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Generalized Fiducial Inference for Threshold
Estimation in Dose–Response and Regression

Settings
Seungyong Hwang, Randy C. S. Lai, and Thomas C. M. Lee

In many biomedical experiments, such as toxicology and pharmacological dose–
response studies, one primary goal is to identify a threshold value such as the minimum
effective dose. This paper applies Fisher’s fiducial idea to develop an inference method
for these threshold values. In addition to providing point estimates, this method also
offers confidence intervals. Another appealing feature of the proposed method is that it
allows the use of multiple parametric relationships to model the underlying pattern of
the data and hence, reduces the risk of model mis-specification. All these parametric
relationships satisfy the qualitative assumption that the response and dosage relationship
is monotonic after the threshold value. In practice, this assumption may not be valid
but is commonly used in dose–response studies. The empirical performance of the pro-
posed method is illustrated with synthetic experiments and real data applications. When
comparing to existing methods in the literature, the proposed method produces superior
results in most synthetic experiments and real data sets.

Supplementary materials accompanying this paper appear on-line.

Key Words: Confidence intervals;Markov chainMonteCarlo;Minimumeffective dose;
Model averaging; Uncertainty quantification.

1. INTRODUCTION

In pharmacological and toxicological dose–response experiments, a primary and impor-
tant goal is to identify a threshold value for a specific purpose. For example, identifying the
minimum effective dose (MED) of a medicine in the beginning stage of a dose–response
experiment is important, as any dose level that is less than the identified level does not need
to be considered in further studies. As another related example, the identification of the no-
observed-adverse-effect-level (NOAEL) is equally important. It is because in general, as the
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dosage increases, the possibility of having adverse effects also increases. Therefore, once
NOAEL is identified, one can minimize the adverse side effects from the medicine and also
the cost of the experiments (Bretz et al. 2008; Guo and Li 2014; Kim et al. 2016; Schwartz
et al. 2001; West and Kodell 2005; Coffey and Gennings 2007). In this context, the detec-
tion of MED or NOAEL can be considered as a threshold estimation problem (e.g., Mallik
et al. 2011). In addition to dose–response studies, threshold estimation problems can also
be found in environmental studies such as detecting changes in air pollutant levels (Holst
et al. 1996).

Existing statistical methods for threshold estimation in dose–response experiments can
be broadly grouped into two different categories (Bretz et al. 2008): multiple comparison
methods (Williams 1972; Ruberg 1989; Hsu and Berger 1999; Tamhane and Logan 2002;
Guo and Li 2014; Otava et al. 2017) and model-based methods (Cox 1987; Muggeo 2003;
Schwartz et al. 2001; West and Kodell 2005; Coffey and Gennings 2007; Lutz and Lutz
2009; Mallik et al. 2011), while multiple comparison methods can be further divided into
Bayesian (e.g., Guo and Li 2014; Otava et al. 2017) and frequentist (e.g., Williams 1972;
Ruberg 1989; Hsu and Berger 1999; Tamhane and Logan 2002) approaches.

Multiple comparison methods require fewer assumptions, but they restrict the estimated
MED to be one of the investigated levels, i.e., they will not produce any estimated MED
value that is different from those dose levels that were experimented with—not even with
interpolation between doses levels or similar techniques. On the other hand, model-based
methods are capable of interpolating and extrapolating dose levels as they impose a stronger
assumption that there exists a model that adequately captures the relationship between the
dose levels and the response. Most drug development experiments assume that such a rela-
tionship is non-decreasing, whichmeans the higher the dosage the stronger the therapeutical
effects (Bretz et al. 2008; Lutz and Lutz 2009; Mallik et al. 2011). Of course, if the chosen
model does not adequately capture the relationship, the estimated threshold value is unlikely
to be close to the true value. This is a potential drawback of the model-based methods.

