
Humans in Empirical Software Engineering Studies:
An Experience Report

Bonita Sharif and Niloofar Mansoor
School of Computing

University of Nebraska - Lincoln
Lincoln, Nebraska USA

bsharif@unl.edu, niloofar@huskers.unl.edu

Abstract—The use of human validation in software engineering
methods, tools, and processes is crucial to understanding how
these artifacts actually impact the people using them. In this
paper, we report our experiences on two methods of data
collection we have used in software engineering empirical studies,
namely online questionnaire-based data collection and in-person
eye tracking data collection using eye tracking equipment. The
design and instrumentation challenges we faced are discussed
with possible ways to mitigate them. We conclude with some
guidelines and our vision for the future in human-centric studies
in software engineering.

Index Terms—empirical studies, eye tracking, software engi-
neering, surveys, experiences, guidelines

I. INTRODUCTION

Building software is a complex phenomenon. The develop-
ers that produce software artifacts are also their consumers.
As developers, we work not only with the artifacts (code,
design, test cases, requirements, etc...) we create, but also with
artifacts created by other developers across teams. In order to
increase comprehension [1], happiness [2] and productivity [3]
in dealing with such artifacts, it is important that they are
written in a way that is intuitive to produce and consume.
In order to better serve developers and related stakeholders,
it is crucial to conduct empirical studies in specific contexts,
to better understand cause and effect in certain situations and
tasks when developers work with artifacts.

The results of such experiments should feed back into the
production of software artifacts. However, this feedback loop
does not happen with just one experiment. It takes a set of ex-
periments over many years to determine the factors influencing
what we seek to change. This is why replication is crucial.
Replications [4] (exact or inexact) help in understanding if
the results still hold for other groups and demographics of
people, and if not, what individual differences exist. The
emergence of the replication and negative (RENE) results
tracks at major software engineering conferences is evidence
that we are moving in the right direction to build more
meaningful theories [5]–[8] in comprehension of software
engineering research and practice. A lot of the theories in
program comprehension stem from the social sciences and
while some of them might hold, others might not. This is
due to the fact that building software and the interactions that
come from it might not always adhere to other social norms

that exist. Empirical studies are one evidence-based way to
move the relatively young field of software engineering and
its theories forward. A great example of how to improve our
use of theory for computing education research was given by
Nelson and Ko [9]. The program comprehension sub-field of
software engineering can also benefit from their line of thought
while designing experiments.

Our research team has conducted several eye tracking [10]
empirical studies [11]–[16] (exploratory and controlled ex-
periments, in industry and academia) since 2005. Because
eye tracking was a relatively new application in software
engineering at the time, we received many early rejections
because the technology and framework, now referred to as
iTrace [17] (see http://www.i-trace.org/), was not believable.
This is somewhat understandable since the peer review process
depends on experts in the field. If your work is a relatively new
interdisciplinary field, the typical expert in the field would not
be fully aware of what the technology can or cannot do and
hence are bound to be skeptical (or overly accepting - which is
also detrimental) about it. The burden of presenting convincing
arguments is always on the author. The initial feedback we
received helped to reshape our motivation on the use of eye
tracking in software engineering. The peer review system is
not perfect but certainly helped refine our initial ideas when
only a handful of people in our field were doing eye tracking
studies. One of the very first studies that showed the value of
eye tracking on source code in contrast to keyboard and mouse
interaction was our 2015 paper with Fritz and Shepherd [14],
[18], where we collected eye tracking data using iTrace and
interaction data using Mylyn simultaneously. This study paved
the way to make eye tracking believable, feasible, and realistic
as it was a working prototype showing value in the rich
finer-grained data eye tracking produced compared to the
keyboard and mouse interaction logs. Since 2006, many more
software engineering researchers have entered the field of eye
tracking and program comprehension. This has resulted in
more people in the field able to contribute to the review process
of interdisciplinary papers.

In the rest of this paper, we discuss the need for multiple
modes of data collection and focus on two main ones our
team has been involved with: eye tracking studies and online
questionnaire-based studies. We then present some community

http://www.i-trace.org/


guidelines by our team and the community at large and
conclude with our vision for human-centric studies in software
engineering.

