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Abstract 

Liquid crystal elastomers combine the hyperelasticity of elastomers with the multi-

functionality of liquid crystals and have emerged as an important class of soft active materials. 

Monodomain liquid crystal elastomers under loading exhibit the soft elastic behavior due to the 

stress induced director rotation and the resulting spontaneous strain. Here, we numerically study 

their stress and strain concentration behavior by considering the classical example, a large sheet 

with a small circular hole in the middle under uniaxial loading. The concentration behavior is found 

to be very different from regular elastomers. Firstly, the concentration factors are much bigger at 

both small and large strains. Secondly, the locations of the strain concentration may not coincide 

with that of the stress concentration. Detailed analysis of the director rotation and the resulting 

spontaneous strain around the free edge of the hole are shown to be the main causes for the unusual 

concentration behavior. Moreover, under a given strain, the stress level of the LCE sample, and 

therefore the free energy, is slightly lower than that of the neo-Hookean material, while the local 

free energy density on the hole edge is much bigger due to the severer concentrations. By 
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considering material parameters obtained from various samples of polysiloxane and polyacrylate 

side-chain nematic elastomers, we find that their stress and strain concentration behaviors are 

qualitatively similar but quantitatively quite different. As a result, at a prescribed strain, the samples 

with a larger maximal spontaneous strain has severer stress and strain concentrations. The stress 

concentration factor difference scaled by a coupling constant that combines the effect of the two 

material parameters, r and a, increases as the semi-soft coefficient a decreases. Similar results are 

found for the scaled maximal spontaneous strains and the scaled strain concentration factor 

difference at small strains. 

Keywords: liquid crystal elastomers; director rotation; semi-soft elasticity; stress concentration; 

strain concentration; finite element method 

1. Introduction 

Liquid crystal elastomers (LCEs) are prepared by integrating mesogenic 

molecules into a polymer network. These materials hence show a combination of large 

elastic deformability and the properties of liquid crystals (LCs) (Warner and Terentjev, 

2007). Because of the LC mesogens, LCEs can generate large elastic deformations in 

response to multiple stimuli, like light illumination (Camacho-Lopez et al., 2004; 

Finkelmann et al., 2001b), heating (Kuenstler et al., 2020; Sawa et al., 2010), and 

electromagnetic fields (Davidson et al., 2019; Fukunaga et al., 2008; Zentel, 1986). 

These material properties provide LCEs a variety of potential applications such as 

artificial muscle (Thomsen et al., 2001; Wang et al., 2017; Woltman et al., 2007) and 

mechanically tunable optical devices (Gebhart et al., 2007; Schuhladen et al., 2014; 

Xing et al., 2016). 

Both the order and the orientation of the LC mesogens can affect the mechanical 

properties of LCEs visibly. The change of the order, which is usually induced by heat 

or light, can generate significant spontaneous strain and produce a macroscopic 

deformation (Finkelmann et al., 2001b; Tajbakhsh and Terentjev, 2001). The average 



 

 

orientation of LC mesogens is defined as the director. LCEs exhibit anisotropic 

mechanical behaviors associated with the director, and the degree of anisotropy is 

affected by the order significantly (Finkelmann et al., 2001a; Hirschmann et al., 2001). 

The director can rotate gradually in response to the overall deformations, which leads 

to a soft elastic behavior, resulting in a stress plateau at a very low stress value in the 

stress-strain curve (Dey et al., 2013; Higaki et al., 2013; Kundler and Finkelmann, 1995; 

Mitchell et al., 1993). The rotation can be either uniform (Higaki et al., 2013) or non-

uniform with stripe-domains (Kundler and Finkelmann, 1995). On the other hand, 

discontinuous rotations have also been reported by Mitchell et al. (Mitchell et al., 1993). 

The soft elasticity can be captured by the neo-classical model (Bladon et al., 1993; He 

et al., 2020; Jin et al., 2010; Warner, 1999; Warner and Terentjev, 1996). When 

monodomain LCEs are crosslinked in the nematic phase, they usually show semi-soft 

elasticity, i.e. the stress plateaus at a relatively high value in the stress-strain curve 

(Küpfer and Finkelmann, 1994). Considering possible compositional fluctuations, 

Verwey et al. proposed a semi-soft elastic energy (Verwey and Warner, 1995, 1997; 

Verwey et al., 1996), which has been successfully applied to model the stripe instability 

(Conti, 2002; Conti et al., 2002; Finkelmann et al., 1997; Plucinsky and Bhattacharya, 

2017; Zhang et al., 2020) and other complex deformations related to the stress induced 

director rotations (Biggins et al., 2008; Warner and Terentjev, 2007; Zhang et al., 2019). 

 Many applications of LCEs are based on their mechanical behaviors under high 

stress or strain. Although there are a lot of discussions about the soft-elasticity in 

flawless samples, the possible effects of an initial flaw in a sample are not clear yet. 

Some primary experimental studies (Fan et al., 2016) revealed that the fracture 

behaviors of monodomain and polydomain LCEs are quite different from common 

elastomers. The fracture energy is significantly affected by the orientation and the order 

of LC mesogens. Besides, a remarkable director rotation is clearly observed within the 

vicinity of the crack-tip. As a step before failure, the stress and strain concentration 



 

 

behavior of LCEs is an important subject to study.  

High local stress and strain concentrate nearby geometric defects such as holes, 

notches and cracks, where failures start (Elmukashfi and Kroon, 2014). For linear 

elastic materials, the asymptotic stress/strain fields near a hole, notch and crack have 

been solved analytically in the literature (Fowler, 1984; Qian and Gao, 2001; Walter 

and Deborah, 2007; Wong and Shield, 1969). Numerical simulations and experimental 

approaches have also been carried out to obtain the stress and strain fields (Gomes et 

al., 2005; Heydari-Meybodi et al., 2018; Legrain et al., 2005; Livne et al., 2008; Troyani 

et al., 2002). The stress concentration factor is often utilized to describe the 

amplification of stress at defects and is very useful for engineering applications (Walter 

and Deborah, 2007). Similarly, the strain concentration at defects can be considered. 

Yang et al realized that the location of strain concentration can differ from that of the 

stress concentration in an elastic plate of finite thickness (Yang, 2009; Yang et al., 2008).  

For elastomers with nonlinear elasticity, there have been some attempts to analyze 

the stress/strain distribution and concentration around a circular hole through analytical 

approaches (Rivlin and Thomas, 1951; Yang, 1967). Some experimental techniques 

have also been developed to obtain the stress/strain distribution (Larocca et al., 2004; 

Spagnoli et al., 2019). Numerical simulations based on the finite element method have 

become reliable approaches to study the concentration behavior of nonlinear materials 

(Fukahori and Seki, 1993b, a; Khajehsaeid et al., 2016; Lindley, 1971, 2007; Troyani, 

2003; Tsui et al., 2001; Wang and Lee, 1999). It is found that the stress and strain 

concentrations of hyperelastic materials behave the same as linear Hooke materials at 

very small strains, but can differ strongly at large loadings. The strain-dependent stress 

and strain concentration factors are affected greatly by the hyperelastic models and the 

material constants (Fukahori and Seki, 1993b, a; Khajehsaeid et al., 2016). As the 

mechanical behavior of nematic elastomers differs strongly from the regular rubbers 

due to the stress induced director rotation, we would also expect very different stress 



 

 

and strain concentration behaviors. 

In this article, we shall consider the classical example of stress and strain 

concentrations, namely, a large thin sheet with a small circular hole in the middle under 

uniaxial loading. Analytical solutions of the stress and strain fields are known for linear   

Hook materials. Numerical solutions are available for various hyperelastic materials.  

