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Abstract

Liquid crystal elastomers combine the hyperelasticity of elastomers with the multi-
functionality of liquid crystals and have emerged as an important class of soft active materials.
Monodomain liquid crystal elastomers under loading exhibit the soft elastic behavior due to the
stress induced director rotation and the resulting spontaneous strain. Here, we numerically study
their stress and strain concentration behavior by considering the classical example, a large sheet
with a small circular hole in the middle under uniaxial loading. The concentration behavior is found
to be very different from regular elastomers. Firstly, the concentration factors are much bigger at
both small and large strains. Secondly, the locations of the strain concentration may not coincide
with that of the stress concentration. Detailed analysis of the director rotation and the resulting
spontaneous strain around the free edge of the hole are shown to be the main causes for the unusual
concentration behavior. Moreover, under a given strain, the stress level of the LCE sample, and
therefore the free energy, is slightly lower than that of the neo-Hookean material, while the local

free energy density on the hole edge is much bigger due to the severer concentrations. By
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considering material parameters obtained from various samples of polysiloxane and polyacrylate
side-chain nematic elastomers, we find that their stress and strain concentration behaviors are
qualitatively similar but quantitatively quite different. As a result, at a prescribed strain, the samples
with a larger maximal spontaneous strain has severer stress and strain concentrations. The stress
concentration factor difference scaled by a coupling constant that combines the effect of the two
material parameters, 7 and a, increases as the semi-soft coefficient a decreases. Similar results are
found for the scaled maximal spontaneous strains and the scaled strain concentration factor
difference at small strains.

Keywords: liquid crystal elastomers; director rotation; semi-soft elasticity; stress concentration;

strain concentration; finite element method

1. Introduction

Liquid crystal elastomers (LCEs) are prepared by integrating mesogenic
molecules into a polymer network. These materials hence show a combination of large
elastic deformability and the properties of liquid crystals (LCs) (Warner and Terentjev,
2007). Because of the LC mesogens, LCEs can generate large elastic deformations in
response to multiple stimuli, like light illumination (Camacho-Lopez et al., 2004;
Finkelmann et al., 2001b), heating (Kuenstler et al., 2020; Sawa et al., 2010), and
electromagnetic fields (Davidson et al., 2019; Fukunaga et al., 2008; Zentel, 1986).
These material properties provide LCEs a variety of potential applications such as
artificial muscle (Thomsen et al., 2001; Wang et al., 2017; Woltman et al., 2007) and
mechanically tunable optical devices (Gebhart et al., 2007; Schuhladen et al., 2014;
Xing et al., 2016).

Both the order and the orientation of the LC mesogens can affect the mechanical
properties of LCEs visibly. The change of the order, which is usually induced by heat
or light, can generate significant spontaneous strain and produce a macroscopic

deformation (Finkelmann et al., 2001b; Tajbakhsh and Terentjev, 2001). The average



orientation of LC mesogens is defined as the director. LCEs exhibit anisotropic
mechanical behaviors associated with the director, and the degree of anisotropy is
affected by the order significantly (Finkelmann et al., 2001a; Hirschmann et al., 2001).
The director can rotate gradually in response to the overall deformations, which leads
to a soft elastic behavior, resulting in a stress plateau at a very low stress value in the
stress-strain curve (Dey et al., 2013; Higaki et al., 2013; Kundler and Finkelmann, 1995;
Mitchell et al., 1993). The rotation can be either uniform (Higaki et al., 2013) or non-
uniform with stripe-domains (Kundler and Finkelmann, 1995). On the other hand,
discontinuous rotations have also been reported by Mitchell et al. (Mitchell et al., 1993).
The soft elasticity can be captured by the neo-classical model (Bladon et al., 1993; He
et al.,, 2020; Jin et al., 2010; Warner, 1999; Warner and Terentjev, 1996). When
monodomain LCEs are crosslinked in the nematic phase, they usually show semi-soft
elasticity, i.e. the stress plateaus at a relatively high value in the stress-strain curve
(Kiipfer and Finkelmann, 1994). Considering possible compositional fluctuations,
Verwey et al. proposed a semi-soft elastic energy (Verwey and Warner, 1995, 1997;
Verwey et al., 1996), which has been successfully applied to model the stripe instability
(Conti, 2002; Conti et al., 2002; Finkelmann et al., 1997; Plucinsky and Bhattacharya,
2017; Zhang et al., 2020) and other complex deformations related to the stress induced
director rotations (Biggins et al., 2008; Warner and Terentjev, 2007; Zhang et al., 2019).

Many applications of LCEs are based on their mechanical behaviors under high
stress or strain. Although there are a lot of discussions about the soft-elasticity in
flawless samples, the possible effects of an initial flaw in a sample are not clear yet.
Some primary experimental studies (Fan et al., 2016) revealed that the fracture
behaviors of monodomain and polydomain LCEs are quite different from common
elastomers. The fracture energy is significantly affected by the orientation and the order
of LC mesogens. Besides, a remarkable director rotation is clearly observed within the

vicinity of the crack-tip. As a step before failure, the stress and strain concentration



behavior of LCEs is an important subject to study.

High local stress and strain concentrate nearby geometric defects such as holes,
notches and cracks, where failures start (Elmukashfi and Kroon, 2014). For linear
elastic materials, the asymptotic stress/strain fields near a hole, notch and crack have
been solved analytically in the literature (Fowler, 1984; Qian and Gao, 2001; Walter
and Deborah, 2007; Wong and Shield, 1969). Numerical simulations and experimental
approaches have also been carried out to obtain the stress and strain fields (Gomes et
al., 2005; Heydari-Meybodi et al., 2018; Legrain et al., 2005; Livne et al., 2008; Troyani
et al., 2002). The stress concentration factor is often utilized to describe the
amplification of stress at defects and is very useful for engineering applications (Walter
and Deborah, 2007). Similarly, the strain concentration at defects can be considered.
Yang et al realized that the location of strain concentration can differ from that of the
stress concentration in an elastic plate of finite thickness (Yang, 2009; Yang et al., 2008).

For elastomers with nonlinear elasticity, there have been some attempts to analyze
the stress/strain distribution and concentration around a circular hole through analytical
approaches (Rivlin and Thomas, 1951; Yang, 1967). Some experimental techniques
have also been developed to obtain the stress/strain distribution (Larocca et al., 2004;
Spagnoli et al., 2019). Numerical simulations based on the finite element method have
become reliable approaches to study the concentration behavior of nonlinear materials
(Fukahori and Seki, 1993b, a; Khajehsaeid et al., 2016; Lindley, 1971, 2007; Troyani,
2003; Tsui et al., 2001; Wang and Lee, 1999). It is found that the stress and strain
concentrations of hyperelastic materials behave the same as linear Hooke materials at
very small strains, but can differ strongly at large loadings. The strain-dependent stress
and strain concentration factors are affected greatly by the hyperelastic models and the
material constants (Fukahori and Seki, 1993b, a; Khajehsaeid et al., 2016). As the
mechanical behavior of nematic elastomers differs strongly from the regular rubbers

due to the stress induced director rotation, we would also expect very different stress



and strain concentration behaviors.

