0.24
0.20

swap
0.50
1.00
0.20

volume
0.01
1.00
0.01

NPT [298]

GCMC [510]
GCMC [510]
GEMC [500]

ensemble [T (K)]
NPT [298]

MC/MD

MC
MC/MD

MC
MC

system

SPC/E water

500 MCS + 2ps
1500 MCS

(500: 2.0)

N/A

0.99

0.01
0.01

GEMC [500]

MC/MD
MC

200 MCS + 2.6 ps
10000 MCS

7000 MCS + 6 ps

1000 MCS + 2 ps

1000 MCS + 2 ps

10 ps

2000 MCS + 10 ps

(1000: 2.0)
(2000: 10.0)

N/A

(200: 2.6)
(7000: 6.0)
(1000: 2.0)

N/A

5 % 10" MCS
1.3 x 10* C
5 % 107 MCS
1.3 x 10* C
2 x 10* C

2 x10* C

10 ns
1x10°C

0.20 0.20
0.20 0.20

0.20 0.19
0.20 0.19
1.00
1.00

0.20
0.99
0.20
0.99
1.00°

0.01

0.01
0.01

GEMC [300]
GCMC [298]

GEMC [300]
NVT [500]

GEMC [400]
GEMC [400]

NVT [298]

NVT [500]

MC/MD

MC
MC/MD

MC/MD
MC/MD

MD
MC/MD

“MCS, MC steps; C, cycles. bTargeted swap move.

slit pore (CD—CBMC)
slit pore (unbiased)

BPTI
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body displacement and rotation, configurational bias, and
volume exchange are provided in the Supporting Information.
Parameters for the SPC/E water model are listed in Table S1.
For all of the hybrid MC/MD simulations, the numbers of MC
trials and MD time steps were set to ensure that each cycle
would result in at least one accepted MC move and one
uncorrelated sample during the MD simulation. To calculate
statistical uncertainties, each simulation was repeated five
times, initiated with different random seeds and with unique
initial configurations (coordinates and velocities) generated
using the Molecular Simulation Design Framework (MoS-
DeF). 50~

Simulations in the NPT ensemble were performed at 298 K
and 1.01325 bar for a system containing 1361 SPC/E water
molecules with an initial density of 0.9496 g/cm’. GC
ensemble simulations were performed at 510 K and a chemical
potential of —4.9037 kcal/mol, with a box size of V = 42 875
A3. GE simulations*" were performed at 300, 400, and 500 K to
calculate the saturated liquid and vapor coexistence densities of
SPC/E water. For the GE simulations at SO0 K, the initial
configurations for the vapor and liquid phases each included
500 molecules at a density of 0.295 g/cm?®. The initial density
of each phase was intentionally set far from equilibrium to
verify the convergence of the MC/MD simulation. Initial
densities for simulations at 300 and 400 K were set to the
expected saturated liquid and vapor densities, generated from
prior simulations of SPC/E water.%*

Computational Efficiency. To calculate the computa-
tional efficiency of the hybrid MC/MD with respect to
standard MC simulations, the integrated autocorrelation time
(7), statistical inefficiency (g = 1 + 27), and normalized
fluctuation autocorrelation function (C(t)) observed during
each simulation were calculated using the pymbar autocorre-
lation time analysis tool.*®® To accurately compare the
computational efficiencies of the hybrid MC/MD and MC
simulations, 7, g and C(t) are reported in terms of
computational cost (CPU hours) instead of number of
simulation steps. ¢ = 1 indicates that 1 CPU hour was
required to generate an uncorrelated data point. All of the bulk
water simulations were performed on four cores of an Intel
Gold 5118 2.3 GHz CPU. Data points were written to disk
with the frequencies listed in Table 1.