II. THE NEED FOR MULTIPLE DATA COLLECTION MODES

There are many ways in which a researcher can go about
collecting data for experiments [19]. There is no one method of
collection that is better than another. There might be one that is
more suitable (for the specific research question) than another.
Each method can give insights about a different aspect of what
is being studied. There are advantages and disadvantages to
every method and this should be considered during the study
design phase. For example, just because you have an eye
tracker does not mean you should conduct an eye tracking
study. In fact, not all studies we conduct in our lab are eye
tracking studies. Sometimes, they make sense depending on
what you seek to measure. For example, if you are looking to
determine what particular lines or words developers actually
looked at while doing a task, it would make sense to use an
eye tracker as a method of data collection. However, just doing
this is not enough, the researcher also needs to use the right
metrics [20] to keep internal validity high.

One strategy used in our team is to conduct the same
study online and using an eye tracker. The same study is
replicated with different participants but same tasks only using
a different mode of data collection. It is extremely time and
labor intensive to conduct an eye tracking study. It has to
be done one participant at a time with a moderator present
(to check for calibration, positioning and starting/stopping the
tracking) and they usually last about an hour or two hours
(for a realistic set of tasks) from start to finish. They are
also typically done over the course of many more months
compared to online studies. Since the online questionnaire
based study can be deployed once to many people, many more
participants can be recruited. We report on our experiences
in using Mechanical Turk later in the paper. One advantage
of doing the same study online and in person using an eye
tracker is that you can gain further insight into some results
generated from the online study. For example, you would be
able to further tell the thought processes of participants with
similar answers (from the online study).

In summary, instead of thinking of just one mode of data
collection, consider multiple sources if possible. This does not
have to be an eye tracking study. It could be a retrospective
interview, full interview-based study, verbal summaries [21],
or a video-based study where the screen is being recorded
while developers perform tasks.

In the next two sections, we present some of our experiences
in conducting eye tracking studies and online questionnaire-
based studies in software engineering.

III. EYE TRACKING STUDIES

There has been a surge in eye tracking studies [22] in
software engineering since 2006. Even though eye tracking has
been around since the 1800’s, it is only recently being used by

more software engineering researchers. For designing and con-
ducting eye tracking studies in software engineering, we direct
the reader to a one-stop practical guide [23]. One of the first
studies was done by Crosby and Stelovsky in 1990 [24]. They
looked at how participants read the binary search algorithm in
Pascal code and analyzed the scan patterns at two experience
levels. They found that all nineteen participants viewed most
areas of the algorithm compared to natural text (a finding
we also were able to reproduce in 2015 [25]). They also
found that the low experience group spent more time reading
comments over code compared to the high experience group.
Overall, they found experienced programmers recognize more
meaningful areas of the code and spend more time there. They
call for more studies on such expertise classification strategies.

The Crosby study and most eye tracking studies in software
engineering are done on short code snippets. The reason is that
there was no infrastructure to support viewing longer code
snippets. In order to understand why this was a problem, we
need to first understand how an eye tracker works. Research-
grade eye trackers work by presenting an image or text (i.e.,
stimuli) on a computer screen, and then use the data from
cameras to determine the location (x,y coordinate) the person
is looking at. One limitation of current state-of-the-art eye
trackers and vendor software is that they only work on fixed
stimuli (i.e., an image or text) that fits on the computer screen.
Changes to the stimuli (screen), such as scrolling, present
a very complex problem. There is no existing support (in
any commercial eye trackers) for a subject to interactively
use an editor or switch between different files. Basically,
existing systems do not keep track of what line in which
file is present on the screen (i.e., currently being viewed). In
order to circumvent this problem, we introduced iTrace [17],
community eye tracking infrastructure to support conducting
large-scale realistic studies. A detailed explanation of why
current state of the art methods do not work for realistic
software tasks is given in Shaffer et al. [26]. A detailed
technical briefing [27] for iTrace was held by the iTrace team
in 2016 at the ICSME conference in Raleigh, NC to introduce
eye tracking limitations to the broader software engineering
community. Next, we briefly explain iTrace and then present
some challenges researchers face when conducting eye track-
ing studies.