Nevertheless, our numerical simulations have shown that the concentration behavior of 

nematic elastomers is indeed very different in many aspects, e.g. the values of the 

concentration factors, locations of the concentrations and so on. We use the continuum 

mechanical model (Zhang et al., 2019) and the semi-soft elastic energy (Verwey and 

Warner, 1997) to carry out the numerical simulations based on the finite element 

methods as will be described briefly in Section 2. A monodomain LCE sample in the 

deep nematic state is studied in details in Section 3. We analyze the stress and strain 

concentration behavior by considering the director rotation and the spontaneous strain 

around the circular hole. In Section 4, the material-dependent concentration behavior is 

studied by using material constants obtained from various experiments of side-chain 

LCEs reported in the literature. The conclusions are given in Section 5. 

2. Continuum Mechanical Model and Numerical Method  

In this section, we shall list the balance and constitutive equations in the continuum 

mechanical model of LCE (Zhang et al., 2019). Then, the semi-soft elastic energy and 

the corresponding stress-strain relation are provided. Afterwards, we shall derive the 

governing equations for plane problems and describe the numerical method for our 

calculations.  

2.1 Balance and constitutive equations  

LCEs have rod-like liquid crystal mesogens and their average orientation is 

defined as the director, d , which is a unit vector. According to the Lagrangian 



 

 

description of the motion,  ,tXx  gives us the current position x  in the current 

configuration  t tB Bx  of a particle that occupied position X  in the initial 

configuration  0 0B BX . The director filed in the current and the initial 

configuration are defined as the  0d X  and  ,td x , respectively. Thus, the free 

energy density of the nematic LCEs should depend on the deformation gradient 
: X F x , the director, and its gradient d  as 

  0, , ,f f F d d d   (1) 

where   is the gradient operator with respect to x .  

To consider the bulk viscosity and the dissipative rotation of the director, a 

Rayleigh dissipation density function should be given as 

 0, , , ,R R 
  

 
ε d F d d   (2) 

where   / 2T
x x   ε u u  is the strain rate tensor, and  d d Wd  is the Jaumann 

derivative. u  and d  are the material derivatives of the displacement field  ,tu x  

and the director field  ,td x , respectively.   / 2T
x x   W u u  is the spin tensor. 

A continuum mechanical model was proposed for nematic LCEs (Zhang et al., 

2019). Based on the variational principle, the balance equations for the momentum and 

the director rotation have been obtained. Namely, neglecting the inertia effect, the stress 

equilibrium reads  

  t 0  in tB  and n t n t  at t tS B   (3) 

where t  is the Cauchy stress tensor, and n  is the outer normal at the traction 

boundary t tS B   with nt  the prescribed stress.  

The governing equation for the director field  ,td x  is 

    g π d  in tB  and n π n C  at d tS B   (4) 

where π  is the generalized surface stress tensor, g  is the generalized intrinsic body 

force,   is a Lagrange multiplier for the constraint, 1d , and nC is the prescribed 



 

 

generalized surface stress. 

The constitutive equations for Cauchy stress t  is derived as  

 bulk Ericksen Leslie  t t t t   (5) 

with the bulk and director elastic parts as  

 bulk Tfp 
  


t I F

F
 and  ricksen TE f

  


t d
d

  (6) 

where p  is a Lagrange multiplier to deal with the incompressibility, and the viscous 

part from the dissipations of the bulk deformations and the director rotations as 

 1
2

Leslie R R R   
     

    

t d d
ε d d

  (7) 

The generalized stress and body force, π  and g , are given as 

 
f




π
d

 and f R 
  

 

g
d d

 (8) 

According to the above model, once we have the two constitutive functions, the 

free energy density f  of (1) and Rayleigh dissipation density R  of (2), the current 

position of material points  ,tXx  and the current director  ,td x  can be 

calculated through (3) and (4) for LCE samples with any given initial director field 

 0d X  at 0B . In the following, we shall use the semi-soft elastic energy for LCEs 

(Verwey and Warner, 1997), the one-constant Frank energy for LCs (de Gennes and 

Prost, 1994), and the two-constant Rayleigh function used (Zhang et al., 2019). More 

sophistical expressions are discussed by Zhang et al. (Zhang et al., 2019).  

2.2 Semi-soft elasticity and spontaneous strains  

We assume that the free energy density (1) can be decomposed into the bulk 

elastic and the Frank energy as 

 elastic Frankf f f    (9) 



 

 

where the bulk elastic energy elastf  depends on the deformation gradient F , the 

director  0d X  at the initial configuration and  ,td x  at the current configuration. 

The Franke energy is related to the spatially inhomogeneous distribution of the director 

field  ,td x  (de Gennes and Prost, 1994). For simplicity, we assume one constant 

approximation of the Frank coefficient 0K   as 

 
1 :
2Frankf K  d d   (10) 

where “:” is the inner product of two second order tensors. Thus by (6) and (10), the 

Ericksen stress are 

 ricksen
, ,

E
ij k i k jt Kd d   (11) 

It is obvious that the Ericksen stress is symmetric.  

The semi-soft elastic energy elastf  (Verwey and Warner, 1997) is,  

      1
0 0 0tr tr

2
T T

elastf a      F F d d F I d d F   (12) 

where 0   is the shear modulus and 0a   is the semi-soft coefficient. 0 and 

are the reduced shape tensors of a LCE at the initial and the current configurations, 

respectively. They are given as 

  0 0 01r   d d I  and  1r   d d I  (13) 

where I  is a unit tensor and 0r   is the step length ratio (SLR) as shown in Fig. 

1(a). r  denotes the average shape anisotropy of the Gaussian distribution of network 

chains. When r =1 and a = 0, the LCE is in the isotropic phase and (12) recovers the 

well-known neo-Hookean elastic energy of rubbers In the nematic phase, 1r   

corresponds to prolate LCEs and 0 1r   corresponds to oblate LCEs. If 1r   but 

0a  , we have the neo-classical elastic energy of LCEs (Bladon et al., 1993). It predicts 

the soft behavior under loading. Namely, the director will rotate to align itself to the 



 

 

loading axis under a negligibly small stress (Warner, 1999) as schematically shown in 

Fig. 1(a). For the monodomain LCE samples considered in our work, there is a critical 

driving force to rotate the director due to the restriction from the backbone polymer 

network, and are therefore modeled by the semi-soft elastic energy with a small but 

positive semi-soft coefficient 0a  . We can rewrite the elastic energy (12) into the 

following form 

   2tr
2

T
elast e e Ff a

 F F d   (14) 

where 1/2 1/2
0:e

F F  can be considered as the elastic part of the deformation gradient 

(Jin et al., 2010).  0 0: T T
F   d F d F d d d  represents the deviation of TF d  from its 

initial alignment 0d  as indicated in Fig. 1(b). Thus, we know from (14) that the 

director rotation towards the loading axis is favored by the first term as it can reduce 

this neo-classical energy, but is penalized by the semi-soft energy as it vanishes only 

when TF d  remains parallel to 0d . 

 

     

(a)                           (b) 

Fig. 1. Schematics for soft elasticity and semi-softness. (a) Stress induced director rotation 

and spontaneous strains. The gyration tensor spheroids and the director (black arrow) are plotted 

for reference. //,R   is the radius of gyration parallel and perpendicular to the director d , 

respectively. The step length ratio  
2

/r R R  represents the chain anisotropy of the backbone 

molecules (Warner and Terentjev, 2007). For prolate LCEs ( 1r  ), the director will immediately 

rotate toward the loading direction (soft behavior). (b) The semi-soft energy penalizes director 



 

 

rotations and attains the minimum at F d 0 , i.e. when TF d  is parallel to 0d . 