In this article, we shall consider the classical example of stress and strain
concentrations, namely, a large thin sheet with a small circular hole in the middle under
uniaxial loading. Analytical solutions of the stress and strain fields are known for linear
Hook materials. Numerical solutions are available for various hyperelastic materials.
Nevertheless, our numerical simulations have shown that the concentration behavior of
nematic elastomers is indeed very different in many aspects, e.g. the values of the
concentration factors, locations of the concentrations and so on. We use the continuum
mechanical model (Zhang et al., 2019) and the semi-soft elastic energy (Verwey and
Warner, 1997) to carry out the numerical simulations based on the finite element
methods as will be described briefly in Section 2. A monodomain LCE sample in the
deep nematic state is studied in details in Section 3. We analyze the stress and strain
concentration behavior by considering the director rotation and the spontaneous strain
around the circular hole. In Section 4, the material-dependent concentration behavior is
studied by using material constants obtained from various experiments of side-chain

LCEs reported in the literature. The conclusions are given in Section 5.

2. Continuum Mechanical Model and Numerical Method

In this section, we shall list the balance and constitutive equations in the continuum
mechanical model of LCE (Zhang et al., 2019). Then, the semi-soft elastic energy and
the corresponding stress-strain relation are provided. Afterwards, we shall derive the
governing equations for plane problems and describe the numerical method for our

calculations.

2.1 Balance and constitutive equations

LCEs have rod-like liquid crystal mesogens and their average orientation is

defined as the director, d, which is a unit vector. According to the Lagrangian



description of the motion, x(X,t) gives us the current position X in the current
configuration B, (x S Bt) of a particle that occupied position X in the initial
configuration B, (X € BO) . The director filed in the current and the initial
configuration are defined as the d, (X) and d(x,t), respectively. Thus, the free
energy density of the nematic LCEs should depend on the deformation gradient

F =V ,x, the director, and its gradient yq as

f=/(F.dvdd,) (1)

where V is the gradient operator with respect to x.
To consider the bulk viscosity and the dissipative rotation of the director, a

Rayleigh dissipation density function should be given as

R= R(i—:,&,F,d,dO) )

where &= (inl +Vv.a’ ) /2 is the strain rate tensor, and d=d—Wd is the Jaumann
derivative. @ and d are the material derivatives of the displacement field u(x,t)
and the director field d(x,t) , respectively. W= (Vxli —inlT)/ 2 1is the spin tensor.
A continuum mechanical model was proposed for nematic LCEs (Zhang et al.,
2019). Based on the variational principle, the balance equations for the momentum and
the director rotation have been obtained. Namely, neglecting the inertia effect, the stress

equilibrium reads

V-t=0 in B and t-n=t, at S, CB, 3)

where t is the Cauchy stress tensor, and n is the outer normal at the traction
boundary S, c0B, with t, the prescribed stress.

The governing equation for the director field d(x,t) is

g+V-r=yd in B, and m-n=C, at §, C0B, 4)

where 7 is the generalized surface stress tensor, g is the generalized intrinsic body

force, y 1isaLagrange multiplier for the constraint,

[d|=1,and C, is the prescribed



generalized surface stress.

The constitutive equations for Cauchy stress t is derived as

t= tbulk + tEricksen + tLeslie (5)
with the bulk and director elastic parts as

ghulk :_p“_giFFT and  Ercksen =—(Vd)T aavfd (6)

where p is a Lagrange multiplier to deal with the incompressibility, and the viscous

part from the dissipations of the bulk deformations and the director rotations as

thele = a_z? +1£d®8—lf—8—lf ®dJ (7)
% 20 5a od
The generalized stress and body force, @ and g, are given as
0
nzi and g:—g—a—{e 8)
ovd a  5q

According to the above model, once we have the two constitutive functions, the
free energy density / of (1) and Rayleigh dissipation density p of (2), the current
position of material points x(X,t) and the current director d(x,t) can be
calculated through (3) and (4) for LCE samples with any given initial director field
d, (X) at B, . In the following, we shall use the semi-soft elastic energy for LCEs
(Verwey and Warner, 1997), the one-constant Frank energy for LCs (de Gennes and
Prost, 1994), and the two-constant Rayleigh function used (Zhang et al., 2019). More
sophistical expressions are discussed by Zhang et al. (Zhang et al., 2019).

2.2 Semi-soft elasticity and spontaneous strains

We assume that the free energy density (1) can be decomposed into the bulk

elastic and the Frank energy as

f = f;lastic + menk (9)



where the bulk elastic energy f,

last

depends on the deformation gradient F , the
director d,(X) at the initial configuration and d(x,t) at the current configuration.
The Franke energy is related to the spatially inhomogeneous distribution of the director
field d(x,t) (de Gennes and Prost, 1994). For simplicity, we assume one constant

approximation of the Frank coefficient K >0 as

1
fiane =5 KVd:Vd (10)

[T L)

where “:” is the inner product of two second order tensors. Thus by (6) and (10), the

Ericksen stress are

(e — _Kd, d, (11)

y

It is obvious that the Ericksen stress is symmetric.

The semi-soft elastic energy f,,,, (Verwey and Warner, 1997) is,

fo =g(tr(e-lFeoFT)+atr(d®d.F(1—do ®d,)F")) (12)

where x>0 is the shear modulus and @>0 is the semi-soft coefficient. £, and £
are the reduced shape tensors of a LCE at the initial and the current configurations,

respectively. They are given as

€,=(r-1)d,®d,+1 and £=(r—1)d®d+I (13)

where I is a unit tensor and >0 is the step length ratio (SLR) as shown in Fig.
I(a). r denotes the average shape anisotropy of the Gaussian distribution of network
chains. When » =1 and a = 0, the LCE is in the isotropic phase and (12) recovers the
well-known neo-Hookean elastic energy of rubbers In the nematic phase, 7 >1
corresponds to prolate LCEs and 0<r <1 corresponds to oblate LCEs. If »#1 but
a =0, we have the neo-classical elastic energy of LCEs (Bladon et al., 1993). It predicts

the soft behavior under loading. Namely, the director will rotate to align itself to the



loading axis under a negligibly small stress (Warner, 1999) as schematically shown in
Fig. 1(a). For the monodomain LCE samples considered in our work, there is a critical
driving force to rotate the director due to the restriction from the backbone polymer
network, and are therefore modeled by the semi-soft elastic energy with a small but
positive semi-soft coefficient a>0. We can rewrite the elastic energy (12) into the

following form

[ = %(tr(FgFf )+ a||dF||2) (14)

where F,:=£""F£,> can be considered as the elastic part of the deformation gradient
(Jin et al., 2010). d, = FTd—(FTd-dO)dO represents the deviation of F'd from its
initial alignment d, as indicated in Fig. 1(b). Thus, we know from (14) that the
director rotation towards the loading axis is favored by the first term as it can reduce
this neo-classical energy, but is penalized by the semi-soft energy as it vanishes only

when F'd remains parallel to d,.