Both Bayesian (e.g., Guo and Li 2014; Otava et al. 2017) and frequentist (e.g., Williams
1972; Hsu and Berger 1999) multiple comparison methods typically define the hypotheses
of interest according to the investigated dose levels. For example, if there are two dose levels,
four hypotheses will be investigated: (i) none of the doses have any effect, (ii) only one dose
has effect, (iii) both doses have the same effect, and (iv) the two doses have different effects.
As the number of investigated dose levels increases, the number of hypotheses increases
rapidly. Therefore, such methods (e.g., Williams 1972; Hsu and Berger 1999; Guo and Li
2014; Otava et al. 2017) only considered the case when the number of dose levels is small
(4 or 5). The Bayesian methods typically assign prior probabilities to the hypotheses and
make final conclusions using the posterior probabilities.

For model-based methods, if one believes the relationship between the dosage and
response is monotonic, one can model this problem with a regression function that is con-
stant to the left of a certain covariate value t0, say, and is increasing to the right of t0 (Bretz
et al. 2008; Lutz and Lutz 2009; Mallik et al. 2011). Under this regression model, the main
purpose is to make an inference about the value of t0, the threshold value. In dose–response
experiments, it can be a MED, which starts showing a discernible effect compared to a con-
trol. A notable example is the break point estimation method developed by Muggeo (2003).
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With a parametric segmented regression model commonly used in the threshold estimation
problem, this method first detects if a threshold t0 exists, and if yes, it then provides the
maximum likelihood estimate (MLE) as well as a confidence interval for t0. Consequently,
this method does not always produce an estimate for t0. More recently, in Mallik et al.
(2011) a method based on a novel p value framework was developed. The idea is to first
conduct a sequence of tests that, for each covariate value, assesses whether the regression
function is at its baseline, then calculate the corresponding p values, and lastly estimate t0

by fitting a piecewise function to those calculated p values. This method, however, does not
provide confidence intervals.

The main contribution of this paper is a new method for performing statistical inference
for t0. This method is model-based and has the following properties:

• It is neitherBayesiannor frequentist; rather, it follows thegeneralizedfiducial inference
methodology of Hannig et al. (2016).

• Model averaging is employed to avoid the above-mentioned danger of selecting a
wrong model.

• Unlike most existing methods, it provides point estimates as well as confidence inter-
vals for t0.

To be more specific, four different parametric forms are used for model averaging: the first
one is a step function with its jump point at t0, the second one begins with a constant
function until it hits t0 and then has a linear trend afterward, while the third and fourth
are similar, except they have, respectively, a quadratic and a cubic trend after t0; some
of these parametric forms were used by previous authors (more below). The generalized
fiducial inference methodology is used to compute a probability density function for these
four parametric forms. With such a density function, the proposed method pools multiple
threshold estimates from each of the four parametric forms to form a single point estimate
for t0, as well as constructs a confidence interval for its value.

The rest of this paper is organized as follows. Section 2 provides a brief introduction
of generalized fiducial inference, while Sect. 3 states the problem formulation. In Sect. 4,
the empirical performance of the proposed method is illustrated under various experimen-
tal settings, while in Sect. 5 the proposed method is applied to two real datasets. Lastly,
concluding remarks are offered Sect. 6.

2. A BRIEF INTRODUCTION OF GENERALIZED FIDUCIAL
INFERENCE

Bayesian inference is an important statistical methodology that offers both point and
uncertainty estimates for the unknown parameters via the calculations of posterior dis-
tributions. This provides more information compared to frequentist inference (Xie and
Singh 2013). However, when no prior information is available, any naive application of
the Bayesian methodology could cause concerns; see Efron (2013) for an example in which
different priors lead to very different results. To address this issue, Fisher (1930) introduced
fiducial inference, where the main idea is to transfer the randomness from the observed data
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into the uncertainties of the parameter estimates via the use of a switching principle. This
switching principle is also used in maximum likelihood estimation and will be described
further below. The uncertainties of the parameter estimates are summarized in the form of a
distribution function, termed generalized fiducial density, which plays a similar role as the
posterior distribution in the Bayesian setting.