 

Now inserting (13) into (12) and using (6), we have the bulk elastic stress as 

  :bulk T LCEelasticfp p 


      


t I F I B B
F

  (15) 

where : TB FF  is the left Cauchy-Green tensor and LCEB  is given by 

   0 0ˆ: 1LCE b r    B d g Fd Fd   (16) 

with ˆ bg  defined as 

      
21 1

0 0ˆ : 1 1b r r ra r r ra       g Bd Fd d Fd   (17) 

It is obvious that the bulk elastic stress tensor (15) is generally not symmetric. Its 

symmetric part, denoted as bulkσ  is 

  bulk sp    σ I B B   (18) 

where sB  is obtained by (16) as 

     0 0
1 ˆ ˆ: 1
2

s b b r      B d g g d Fd Fd   (19) 

and can be considered as the spontaneous strain. The skew-symmetric part bulkτ  of the 

bulk stress (15) is 

 ˆ ˆ( )
2

bulk b b
   τ g d d g   (20) 

The viscosity of the bulk and the viscosity of the rotation of the director are taken 

into consideration here. The form of the dissipation density function is given as: 

  
2

21 1tr
2 2b dR   ε d   (21) 

where b  is the coefficient of the bulk viscosity and d  is the coefficient of the 



 

 

viscosity of the director rotation. 

Inserting (21) into (7), we can obtain the Leslie stress as 

 Leslie Leslie Leslie t σ τ  with  Leslie
bσ ε  and 

2
Leslie d  

    
 

τ d d d d  (22) 

where Leslieσ  and Leslieτ  are the symmetric and skew-symmetric parts, respectively. 

Thus, (3) and (4) are the governing equations for the displacement  ,tu X  and 

the director field  ,td x . To reduce the rather high computation cost, we shall consider 

only plane problems in the following.  

2.3 The plane problem 

We consider a thin monodomain LCE sheet with an in-plane initial director 0d  

as shown in Fig. 2(a). Considering only in-plane loadings and using the rectangular 

coordinate system  ,x y  in Fig. 2(b), we can assume that the out of plane stress 

components all vanish, i.e. 0xz zx yz zy zzt t t t t      and the director fields remain in 

the x-y plane, 

  0 0 0cos ,sin ,0 T
 d  and  cos ,sin ,0 T

 d   (23) 

with 0 constant   and   the initial and current angles of the directors with respect 

to the x axis, respectively. The director field   and the in-plane displacement u , v  

are functions of  , ,x y t  at the current configuration or  , ,X Y t  at the initial 

configuration. 

The stress equilibrium equation (3) is reduced to two equations as 

 , , 0xx x xy yt t   and , , 0yx x yy yt t    (24) 

By (20) and (22), the skew-symmetric stress bulk Leslie
yx yx yx     is  

  ˆ ˆ2 cos sinbulk b b
yx y xg g      and  2 Leslie

yx d yxW       (25) 

where ˆ b
xg  and ˆ b

yg  are the in-plane components of the vector ˆ bg  of (17), and yxW  



 

 

is the y-x component of the skew-symmetric spin tensor W. 

To avoid the unknown Lagrange multiplier   in (4) and consider the plane stress 

problem that we studied here, Zhang et al. has derived the following rotational 

momentum balance equation as (Zhang et al., 2019) 

   2 2 bulk
d yx yxW K        (26) 

The skew-symmetric stress component acts as the driving force for the director rotation. 

The boundary condition of the director field is considered to be free, i.e. 0  n  

with n  the outer normal at the boundaries. 

The three equations (24) and (26) can be solved by using the finite element 

method (FEM) to obtain the three unknown fields u , v  and   , as will be discussed 

in details in the next subsection.  

2.4 FEM simulations and mesh generations 

We use the commercial FEM software COMSOL Multiphysics to solve the above 

plane problem (24) and (26). The Structure Mechanics Module is implemented for the 

stress equilibrium (24) together with the Mathematics Module for (26). The total 

Lagrangian scheme is chosen for large deformations. Namely, the two displacements 

 , ,u X Y t ,  , ,v X Y t  and the director field  , ,X Y t  will be determined at the 

initial configuration.  

As shown in Fig. 2(a), we consider a square shaped monodomain LCE sample of 

length 02L  with a very small circular hole of diameter 0 02 2L   in the middle. To 

achieve a uniaxial loading condition, we assume that the sample is free on the top and 

the bottom. On the left and right sides, the displacements are prescribed as, 

    0 0, , 1u L Y t L     and  0,0, 0v L t     (27) 

where : 1 t    is the stretch with 0   a constant stretching rate and the last 

condition is given to prevent any rigid motions. By the penalty function method, we set 



 

 

the hydrostatic pressure in (6) as   det 1pp  F  to deal with the 

incompressibility. The penalty factor /p   is large enough to give sufficient 

precision. 
 

      

(a)                                     (b) 
Fig. 2 Schematic of a square LCE sheet of length 02L  with a center small circular hole of 

radius 0  under uniaxial loading. The initial director 0d  and the loading are both parallel to the 

X-axis. (a) the sample at the initial configuration with the coordinate  ,X Y  and  ,  ; (b) the 

sample at the current configuration with the coordinate  ,x y . n  and t  are the normal vector 

and the tangent vector on the hole edge, respectively.  ,X Y  coincides with  ,x y  at the 

beginning.  

 

We consider a prolate monodomain LCE sample with the step length ratio 1r  . 

For side-chain nematic elastomers in the deep nematic phase, we adopt the material 

parameters determined in some previous studies (Zhang et al., 2019). 

 5 11 310 , 10 , 10 , 10b dPa K N Pa s Pa s          (28) 

The initial, geometric and loading parameters are chosen as 

 9 1
0 0 0, 20 15 , 2 0.3 , 10L mm mm s           (29) 

From (28), there are two characteristic times 4/ 10b bt s     for the bulk 

viscosity and 2/ 10d dt s     for the dissipation due to director rotations. Thus, 

with the loading rate of (29), the effects of viscosity are negligible, as 1310 1bt   



 

 

and 1110 1dt  . The loading process can be regarded as quasi-static. Possible rate 

dependence of the stress/strain concentration behavior will be studied in some future 

work. Moreover, the very small coefficient K  indicates that the contribution of the 

Frank energy may also be negligible compared to that of the semi-soft elasticity, which 

is confirmed by the following results. The rotational momentum balance equation (26) 

actually reflects 0bulk
yx   at every relaxed step. In other words, the director rotates to 

eliminate the skew-symmetric stress induced by the semi-soft elasticity. 

We have 0 0/ 1/ 50L   by (29). The circular hole is designed small enough to 

wipe off the boundary effects of the square sheet, so the sample can be regarded as 

nearly infinite. We therefore introduce the analytical solution of an infinite-size plate of 

linear Hooke materials to make relevant comparisons at the small strain case. (Walter 

and Deborah, 2007)  

 

 
(a) 

10 15 20 25 30 35

3.7

3.8

3.9

4.0

4.3

4.4

4.5

K
s
 ,

 K
E

N

   0.05%
     10%
     20%

Ks KE e0

10 15 20 25 30 35

1.0

1.5

2.0

4.0

4.5

|D


 | m
ax

 / 
e 0

 , 
ES m

ax
 / 

E 0

N

                        0.05%
                          10%
                          20%

|D |max/e0
ES

max / E0 e0

 

(b)                               (c) 

Fig. 3. The mesh and its convergence. (a) The mesh generated using the quadrilateral elements 



 

 

with refinement at the hole edge. The circular ring 0 01.5     is meshed by N N   

quadrilateral elements with N  and N  the number of elements in the circumferential and the 

radial direction, respectively. (b) Convergence of the maxima of the stress concentration factor Ks  

and the strain concentration factor EK . (c) Convergence of the maximal director rotation 
max

D  

and the maximal principal spontaneous strain max
SE  with the increase of N . 