A. iTrace - Eye Tracking Community Infrastructure

iTrace is community eye tracking infrastructure that makes
it possible for software engineering researchers to conduct eye
tracking studies on large software systems right within the
IDE. Using iTrace eliminates the limitation of using short code
snippets as images/short text to view on the screen. iTrace is
designed as a plugin-based client/server architecture. It runs as
a plugin inside the Integrated Development environment. The
first prototype of iTrace was made available in 2015 and only
supported Eclipse. Since then, we completely redesigned the
infrastructure and now there is support for Eclipse, MS Visual
Studio, Atom, and the Chrome browser. In 2020, we started
supporting high speed eye trackers in iTrace with the release



of Déjà Vu [28]. This was essential if we wanted to use eye
tracking over 60Hz in the IDE because as the number of eye
samples per second increased beyond 60 samples per second,
the system was not able to map the real time gaze to the correct
element being looked at due to the response time limitations
of Windows function calls. We worked around this by doing
all of this mapping in a post-processing step by recording
every event and replaying it at a slower speed using various
delay strategies [28]. Please refer to http://www.i-trace.org/ for
future downloads of iTrace and its plugins.

B. Challenges

There are many challenges in conducting eye tracking stud-
ies, some of which are beyond our control. For example, there
is a small subset of the population that can never be tracked
due to the way their eye anatomy is structured. Fortunately,
eye tracking equipment has come a long way. Today, one can
purchase a state of the art research grade tracker that looks like
a bar that clips under the monitor. This was not the case in
the 1970’s. We only expect this technology to get better in the
future. In fact, we envision every laptop to come embedded
with an eye tracker in the foreseeable future.

1) Design and Metrics: One of the main difficulties in
eye tracking studies come with calibration. It is extremely
important to calibrate each person before each task. This
process has dramatically improved as eye tracking equipment
has gotten better. The lighting and positioning all need to be
carefully set before any real data is collected. It is important to
do pilots for this purpose. In our lab, we take at least 6 months
to design and pilot studies before actual data collection begins.
As mentioned before, the time and effort it takes to bring
in participants is quite high and we need to make sure that
our system is working as intended before starting the actual
study. By piloting, we refer to not only testing if the data
collection works as expected but also putting the data through
the entire process of data analysis as well. This means, all
the threats to validity are identified, dependent variables, and
eye metrics [20] one plans to use are determined before any
data collection begins. For example, if using pupil dilation as
a metric, it is crucial that you use a chin rest with your study
data collection as this measure is affected both by movement
and by lighting changes on the monitor and the room. It is not
wise to decide to use pupil dilation (this metric is still output
by most trackers in the raw data generated) after the fact when
the data collection did not use a chin rest nor was the lighting
of room and monitor factored into the design setup. Another
important challenge for any study is choosing the correct tasks.
Task selection can make or break your study. Again, this is
why we do pilots.

2) Webcams as eye trackers: Recently, due to the COVID-
19 pandemic, many labs were forced to shut down (including
our own). The push for using webcams as eye trackers so
eye-tracking studies can be done remotely was promoted by
companies offering these services. As more companies, such
as RealEye [29], offer webcam eye tracking as a solution
to the high-cost of screen-based eye trackers, it is important

to compare them to determine how viable this method of
collecting gaze data is. As a test in our lab, we ran 5
participants, who analyzed 3 code snippets and watched 3
short movie clips, with a webcam tracker (WebGazer [30]) and
research grade eye tracker (Tobii TX-300) tracking participants
at the same time. The entire study was done in iTrace-Chrome.
Initial results show that even with continuous calibration, the
webcam used as a tracker doesn’t present results suitable for
research analysis and we would not recommend it currently as
a suitable substitute. Previous studies have compared low-cost
eye trackers [31], [32], however these studies have focused
only on comparing purpose-built eye trackers with each other
and have failed to compare webcam trackers. While the
accuracy of webcam trackers have been evaluated alongside
their introduction into the literature [30], the effectiveness
and actual usability of these devices is still largely untested.
Pinpointing the level of accuracy they provide can help future
researchers determine the level of tracker best suited for their
project.