Data series were generated for autocorrelation analysis after
equilibration was reached according to the reduced potential
function f(R) appropriate to each ensemble.”* The f(R)
function for a particular microstate is given by

f(R) = —plU(R) + PV(R) — uN(R)] (1)

where R, U(R), V(R), and N(R) are the configuration, total
potential energy, volume, and number of molecules in the
system for a specific microstate, respectively, # = 1/kT, P is
the imposed pressure, and y is the imposed chemical potential.
Depending on the ensemble, eq 1 combines temperature,
potential energy, pressure, volume, number of molecules, and/
or chemical potential to produce a reduced-value data series.
The reduced potential functions used in this work for the NPT
and pVT ensembles were —f[U(R) + PV(R)] and —p[U(R) —
uN(R)], respectively. For GEMC simulations, the reduced
potential used was f(R) = —f[U;(R) + Ugas(R)].
lllustrative Applications: Graphene Slit Pore and
BPTI. To illustrate the application of the py-MCMD software,
two additional hybrid MC/MD simulations were performed in
the NVT and GC ensembles, where achieving equilibrium

using standard MD simulations is grossly inefficient or in some
cases impossible (e.g., graphene slit pore equilibration). The
NVT MC/MD simulations at 500 K were performed on SPC/
E water in a rectangular box with dimensions of 29.5 A X 29.8
A X 85A that was partitioned into two regions by two
impermeable graphene sheets placed at 28 A apart from each
other."” Each graphene sheet contained 336 carbon atoms.
Force field parameters for carbon atoms are listed in Table
S1.°7 The outer region was filled initially with 1866 water
molecules at a density of 1.197 g/cm®, while the inner region
was populated with a single water molecule. To compare the
efficiency of the CD—CBMC algorithm with simple MC
sampling, additional simulations were performed using only
one unbiased trial position for the intrabox swap move. Five
independent NVT MC/MD simulations were performed to
calculate statistical uncertainties, where each simulation was
initiated with different random seeds, unique initial config-
urations, and velocities.

In the final example, GCMC/MD simulations were used to
calculate the most probable water positions in the buried
binding pocket of BPTI The initial configuration was
generated from the starting structure (PDB ID SPTT),*% 7!
without any hydrogen/deuterium atoms. The system was
protonated and solvated in water with 15 A of padding around
the protein in each dimension, and neutralizing ions (0.15
mol/L NaCl) were added to the system using the QwikMD”*
plugin in VMD.”® The mTIP3P”* and CHARMM36">~** force
fields were used to represent water and protein interactions,
respectively. The initial configuration was minimized for 2 ps
and then annealed with NPT MD simulations from 60 to 298
K for 28.68 ps, followed by a 5 ns NPT MD equilibration at
298 K and 1.01325 bar. The Langevin piston method™* was
used for the barostat, which combines the Hoover constant-
pressure equations of motion®>*® with piston fluctuations
controlled by Langevin dynamics.** During the equilibration,
the protein’s backbone atoms were restrained using a harmonic
potential with a 2 kcal mol™" A~ force constant.

GCMC/MD simulations were performed at 298 K and a
chemical potential of —6.3349 kcal/mol. This corresponds to
the average equilibrium density of 1.0113 + 0.0004 g/cm® for
bulk mTIP3P water, which is consistent with the densi
produced by NPT MD simulations at 298 K and 1.01325 bar.®
Water molecules were inserted and deleted from a cube with a
side length of 15 A centered at the geometric center of the C,
atoms of the Tyrl0 and Asn43 residues.”® For these
calculations, a hard inner cutoff for MC insertion/deletion
moves was not used since all of the atoms in the mTIP3P water
force field have Lennard—Jones parameters, minimizing the
possibility of naked charges being placed in close proximity
during an insertion attempt. Ten independent GCMC/MD
simulations were performed for 1000 cycles, where each cycle
consisted of 2000 MC steps and a 10 ps MD simulation. Each
simulation was started with an empty binding pocket and a
unique initial configuration, distribution of velocities, and
random number seed. To prevent collapse of the binding
pocket due to the absence of water, additional harmonic
restraints with a 2 kcal mol™ A~ force constant were applied
to heavy atoms of the protein during the first cycle of the
GCMC/MD simulations. The rest of the cycles were run
without restraints.