Soon it was realized by other researchers that Fisher’s fiducial idea onlyworks for univari-
ate problems, and hence, it did not receive much attention from the statistics community for
a few decades. However, there has been a recent resurgence of interest in different variants
of Fisher’s idea, including Dempster–Shafer theory (Dempster 2008), inferential models
(Martin and Liu 2015), confidence distribution (Xie and Singh 2013), and more generally
fusion learning Cheng et al. (2014). All these variants use similar but different ideas to
extend Fisher’s idea to multivariate cases. The particular variant that this paper considers is
the so-called generalized fiducial inference (Hannig et al. 2016).

Generalized fiducial inference (GFI) repairs many drawbacks of Fisher’s original pro-
posal and has been applied to various inference problems with great success, including
wavelet regression, ultrahigh-dimensional models, nonparametric survival function estima-
tion; e.g., see Hannig and Lee (2009), Lai et al. (2015), Hannig et al. (2016), Cui and Hannig
(2019) and references therein. GFI assumes that the data are generated from a data gener-
ating equation G and expresses the relationship between the data Y and the parameters θ

as

Y = G(U, θ), (1)

where U is the random component whose distribution is assumed to be completely known.
For many practical problems, it is the distribution of the (normalized) residuals. For the cur-
rent problem, it is the distribution of u in (4) below, which is assumed to beN (0, 1). Similar
to Fisher’s maximum likelihood method, an important idea behind GFI is the so-called
switching principle. That is, the roles of the random data Y and the deterministic parameters
θ are switched after Y is observed: the observed data, denoted as y, are now treated as
deterministic while θ is treated as random. By using (1) and this switching principle, we
can derive a probability distribution of θ as follows.

Suppose for now, the data generating equation G is invertible for any u ∈ U and any
observed y. That is, the inverse G−1 always exists:

θ = G−1(y, u). (2)

Recall that the distribution of U is completely known, thus one can generate a random
sample {u1, u2, . . . , un} of U and plug them into (2) and obtain

θ̃1 = G−1(y, u1), θ̃2 = G−1(y, u2), . . . , θ̃n = G−1(y, un).

We shall call {θ̃1, . . . , θ̃n} a fiducial sample of θ , which can be used to form point estimates
and confidence intervals for θ , as similar to a posterior sample in the Bayesian context. One
can see that through G−1, the randomness in the data y is transformed into the randomness
in the parameter θ .
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Of course in practice, the inverse function G−1 in (2) does not always exist, and Hannig
(2013) proposed a solution to deal with this issue.

From the above discussion, one can see that there is a density function behind the fiducial
sample {θ̃1, . . . , θ̃n}.We shall call this density r(θ |y) the generalized fiducial density. When
θ ∈ � ⊂ R

p and y ∈ R
n , and under some regularity conditions, it can be shown that r(θ |y)

admits the following expression (Hannig 2013; Hannig et al. 2016):

r(θ |y) = f (y, θ)J (y, θ)
∫
� f (y, θ

′
)J (y, θ

′
)dθ

′ , (3)

where f (y, θ) is the likelihood, J (y, θ) is a Jacobian-like quantity that admits the expression:

J (y, θ) = D

(
d

dθ
G(u, θ)|u=G−1(y,θ)

)

with

D(A)=

⎧
⎪⎨

⎪⎩

| det(A)| if n = p
∑

i=(i1,...,i p) | det(A)i | if n �= p, i : index of p-tuples

{det(AT A)}1/2 if n �= p and d
dθ G(u, θ) has continuous partial derivatives w.r.t θ .

,

where A ∈ R
n×p. The derivation of (3) is not straightforward, but it was obtained by

applying the implicit function theorem and Jacobian transformation. Note also its similarity
with the Jeffreys prior in the Bayesian methodology.