 

Considering a sample in the deep nematic state with 1.8r  , 0.1a  , Fig. 3(a) 

depicts an example of the mesh generated using the quadrilateral elements. The mesh 

around the hole edge was refined in order to study the stress/strain concentrations. 

Namely, the small circular region around the hole edge ( 0 01.5    ) is meshed by 

N N   quadrilateral elements, with N  and N  the numbers of elements in the 

circumferential and radial direction, respectively, and 20N N  . Then, we mesh the 

outer edge of the sample by 4 LN  quadrilateral elements. A rather coarse mesh is used 

here with 6LN N . In between, the mesh with quadrilateral elements is generated 

automatically by COMSOL with the maximal element size not bigger than 0 / LL N . 

The symmetric Cauchy stress tensor   / 2T σ t t  and the Green strain tensor 

  / 2T E F F I  are considered to study the stress/strain concentration behaviors of 

LCE. The stress concentration factor Ks  and the strain concentration factor EK  are 

defined as 

  1 0,
: max , /

X Y
K X Ys s s  ,  1 0,

: max , /E X Y
K E X Y E   (30) 

where  1 ,X Ys  and  1 ,E X Y  are the first principal stress and principal strain, 

respectively. 0s  is the far field value of the stress xxs , and the strain 

 2
0 : 1 / 2E   . 

Fig. 3(b) depicts the mesh dependence of stress/strain concentration factors Ks  

and EK  in the sample at three different strains  0 log 0.05,10,20%e   .The mesh 

dependence of the maxima of the director rotation 
max ,

: max ( , )
X Y

X Y D  D  and the 

principal spontaneous strain max 1,
: max ( , )S S

X Y
E E X Y  are shown in Fig. 3(c). It is 



 

 

obvious that with =24N , we have rather good mesh convergence. In this case, the 

minimal mesh size is 2 m  and the total number of elements is about 39000. Thus, 

we shall use this mesh in the following. 

As we have discussed before, when 1r   and 0a  , the semi-soft elastic energy 

(12) recovers the well-known neo-Hookean model, i.e.  0.5 tr T
nHf  FF . Due to the 

tight relation between the semi-soft elasticity and the neo-Hookean model, we also 

made numerical simulations using the neo-Hookean elastic energy as a reference. The 

sample is stretched quasi statically, and the shear modulus  , geometric parameters 

0  & 0L , and loading conditions of the neo-Hookean model and the LCE model are 

all the same. Specific comparisons are shown in following sections. 

 

3. Stress and strain concentrations for LCEs in deep nematic phase 

We know that all the stress and strain maxima in Fig. 3(b) are attained at the edge 

of circular hole. Thus, we shall firstly consider their characteristics. 

3.1. Stress and strain distributions at the hole edge 

It is obvious due to the free boundary condition on the hole edge ( 0  ) that 

only the tangential component of the Cauchy stress, tts  can be nonzero. As shown by 

the left figure in Fig. 4(a) for 0 0.05%e  , tts  are tensional (outward arrows) at the 

upper and lower parts of the circle, and have two equal maxima at the top and the bottom 

points (A: 90M
s   ). It becomes compressional (inward arrows) near 0   and 

180 . Although the maximal stress is higher than that of the neo-Hookean (n-H) 

material, shown by the dashed lines, the stress distribution of the LCE sample is 

qualitatively similar, which can be better observed in Fig. 4(c). Note that at very small 

strains, the numerical results of n-H material are identical to the analytical solutions of 

linear Hooke materials.  



 

 

However, as shown by the right picture in Fig. 4(a), the distribution of the first 

principal strain 1E  of the LCE sample is qualitatively different from the n-H and linear 

Hooke materials. Namely, the locations of the maximal strain do not coincide with the 

locations of the maximal stress. In fact, we observe 4 strain maxima as indicated by the 

star signs (B: 90M M
E s    ) and are also shown in Fig. 4(d); the understanding of 

the unusual behavior will be provided later in Fig. 6. 
Fig. 4(b), (c) and (e) depict the stress and strain distributions on the hole edge at a 

larger strain 0 10%e  . It is clear that the strain distribution has changed to show only 

two maxima occurring at the identical locations to those of the maximal stress. Thus, 
we do always observe larger stress and strain concentrations for a LCE sample than a 
n-H material, but the qualitatively different strain distributions only occur at relative 
small loadings, as summarized more clearly in Fig. 5 by using the stress/strain 

concentration factors, Ks  and EK . 
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(e)                     (f) 

Fig. 4. Distributions of the stress and strain on the hole edge ( 0  ) at small and large strains. 

The results of a neo-Hookean material and the analytical solutions of a linear Hooke material are 

plotted for references. (a) and (b) The distributions of the tangential stress tts  and the principal 

strain 1E  at 0 0.05%e   and 0 10%e  , respectively. The outward arrows indicate tensions and 

the inward arrows indicate compressions. Locations of the maximal stress and strain are labeled as 

A  with a dot and B  with a star, respectively. (c) tts  vs.  at 0 0.05%e   and 0 10%e  . (d) 

and (e) 1E  vs.   at 0 0.05%e   and 0 10%e  , respectively. (f) The skew-symmetric stress 

tn  vs.  at 0 0.05%e   and 0 10%e  . All stresses and strains are scaled with the corresponding 

far field value 0s  and strain 0E . Compared to a neo-Hookean sample, a LCE sample shows 

higher concentrations of both the stress and the strain with four concentration locations of the strain 

at a small prescribed strain, 0 0.05%e  .  
 
The elastic stress and strain field of finite thickness plate containing a hole under 

uniaxial tension are numerically investigated, and non-coincidence of the locations of 
the stress and strain concentrations was found (Yang, 2009; Yang et al., 2008). The 
concentration locations at the circular hole are generally not on the mid-plane and can 
be different for the stress and the strain. However, no similar results for plane problems 
are known to us. Thus, the strain concentration behavior of LCE seems very unusual. 



 

 

Moreover, we can observe from Fig. 5(a) that EK  of LCE is not only much larger than 

that of n-H materials but also its strain dependence is qualitatively different. Namely, 

0( )EK e  of LCEs decreases slightly and reaches a minimum at a loading 0
me  before 

increases with the loading, while 0( )EK e  of n-H materials increases monotonically 

with the loading.  

The Cauchy stress concentration factor  0Ks e  of LCE is always larger than that 

of n-H materials. The  0Ks e  can decrease slightly before increasing with the 

deformation. A similar non-monotonic  0Ks e  was reported for uniaxially stretched 

rubber sheets with a circular hole (Khajehsaeid et al., 2016). They have attributed that 

to possibe load induced geometric nonlienarities. 
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(c) 

Fig. 5. Strain dependences of the factors and the locations of the stress/strain concentrations of 

LCEs in comparison with the neo-Hookean material. (a) Dependence of the stress/strain 



 

 

concentration factors of the symmetric Cauchy stress Ks  and the Green strain tensor EK  on the 

prescribed strain 0e . (b) Distributions of the principal strain 1E  near the location of stress 

concentration ( 90M
s   ) at different prescribed strain 0e ; (c) Dependence of the locations of the 

strain concentrations on the prescribed strain 0e . 