To determine the most probable positions for each of the
three water molecules within the binding pocket, the
simulation trajectories were aligned, and water molecule
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positions observed during the simulation were clustered across
trajectory frames using the average-linkage hierarchical
clustering algorithm, as implemented by Samways et al.*® A
water molecule was considered to be clustered if its oxygen
atom was within 2.4 A of another water oxygen atom. To avoid
clustering of waters within the same frame, the oxygen—oxygen
distance of waters that belonged to the same frame in a
trajectory was set to a large number (~10° A). Each cluster
consisted of an array of oxygen positions, and the cluster
centroid was calculated as the average of these oxygen
positions. The most probable water positions were calculated
on the basis of the oxygen position of the water molecule that
is observed closest to the cluster centroid. The occupancy of
clustered water was calculated as the ratio of total observed
waters in the cluster to the number of frames in the trajectory.
Clustered water positions were assigned to a specific
crystallographic water site (e.g, site 1, 2, or 3) if they were
within 1.5 A of one crystallographic water site and not closer to
any others.

B RESULTS AND DISCUSSION

Workflow Validation: SPC/E Water. To validate the
hybrid MC/MD workflow, SPC/E water simulations were
performed in the isobaric—isothermal (NPT), and grand
canonical (GC) ensembles. Calculations were also performed
with the Gibbs ensemble (GE) Monte Carlo method. As
shown in Figure 2, close agreement was achieved between the
trajectories generated with MC/MD and standard MC
simulations.

1l 1.0
- 1.0 - 08
€ €
£ 09 - £ 06
= 2
Q08| — Q0.4 GEMC-liquid
NPT (298K) (500K)
T BRI BT P R R
075 50 100 150 025 20 40 60
CPU-hr CPU-hr
1.0 e 0.3 T
GEMC-vapor |
0.2 (500K)

o (g/cm3)
o

GCMC (510K)
AP I T _ R R I
045 5 10 15 20 015 20 40 60
CPU-hr CPU-hr

Figure 2. Predictions of MC/MD (black) and MC (red) simulations
as functions of computational cost (CPU-hr) in various ensembles for
SPC/E water: NPT at 298 K and 1.01325 bar; GCMC at 510K and a
chemical potential of —4.9037 kcal/mol; GEMC at S00 K liquid and
vapor densities. Solid lines correspond to averages over five replicas,
while the shaded areas represent the standard deviations calculated
from the five independent replicas.

NPT simulations at 298 K and 1.01325 bar were purpose-
fully started from an artificially low density of 0.9496 g/cm?® to
test the convergence behavior of the MC/MD simulations.
Figure 2 shows that the MC/MD simulations converged to the
correct density (0.9939 + 0.0001 g/cm3 for MC/MD
simulations and 0.995 + 0.003 g/cm?® for MC simulations)
approximately 2 orders of magnitude faster than MC
simulations. Autocorrelation functions C(t) for —f(U + PV)

are shown in Figure S1. Analysis of the correlation time 7 for
—p(U + PV) for MC/MD and MC simulations (Table 2)
revealed that the correlation time was 136 =+ S8 times lower for
MC/MD simulations than for standard MC.

GCMC/MD simulations were performed for water at 510 K
and a chemical potential of —4.9037 kcal/mol, which produced
an average density of 0.7839 + 0.0006 g/cm®, compared to an
average density of 0.786 + 0.001g/cm’® for GCMC
simulations. This state corresponds to a density slightly higher
than the saturated liquid density for SPC/E water of 0.771 g/
em® at 510 K***¥% As shown in Figure 2, the GCMC/MD
simulation trajectories closely follow those of GCMC.
Autocorrelation functions for —f(U — uN) are shown in
Figure S2, and results for the correlation time analysis are
presented in Table 2. The GCMC/MD approach decreased
the correlation time by a factor of 2.1 + 0.4 compared with the
MC simulations. These results are not as dramatic as those
from the NPT simulations but are expected since sampling of
—pB(U — uN) is limited primarily by the molecule-transfer
move, and MD sampling does not seem to have a significant
impact on the percentage of accepted molecule-transfer
attempts.