Depending on the problem settings, it may not be feasible to obtain closed-form expres-
sions for J (y, θ) or

∫
� f (y, θ

′
)J (y, θ

′
)dθ

′
. Especially, with the large sample size, the num-

ber of combinations of tuples is too large to consider all possible combinations. This problem
can sometimes be solved by sampling the combinations of tuples and taking the mean of
them (e.g., Hannig et al. 2014). Some other times, one could useMarkov ChainMonte Carlo
(MCMC) methods to generate fiducial samples without the need to evaluate the normaliz-
ing constant

∫
� f (y, θ

′
)J (y, θ

′
)dθ

′
. In fact, as described below, for the present problem we

need to use MCMC to generate a fiducial sample.

3. GENERALIZED FIDUCIAL INFERENCE FOR THRESHOLD
ESTIMATION

As mentioned before, many dose–response studies assume a monotonic relationship
between the dose levels x and the pharmacological effects y of the medicine (e.g., Bretz
et al. 2008, 2010; Pinheiro et al. 2006; Mallik et al. 2011). Hence, one can consider the
following regression model:

y = μ(x) + σu (4)

with

μ(x) = b0 if x ≤ t0 and μ(x) > b0 if x > t0,
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where t0 is the threshold, b0 ∈ R is the baseline, u is the error term (usually standard
normal), and σ is the noise standard deviation. Also, we use the following to denote the
observed data from a study:

yi j = μ(xi ) + σui j , i = 0, 1, . . . , n, j = 1, 2, . . . , mi ,

where yi j is the measured pharmacological effect of i-th dosage from subject j , xi is the
i-th dosage (x0 represents control), n is the number of dosages, mi is the number of subjects

with i-th dosage, and ui j
iid∼ N (0, 1)

The goal is to conduct statistical inference on t0, which is theMED in this dose–response
setting.Asmentioned in the introduction,we assume a constant value (β0) for thefirst portion
ofμ(x) (i.e.,μ(x) for x ≤ t0) while we use four different non-decreasing functions tomodel
μ(x) for x > t0:

μp(x) = β0 + β1(x − t0)p−1I{x>t0}, p = 1, 2, 3, 4, (5)

where IE is the indicator function for the event E .
At least for the cases of p = 1 and 2, these functions have been used by previous authors

(Muggeo 2003; Mallik et al. 2011) to model μ(x). We incorporate p = 3 and 4 with the
expectation that (5) is rich enough to capture the behaviors of the responses in most practical
situations.

To proceed with inference on t0, we need to calculate the generalized fiducial density
r(θ |y) for the above setup, where θ = {t0, p, σ, β0, β1} and y = (yi j ; ∀i, j).

Due to the indicator function, the four regression functions above do not satisfy a smooth-
ness assumption required by Hannig (2013), and therefore (3) cannot be applied. To over-
come this issue, the indicator function is replaced by a sigmoid function:

1

1 + exp{−λ(x − t0)} with λ = 2 logC

min{| xk − xl |; k �= l} , (6)

where C is a large constant that we set it to be C = 103. In the sigmoid function, λ controls
the slope near t0. See Figure S.1 for some examples of (5) with the indicator function
replaced by the sigmoid function.

The data generating equation G for the current problem is:

yi j = G(ui j , θ) = β0 + β1(xi − t0)p−1 1

1 + exp{−λ(xi − t0)} + σui j , ui j
iid∼ N (0, 1) ,

(7)

for p = 1, 2, 3, 4. Nowwith this data generating equation (7), one could attempt to calculate
the generalized fiducial density r(θ |y) using (3). However, the analytic evaluation of the
normalizing constant

∫
� f (y, θ

′
)J (y, θ

′
)dθ

′
in (3) is infeasible. Consequently, we need to

resort to MCMC methods for generating fiducial samples for θ , as to be described below.
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3.1. GENERATING FIDUCIAL SAMPLES

This subsection presents an MCMC algorithm for generating a fiducial sample for θ =
{t0, p, σ, β0, β1}. We first provide a summary of the algorithm, then followed by the details.
The steps of the algorithm are:

1. generate a t̃0 using (8);

2. given t̃0 obtained in the previous step, generate a p̃ from (9);

3. given t̃0 and p̃ obtained in the previous steps, generate a σ̃ from (10);

4. given t̃0, p̃ and σ̃ obtained in the previous steps, generate β̃0 and β̃1 using (11);

5. accept θnew = (t̃0, p̃, σ̃ , β̃0, β̃1) if h(θnew, θold) in (12) is larger than a realization
from Uniform(0, 1); otherwise, set θnew = θold.