T Ij[]
| &
r=(R‘£R,)“ l <= -
Fr o 0,
F'd d

-
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(a) (b)

Fig. 1. Schematics for soft elasticity and semi-softness. (a) Stress induced director rotation
and spontaneous strains. The gyration tensor spheroids and the director (black arrow) are plotted
for reference. R, is the radius of gyration parallel and perpendicular to the director d,
respectively. The step length ratio r = (RI /R, )2 represents the chain anisotropy of the backbone
molecules (Warner and Terentjev, 2007). For prolate LCEs (7 > 1), the director will immediately

rotate toward the loading direction (soft behavior). (b) The semi-soft energy penalizes director



rotations and attains the minimum at d, =0, i.e. when F'd is parallelto d, .

Now inserting (13) into (12) and using (6), we have the bulk elastic stress as

tbulk — —pI n afg;;ﬂc FT _ —pI n ,u(B _BLCE) (15)

where B:=FF’ is the left Cauchy-Green tensor and B*“" is given by

B*" :=d®g"—(r-1)Fd, ®Fd, (16)

with Qb defined as
g’ =r"(r—1-ra)Bd+r" ((r—1)2 +ra)(Fd0 -d)Fd, (17)

It is obvious that the bulk elastic stress tensor (15) is generally not symmetric. Its

. bulk .
symmetric part, denoted as ¢™" is

¢"* =—pl+u(B-B’) (18)
where B’ is obtained by (16) as

B' :=%(d®§b+§b®d)—(r—1)Fdo®Fd0 (19)

and can be considered as the spontaneous strain. The skew-symmetric part " of the

bulk stress (15) is

T = g(g” ®d-d®§") (20)

The viscosity of the bulk and the viscosity of the rotation of the director are taken
into consideration here. The form of the dissipation density function is given as:

112

d

I oy 1
R:Emtr(s )+E""’ (21)

where 77, 1is the coefficient of the bulk viscosity and 77, is the coefficient of the



viscosity of the director rotation.

Inserting (21) into (7), we can obtain the Leslie stress as

tLeslie — cLeslie + TLeslie Wlth 6Les/ie — nba and TLeslie — 77_201((1 ®&_ &@ dj (22)

Leslie Leslie

where © and 7 are the symmetric and skew-symmetric parts, respectively.
Thus, (3) and (4) are the governing equations for the displacement u(X,t) and
the director field d(x,t) . To reduce the rather high computation cost, we shall consider

only plane problems in the following.

2.3 The plane problem

We consider a thin monodomain LCE sheet with an in-plane initial director d,
as shown in Fig. 2(a). Considering only in-plane loadings and using the rectangular
coordinate system (x, y) in Fig. 2(b), we can assume that the out of plane stress

components all vanish, i.e. ¢ =t =t =t =t_=0 and the director fields remain in

zx vz tzy

the x-y plane,

doz(coseo,sinHO,O)T and d:(cosﬁ,sinﬁ,O)T (23)

with 6, =constant and @ the initial and current angles of the directors with respect
to the x axis, respectively. The director field & and the in-plane displacement u, v
are functions of (x,y,r) at the current configuration or (X,Y,f) at the initial
configuration.

The stress equilibrium equation (3) is reduced to two equations as

to tt,,=0 and ¢, +¢, =0 (24)
. ___bulk Leslie  :
By (20) and (22), the skew-symmetric stress 7, =7, " +7,7 18
270" = ,u(g? cos@— g’ sin 9) and 27" =1, (—9 + Wyx) (25)

where g’ and gﬁ are the in-plane components of the vector g” of (17), and W,



is the y-x component of the skew-symmetric spin tensor W.
To avoid the unknown Lagrange multiplier y in (4) and consider the plane stress
problem that we studied here, Zhang et al. has derived the following rotational

momentum balance equation as (Zhang et al., 2019)

n,(60-W,)-KV0=270" (26)

The skew-symmetric stress component acts as the driving force for the director rotation.
The boundary condition of the director field is considered to be free, i.e. V&-n=0
with n the outer normal at the boundaries.

The three equations (24) and (26) can be solved by using the finite element
method (FEM) to obtain the three unknown fields u#, v and @ , as will be discussed

in details in the next subsection.
2.4 FEM simulations and mesh generations

We use the commercial FEM software COMSOL Multiphysics to solve the above
plane problem (24) and (26). The Structure Mechanics Module is implemented for the
stress equilibrium (24) together with the Mathematics Module for (26). The total
Lagrangian scheme is chosen for large deformations. Namely, the two displacements
u(X,Y,t), V(X,Y,t) and the director field H(X,Y,t) will be determined at the
initial configuration.

As shown in Fig. 2(a), we consider a square shaped monodomain LCE sample of
length 2L, with a very small circular hole of diameter 2p, << 2L, in the middle. To
achieve a uniaxial loading condition, we assume that the sample is free on the top and

the bottom. On the left and right sides, the displacements are prescribed as,

u(£Ly,Y,t) ==L (A-1) and v(~L,,0,¢)=0 27)

where A:=1+Ar is the stretch with A>0 a constant stretching rate and the last

condition is given to prevent any rigid motions. By the penalty function method, we set



the hydrostatic pressure in (6) as p=«k, (det(F)—l) to deal with the

incompressibility. The penalty factor &,/u is large enough to give sufficient

precision.

21,

u=—Ly(A(r)-1) u=L,(A(1)-1)

(a) (b)

Fig. 2 Schematic of a square LCE sheet of length 2L, with a center small circular hole of
radius p, under uniaxial loading. The initial director d, andthe loading are both parallel to the
X-axis. (a) the sample at the initial configuration with the coordinate (X,Y) and (p,¢); (b) the
sample at the current configuration with the coordinate (x,y). m and t are the normal vector
and the tangent vector on the hole edge, respectively. (X,Y) coincides with (x,y) at the

beginning.

We consider a prolate monodomain LCE sample with the step length ratio 7 >1.
For side-chain nematic elastomers in the deep nematic phase, we adopt the material

parameters determined in some previous studies (Zhang et al., 2019).

1=10 Pa,K =10"" N,n, =10 Pa-s,n, =10’ Pa-s (28)

The initial, geometric and loading parameters are chosen as

6, =0°,2L, =15mm ,2p, =0.3mm , A =10"s" (29)

From (28), there are two characteristic times ¢, =7,/ =10"s for the bulk
viscosity and ¢, =7,/ =105 for the dissipation due to director rotations. Thus,

with the loading rate of (29), the effects of viscosity are negligible, as /itb =10" «1



and At , =10"" <« 1. The loading process can be regarded as quasi-static. Possible rate
dependence of the stress/strain concentration behavior will be studied in some future
work. Moreover, the very small coefficient K indicates that the contribution of the
Frank energy may also be negligible compared to that of the semi-soft elasticity, which
is confirmed by the following results. The rotational momentum balance equation (26)
actually reflects r)b,)’c"k =0 at every relaxed step. In other words, the director rotates to
eliminate the skew-symmetric stress induced by the semi-soft elasticity.