 

As shown in Fig.4(f), we have nonzero skew-symmetric part of the stress tensor, 

tn  at the hole edge. Its maximal value is much smaller (at least three magnitudes 

smaller) than the symmetric part tts  shown in Fig. 4(c). Thus, it should have little 

effect on the stress equilibrium equation (24). Nevertheless, it is the driving force for 

the stress induced director rotation governed by (26) as we shall consider next.  

3.2 Director rotations and spontaneous strains on the hole edge 

It is known that for prolate LCEs under tensile loading, the director d  will rotate 

towards the loading axis. Thus, for our sample as in Fig. 2(a) with the initial director 

0d  parallel to the loading axis, no director rotations can occur, i.e. 0d d  at positions 

far away from the hole. However, on the stress free hole edge, the stress distribution is 

very different from the uniaxial state. In fact, the only nonzero stress component is the 

tangential one, tts  as shown in Fig. 4(a) and (b). Hence, we would expect that the 

director will rotate to the tangential direction when 0tts  , but to the normal direction 

when 0tts  . Moreover, the director is expected to rotate more when the stress is 

higher. Fig. 6(a) and (b) have confirmed these properties. At the location of the maximal 

stress, 90M
s  , there is no director rotation ( (90 ) 0D  ), because the initial 

director 0d  is already in the tangential direction ( 0 0  ). In the region 0 90   , 

the directors rotate clockwise ( 0D  ) when 0tts   but anticlockwise ( 0D  ) 

when 0tts  . There is no rotation at 0   with 0tts  , because 0d  is already in 

the normal direction. 

The rotation of the directors in LCEs will result in the spontaneous strains SB  in 

(19) that affects the bulk stress bulkσ  in (18). To represent the spontaneous strains in 



 

 

the Lagrange coordinate, we can rewrite the stress-strain relation (18) as 

  2bulk S Tp    σ I R E E R   (31) 

where R  is the rigid body rotation in the polar decomposition of the deformation 

gradient ( F RU ) and 22  E U I  is the Green strain. Then, by (19) we can obtain 

the spontaneous strain, sE  in the reference configuration as 

   0 0
1 1 1ˆ ˆ:
2 4 2

S T S T T b T b T r 
      E R B R R d R g R g R d Ud Ud   (32) 

Fig. 6(b)-(d) depict the distributions of the principal spontaneous strain 1
sE  and 

the three components, sE , sE  and sE , which are all rather big and are 

comparable with the applied strain, 2
0 ( 1) / 2E   . Their contributions to the total 

strains are quite obvious in Fig. 6(e) and (f). While for n-H materials the shear 

component, E , is identically zero on the stress free edge, for LCEs = sE E   

vanishes only at 0 , 90 ,180   , where there is no director rotation, i.e. 0 0   .  
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Fig. 6. The distributions of the director rotation, and the spontaneous, the elastic and the total 

strains on the hole edge at prescribed strains, in comparison with those of the neo-Hookean materials 

and the analytical solutions of linear Hooke material. Distributions on the hole edge of (a) the 

director rotation D (in radians); (b) the principal spontaneous strain 1
SE ; (c) and (d) the 

spontaneous strain components sE
, sE

 and sE
; (e) and (f) the total strain components E

, 

E
 and E

; (g) the elastic strain components eE
, eE

 and eE
;. (h) Loading dependence of 

the maxima of the director rotation 
max

D  (in radians), the first principal spontaneous strains 



 

 

max
sE  and the first principal strain maxE . The spontaneous strains resulted from the director 

rotations on the hole edge have made the total strains of a LCE sample very different from a neo-

Hookean material, and is the main cause for the unusual concentration behavior of a LCE. 

 

To understand the distributions of the other two components, ,E  , let us first 

consider the small loading case, 0 1e . Then, the Green strain E  is reduced to the 

Cauchy strain,  : / 2T   ε u u , and can be decomposed into the elastic and 

spontaneous part as, e s ε ε ε . The spontaneous strain s sε E  is shown in Fig. 6(c). 

The elastic strain eε  can be calculated from the stress σ  by using the isotropic 

incompressible linear Hooke’s law as  0.5 / 3e
  e s s    and 

 0.5 / 3e
  e s s   . It is obvious by Fig. 6(g) that the elastic strains of LCEs is 

qualitatively the same as n-H. Namely, the elastic shear / 2e
 e s   vanishes at the 

free edge and the other two components ,
e
 e  reach the extrema at the locations of 

the stress concentrations, 90M
s   . Thus, the unusual deviation of the locations of 

the strain concentration M
E  from 90M

s    at relative a small loading as shown in 

Fig. 4(a) and (c) and Fig. 5(b) and (c) should be resulted from the contribution of the 

spontaneous part s sε E . 

At larger loadings, the qualitative characteristics of the director rotations (Fig. 

6(a)), and the elastic and spontaneous strains (Fig. 6(b)-(f)) does not change, but the 

relative contributions of the spontaneous part become smaller as indicated more clearly 

in Fig. 6(h). Namely, although the maxima, 
max

D , max
sE , and maxE  all increase with 

the loading, the first two curves show slight decreasing slopes while the total strain 

raises with a growing slope. Hence, at large loadings, the elastic strain becomes more 

dominant and the locations of the strain concertation will move to coincide with those 

of the stress as shown by Fig. 5(b) and (c). 

To understand the reason why the director rotations near the hole edge lead to 

stronger stress and strain concentrations of LCEs, we will next analyze the behavior of 

the whole sample. 



 

 

3.3 Director rotations and the energy reductions 

As the director is initially aligned to the loading axis, 0 0  , stress induced 

director rotations only occurs near the free edge of hole as shown in Fig. 7(a) and (b). 

In the region far away from the hole, ca. 0/ 15   , there are no director rotations and 

the stress state becomes uniaxial, same as in regular elastic materials, i.e. 0xxs s , 

0yy xys s  , as shown clearly in Fig. 7(c), (d) and (e). For an infinite large sheet, the 

far-field stress and the free energy of a LCE sample should be equal to the n-H sample 

with the same modulus. Nevertheless, we do observe an interesting phenomenon that 

the stress xxs  of the LCE sample within an intermediate region can be slightly smaller 

than the n-H material, as shown more clearly in Fig. 7(h) by using the relative difference. 

To understand the phenomenon systematically, we consider the energy  AF   

by integrating the free energy density f  of (9) within the region 0 A     at the 

initial configuration,  
0

2

0

A

AF fd d
 


     . The energy  0: 50IRF F   is 

calculated to represent the energy within the intermediate region around the hole edge. 
Obviously, it increases with the loading, as shown in Fig. 7(f), but is always a little bit 
smaller than the corresponding n-H sample as shown more clearly in Fig. 7(h) by using 

their relative difference. For comparison,  0: 1.1HEF F   is calculated to represent 

the energy concentrated nearby the hole edge. We find that HEF  also increases with 

the loading but is always bigger than the n-H material, as shown in Fig. 7(g) and (h). 
Moreover, by (9) and (12), the total free energy of LCEs has three contributions, the 

soft sF  (by integrating sf ), the semi-soft ssF  (by ssf ) and the Frank energy 

FrankF  (by Frankf ) as shown in Fig. 7(f) and (g). Physically speaking, the soft elastic 

energy, sF , also named the Trace formula or neo-classical model (Warner and 
Terentjev, 2007), reflects the elasticity of the polymer backbone and it increases with 
the loading in the intermediate region and on the hole edge. The semi-soft elastic energy, 

ssF , is due to the constraint of the backbone on the director rotations. The director 
rotation, and therefore ssF , increases with the loading, but is limited in the region near 
the hole edge. Namely, ssF  contributes more than 5% to the total energy and increases 
with the loading on the hole edge in Fig. 7(g), but is very small in the intermediate 
region as in Fig. 7(f). On the other hand, due to the very small Frank constant in (28), 