The corresponding probability distribution for the number
of water molecules in the system is presented in Figure 3,
where the GCMC/MD data show a subtle shift to lower
density (~0.2%) compared with the GCMC simulations.
Using the BBK integrator** in Langevin dynamics simulations
with a 2 fs time step results in overheating of the system by
approximately 1 K and a corresponding shift in the potential
energy distribution.” This leads to sampling of configuration
space at a slightly higher configurational temperature and an
underprediction of the density in GCMC/MD simulations. If
more accurate sampling of configuration space is required, a
time step of <1 fs should be used with the BBK integrator.
Alternatively, a time step of up to 2 fs may be used with the
BAOAB integrator,47 which has been shown to better conserve
sampling of configuration space with larger time steps.*>*

Gibbs ensemble MC provides a direct means for the
calculation of vapor—liquid equilibria.41 In this method, two
phases (liquid and vapor in this case) are simulated
simultaneously. Equilibrium between the phases is achieved
through MC moves that exchange volume and molecules
between the phases, ensuring mechanical and chemical
equilibrium. It has been suggested that the efficiency of the
GEMC method could be improved by using an MC/MD
approach (GEMC/MD), where MC moves are used for only
the exchange of volume and molecules between the two phases
while MD steps are used to sample conformational and
configurational degrees of freedom.*””°

GEMC/MD simulations were used to determine the vapor—
liquid equilibria of SPC/E water at 300 K, 400 K, and 500 K.
Simulations at 500K were purposefully started far from
equilibrium to observe the convergence behavior of the
algorithm, which is shown in Figure 2. Similar data for the
400 and 300 K simulations are presented in Figure S3.
Tabulated data for saturated liquid and vapor densities and
vapor pressures are listed in Table 2. GEMC/MD results are in
close agreement with data generated from standard GEMC
simulations. Both the GEMC/MD and GEMC simulations at
500 K converge to the correct equilibrium densities, with the
GEMC/MD simulations reaching equilibrium faster than the
GEMC ones. Autocorrelation functions for —3(Uy, + U,,,) are
presented in Figures S4—S6 for simulations at 300, 400, and
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Table 2. Summary of Thermodynamic Properties and Correlation Analysis for MC/MD and Standard MC Simulations

Performed on SPC/E Water”

density (g/cm?) vapor pressure (bar) 7 (CPU h) g (CPU h)
ensemble T (K) MC/MD MC MC/MD MC MC/MD MC MC/MD MC
NPT 298 0.9939(1) 0.995(3) - - 0.023(3) 3(1) 0.065(7) 6(3)
GCMC 510 0.7839(6) 0.786(1) - - 0.12(1) 0.26(5) 0.26(3) 0.52(9)
GEMC 500 0.7834(6) 0.787(4) - - 0.10(2) 0.4(1) 0.23(4) 0.8(2)

9.29(9) x 1073 9.4(2) x 1072 16.9(1) 16.9(2) - - - -
400 0.9135(4) 0.914(2) - - 0.6(3) 2(2) 1.3(5) 3(3)

6.8(1) x 107* 6.7(1) x 107* 1.16(1) 1.18(2) - - - -
300 0.993(1) 0.995(3) - - 1.8(5) 6(3) 4(1) 12(7)

7.6(2) x 107¢ 7.8(5) x 107° 0.0105(4) 0.0108(7) - - - -

“Data correspond to averages taken over five replicas after the simulations reached equilibrium. Numbers in parentheses correspond to the

uncertainty in the last digit.
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Figure 3. Probability distributions for the number of SPC/E water
molecules calculated with GCMC/MD using Langevin dynamics with
a 2 fs time step (green) or a 1 fs time step (red) or standard GCMC
simulations at 510 K and chemical potential of —4.9037 kcal/mol
(black). Solid lines correspond to averages over five independent
replicas, while the shaded areas represent the standard deviations.