We have p,/L,=1/50 by (29). The circular hole is designed small enough to
wipe off the boundary effects of the square sheet, so the sample can be regarded as
nearly infinite. We therefore introduce the analytical solution of an infinite-size plate of

linear Hooke materials to make relevant comparisons at the small strain case. (Walter

and Deborah, 2007)
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Fig. 3. The mesh and its convergence. (a) The mesh generated using the quadrilateral elements



with refinement at the hole edge. The circular ring p, <p<15p, is meshed by N, xN,
quadrilateral elements with N, and N, the number of elements in the circumferential and the
radial direction, respectively. (b) Convergence of the maxima of the stress concentration factor K_
and the strain concentration factor K . (c) Convergence of the maximal director rotation A

and the maximal principal spontaneous strain £

max

with the increase of N -

Considering a sample in the deep nematic state with »=1.8, a=0.1, Fig. 3(a)
depicts an example of the mesh generated using the quadrilateral elements. The mesh
around the hole edge was refined in order to study the stress/strain concentrations.
Namely, the small circular region around the hole edge (p, < p<1.5p,) is meshed by
N,x N, quadrilateral elements, with N, and N, the numbers of elements in the
circumferential and radial direction, respectively, and N, =20N . Then, we mesh the
outer edge of the sample by 4N, quadrilateral elements. A rather coarse mesh is used
here with N, =6N . In between, the mesh with quadrilateral elements is generated
automatically by COMSOL with the maximal element size not bigger than L,/ N, .

The symmetric Cauchy stress tensor ¢ = (t+tT )/ 2 and the Green strain tensor
E= (FTF—I)/ 2 are considered to study the stress/strain concentration behaviors of
LCE. The stress concentration factor K_ and the strain concentration factor K, are

defined as

K, ZIII)l(é’l)IXO'I(X,Y)/O'O , KE5IH}('§YXE1(X>Y)/E0 (30)

where o, (X Y ) and E, (X ,Y ) are the first principal stress and principal strain,

respectively. o, 1is the far field value of the stress o , and the strain

E,=(2"-1)/2.

Fig. 3(b) depicts the mesh dependence of stress/strain concentration factors K_

and K, inthe sample at three different strains ¢, = log(/l) =0.05,10,20%.The mesh

dependence of the maxima of the director rotation |Af] = rgl(%x|A6?(X ,Y)| and the

principal spontaneous strain E> = rr)l(ayfo (X,Y) are shown in Fig. 3(c). It is



obvious that with N =24, we have rather good mesh convergence. In this case, the

minimal mesh size is 2 um and the total number of elements is about 39000. Thus,
we shall use this mesh in the following.

As we have discussed before, when »=1 and a =0, the semi-soft elastic energy
(12) recovers the well-known neo-Hookean model, i.e. f,; = O.S,utr(FFT) . Due to the
tight relation between the semi-soft elasticity and the neo-Hookean model, we also
made numerical simulations using the neo-Hookean elastic energy as a reference. The
sample is stretched quasi statically, and the shear modulus #, geometric parameters
P, & L,, and loading conditions of the neo-Hookean model and the LCE model are

all the same. Specific comparisons are shown in following sections.

3. Stress and strain concentrations for LCEs in deep nematic phase

We know that all the stress and strain maxima in Fig. 3(b) are attained at the edge

of circular hole. Thus, we shall firstly consider their characteristics.

3.1. Stress and strain distributions at the hole edge

It is obvious due to the free boundary condition on the hole edge ( 0 = p,) that
only the tangential component of the Cauchy stress, 0, can be nonzero. As shown by
the left figure in Fig. 4(a) for &,=0.05%, o, are tensional (outward arrows) at the
upper and lower parts of the circle, and have two equal maxima at the top and the bottom
points (4: @Y =+90°). It becomes compressional (inward arrows) near @=0" and
180°. Although the maximal stress is higher than that of the neo-Hookean (n-H)
material, shown by the dashed lines, the stress distribution of the LCE sample is
qualitatively similar, which can be better observed in Fig. 4(c). Note that at very small
strains, the numerical results of n-H material are identical to the analytical solutions of

linear Hooke materials.



However, as shown by the right picture in Fig. 4(a), the distribution of the first
principal strain £, of the LCE sample is qualitatively different from the n-H and linear
Hooke materials. Namely, the locations of the maximal strain do not coincide with the
locations of the maximal stress. In fact, we observe 4 strain maxima as indicated by the
star signs (B: @, #@" =+90") and are also shown in Fig. 4(d); the understanding of

the unusual behavior will be provided later in Fig. 6.
Fig. 4(b), (c) and (e) depict the stress and strain distributions on the hole edge at a

larger strain &, =10%. It is clear that the strain distribution has changed to show only

two maxima occurring at the identical locations to those of the maximal stress. Thus,
we do always observe larger stress and strain concentrations for a LCE sample than a
n-H material, but the qualitatively different strain distributions only occur at relative
small loadings, as summarized more clearly in Fig. 5 by using the stress/strain

concentration factors, K_ and K.
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Fig. 4. Distributions of the stress and strain on the hole edge ( p = p, ) at small and large strains.
The results of a neo-Hookean material and the analytical solutions of a linear Hooke material are
plotted for references. (a) and (b) The distributions of the tangential stress o, and the principal
strain £, at g, =0.05% and &, =10%, respectively. The outward arrows indicate tensions and
the inward arrows indicate compressions. Locations of the maximal stress and strain are labeled as
A with a dotand B with a star, respectively. (c) o, vs.¢ at & =0.05% and & =10%. (d)
and () E, vs. ¢ at g,=0.05% and g =10%, respectively. (f) The skew-symmetric stress
7, vs.p at & =0.05% and &, =10%. All stresses and strains are scaled with the corresponding
far field value o, and strain E,. Compared to a neo-Hookean sample, a LCE sample shows

higher concentrations of both the stress and the strain with four concentration locations of the strain

at a small prescribed strain, &, =0.05% .

The elastic stress and strain field of finite thickness plate containing a hole under
uniaxial tension are numerically investigated, and non-coincidence of the locations of
the stress and strain concentrations was found (Yang, 2009; Yang et al., 2008). The
concentration locations at the circular hole are generally not on the mid-plane and can
be different for the stress and the strain. However, no similar results for plane problems
are known to us. Thus, the strain concentration behavior of LCE seems very unusual.



Moreover, we can observe from Fig. 5(a) that K, of LCE is not only much larger than
that of n-H materials but also its strain dependence is qualitatively different. Namely,

K, (&,) of LCEs decreases slightly and reaches a minimum at a loading &;" before

increases with the loading, while K,.(&,) of n-H materials increases monotonically
with the loading.

The Cauchy stress concentration factor K_ (80) of LCE is always larger than that
of n-H materials. The K_(&,) can decrease slightly before increasing with the
deformation. A similar non-monotonic K_(&,) was reported for uniaxially stretched
rubber sheets with a circular hole (Khajehsaeid et al., 2016). They have attributed that

to possibe load induced geometric nonlienarities.
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Fig. 5. Strain dependences of the factors and the locations of the stress/strain concentrations of

LCEs in comparison with the neo-Hookean material. (a) Dependence of the stress/strain



concentration factors of the symmetric Cauchy stress K_ and the Green strain tensor K, on the
prescribed strain &, . (b) Distributions of the principal strain E, near the location of stress
concentration (@) =90°) at different prescribed strain ¢, ; (¢) Dependence of the locations of the

strain concentrations on the prescribed strain &, .