 

 

,
Frank

IR HEF  is always negligibly small (5~6 magnitudes smaller than ,
ss

IR HEF ).  
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                    (g)                                  (h) 
Fig. 7. Distributions of the director rotations and stresses in the sample and variation of the free 

energies of LCEs in comparison with a neo-Hookean material and the analytical solutions of a linear 
Hooke material. (a) The contour plot of D  at 0 0.05%e  . (b) Distributions of D  along the 
paths 0/ 1,  2,15    marked in (a). (c) Dependence of xxs  on y at 0x  , i.e. 90   . (d) and 
(e) Dependence of xxs  and yys  on x at 0y  , i.e. 0    at strain 0 0.05%e   (d) and 

0 0.05%e   (e). (f) The representative free energy in the intermediate region  050F   vs. 0e . 
The three energy terms, the soft energy sF , semi-soft energy ssF  and the Frank energy FrankF  

are also plotted. (g) The representative energies on the hole edge  01.1F   vs. 0e . (h) The 

relative differences of xxs  at 0/ 50   ,  max 1,
: max ,

X Y
X Ys s , IRF  and HEF  between the 

samples of LCE and the neo-Hookean material. ( : LCE nHF F FD   , : LCE nH
xx xx xxs s sD   , 

max max max: LCE nHs s sD    ) Under a prescribed strain, the director rotations and the resulting stronger 
stress/strain concentrations around the hole leads to lower stresses and smaller total free energy in 
the intermediate region of a LCE comparing to a neo-Hookean material.  

 

For a flawless sample subjected to uniaxial tension, if the initial director 0d  is 

parallel to the loading axis, the far-field stress and total free energy of the LCE sample 

are equal to those of a neo-Hookean material, which can be easily proved by inserting 

0d d  into (14). However, the behaviors of samples containing a hole seem to be 

different. We can observe that there are relatively large director rotations near the free 

hole edge of a LCE sample. The localized director rotations result in stronger stress and 

strain concentrations on the hole edge, and make the stress and free energy within an 

intermediate region lower than those of n-H materials at the same prescribed strain. 

Large spontaneous strains are induced by the director rotations, and their contributions 

to the total strain can make the concentration locations of strain different from those of 

stress.  



 

 

Inspired by the fascinating programmability of LCEs, we may be able to reduce 

the stress/strain concentrations and therefore prevent potential failures by designing the 

local director distribution around the hole edge. According to our primary attempts, it 

seems that the stress concentration is relieved by setting the angle between the initial 

director of an arbitrary point on the hole edge and its tangential direction as a constant. 

The director within the high-stress region, in this way, might rotate in the same direction 

and have a softening effect on the stress. The designing will be studied specially in 

some future works. 

4. Effects of the backbone anisotropy and semi-softness 

As we know from the previous experimental and theoretical studies (Warner and 

Terentjev, 2007; Zhang et al., 2020), the soft-elastic behavior of LCEs should depend 

strongly on the material properties, especially the step length ratio r  ( 1r   for 

prolate LCEs) and the semi-soft coefficient 0a  . A smaller a  implies a weaker 

constraint of the backbone network on the director rotation, so bigger director rotations 

would be expected near the hole edge under the same loading. A larger r  means 

stronger anisotropy of the backbone molecules, so larger spontaneous strains can be 

induced. We shall consider their effects on the stress and strain concentrations in this 

section. 

As discussed extensively by Warner and Terentjev (Warner and Terentjev, 2007), 

the two material parameters, r  and a , can be quite different for LCE samples with 

different polymer systems and preparation methods. For a given sample, they can vary 

strongly with the testing temperature as well. In the following, we shall consider two 

types of monodomain side-chain nematic elastomers that have been widely studied, the 

polysiloxane LCEs and the polyacrylate LCEs.  

As we have discussed in Sect. 2.5, the exact values of two viscous constants b  

and d  in (28) are not so important for our numerical calculations as long as the 



 

 

conditions 1bt and 1dt  are satisfied by (29). Thus, we consider only the 

effect of the step length ratio r  and the semi-soft coefficient a , and keep all other 

parameters as in (28) and (29). In addition, we have checked the convergence of all 

the samples in Sect. 4 as we do in Fig. 3. 

4.1 Stress/strain concentration behavior of polysiloxane LCEs  

Table 1 listed the values of the backbone anisotropy r  and the semi-soft 

coefficient a  reported (Finkelmann et al., 1997) for polysiloxane side-chain LCE 

monodomain samples prepared by using the two-step crosslink process with different 

crosslink densities. It is obvious that the larger the crosslink density, the larger the semi-

soft coefficient a  as it represents the constraint of the backbone networks as indicated 

by (14). Fig. 8(a) and (b) depict that both the stress and the strain concentration factors 

0( )Ks e  and 0( )EK e  become smaller for stronger crosslinks. For the sample with the 

densest crosslinks (15%), we observe a monotonically increasing 0( )EK e  similar to 

that of a neo-Hookean material. All the other behaviors are qualitatively similar to the 

deep nematic example (DNE) studied in the previous section. 

 
Table 1. Material parameters used in Fig. 8 – Fig. 10 and the coupling constant 

2 : 1/D r r a   . The parameters r  and a  of both polysiloxane and poyacrylate side-chain 
LCEs are obtained from the referenced experimental results. For polysiloxane LCEs using 
the two-step crosslink method, the parameters for samples with different crosslinking densities 
(Finkelmann et al., 1997) and different testing temperatures (Petelin and Copic, 2010) are listed. 
Table. 1 also lists the parameters of polyacrylate LCEs with different alignment methods: the 
magnetic field by R1997 (Roberts et al., 1997), the mechanical stretch by Z1999 (Zubarev et al., 
1999), the one-step photo-polymerization by H2013 (Higaki et al., 2013). The parameters of the 
sample studied in Section 3 are also listed as the Deep Nematic Elastomer (DNE). 

 

 

Polysiloxane side-chain LCEs Polyacrylate side-chain LCEs Deep Nematic 

Elastomer 

(DNE) 

Finkelmann et al 1997 Copic and Petlin 2010 
R1997 Z1999 H2013 

10% 12.5% 15% 60℃ 70℃ 75℃ 

r 2.6 2.6 2.6 2.6 1.95 1.28 1.29 1.44 2.1 1.8 



 

 

a 0.113 0.153 0.2211 0.11 0.094 0.042 0.05 0.03 0.14 0.1 

2D   2.3284 2.3684 2.4365 2.3254 1.5312 0.5408 0.5648 0.7756 1.7638 1.3444 

 

All the concentration locations of the strain 0( )M
E e  do not coincide with those 

of the stress, 90M
s   , at relatively small loadings, as shown in Fig. 8(c). However, 

we observe that in the two samples with high crosslink densities 10% and 12.5%, the 

location differences of the strain and stress concentrations M M
E s   can slightly 

increase with strain before decreasing at larger loadings.  