3) Editing in Eye tracking studies: Editing in eye tracking
studies presents an issue during tracking as the words are
constantly changing as an edit is made. Fakhoury et al. intro-
duced a solution for this in iTrace-Atom [33]. However, a more
comprehensive solution is needed to support all other plugins.
This is not as trivial as it seems as all possible scenarios
for editing need to be considered including copy and pasting
large code. The iTrace team along with some community
collaborators are working towards a usable solution in the
near future. One step towards this solution is the Déjà Vu [28]
approach which takes all processing of gaze mapping offline.
During gaze replay and mapping, the editing issue will be
addressed in future infrastructure releases. However, at this
time, iTrace does not support editing across its plugins.

IV. ONLINE STUDIES

This section presents some discussion on designing surveys
using Qualtrics [34], using Mechanical Turk and challenges
with hosting and crowdsourcing online studies.

A. Designing Surveys Using Qualtrics

Qualtrics [34] is a powerful software solution for hosting
and distributing surveys and collecting data for research. It
provides an online environment in which even novice users can
build useful surveys with simple or complex logic. Qualtrics
features many different question types, question randomization
options, complex display logic, bot detection, and customiz-
able looks and designs for surveys. It also provides custom
coding features so that survey designers can use JavaScript to
add advanced functionality to their surveys.

We have used Qualtrics to host and design some of our
online software engineering studies, in which we have shown
code snippets to participants and asked different types of
questions about the code. We found that Qualtrics comes with
a lot of useful standard features, but we needed additional
features in order to publish a survey that was mostly coding
questions. The platform’s basic features make it easy to

http://www.i-trace.org/


provide an informed consent form to participants, show textual
and graphical information, assign IDs to participants, and
determine the display logic for the survey. In addition to
storing the answers that the users give throughout the survey,
Qualtrics can also save timing data and some interaction data
(e.g. number of clicks on a question page). Users can also
pause working on the survey and get back to it later on. It
is also simple to limit answers to specific types (e.g. only
allowing an email address to be entered in a text field that
asks for an email address), as well as enforcing answers on
questions that are mandatory. In our experience, modifying the
survey flow and display logic was very straightforward, and we
could easily implement our intended logic and randomly show
different participants different treatments in code snippets.

Since we were trying to show the needed code in ques-
tions as realistically and as close to how developers see
code everyday, we faced some challenges in working with
Qualtrics. In one of our surveys, we had questions in which
the participants needed to look at multiple files to answer
a question. Developers usually use IDEs when working on
coding projects, and usually each file is opened as a tab
and can be used by the developer. We decided to include
a tabbed view inside the questions that required traversal of
multiple files, and we soon realized that due to the limitations
of using JavaScript in Qualtrics, the tabbed views were not
working as smoothly as expected. We ended up creating pages
that included the tabbed views on a hosting platform (in our
case we used AWS S3) and then embedded the pages into
our questions. We also felt it was necessary to add syntax
highlighting to the code in our questions, and we found that
adding our CSS for syntax highlighting to Qualtrics was very
straightforward as well. Additionally, there were some tasks
that did not fit with the classic survey format. We had to design
separate web applications for them, and asked our participants
to click on external links and enter their Qualtrics ID in the app
so that their data can be connected. Asking the participants to
manually enter their ID in another external webpage brought
some issues, and we believe that Qualtrics can benefit from
a functionality that makes for easier communication with
other web applications. And finally, while the fraud detection
capabilities works for well to catch people who are trying to
participate in a survey using a single IP address, or bots who
are spamming the survey, it cannot stop participants who use
VPNs or other tools to mask their IPs and participate again.
Sifting through spam submissions is a major challenge, and
it takes a considerable amount of time and energy from the
researcher. However, it is important to do because the integrity
of the data is threatened if the spam submissions are not
deleted.