As shown in Fig.4(f), we have nonzero skew-symmetric part of the stress tensor,
7,, at the hole edge. Its maximal value is much smaller (at least three magnitudes
smaller) than the symmetric part 0, shown in Fig. 4(c). Thus, it should have little

effect on the stress equilibrium equation (24). Nevertheless, it is the driving force for

the stress induced director rotation governed by (26) as we shall consider next.

3.2 Director rotations and spontaneous strains on the hole edge

It is known that for prolate LCEs under tensile loading, the director d will rotate
towards the loading axis. Thus, for our sample as in Fig. 2(a) with the initial director
d, parallel to the loading axis, no director rotations can occur, i.e. d=d, at positions
far away from the hole. However, on the stress free hole edge, the stress distribution is
very different from the uniaxial state. In fact, the only nonzero stress component is the
tangential one, o0, as shown in Fig. 4(a) and (b). Hence, we would expect that the
director will rotate to the tangential direction when &, >0, but to the normal direction
when o, <0. Moreover, the director is expected to rotate more when the stress is
higher. Fig. 6(a) and (b) have confirmed these properties. At the location of the maximal
stress, @) =90°, there is no director rotation ( AG(90°)=0), because the initial
director d, is already in the tangential direction (6, =0). In the region 0°<¢@<90°,
the directors rotate clockwise (A@<0) when o, >0 but anticlockwise (AO>0)
when o, <0. There is no rotation at @=0" with o, <0, because d, is already in
the normal direction.

The rotation of the directors in LCEs will result in the spontaneous strains B® in

(19) that affects the bulk stress 6" in (18). To represent the spontaneous strains in



the Lagrange coordinate, we can rewrite the stress-strain relation (18) as

¢"" =—pl+2uR(E-E*)R’ (31)

where R is the rigid body rotation in the polar decomposition of the deformation
gradient (F=RU)and 2E=U’ -1 is the Green strain. Then, by (19) we can obtain

the spontaneous strain, E’ in the reference configuration as

1 1

E' = R'B'R=_(R'AOR'E +R'g’ ®R'd)- r-

Ud,®ud,  (32)

Fig. 6(b)-(d) depict the distributions of the principal spontaneous strain E; and
the three components, E ; o E;w and FE ;{p , which are all rather big and are
comparable with the applied strain, E, =(A°—1)/2. Their contributions to the total

strains are quite obvious in Fig. 6(e) and (f). While for n-H materials the shear

component, £

0> 1s identically zero on the stress free edge, for LCEs E =E

vanishes only at ¢ =0",£90",180", where there is no director rotation, i.e. €=6,=0.
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Fig. 6. The distributions of the director rotation, and the spontaneous, the elastic and the total
strains on the hole edge at prescribed strains, in comparison with those of the neo-Hookean materials
and the analytical solutions of linear Hooke material. Distributions on the hole edge of (a) the
director rotation A@ (in radians); (b) the principal spontaneous strain E; ; (c¢) and (d) the
spontaneous strain components E’ , E; and E’_ ; (e) and (f) the total strain components E_,
E, and E, ;(g) the elastic strain components E: , E; and E: ;. (h) Loading dependence of

the maxima of the director rotation [Ag|  (in radians), the first principal spontaneous strains



E: and the first principal strain E___ . The spontaneous strains resulted from the director

max

rotations on the hole edge have made the total strains of a LCE sample very different from a neo-

Hookean material, and is the main cause for the unusual concentration behavior of a LCE.

To understand the distributions of the other two components, E SUPU let us first
consider the small loading case, &, < 1. Then, the Green strain E is reduced to the
Cauchy strain, g:= (Vu+VuT )/ 2, and can be decomposed into the elastic and
spontaneous part as, €=¢°+¢&’. The spontaneous strain €' =E’ is shown in Fig. 6(c).
The elastic strain ¢° can be calculated from the stress ¢ by using the isotropic

e

incompressible  linear Hooke’s law  as S(p(p:(O'W)—O.SO'pp)/ 3u and

&, = (app —O.SO'W)/S,u . It is obvious by Fig. 6(g) that the elastic strains of LCEs is
qualitatively the same as n-H. Namely, the elastic shear ¢, =o,,/24 vanishes at the
free edge and the other two components ¢,, = reach the extrema at the locations of
the stress concentrations, (pf =190". Thus, the unusual deviation of the locations of
the strain concentration @, from ¢ =490 at relative a small loading as shown in
Fig. 4(a) and (c) and Fig. 5(b) and (c) should be resulted from the contribution of the
spontaneous part € =E’.

At larger loadings, the qualitative characteristics of the director rotations (Fig.
6(a)), and the elastic and spontaneous strains (Fig. 6(b)-(f)) does not change, but the

relative contributions of the spontaneous part become smaller as indicated more clearly

in Fig. 6(h). Namely, although the maxima,

A6’|max , £ ,and E__ allincrease with
the loading, the first two curves show slight decreasing slopes while the total strain
raises with a growing slope. Hence, at large loadings, the elastic strain becomes more
dominant and the locations of the strain concertation will move to coincide with those
of the stress as shown by Fig. 5(b) and (c).

To understand the reason why the director rotations near the hole edge lead to
stronger stress and strain concentrations of LCEs, we will next analyze the behavior of

the whole sample.



3.3 Director rotations and the energy reductions

As the director is initially aligned to the loading axis, 6, =0, stress induced
director rotations only occurs near the free edge of hole as shown in Fig. 7(a) and (b).
In the region far away from the hole, ca. p/ p, 215, there are no director rotations and
the stress state becomes uniaxial, same as in regular elastic materials, i.e. 0, =0,
o, =0, =0, as shown clearly in Fig. 7(c), (d) and (¢). For an infinite large sheet, the
far-field stress and the free energy of a LCE sample should be equal to the n-H sample
with the same modulus. Nevertheless, we do observe an interesting phenomenon that
the stress o of'the LCE sample within an intermediate region can be slightly smaller
than the n-H material, as shown more clearly in Fig. 7(h) by using the relative difference.