Now, we present the detailed steps.
Generating t0: To generate a value for t0, we use the truncated normal distribution with

x0 and xn as, respectively, the lower and upper bounds:

t0new ∼ N
(

t0old, σ
2
t

)
, x0 ≤ t0old ≤ xn, x0 ≤ t0new ≤ xn, σ 2

t > 0, (8)

where t0old is the t0 value from the previous iteration, and σ 2
t is used to perturb its value. In

our practical implementation, we set σt = (xn − x0)/10 and chose the initial value of t0 at
random uniformly from [x0, xn].

Generating p given t0: Suppose now we have a value for t0. We can calculate the
conditional generalized fiducial density for each of the four models μp(x) in (5), indexed
by p = 1, 2, 3, 4. Let ξ = {β0, β1, σ } ∈ � and denote the conditional generalized fiducial
density as r(p|t0, y):

r(p|t0, y) =
∫
� f p(y, ξ p)Jp(y, ξ p)dξ p

∑4
p′=1

∫
� f p′ (y, ξ p′ )Jp′ (y, ξ p′ )dξ p′

.

Direct calculations give

Jp(y, ξ p) = σ−1| det(X′
pXp)| 12 RSS

1
2
p

and

∫

�

f p(y, ξ p)Jp(y, ξ p)dξ p = �

(
N

2

) (
1

π

) N
2 −1

RSS
1−N
2

p ,

whereXp is the designmatrix forμp(x), RSSp is the corresponding residual sum of squares,
and N is total number of observations (N = ∑

i mi ). Therefore,

r(p|t0, y) = RSS
1−N
2

p

∑4
p′=1

RSS
1−N
2

p′

. (9)
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Thus, given a value for t0, using (9) one can calculate the fiducial probabilities for the four
models in (5), and from these probabilities, one can generate a model out of the four, or
equivalently, generate a value for p.

Generating σ 2 given (t0, p): Next, given t0 and p, it can be shown that the conditional
generalized fiducial distribution of σ 2 is inverse χ2:

σ 2 | t0, p, y ∼ Inv-χ2(n − 3, s2), (10)

where

s2 = (y − Xpβ̂ p)
T (y − Xpβ̂ p)/(n − 3) with β̂ p = (XT

p Xp)
−1XT

p y.

Therefore, σ 2 can be sampled from (10).
Generating β p = (β0, β1) given (t0, p, σ ): It is straightforward to show that the gen-

eralized fiducial distribution of β p condition on t0, p, σ 2 is

β p | t0, p, σ 2, y ∼ N
(
β̂ p, σ

2(XT
p Xp)

−1
)

, (11)

from which a value for β p can be sampled from.
Accept/Reject: Executing the above steps will produce a value for θ = (t0, p, σ, β0, β1)

whichweneed to decide if it should be accepted or rejected. Todo so,weneed the generalized
fiducial density r(θ |y):

r(θ |y) ∝ r(p|t0, y) exp

{

− (y − Xpβ p)
T (y − Xpβ p)

2σ 2

}
1

σ

∑

i

| det(Ap)i |,

where

Ap =

⎡

⎢
⎢
⎢
⎣

.

.

.
.
.
.

.

.

.
.
.
.

1 (xi −t0)p−1

1+exp{−λ(xi −t0)} −(
βp,1(p−1)(xi −t0)(p−2)

1+exp{−λ(xi −t0)} + λβp,1(xi −t0)(p−1) exp{−λ(xi −t0)}
[1+exp{−λ(xi −t0)}]2 ) ui j

.

.

.
.
.
.

.

.

.
.
.
.

⎤

⎥
⎥
⎥
⎦

(N×4)

.

To speed up the computations, we use the sampling technique proposed in Hannig et al.
(2014) to approximate the summation

∑
i | det(Ap)i |.