500 K, respectively. A correlation time analysis performed on
—p(Uyiq + Uyyp) shows that the GEMC/MD approach reduced

vap

the correlation time by a factor of 3 to 4 compared with
standard GEMC simulations, with the greatest improvement
observed at S00K. These results are consistent with the
GCMC/MD and GCMC simulations, as shown in Table 2,
where the molecule-transfer move is the primary limitation in
sampling efliciency. The smaller improvement of GEMC/MD
over GEMC at lower temperatures was expected, as the
percentage of accepted molecule-transfer moves also decreases
significantly under these conditions.

In summary, the MC/MD method produced uncorrelated
data significantly faster than the standard MC method, as
shown in Figures S1, S2, S4, SS, and S6. The normalized
fluctuation autocorrelation functions produced from MC/MD
simulations have significantly lower variance than those
generated from MC simulations. These results show that for
a given computational effort, more uncorrelated data were
obtained with MC/MD simulations than with MC simulations.

lllustrative Applications: Graphene Slit Pore and
BPTI. Now that the ability of the hybrid workflow to produce
correct results for simulations of bulk water has been
demonstrated, two additional examples are presented to
highlight the utility of the py-MCMD program.

In Figure 4, data are presented for simulations of water in a
periodic rectangular box, partitioned into two separate
compartments by two impermeable graphene sheets.'” In
MD simulations, the inner region is not accessible because

stor 'y

o ~
.

| ! | 1 4
0’%.0 02 04 06 08 1.0

! !

5 10 15
MD/MC cycles / 103

20

Figure 4. NVT simulations of water in a graphene slit pore. (A) Initial configuration. (B) Final configuration after the MC/MD simulation was
performed. (C) Bulk water densities inside and outside the pore using CD—CBMC (black and blue) and simple MC (red and orange). Solid lines
correspond to averages over five replicas, and the shaded areas represent standard deviations calculated from the five independent replicas.
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Figure 5. Hydration of a buried binding pocket in BPTL (A) Comparison of crystallographic water locations® (cyan) with average water locations
predicted from GCMC/MD simulations (red). Any water positions that were observed less than 40% of the time have been omitted for clarity. (B)
Times required for GCMC/MD simulations (black) and MD simulations (red) to fill water sites in the binding pocket. The average occupancy for
each water site is shown as an average over water occupancies during 0.1 ns of simulation. The total number of water molecules in the pocket was
calculated by counting oxygen atoms within 4.2 A of the geometric center of the C, atoms of Tyr10 and Asn43. Solid lines correspond to averages
over 10 independent simulations, while the shaded areas represent the standard deviations. Data for each replica are presented in Figures S7—S10.
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Figure 6. Effect of hydration on binding pocket stability in BPTI given by representative single MC/MD and MD simulations. (A) Comparison of
the crystallographic structure®® (purple) with the MD simulation (green). The green, yellow, and orange lines represent the top three random coil
(residues 36—47) clusters within the first 2 ns of MD simulation, which block the crystallographic water sites. (B) The SO ps running averages of
RMSD calculations of the protein’s backbone for residues 36—47 with respect to the reference crystallographic structure® for the MC/MD (black)
and MD (red) simulations. (C) The SO ps running averages of the total number of observed waters within the binding pocket for the MC/MD
(black) and MD (red) simulations. Individual replicas are presented in Figure S11. The binding pocket is defined as a sphere of radius 4.2 A
centered at the geometric center of the C, atoms of Tyr10 and Asn43.

water cannot diffuse through the graphene layers; however,
with the MC/MD approach and the intrabox swap moves, the
entire simulation volume is accessible. Convergence of the
density in each region was achieved in approximately 750
cycles, where each cycle comprised 1000 CD—CBMC intrabox
swap moves and a 2 ps MD simulation. Additional simulations
were performed using an unbiased single random trial position
(simple MC) for the intrabox swap move to illustrate the
impact of the CD—CMBC method on the efliciency of the
MC/MD simulation. Simulations using an unbiased single

random trial position required approximately 18 750 cycles to
reach equilibrium. In this application, the computational cost
of the CD—CBMC algorithm is approximately 25% larger than
that of the simple MC algorithm.