To understand the phenomenon systematically, we consider the energy F ( yo, A)
by integrating the free energy density f of (9) within the region p, < p<p, atthe

Pa (27 .
initial configuration, F(p,)= j L fdpdp . The energy F,:=F(50p,) Iis
Po

calculated to represent the energy within the intermediate region around the hole edge.
Obviously, it increases with the loading, as shown in Fig. 7(f), but is always a little bit
smaller than the corresponding n-H sample as shown more clearly in Fig. 7(h) by using

their relative difference. For comparison, F, :=F(1.1p,) is calculated to represent

the energy concentrated nearby the hole edge. We find that F}, also increases with

the loading but is always bigger than the n-H material, as shown in Fig. 7(g) and (h).
Moreover, by (9) and (12), the total free energy of LCEs has three contributions, the

soft F* (by integrating f,), the semi-soft F* (by f, ) and the Frank energy

F™™ (by  frus ) as shown in Fig. 7(f) and (g). Physically speaking, the soft elastic

energy, [’ , also named the Trace formula or neo-classical model (Warner and
Terentjev, 2007), reflects the elasticity of the polymer backbone and it increases with
the loading in the intermediate region and on the hole edge. The semi-soft elastic energy,
F* , is due to the constraint of the backbone on the director rotations. The director
rotation, and therefore F*, increases with the loading, but is limited in the region near
the hole edge. Namely, F* contributes more than 5% to the total energy and increases
with the loading on the hole edge in Fig. 7(g), but is very small in the intermediate
region as in Fig. 7(f). On the other hand, due to the very small Frank constant in (28),
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Fig. 7. Distributions of the director rotations and stresses in the sample and variation of the free
energies of LCEs in comparison with a neo-Hookean material and the analytical solutions of a linear
Hooke material. (a) The contour plot of Af at &, =0.05%. (b) Distributions of Af along the

paths p/p, =1, 2,15 marked in (a). (c) Dependence of o, onyat x=0,ie. ¢=90°.(d)and
(e) Dependence of o, and o, on x at y=0, ie. ¢=0° at strain & =0.05% (d) and
&, =0.05% (e). (f) The representative free energy in the intermediate region F (SOpO) VS. & .
The three energy terms, the soft energy F*, semi-soft energy F* and the Frank energy F™*

are also plotted. (g) The representative energies on the hole edge F' (l.lpo) vs. &, . (h) The

relative differences of o at p/p,=50, o, = max o, (X Y ) , F, and F,, between the

max

samples of LCE and the neo-Hookean material. ( AF:=F**—F" | Ac_ =c'"-c"" ,

xx

LCE _

Ao =0 o™ ) Under a prescribed strain, the director rotations and the resulting stronger

stress/strain concentrations around the hole leads to lower stresses and smaller total free energy in
the intermediate region of a LCE comparing to a neo-Hookean material.

For a flawless sample subjected to uniaxial tension, if the initial director d, is
parallel to the loading axis, the far-field stress and total free energy of the LCE sample
are equal to those of a neo-Hookean material, which can be easily proved by inserting
d=d, into (14). However, the behaviors of samples containing a hole seem to be
different. We can observe that there are relatively large director rotations near the free
hole edge of a LCE sample. The localized director rotations result in stronger stress and
strain concentrations on the hole edge, and make the stress and free energy within an
intermediate region lower than those of n-H materials at the same prescribed strain.
Large spontaneous strains are induced by the director rotations, and their contributions
to the total strain can make the concentration locations of strain different from those of

stress.



Inspired by the fascinating programmability of LCEs, we may be able to reduce
the stress/strain concentrations and therefore prevent potential failures by designing the
local director distribution around the hole edge. According to our primary attempts, it
seems that the stress concentration is relieved by setting the angle between the initial
director of an arbitrary point on the hole edge and its tangential direction as a constant.
The director within the high-stress region, in this way, might rotate in the same direction
and have a softening effect on the stress. The designing will be studied specially in

some future works.

4. Effects of the backbone anisotropy and semi-softness

As we know from the previous experimental and theoretical studies (Warner and
Terentjev, 2007; Zhang et al., 2020), the soft-elastic behavior of LCEs should depend
strongly on the material properties, especially the step length ratio » (r>1 for
prolate LCEs) and the semi-soft coefficient a>0. A smaller a implies a weaker
constraint of the backbone network on the director rotation, so bigger director rotations
would be expected near the hole edge under the same loading. A larger r means
stronger anisotropy of the backbone molecules, so larger spontaneous strains can be
induced. We shall consider their effects on the stress and strain concentrations in this
section.

As discussed extensively by Warner and Terentjev (Warner and Terentjev, 2007),
the two material parameters, » and a, can be quite different for LCE samples with
different polymer systems and preparation methods. For a given sample, they can vary
strongly with the testing temperature as well. In the following, we shall consider two
types of monodomain side-chain nematic elastomers that have been widely studied, the
polysiloxane LCEs and the polyacrylate LCEs.

As we have discussed in Sect. 2.5, the exact values of two viscous constants 77,

and 7, in (28) are not so important for our numerical calculations as long as the



conditions /itb <land At , <1 are satisfied by (29). Thus, we consider only the
effect of the step length ratio » and the semi-soft coefficient a, and keep all other
parameters as in (28) and (29). In addition, we have checked the convergence of all

the samples in Sect. 4 as we do in Fig. 3.

4.1 Stress/strain concentration behavior of polysiloxane LCEs

Table 1 listed the values of the backbone anisotropy r» and the semi-soft
coefficient a reported (Finkelmann et al., 1997) for polysiloxane side-chain LCE
monodomain samples prepared by using the two-step crosslink process with different
crosslink densities. It is obvious that the larger the crosslink density, the larger the semi-
soft coefficient a as it represents the constraint of the backbone networks as indicated
by (14). Fig. 8(a) and (b) depict that both the stress and the strain concentration factors
K_(¢,) and K, (g,) become smaller for stronger crosslinks. For the sample with the
densest crosslinks (15%), we observe a monotonically increasing K,(&,) similar to
that of a neo-Hookean material. All the other behaviors are qualitatively similar to the

deep nematic example (DNE) studied in the previous section.

Table 1. Material parameters used in Fig. 8 — Fig. 10 and the coupling constant
D, =r—1/r+a. The parameters 7 and a of both polysiloxane and poyacrylate side-chain
LCEs are obtained from the referenced experimental results. For polysiloxane LCEs using
the two-step crosslink method, the parameters for samples with different crosslinking densities
(Finkelmann et al., 1997) and different testing temperatures (Petelin and Copic, 2010) are listed.
Table. 1 also lists the parameters of polyacrylate LCEs with different alignment methods: the
magnetic field by R1997 (Roberts et al., 1997), the mechanical stretch by Z1999 (Zubarev et al.,
1999), the one-step photo-polymerization by H2013 (Higaki et al., 2013). The parameters of the
sample studied in Section 3 are also listed as the Deep Nematic Elastomer (DNE).

Polysiloxane side-chain LCEs Polyacrylate side-chain LCEs Deep Nematic
Finkelmann et al 1997 Copic and Petlin 2010 Elastomer
R1997 71999 H2013
10% 125%  15% 60°C  70°C  75°C (DNE)

2.6 2.6 2.6 2.6 1.95 1.28 1.29 1.44 2.1 1.8



a 0.113 0.153  0.2211 0.11 0.094  0.042 0.05 0.03 0.14 0.1

D, 23284 23684 24365 23254 15312 05408 05648 07756  1.7638 1.3444

All the concentration locations of the strain ¢} (¢,) do not coincide with those
of the stress, @ =+90°, at relatively small loadings, as shown in Fig. 8(c). However,
we observe that in the two samples with high crosslink densities 10% and 12.5%, the

can slightly

location differences of the strain and stress concentrations \(pf; - ‘
increase with strain before decreasing at larger loadings.