Denote those new parameter values generated using the above steps as θnew, and those
parameter values in the previous MCMC iteration as θold. Let T (θnew|θold) be the proposal
distribution which is the product of (10), (11) and (8). If the ratio

h(θnew, θold) = r(θnew|y)T (θold|θnew)

r(θold|y)T (θnew|θold) (12)

is larger than a realization fromUniform(0, 1), we accept θnew. Otherwise, we use θold again
for the next iteration.

Repeating the above procedure, a fiducial sample for θ can be generated, and themethods
implemented by Plummer et al. (2006) can be applied to determine if the sample size is
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Figure 1. Plots of the five test functions used in the numerical experiments .

large enough. Once a sufficiently large fiducial sample is available, statistical inference can
then be conducted. For example, one could use the average of all t̃0’s as an estimate of t0.
Also, for a 95% confidence interval, one could take the quantiles 2.5% and 97.5 % of the
t̃0’s.

Lastly, we stress that in our approach more than one model (see (5)) are used to generate
the above fiducial sample t̃0’s, and therefore reducing the risk of incorrect model selection.

4. NUMERICAL EXPERIMENTS

This section studies the empirical performance of the proposed method through a
sequence of numerical experiments. In particular, the proposed method is compared to
two existing methods in the literature: the MLE break point estimation method of Muggeo
(2003) and the p value method of Mallik et al. (2011). Further details of these two methods
can be found in the introduction. In sequel, we shall refer the proposed method as GFI, the
method of Mallik et al. (2011) as p value, and the method of Muggeo (2003) as MLE. The
code for GFI can be downloaded from https://github.com/vic-dragon/GFI_threshold

Altogether five different test functions were used for μ(x):

• Test Function 1: μ(x) = 0.5 × I{x≥0.5} ,

• Test Function 2: μ(x) = 2(x − 0.5)2 × I{x≥0.5},

• Test Function 3: μ(x) = exp
{
− log(2)

2(x−0.45)

}
× I{x≥0.5},

• Test Function 4: μ(x) = 0.05 sin(50x)I{x<0.5} + 2(x − 0.5)2 × I{x≥0.5},

• Test Function 5: μ(x) = 0.1 − 0.1(x − 0.5)I{x<0.5} + 0.5(x − 0.5) × I{x≥0.5}.

These functions are displayed in Fig. 1. Notice that only the first two functions satisfy the
parametric assumption (5). Also notice that all five functions share the same threshold value
t0 = 0.5, although their shapes are quite different. However, for Test Function 5, one should
treat t0 = 0.6 as the threshold value (instead of 0.5), as it is the point that starts showing a
discernible effect compared to the baseline (Agathokleous et al. 2019). Some of these test
functions have been used by other authors (e.g., Muggeo 2003; Mallik et al. 2011).

The data were generated as follows. First, we set xi = i/(n + 1) for i = 1, . . . , n.
Then, we calculated yi j = μ(xi ) + εi j , where μ(x) is one of the five test functions,

https://github.com/vic-dragon/GFI_threshold
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εi j
iid∼ N (

0, σ 2
)
, for j = 1, . . . , m and i = 1, . . . , n. Two values were used for

σ = {0.1, 0.3}, while five different combinations of values were used for (m, n) =
{(6, 5), (10, 10), (10, 20), (20, 50), (50, 100)}. We also investigated the performances of
the methods under heteroscedastic noise: we generated data with the gradually increasing
noise variance (σ + 0.2(x − 0.5)I{x≥0.5}).

For each combination of experimental parameters, 200 data sets were generated. For
each of these data sets, the three methods mentioned above were applied to estimate the
threshold value t0 = 0.5 for Test Functions 1 to 4 and t0 = 0.6 for Test Function 5.
The averaged biases and mean-squared-errors (MSEs) were calculated. Also, for the GFI
and MLE methods, we constructed 95% confidence intervals for the threshold value. The
empirical coverage rates (ECRs) and their averaged widths of these confidence intervals
were calculated. The results can be found in Tables 1, 2, S.1, and S.2. Note that the p value
method does not produce confidence intervals and hence, is omitted for this comparison.