Relatively large director rotations and spontaneous strains are induced around the 

hole edge in the polysiloxane LCEs similar to those in Fig. 6 and 7 for the DNE. Their 

maxima, as shown in Fig. 8(d) and (e), increase with the loading, and are smaller for 

samples with denser crosslinks. Thus, we do observe a correlation between the 

stress/strain concentration behavior and the spontaneous strains resulted from the 

director rotations. 
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(c)                                 (d) 
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(e) 

Fig. 8. Effect of crosslink density on the stress/strain concentration behaviors for monodomain 

samples of polysiloxane side-chain nematic elastomers using the two step crosslink method 

(Finkelmann et al. 1997) with the parameters listed in Table 1. The neo-Hookean and the deep 

nematic example (DNE) studied in the previous section are plotted for comparison. (a) Stress 

concentration factors Ks  vs. 0e . (b) Strain concentration factor EK  vs. 0e . (c) Differences of 

the concentration locations of strain and stress M M
E s   vs. 0e . (d) The maximal director 

rotation 
max

D  vs. 0e . (e) The maximal spontaneous strain max
SE  vs. 0e . As the crosslink 

density decreases, the director rotation and the spontaneous strain increase, resulting in stronger the 

stress/strain concentrations. 

 

For a given polysiloxane LCE sample, we know that both r  and a  can decrease 

significantly with the testing temperature as they are closely related to the order 

parameter of the liquid crystal phase. Table 1 also lists the values r  and a  at 

different experimental temperatures (Petelin and Copic, 2010). As the testing 

temperature increases from 60 to 75 C , r  is reduced by half and a  is reduced to 



 

 

nearly one-third. As a result, both 0( )Ks e  and 0( )EK e  become much smaller, as 

shown in Fig. 9(a) and (b).  

Fig. 9(c) depicts that the concentration locations of the strain, 0( )M
E e  at 

60 CT    and 70 C  are similar to those in the previous cases, i.e. M M
E s   is 

nonzero and slightly increases at small 0e . However, we observe 90M M
E s      at 

75 CT   , which is very close to the nematic-isotropic transition point. Fig. 9(d) and 

(e) depict that at a higher temperature the maximal director rotation is slightly larger 

but the resulting spontaneous strain is smaller. Thus, similar to the previous observation, 

a larger the spontaneous strain leads to stronger the stress/strain concentrations and far 

positions M
E  away from 90M

s    . However, there seems no direct correlation 

between the director rotations in Fig. 9(d) and the spontaneous strains in Fig. 9(e). More 

discussions will be given in Sect. 4.3. 
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(c)                                     (d)  
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Fig. 9. Effect of the testing temperature on the stress/strain concentration behaviors for 

monodomain samples of polysiloxane side-chain nematic elastomers (Petelin and Copic, 2010) with 

the parameters listed in Table 1. The neo-Hookean and the deep nematic example (DNE) studied in 

the previous section are plotted for comparison. (a) Stress concentration factors Ks  vs. 0e . (b) 

Strain concentration factor EK  vs. 0e . (c) Differences of the concentration locations of strain and 

stress M M
E s   vs. 0e . (d) The maximal director rotation 

max
D  vs. 0e . (e) The maximal 

spontaneous strain max
SE  vs. 0e .As the testing temperature increases, the spontaneous strain and 

the stress/strain concentrations decrease. No clear temperature dependence of the director rotation 

is observed. 

 

4.2 Stress/strain concentration behavior of polyacrylate LCEs  

It is known that both r  and a  are generally smaller for monodomain samples 

made of polyacrylate side-chain nematic elastomers than the polysiloxane LCE 

considered above. And they can be quite different for samples prepared with different 

methods as summarized in Table 1. Nevertheless, Fig. 10(a) and (b) show that both 

0( )Ks e  and 0( )EK e  are always larger than those of a neo-Hookean material and 

have the same non-monotonic 0e  dependence, i.e. the stress concentration factors 

decrease and increase as 0e  increases. 0( )Ks e  and 0( )EK e  for the sample Z1999 

prepared by the two-step crosslink method (Zubarev et al., 1999) are the biggest at small 

strains, but those for the sample H2013 prepared by the one step photo-polymerization 

(Higaki et al., 2013) become the highest at larger loadings. Such crossover of 0( )Ks e  



 

 

and 0( )EK e  at some large 0e  have also been observed in Fig. 8(a) and (b) between 

DNE and the sample with 15% crosslink density.  

While the locations for the stress concentration are always at 90M
s   , the 

locations for the maximal strains, M
E , are quite different for the three samples as 

shown by Fig. 10(c). While M M
E s   for the sample Z1999 is nonzero and non-

monotonic with respect to 0e , it is monotonic for the sample H2013, and always zero 

for the sample R1997, which was prepared by using the magnetic field to align the 

director (Roberts et al., 1997). 

Fig. 10(d) depicts clearly that the maximal director rotation 0max
( ) eD  is always 

bigger for samples with a smaller semi-soft coefficient a . However, its effect on the 

maximal spontaneous strains max 0( )SE e  is more complex as shown in Fig. 10(e). 

max 0( )SE e  of Z1999 is highest at small strains but becomes smaller than H2013 for 

larger loadings, while max 0( )SE e  of R1997 is always rather small. Crossovers of 

0max
( ) eD  and max 0( )SE e  between polysiloxane or polyacrylate LCEs and DNE 

occur in Fig. 8(d-e), Fig. 9(d) and Fig. 10(d-e). 
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Fig. 10. Effect of preparation methods on the stress/strain concentration behaviors for 

monodomain samples of polyacrylate side-chain nematic elastomers with the parameters listed in 

Table 1. R1997, Z1999 and H2013 are the samples from Roberts at al. 1997, Zubarev et al. 1999 

and Higaki et al 2013, respectively. The neo-Hookean and the deep nematic example (DNE) studied 

in the previous section are plotted for comparison. (a) Stress concentration factors Ks  vs. 0e . (b) 

Strain concentration factor EK  vs. 0e . (c) Differences of the concentration locations of strain and 

stress M M
E s   vs. 0e . (d) The maximal director rotation 

max
D  vs. 0e . (e) The maximal 

spontaneous strain max
SE  vs. 0e . 

 

4.3 The net director rotation and the parameter dependence 

The above studies have demonstrated clearly that the stress and strain 

concentration factors 0( )Ks e  and 0( )EK e  of LCE thin sheets with a small circular 

hole are always bigger than those of n-H materials. This can be attributed to the director 



 

 

rotation around the edge of the circular hole and its effect on the stress distributions. 

However, the strain dependences of 0( )Ks e  and 0( )EK e  seem quite different for 

different samples. To quantify the effect of the material parameters on the concentration 

behavior, we will recall the results in Sect. 3.2 and 3.3, and first analyze the director 

rotation.  

By (25) and (26), we observe that the skew-symmetric Leslie stress and the left 

hand side of the evolution equation for the director rotation are proportional to yxW   

with yxW  representing the rate of rigid body rotations. Thus, we should consider the 

net director rotation, :net yx  D  D   with  , ,: / 2yx x yv u    the skew-symmetric 

component of the displacement. As shown in Fig. 11(a) and (b), the distributions of 

netD  around the edge of the circular hole are similar to but different from D  since 

the rigid body rotation yx  does have some contributions, especially at relatively large 

strains, e.g. at 0 40%e   in Fig. 11(b). More interestingly, as shown in Fig. 11(c), 

maxnetD  decreases as the semi-soft coefficient a  increases. 