Relatively large director rotations and spontaneous strains are induced around the
hole edge in the polysiloxane LCEs similar to those in Fig. 6 and 7 for the DNE. Their
maxima, as shown in Fig. 8(d) and (e), increase with the loading, and are smaller for
samples with denser crosslinks. Thus, we do observe a correlation between the

stress/strain concentration behavior and the spontaneous strains resulted from the

director rotations.
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Fig. 8. Effect of crosslink density on the stress/strain concentration behaviors for monodomain
samples of polysiloxane side-chain nematic elastomers using the two step crosslink method
(Finkelmann et al. 1997) with the parameters listed in Table 1. The neo-Hookean and the deep
nematic example (DNE) studied in the previous section are plotted for comparison. (a) Stress
concentration factors K_ vs. ¢&,. (b) Strain concentration factor K, vs. ¢&,. (c) Differences of
the concentration locations of strain and stress |(p§4 - | vs. &, . (d) The maximal director
rotation |A¢|  vs. & . (¢) The maximal spontaneous strain E,, vs. & . As the crosslink
density decreases, the director rotation and the spontaneous strain increase, resulting in stronger the

stress/strain concentrations.

For a given polysiloxane LCE sample, we know thatboth » and a candecrease
significantly with the testing temperature as they are closely related to the order
parameter of the liquid crystal phase. Table 1 also lists the values r and a at
different experimental temperatures (Petelin and Copic, 2010). As the testing

temperature increases from 60 to 75°C, r is reduced by half and a is reduced to



nearly one-third. As a result, both K_(g,) and K,(g,) become much smaller, as
shown in Fig. 9(a) and (b).

Fig. 9(c) depicts that the concentration locations of the strain, ¢ (&,) at
T =60°C and 70°C are similar to those in the previous cases, i.e. ‘go‘f — oY ‘ is
nonzero and slightly increases at small &,. However, we observe ¢, =¢@) =190° at
T =75°C, which is very close to the nematic-isotropic transition point. Fig. 9(d) and
(e) depict that at a higher temperature the maximal director rotation is slightly larger
but the resulting spontaneous strain is smaller. Thus, similar to the previous observation,
a larger the spontaneous strain leads to stronger the stress/strain concentrations and far
positions ¢, away from ¢ =+90°. However, there seems no direct correlation
between the director rotations in Fig. 9(d) and the spontaneous strains in Fig. 9(e). More
discussions will be given in Sect. 4.3.
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Fig. 9. Effect of the testing temperature on the stress/strain concentration behaviors for
monodomain samples of polysiloxane side-chain nematic elastomers (Petelin and Copic, 2010) with
the parameters listed in Table 1. The neo-Hookean and the deep nematic example (DNE) studied in
the previous section are plotted for comparison. (a) Stress concentration factors K_ vs. &,. (b)
Strain concentration factor K, vs.¢, . (c) Differences of the concentration locations of strain and
stress |(p,ff - | vs. & . (d) The maximal director rotation |Ag| ~ vs. & . (¢) The maximal

spontaneous strain ES  vs. &, .As the testing temperature increases, the spontaneous strain and

max

the stress/strain concentrations decrease. No clear temperature dependence of the director rotation

is observed.

4.2 Stress/strain concentration behavior of polyacrylate LCEs

It is known that both r and a are generally smaller for monodomain samples
made of polyacrylate side-chain nematic elastomers than the polysiloxane LCE
considered above. And they can be quite different for samples prepared with different
methods as summarized in Table 1. Nevertheless, Fig. 10(a) and (b) show that both
K_(¢,) and K,(g,) are always larger than those of a neo-Hookean material and
have the same non-monotonic &, dependence, i.e. the stress concentration factors
decrease and increase as &, increases. K_(g,) and K, (g,) for the sample Z1999
prepared by the two-step crosslink method (Zubarev et al., 1999) are the biggest at small
strains, but those for the sample H2013 prepared by the one step photo-polymerization

(Higaki et al., 2013) become the highest at larger loadings. Such crossover of K_(g,)



and K,.(g,) atsome large &, have also been observed in Fig. 8(a) and (b) between
DNE and the sample with 15% crosslink density.

While the locations for the stress concentration are always at ¢} =+90", the
locations for the maximal strains, ¢, , are quite different for the three samples as
shown by Fig. 10(c). While ‘(p;” — o ‘ for the sample Z1999 is nonzero and non-
monotonic with respect to &, it is monotonic for the sample H2013, and always zero
for the sample R1997, which was prepared by using the magnetic field to align the
director (Roberts et al., 1997).

Fig. 10(d) depicts clearly that the maximal director rotation |A¢9|malx (&,) isalways
bigger for samples with a smaller semi-soft coefficient a. However, its effect on the
maximal spontaneous strains E> (&,) is more complex as shown in Fig. 10(e).
E> (g,) of Z1999 is highest at small strains but becomes smaller than H2013 for
larger loadings, while E>_(g,) of R1997 is always rather small. Crossovers of
|A6’|max (g,) and E> (&,) between polysiloxane or polyacrylate LCEs and DNE

occur in Fig. 8(d-e), Fig. 9(d) and Fig. 10(d-e).
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Fig. 10. Effect of preparation methods on the stress/strain concentration behaviors for
monodomain samples of polyacrylate side-chain nematic elastomers with the parameters listed in
Table 1. R1997, Z1999 and H2013 are the samples from Roberts at al. 1997, Zubarev et al. 1999
and Higaki et al 2013, respectively. The neo-Hookean and the deep nematic example (DNE) studied
in the previous section are plotted for comparison. (a) Stress concentration factors K, vs. ¢, . (b)
Strain concentration factor K, vs. ¢, . (c) Differences of the concentration locations of strain and
stress |¢J§4 - | vs. &, . (d) The maximal director rotation |Ag| ~ vs. & . (¢) The maximal

spontaneous strain E>  Vs. &, .
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4.3 The net director rotation and the parameter dependence

The above studies have demonstrated clearly that the stress and strain
concentration factors K_(&,) and K, (g,) of LCE thin sheets with a small circular

hole are always bigger than those of n-H materials. This can be attributed to the director



rotation around the edge of the circular hole and its effect on the stress distributions.
However, the strain dependences of K_(g,) and K, (g&,) seem quite different for
different samples. To quantify the effect of the material parameters on the concentration
behavior, we will recall the results in Sect. 3.2 and 3.3, and first analyze the director
rotation.

By (25) and (26), we observe that the skew-symmetric Leslie stress and the left
hand side of the evolution equation for the director rotation are proportional to §— w,
with W, representing the rate of rigid body rotations. Thus, we should consider the
net director rotation, A, 0:=A0-o, with o, = (v,x —u, ) /2 the skew-symmetric
component of the displacement. As shown in Fig. 11(a) and (b), the distributions of
A0 around the edge of the circular hole are similar to but different from A€ since
the rigid body rotation @, does have some contributions, especially at relatively large

strains, e.g. at &, =40% in Fig. 11(b). More interestingly, as shown in Fig. 11(c),

Anet(9|max decreases as the semi-soft coefficient a increases.