With the largest sample size that we tested (n = 50, m = 100), the GFI method typically
took less than 2min to process one data set with a Dell PowerEdge R360 server, 2015model.
The acceptance rates of the MCMC algorithm depend on the experimental configurations.
They ranged from 0.022 to 0.572 for homoscedastic noise, and from 0.024 to 0.559 for
heteroscedastic noise. More detailed information can be found in Tables S.3 and S.4.

Recall that the MLE method does not always produce an estimate t̂0 for t0 (see Sect. 1).
Thus, all the results in the previous tables are based on those cases where t̂0 were available.
The percentages of time thatMLE produced estimates are given in Tables S.5 and S.6. These
percentages ranged from 42% to 100%, with most cases larger than 90%.

From the experimental results, the following empirical conclusions can be drawn. First,
in terms of point estimation, no method is uniformly the best. The relative performances of
the three methods depend largely on the test function. Nevertheless, it seems GFI provided
the best results for a majority of the experimental configurations (72% of the experimental
configurations for homoscedastic noise and in 66% of the experimental configurations for
heteroscedastic noise), and that p value suffered from bias issues. For confidence intervals,
one cannot conclude if GFI or MLE is uniformly better, although GFI gave better results in
88% of the experimental configurations for homoscedastic noise and in 96% of the experi-
mental configurations for heteroscedastic noise. Therefore, in practice, our recommendation
is that, if nothing is known about the shape of the underlying function, GFI would be the
first method to apply.

Recall that the proposed GFI method uses four different parametric functions to model
the underlying true function (see (5)), and that the fiducial samples for p were sampled
from the conditional distribution (9). Figures S.2 to S.5 report the relative percentages of
the sampled values of p. As Test Functions 1 and 2 are special cases of (5), one can see that
when m and n are large, GFI has a high tendency of selecting the true model.

5. APPLICATIONS WITH REAL DATA

In this section, two real data sets are analyzed with the proposed GFI method. We note
that for one data set the monotonicity is in the opposite direction to model (5), while for the
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other data set the covariate values xi ’s are reversed. Nevertheless, the proposed method can
be applied with minor modifications.

The first data set is related to a dose response experiment originated from a biologi-
cal study of the effect of the 1-methyl-3-butylimidazolium tetrafluoroborate treatment on
the IPC-81 rat cell lines; see Ranke et al. (2004). The purpose of this study is to assess
environmental hazards through measuring toxicity of ionic liquids on the mammalian cell
lines. It is of particular interest to estimate the lethal dose level which makes cell lines stop
responding. The cell responses were measured as percentages of cell viability compared to
control, taken at different dose levels (measured in μM) of the treatment. The sample size
is N = n × m = 9 × 9 = 81. The GFI method provides a threshold value estimate of
t̂0 = 5.22 μM , with a 95% confidence interval as (4.92 μM, 5.34 μM). The MLE method
provides a threshold value estimate of t̂0 = 5.10 μM , with a 95% confidence interval as
(4.58 μM, 5.62 μM), while the p value method provides a threshold value estimate of
t̂0 = 5.52 μM . The observed data, as well as these results, are displayed in the left panel of
Fig. 2. One can see that, after the GFI estimated threshold 5.22 μM , the cell culture dose
not show any significant response. Also, the GFI point estimate for t0 is not in the middle
of the confidence interval. Instead, it is closer to the right side, which is very reasonable
when inspecting the left panel of Fig. 2. Lastly, as 100% of the fiducial sampled values from
p = 2, it suggests that the underlying relationship can be well modeled with a piecewise
linear function.