To establish a relation between the maximal spontaneous strain max
SE  and the 

maximal net director rotation 0max
( )net eD , we need to make use of the coupling 

constant 2 1/D r r a   , which depends on the two material parameters r  and a , 

as listed in Table 1. Fig. 11(d) depicts that at strains 0e  up to 10%, max 0 2( ) /SE De  is 

bigger for samples with bigger 0max
( )net eD . As shown by Fig. 11(e), max 2/SE D  is an 

increasing function of 0e , and decreases as the semi-soft coefficient a  increases for 

strains 0e  less than 10%. Note that the material constant 2 1/D r r a    represents 

the coupling between the spontaneous strain and the director rotation as first introduced 

by de Gennes (de Gennes, 1980), and discussed in details in the phenomenological 

theory for LCEs under small deformation by Warner and Terentjev (Warner and 

Terentjev, 2007). Thus, it is not surprising that the above results are well established at 

relatively small strains. 
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(e) 

Fig. 11. The net rotation of the director, :net yx  D  D  , and its effect on the spontaneous 

strains. (a) and (b) Distributions of the director rotation D , the rigid body rotation yx  and the 

net rotation netD  on the hole edge at a small ( 0 0.05%e  ) and a large ( 0 40%e  ) prescribed 

strain for the deep nematic example (DNE). (c) the maximal net director rotation scaled by 0e , 

0max
/net eD  and (e) the maximal spontaneous strain scaled by the coupling constant, max 2/SE D  vs. 

a  at prescribed 0e . (d) the ratio max 2/SE D  vs. 
maxnetD  at the same 0e . (The dashed lines are 

guide for the eyes, and the coupling constant 2 1/D r r a    is a material constant.) 



 

 

 

Now, we are back to analyze the stress concentration factor. The stress 

concentration factor difference between a LCE sample and a n-H sample, 

     0 0 0: LCE nHK K Ks s se e eD   , always increases monotonically with the maximal 

spontaneous strain  max 0
SE e , as shown in Fig. 12(a). Thus, we can scale the stress 

concentration factor difference by the coupling constant 2D , and show that 

 0 2/K Ds eD  increases with the maximal net director rotation  0maxnet eD  and 

decreases with the semi-soft coefficient a , as shown in Fig. 12(b) and (c). 
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Fig. 12. The stress concentration factor difference between a LCE sample and a neo-Hookean material,

: LCE nHK K Ks s sD   , and the effect of the spontaneous strains and the net director rotations for 10 LCE samples. 

(a) KsD  vs. max 0/SE E  and (b) 2/K DsD  vs. 0max
/net eD  at prescribed strain 0e . The dashed lines are 

guide for eyes and  2
0 1 / 2E   . (c) KsD  vs. 0e  for the 10 samples studied.  



 

 

 

Similarly, the strain concentration factor difference 

     0 0 0: LCE nH
E E EK K Ke e eD    increases monotonically with  max 0

SE e , as shown in 

Fig. 13(a). Among different samples with different r  and a , the scaled factor 

difference  0 2/EK DeD  mostly increases with  0maxnet eD , and 2/EK DD  is also 

mostly larger for samples with smaller semi-soft coefficient a  at least small strains 

( 0 5%e  ), as shown in Fig. 13(b) and (c). Fig. 13(d) and (e) depict that the three 

possible scenarios observed previously for the concentration locations of the strain, 

0( )M
E e  or the difference, 0 0( ) : ( ) 90M M

E E e  eD    correspond to different ranges of 

max 0/SE E . Namely, when max 0/SE E  is small ( max 0/ 1SE E  ), we would have 

0( ) 90M M
E s e    . When max 01 / 2SE E  , we observe that 0( )M

E eD  is nonzero at 

small 0e  and decreases monotonically to zero with 0e . For even larger max 0/ 2SE E  , 

0( )M
E eD  is nonzero at small 0e , and is non-monotonic before decreasing to zero. 
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(c)                             (d)  
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(e) 
Fig. 13. The strain concentration factor difference between a LCE sample and a neo-Hookean material,
: LCE NH

E E EK K KD   , and the effect of the spontaneous strains and the net director rotations for 10 LCE samples. 

(a) EKD  vs max
SE  and (b) 2/EK DD  vs. 0max

/net eD  at prescribed strains 0e . The dashed lines are guide 

for the eyes and  2
0 1 / 2E   . (c) 2/EK DD  and (d) the difference of the strain and stress concentration 

locations, : 90M M
E E D     vs. 0e  for the 10 LCE samples studied. (e) M

ED  vs. max 0/SE E .  

 

5. Conclusions 

The stress and strain concentration behaviors of a thin LCE sheet with a small 

circular hole are studied numerically by using the semi-soft elastic free energy. The 

results have shown clearly that the concentration behavior under uniaxial loading are 

generally very different from regular rubbers. And the unusual behavior of LCEs should 

be attributed to the stress induced director rotations near the edge of the center hole, 

where the stress state is quite different from the rest of the thin sheet under the uniaxial 

loading.  

Comparing to the n-H material, we have observed a stronger stress concentration 

at the upper and lower middle points of the circular hole in a LCE sample. At the same 

time, the stress level and the free energy of the LCE are slightly lower under a 

prescribed external strain. Director rotations take place around the edge of the hole, 

resulting in a lower soft elastic energy but a higher semi-soft energy. 

The director rotations have a much stronger effect on the strain concentration 



 

 

behavior of LCEs than the n-H material due to the large spontaneous strains. Firstly, 

the strain concentration factor EK  of LCEs is not only much larger than the n-H 

material, but also varies non-monotonically with the loading. More interestingly, we 

have found that the locations of the strain and the stress concentrations do not coincide 

with each other, at least when the loading is not very large. In other words, there can be 

four strain concentration locations on the edge of the holes in contrast to two locations 

(the upper and lower middle points) for the stress concentration. We know that the total 

strain of a LCE sample is composed of the elastic and the spontaneous strains. While 

the elastic part is directly related to the stress distribution and has its maximum at the 

locations of the stress concentration, the spontaneous part is induced by the director 

rotations, which is determined by the distributions of the stress and the director 

alignment. Namely, we know from the uniaxial loading experiments of monodomain 

LCE samples that the director should rotate to align with the loading, i.e. the direction 

of the first principal stress. As the initial director of the LCE sheet is aligned along the 

loading axis, no rotation is needed in the sample except in a narrow region around the 

hole, where the stress is not uniaxial due to the free boundary condition. Thus, on the 

edge of the hole in the middle of a LCE sheet under uniaxial loadings, we observe stress 

and strain concentrations, and highly non-uniform director rotation and spontaneous 

strain. In particularly, at the locations of the stress concentration, the initial director is 

already tangent to the edge, so it will not rotate at all. Thus, the locations of the maximal 

director rotation and consequently the maximal spontaneous strain are always far away 

from the locations of the stress concentration. As a result, when the loading is not big 

enough, the spontaneous strain can make the locations of the total strain concentration 

deviate from its elastic part. 

By considering monodomain LCE samples that are made of different materials 

and by different preparation methods as reported in some previous experiments, we 

have observed qualitatively similar stress/strain concentration behavior with 



 

 

quantitatively different dependence on the two material parameters, r  and a , which 

are the step length ratio reflecting the backbone anisotropy and the semi-soft coefficient, 

respectively. We have observed almost linear dependences between the stress/strain 

concentration factors and the maximal spontaneous strains for all the 10 samples 

studied. The maximal net director rotations are found to be larger for samples with 

smaller semi-soft coefficient a . The scaled stress concentration factor difference by a 

coupling constant that combines the effect of the two material parameters, r  and a , 

increases as the semi-soft coefficient a  decreases. Similar results are found for the 

scaled maximal spontaneous strains and the scaled strain concentration factor 

difference at small strains.  

In addition, it should be noticed that our conclusions in this article might merely 

apply for relatively small and moderate loadings. As loading grows, the stress around 

the hole edge will approach the lock-up stretch, and the stress/strain concentration 

behaviors then might be more complicated and interesting, which is worth some further 

study. Two issues should be considered more carefully at large loadings, mesh 

convergence near the hole edge and the relevant hyperelastic models. Remeshing might 

be needed to ensure the numerical accuracy at very large deformations. Rubber elastic 

models considering the lock-up effect such as the Gent model should be employed. 
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