To establish a relation between the maximal spontaneous strain E>_ and the

X

A

net

maximal net director rotation

(s,), we need to make use of the coupling

max

constant D, =r—1/r+a, which depends on the two material parameters r and a,

as listed in Table 1. Fig. 11(d) depicts that at strains &, up to 10%, E:

max

(&,)/ D, is

bigger for samples with bigger

net

A 6’|m&lx (¢,). As shown by Fig. 11(e), E.. /D, isan
increasing function of &, and decreases as the semi-soft coefficient a increases for
strains &, less than 10%. Note that the material constant D, =r—1/r+a represents
the coupling between the spontaneous strain and the director rotation as first introduced
by de Gennes (de Gennes, 1980), and discussed in details in the phenomenological
theory for LCEs under small deformation by Warner and Terentjev (Warner and
Terentjev, 2007). Thus, it is not surprising that the above results are well established at

relatively small strains.
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Now, we are back to analyze the stress concentration factor. The stress
concentration factor difference between a LCE sample and a n-H sample,
AK_(&,)=K;" (&)K. (&), always increases monotonically with the maximal
spontaneous strain E., (&), as shown in Fig. 12(a). Thus, we can scale the stress
concentration factor difference by the coupling constant D, , and show that
AK_(&,)/ D, increases with the maximal net director rotation |Anet6?|max(go) and

decreases with the semi-soft coefficient a, as shown in Fig. 12(b) and (c).
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Fig. 12. The stress concentration factor difference between a LCE sample and a neo-Hookean material,
AK = K;CE —K[';H , and the effect of the spontaneous strains and the net director rotations for 10 LCE samples.
(a) AK_ vs. E5 /E, and (b) AK_/D, vs. |Am(9|max / &, at prescribed strain &, . The dashed lines are

guide for eyes and E, = (/12 —1) /2.(c) AK,_ vs. g, forthe 10 samples studied.



Similarly, the strain concentration factor difference
AK, (&) =K;" (&)K. (&) increases monotonically with E,_(&,),as shown in
Fig. 13(a). Among different samples with different » and a, the scaled factor
difference AK,(s,)/D, mostly increases with |A,60] (&,),and AK,/D, isalso
mostly larger for samples with smaller semi-soft coefficient a at least small strains
(&,<5%), as shown in Fig. 13(b) and (c). Fig. 13(d) and (e) depict that the three
possible scenarios observed previously for the concentration locations of the strain,
@y (¢,) orthe difference, Ag (g,) = ‘gof (g,)— 90"‘ correspond to different ranges of
E’ /E, . Namely, when E’ /E, is small ( E. /E,<1), we would have
oy (g,) =Y =+90". When 1< E> /E, <2, weobservethat Ag) (g,) isnonzero at

small &, and decreases monotonically to zero with &,.For even larger E. /E,>2,

M . . . .
A, (&,) isnonzero at small &;, and is non-monotonic before decreasing to zero.
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Fig. 13. The strain concentration factor difference between a LCE sample and a neo-Hookean material,
AK, =K éCE -K ‘EVH , and the effect of the spontaneous strains and the net director rotations for 10 LCE samples.

(@ AK, vs E,, and(b) AK,/D, vs. |A

max

t9|maX / &, atprescribed strains &, . The dashed lines are guide

net

for the eyes and E; = (/12 —1)/ 2.(c) AK,/D, and (d) the difference of the strain and stress concentration

locations, Ag,’ ::|(p24 —90°| vs. &, forthe 10 LCE samples studied. (¢) A, vs. E> /E,.

5. Conclusions

The stress and strain concentration behaviors of a thin LCE sheet with a small
circular hole are studied numerically by using the semi-soft elastic free energy. The
results have shown clearly that the concentration behavior under uniaxial loading are
generally very different from regular rubbers. And the unusual behavior of LCEs should
be attributed to the stress induced director rotations near the edge of the center hole,
where the stress state is quite different from the rest of the thin sheet under the uniaxial
loading.

Comparing to the n-H material, we have observed a stronger stress concentration
at the upper and lower middle points of the circular hole in a LCE sample. At the same
time, the stress level and the free energy of the LCE are slightly lower under a
prescribed external strain. Director rotations take place around the edge of the hole,
resulting in a lower soft elastic energy but a higher semi-soft energy.

The director rotations have a much stronger effect on the strain concentration



behavior of LCEs than the n-H material due to the large spontaneous strains. Firstly,
the strain concentration factor K, of LCEs is not only much larger than the n-H
material, but also varies non-monotonically with the loading. More interestingly, we
have found that the locations of the strain and the stress concentrations do not coincide
with each other, at least when the loading is not very large. In other words, there can be
four strain concentration locations on the edge of the holes in contrast to two locations
(the upper and lower middle points) for the stress concentration. We know that the total
strain of a LCE sample is composed of the elastic and the spontaneous strains. While
the elastic part is directly related to the stress distribution and has its maximum at the
locations of the stress concentration, the spontaneous part is induced by the director
rotations, which is determined by the distributions of the stress and the director
alignment. Namely, we know from the uniaxial loading experiments of monodomain
LCE samples that the director should rotate to align with the loading, i.e. the direction
of the first principal stress. As the initial director of the LCE sheet is aligned along the
loading axis, no rotation is needed in the sample except in a narrow region around the
hole, where the stress is not uniaxial due to the free boundary condition. Thus, on the
edge of the hole in the middle of a LCE sheet under uniaxial loadings, we observe stress
and strain concentrations, and highly non-uniform director rotation and spontaneous
strain. In particularly, at the locations of the stress concentration, the initial director is
already tangent to the edge, so it will not rotate at all. Thus, the locations of the maximal
director rotation and consequently the maximal spontaneous strain are always far away
from the locations of the stress concentration. As a result, when the loading is not big
enough, the spontaneous strain can make the locations of the total strain concentration
deviate from its elastic part.

By considering monodomain LCE samples that are made of different materials
and by different preparation methods as reported in some previous experiments, we

have observed qualitatively similar stress/strain concentration behavior with



quantitatively different dependence on the two material parameters, » and a, which
are the step length ratio reflecting the backbone anisotropy and the semi-soft coefficient,
respectively. We have observed almost linear dependences between the stress/strain
concentration factors and the maximal spontaneous strains for all the 10 samples
studied. The maximal net director rotations are found to be larger for samples with
smaller semi-soft coefficient a. The scaled stress concentration factor difference by a
coupling constant that combines the effect of the two material parameters, » and a,
increases as the semi-soft coefficient a decreases. Similar results are found for the
scaled maximal spontaneous strains and the scaled strain concentration factor
difference at small strains.

In addition, it should be noticed that our conclusions in this article might merely
apply for relatively small and moderate loadings. As loading grows, the stress around
the hole edge will approach the lock-up stretch, and the stress/strain concentration
behaviors then might be more complicated and interesting, which is worth some further
study. Two issues should be considered more carefully at large loadings, mesh
convergence near the hole edge and the relevant hyperelastic models. Remeshing might
be needed to ensure the numerical accuracy at very large deformations. Rubber elastic
models considering the lock-up effect such as the Gent model should be employed.
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