Both approaches used here compare favorably with prior
simulations of this system using the cavity-bias method, which
required 50 000 cycles to reach equilibrium, where each cycle
consisted of 25000 MC trials and a 50 ps MD simulation."”
MC/MD simulations with CD—CBMC and simple MC
intrabox swap moves required 66 and 2.6 times fewer cycles
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to reach equilibrium, respectively. Additionally the cycles used
in this work were 25 times shorter than those used by Ben-
Shalom et al,,'? further illustrating the significant improvement
in sampling achieved with the CD—CBMC algorithm.

In the final example, GCMC/MD simulations were used to
hydrate the buried binding pocket of bovine pancreatic trypsin
inhibitor (BPTI), and the most probable water positions were
compared with crystallographic data.® The binding pocket was
defined as the region within 4.2 A of the geometric center of
the C, atoms of the Tyr10 and Asn43 residues.”® The average
occupancy of each water site and the total number of observed
water molecules within binding pocket are shown in Figure 5,
while data for each replica are presented in Figures S7—S10.
GCMC/MD simulations, initiated with an empty binding
pocket, reached equilibrium (defined as an occupancy of
>0.75) within 0.3 ns, while MD simulations took approx-
imately 2.7 ns to fill all three water sites. Running on four cores
of an Intel ES-2630v4 CPU and an NVIDIA RTX 2080TI
GPU, the GCMC/MD simulations were 1.8 times (total CPU
+ GPU computational time) slower than MD simulations.
Considering the significant reduction in the time scale required
to fully hydrate the binding pocket, the GCMC/MD
simulations produced a computational efficiency approximately
S times better than that of the MD simulations.

Average water positions within the bindin§ pocket were
calculated to be within 0.38 A of experiment,”® as shown in
Figure 5. The agreement with exgeriment is slightly better in
this work than in Samways et al,”® whose results were within
0.6 A of experiment. The difference may be due to the choice
of force field: in the study by Samways et al., calculations were
performed with the AMBER ff14sb force field”' for BPTI and
the original TIP3P force field”* for water, while in this work,
CHARMM36 was used for BPTI and mTIP3P"* for water.

To understand the dynamics of hydration of the BPTI
binding pocket, fluctuations of the random coil between the a-
helix and the f-sheet (residues 36—47) were calculated with
respect to the crystallographic structure for a system with a
dehydrated binding pocket. The backbone of residues 36—47
was clustered using the quality threshold (QT) algorithm93 as
implemented in VMD.”® Figure 6 shows the top three random
coil clusters for the first 2ns of one MD simulation. The
random coil was collapsed for the majority of the first 2 ns of
the MD simulation (green lines in Figure 6A), which blocked
water from entering Site 1 of the binding pocket. Site 1 became
accessible only when a random fluctuation of the coil resulted
in opening of the pocket. On the other hand, the GCMC/MD
approach rapidly hydrated the binding pocket, especially Site 1,
preventing the collapse of the binding pocket and enabling
further hydration through diffusion of surrounding waters in
addition to molecule transfers via GCMC/MD. An example of
random coil behavior for the dehydrated binding pocket in the
MD simulation is provided in Movie SI.