B. Crowdsourcing Using Mechanical Turk

Amazon Mechanical Turk (MTurk) [35] is a crowdsourcing
platform with which “Requesters” (employers) can hire re-
motely located “Workers” (contractors) to do on-demand tasks.
A Human Intelligence Task, or HIT, is a self-contained task
that a requester can create and a worker can work on, submit,

and collect a reward for completing [36]. The MTurk website
gets a fee for each HIT that is completed by the worker. The
requester can choose to accept or reject a submitted HIT, and
has a chance to explain to the worker why they chose to reject
their submission. Since we hosted our survey on Qualtrics,
we needed to be able to identify which workers completed
the Qualtrics survey. So we generated a random ID for each
participant that completed the Qualtrics survey, and asked for
the ID in the MTurk task page. For additional reliability,
we also asked for the MTurk worker ID in our Qualtrics
survey. We posted our HIT as a webpage that included the
instructions for the survey, the Qualtrics survey link, and a
text box for the workers to provide their Qualtrics ID. One
thing we noticed while using MTurk was that despite the fact
that a lot of surveys that include programming questions in
specific languages are posted on the website, the website only
has broad categories for choosing target workers (e.g. we can’t
choose Java developers as our target population, only workers
whose employment industry is “Software and IT Services”).
This can have an effect on the quality of the data we collect,
as some programmers are not experienced with the specific
language or tool the survey is asking questions about. We got
around this by building a proficiency test into our Qualtrics
questionnaire to weed out people without the skill set we
wanted. We believe that creating tags for skills would be a
nice addition to the MTurk system and can improve the quality
of data for the posted surveys. Another issue we faced was
the number of spam submissions. Even though the MTurk
worker IDs were different we noticed that some answers in our
survey were copy and pasted, and their IPs on the Qualtrics
result were similar. It would be beneficial for researchers and
employers if MTurk can devise a way to minimize spamming
and fraud, as it can affect data integrity and complicated data
cleaning and analysis.

C. Challenges

Looking back at our experience with hosting surveys on
Qualtrics and crowdsourcing using MTurk, the most important
challenges we faced were working around Qualtrics’ customiz-
ability issues for building webpages that included code, and
spam and fraud detection. Qualtrics does not allow to add
scripts that are placed outside of its own specific JavaScript
functions that can be modified, and it constantly removed our
added scripts. We worked around it by hosting our tabbed
pages that included code with syntax highlighting on another
website, and embedded them in our Qualtrics questions. We
also had to work around some limitations for creating specific
tasks by building apps and putting a link for them on our
Qualtrics survey for our participants to complete those tasks.
We also had issues with spam and fraud detection on both
MTurk and Qualtrics, and finding solutions to disregard spam
data proved to be very challenging for us. We eventually had
to examine the timing data and determine a duration range
in which an individual would complete a task based on the
difficulty of that task. We realize that this is not a guaranteed
method and we might have ended up losing some viable data,



but there are no hard and fast rules for determining spam and
it needs to be done by creating specific criteria related to the
research study at hand.

V. COMMUNITY AND GUIDELINES

The ACM SigPlan Checklist [37] for empirical studies is a
good one stop checklist to determine if your study holds up to
important criteria. It also provides a good reviewing checklist
for reviewers. If conducting eye tracking studies in software
engineering, we recommend using iTrace [17] (see http://www.
i-trace.org/) and checking out the practical guide [23] on how
to design and conduct such studies. Some journals require you
to follow certain templates when reporting results in studies.
We have used one such model, namely CONSORT in one of
our recent studies [38]. Using such templates takes out the
guesswork on what to include in your writeup and also helps
reviewers during the review cycle. We hope more journals
require studies to have at least specific sections if they are of
a certain empirical nature. We realize that not all empirical
studies can adhere to one template.