The second data set concerns a light detection and ranging (LiDAR) experiment. LiDAR
is a technique for measuring the concentrations of various atmospheric particulates. Very
often, it is used to monitor the air pollution status in an area. This second data set contains
atmospheric atomic mercury measurements taken at the geothermal power plan Bella Vista
in Italy (e.g., Holst et al. 1996;Mallik et al. 2011). There are 221 observations. The predictor
is the distance from themeasuring equipment to the source that reflected the light,with values
ranging from 390 m to 720 m. The response is the logarithm of the received light ratio from
two different wavelengths; see the right panel of Fig. 2. The decreasing trend starting around
range=540 m indicates the existence of mercury. And it is of interest in knowing exactly
when this decreasing trend started. The GFI method gives a threshold value estimate of
t̂0 = 543.55 m, with a 95% confidence interval as (541.47 m, 548.92 m). The MLE method
provides a threshold value estimate of t̂0 = 544.66 m, with a 95% confidence interval
as (538.04 m, 551.29 m), while the p value method provides a threshold value estimate of
t̂0 = 541 m. These results are also displayed in the right panel of Fig. 2. As similar to above,
the point estimate from GFI is not in the middle of the confidence interval. In addition, 24%
and 76% of the fiducial sampled values for p are 1 and 2, respectively. This suggests that
the underlying relationship may not be simply modeled by either a piecewise step function
or linear function.

From Fig. 2, for both real data examples, one can see that the GFI and MLE methods
gave very similar point estimates for t0, while the GFI confidence intervals are narrower
than those from MLE. The point estimates from the p value method are outside the GFI
confidence intervals: it seems to suggest that the p value estimates are biased, which are in
agreement with the simulation results.
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Figure 2. Results obtained by applying the three methods GFI (Blue), MLE (Green), and p value (Red) to two
real data sets. Circles are the observed data, while the solid lines and the dashed lines represent the estimates and
the 95% confidence intervals, respectively .

6. CONCLUDING REMARKS

In this paper, we developed a method for estimating threshold under the a general set-
ting used in many biomedical studies such as toxicology and dose–response studies. The
proposed method is based on the generalized fiducial inference framework. Two notewor-
thy features of the proposed method are (i), in addition to point estimates, it also provides
confidence intervals for the parameters of interest, and (ii) it allows the possibility of having
multiple parametric models to capture the underlying pattern of the data so that the risk of
model mis-specification is reduced. Results from numerical experiments and applications
to real data suggest that the proposed method possesses excellent empirical properties.

Some extensions of the current work are worth considering. One possibility would be
to adopt a richer set of non-decreasing functions to model μ(x), as opposed to (5). This
could be done quite straightforwardly. Another possibility would be to allow the occurrence
of multiple change points, where the number of the change points is unknown a priori.
However, this extension could cause some complications, as for example, one potentially
would need to handle the issue that different fiducial samples could give different number of
change points. At themoment, if there is no change point, our numerical experience suggests
that our method will often return x1 as the estimated threshold, while its performance is less
predictable if there are multiple change points.

One could also investigate the theoretical properties of the proposedmethod. For example,
if one is willing to make the unrealistic assumption that t0 is given, one can show that as
the sample size increases, the probability of selecting the correct model from (5) goes to 1,
which leads to the following proposition.

Proposition 1. Assume the technical conditions in Gao et al. (2020) and that t0 is
given. Denote the true value of p in (5) as p0. Then, the fiducial probability (9) follows
r(p0|t0, y) → 1 as n → ∞.
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This proposition can be proved following the arguments of Gao et al. (2020). Essentially, it
involves showing that RSSp′/RSSp0 → 0 for any p′ �= p0, which leads to

r(p0|t0, y) =
RSS

1−N
2

p0

∑4
p′=1

RSS
1−N
2

p′

= 1

1 + ∑
p′ �=p0

(
RSSp′/RSSp0

) 1−N
2

→ 1 as n → ∞.

With Proposition 1, the results of Hannig et al. (2016) also guarantee that inferencesmade by
GFI enjoy asymptotically correct frequentist properties, i.e., confidence intervals constructed
by r(θ |y) will achieve the nominated coverage levels when the sample size is large enough.

However, the case of unknown t0 is substantially more complicated and we plan to report
our results in a future paper.
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