Subtle differences were observed between the MD and
GCMC/MD simulations in the stability of the fully hydrated
BPTI binding pocket. Figure 6 shows the root-mean-square
deviation (RMSD) values of residues 36—47 with respect to
the crystallographic structure for one trajectory generated from
MD or GCMC/MD simulations after the backbone of residues
in a-helices and fB-sheets (residues 3—6, 18—24, 29—35, and
48—55) were aligned with the crystallographic structure. Plots
showing fluctuations of the random coil for each of the 10
replicas of MD and GCMC/MD simulations are provided in
Figure S11. During the first 2 ns of the MD simulation, the

binding pocket was dehydrated, and large fluctuations in the
random coil were observed. After the binding pocket was fully
hydrated, fluctuations in the RMSD decreased from 1.6 A to an
average of 0.7 A. On the other hand, GCMC/MD simulations
produced larger RMSD values (approximately 1.0 A) despite
achieving full hydration of the binding pocket significantly
faster than MD simulations. The larger fluctuations observed in
the random coil may be due to the assignment of random
velocities (from a Maxwell-Boltzmann distribution*®*°) to
newly inserted water molecules. If maintaining correct protein
dynamics is important, this issue could be mitigated by
increasing the length of the MD component of each cycle,
reducing the number of attempted water molecule transfers
during the simulation.

B CONCLUSION

py-MCMD allows users to alter most of the parameters
governing a simulation’s behavior, and the strategy of linking
two existing simulation engines, GOMC and NAMD, with an
external Python script provides tremendous flexibility. With
this approach, MD configurational sampling can be incorpo-
rated into Monte Carlo simulations in any ensemble supported
by GOMC. Additionally, Monte Carlo moves may be
integrated into any equilibrium NVT or NPT MD simulation.
It is also possible to develop new sampling strategies with
minor revisions to py-MCMD, using a combination of MC to
propose trial configurations and nonequilibrium MD for
relaxation of the local structure.”””*

Predictions of the hybrid MC/MD simulations of bulk SPC/
E water performed with py-MCMD were in close agreement
with reference MC simulations. Substantial gains in computa-
tional efficiency were observed for the MC/MD approach
compared with MC, ranging from a 2-fold improvement for
GCMC/MD simulations at 510 K to a 136-fold improvement
for NPT simulations at 298 K. NVT MC/MD simulations with
an intrabox swap move were used to rapidly equilibrate the
density of water in a system containing a graphene slit pore.
The coupled—decoupled configurational-bias Monte Carlo
(CD—CBMC) algorithm®” substantially improved the sam-
pling efficiency for the transfer of water molecules. MC/MD
simulations using CD—CBMC required 25 times fewer cycles
to reach equilibrium than MC/MD simulations using an
unbiased single random trial position, with a modest 25%
increase in computational cost, and 66 times fewer cycles than
prior hybrid simulations that used the cavity-bias method."

Finally, GCMC/MD simulations used to hydrate a buried
binding pocket in BPTI demonstrated a 5-fold improvement in
computational efficiency compared with MD simulations, and
the water molecule locations observed in the GCMC/MD
simulations were within 0.38 A of the crystallographic water
sites. However, subtle differences were observed in protein
dynamics in MD and GCMC/MD simulations. The GCMC/
MD simulations exhibited larger fluctuations of the random
coil (residues 36—47) than the MD simulations, which we
attribute to velocity initialization of inserted water in the
GCMC/MD simulations to random values drawn from a
Maxwell-Boltzmann distribution. It is expected that these
differences could be addressed by increasing the length of the
MD component of each cycle in the GCMC/MD simulation.

As an MC engine, GOMC includes a number of advanced
configurational-bias algorithms that support the insertion of
molecules having more complex topologies with acceptance
rates that are 1—2 orders of magnitude greater than those of
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naive approaches.”’~*° While the examples provided here
focused on water, it is straightforward to perform similar
calculations with larger, more complex molecules*’ without
modification of the software. In addition to the applications
provided here, py-MCMD could be used to simulate other
phenomena, such as diffusion'® or gas adsorption in

polymers.”®
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