Finally, if possible we suggest that authors provide an
anonymised replication package for the study (tasks, scripts,
code, instructions, data) so others may replicate it. This
package should be created during the process of conducting the
study not after the fact. Often times, if the student responsible
for collecing the data graduates, it becomes hard for the PI
responsible for the project to find all the pieces of data to
package together. This is why it is crucial to create the data
sets and replication packages while the study is active and
not after the fact. We have had several experiences where the
student after graduating never completed the data set curation
to serve as a replication package. Due to this past experience,
we now provide a replication package during the first review
of the publication which makes it easier on everyone once the
project is complete. Frameworks like osf.io [39], figshare [40],
and zenodo.org [41] are great options for this. As an example,
refer to the replication package [42] for our eye tracking study
on code summarization [43].

VI. OUR VISION FOR HUMAN-CENTRIC STUDIES

In the past 10 years, there has been a lot of emphasis on
conducting studies with humans. Besides, eye tracking, some
researchers like Fakhoury et al. [44] used eye tracking and
brain imaging to study the effects of poor lexicon in source
code on program comprehension and readability. Their results
showed that poor naming and documentation practices increase
the cognitive load in developers while solving tasks. Such
interdisciplinary research should be welcomed in the software
engineering community. But this also comes with some in-
herent difficulties in reviewing. The need for interdisciplinary
reviewers becomes important in this case. A short synopsis of
our vision of eye tracking in software engineering research and
practice was presented at the ESEC/FSE Visions track [45].

We envision future studies to branch out into different tasks
that software developers perform (not just summarization -
as most studies in eye tracking are on summarization tasks).

Our team has done studies in bug fixing (in open source
systems), find the output, and summarization. However, these
are obviously a very small subset of tasks developers perform.
We encourage researchers to expand the types of tasks tested
in empirical studies using humans. For example, How are
testers actually testing the code? How are requirements and
user stories interacted with? Branching out into testing other
language paradigms is also important to get a full picture of
how comprehension differs between expertise and paradigms.

Finally, it is important to report studies in the context
they were done in and not generalize them to all situations.
Each study is a small drop of evidence and does not provide
complete proof of any one concept. It is one step towards
learning more about the complex beings we are as developers
(and humans) as we do our best to produce and consume better
software.

VII. CONCLUSIONS

In this paper, we describe our experiences in conducting
empirical studies in person using eye tracking equipment and
online using questionnaires via Qualtrics and Mechanical Turk.
Conducting studies is a time consuming and labor intensive
process. There is no perfect system to conduct a study and nor
is there a perfect study. We strive to achieve the best control we
can in the circumstances provided, taking care to maintain the
validity of the study without jeopardizing the effect. We hope
that our experiences presented here, our vision and guidelines
are useful to further improve the state of the art as it currently
stands.

ACKNOWLEDGMENTS

This work is supported by the US National Science Founda-
tion under Grant Numbers CNS 18-55753 and CCF 18-55756

REFERENCES

[1] M. Wyrich, A. Preikschat, D. Graziotin, and S. Wagner, “The mind
is a powerful place: How showing code comprehensibility metrics
influences code understanding,” in 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain,
22-30 May 2021. IEEE, 2021, pp. 512–523. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00055

[2] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson,
“What happens when software developers are (un)happy,” J. Syst.
Softw., vol. 140, pp. 32–47, 2018. [Online]. Available: https:
//doi.org/10.1016/j.jss.2018.02.041

[3] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: Why
is it difficult for developers to learn another programming language?”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 691–701. [Online].
Available: https://doi.org/10.1145/3377811.3380352

[4] A. A. Neto, “A strategy to support replications of controlled
experiments in software engineering,” SIGSOFT Softw. Eng. Notes,
vol. 44, no. 3, p. 23, nov 2019. [Online]. Available: https:
//doi.org/10.1145/3356773.3356796

[5] A. Von Mayrhauser and A. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–
55, 1995.

[6] M.-A. Storey, “Theories, methods and tools in program comprehension:
past, present and future,” in 13th International Workshop on Program
Comprehension (IWPC’05), 2005, pp. 181–191.

http://www.i-trace.org/
http://www.i-trace.org/
https://doi.org/10.1109/ICSE43902.2021.00055
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1145/3377811.3380352
https://doi.org/10.1145/3356773.3356796
https://doi.org/10.1145/3356773.3356796


[7] J. Koenemann and S. P. Robertson, “Expert problem solving strategies
for program comprehension,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 1991, pp. 125–130.

[8] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding,” in Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, 2007,
pp. 361–370.

[9] G. L. Nelson and A. J. Ko, “On use of theory in computing
education research,” in Proceedings of the 2018 ACM Conference
on International Computing Education Research, ICER 2018, Espoo,
Finland, August 13-15, 2018, L. Malmi, A. Korhonen, R. McCartney,
and A. Petersen, Eds. ACM, 2018, pp. 31–39. [Online]. Available:
https://doi.org/10.1145/3230977.3230992

[10] B. Sharif and T. Shaffer, “The use of eye tracking in software
development,” in Foundations of Augmented Cognition - 9th
International Conference, AC 2015, Held as Part of HCI International
2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, ser.
Lecture Notes in Computer Science, D. Schmorrow and C. M.
Fidopiastis, Eds., vol. 9183. Springer, 2015, pp. 807–816. [Online].
Available: https://doi.org/10.1007/978-3-319-20816-9 77

[11] N. A. Madi, C. S. Peterson, B. Sharif, and J. I. Maletic,
“From novice to expert: Analysis of token level effects in a
longitudinal eye tracking study,” in 29th IEEE/ACM International
Conference on Program Comprehension, ICPC 2021, Madrid, Spain,
May 20-21, 2021. IEEE, 2021, pp. 172–183. [Online]. Available:
https://doi.org/10.1109/ICPC52881.2021.00025

[12] J. A. Saddler, C. S. Peterson, S. Sama, S. Nagaraj, O. Baysal,
L. Guerrouj, and B. Sharif, “Studying developer reading behavior
on stack overflow during API summarization tasks,” in 27th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2020, London, ON, Canada, February 18-21,
2020, K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M. Fokaefs,
and M. Zhou, Eds. IEEE, 2020, pp. 195–205. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054848

[13] S. Aljehane, B. Sharif, and J. Maletic, “Determining differences in
reading behavior between experts and novices by investigating eye
movement on source code constructs during a bug fixing task,” in ACM
Symposium on Eye Tracking Research and Applications, ser. ETRA
’21 Short Papers. New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3448018.
3457424

[14] K. Kevic, B. Walters, T. Shaffer, B. Sharif, D. C. Shepherd, and T. Fritz,
“Eye gaze and interaction contexts for change tasks - observations
and potential,” J. Syst. Softw., vol. 128, pp. 252–266, 2017. [Online].
Available: https://doi.org/10.1016/j.jss.2016.03.030

[15] C. Peterson, J. Saddler, T. Blascheck, and B. Sharif, “Visually analyzing
students’ gaze on c++ code snippets,” in EMIP 2019-6th International
Workshop on Eye Movements in Programming, 2019.

[16] T. Blascheck and B. Sharif, “Visually analyzing eye movements on
natural language texts and source code snippets,” in ETRA 2019-ACM
Symposium on Eye Tracking Research & Applications, 2019.

[17] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“itrace: eye tracking infrastructure for development environments,” in
Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications. ACM, 2018, p. 105.

[18] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and
T. Fritz, “Tracing software developers’ eyes and interactions for change
tasks,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 202–213. [Online].
Available: https://doi.org/10.1145/2786805.2786864

[19] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research
methods in software engineering,” in Empirical Methods and
Studies in Software Engineering, Experiences from ESERNET, ser.
Lecture Notes in Computer Science, R. Conradi and A. I. Wang,
Eds., vol. 2765. Springer, 2003, pp. 7–23. [Online]. Available:
https://doi.org/10.1007/978-3-540-45143-3 2

[20] Z. Sharafi, T. Shaffer, B. Sharif, and Y. Guéhéneuc, “Eye-tracking
metrics in software engineering,” in 2015 Asia-Pacific Software
Engineering Conference, APSEC 2015, New Delhi, India, December
1-4, 2015, J. Sun, Y. R. Reddy, A. Bahulkar, and A. Pasala,

Eds. IEEE Computer Society, 2015, pp. 96–103. [Online]. Available:
https://doi.org/10.1109/APSEC.2015.53

[21] S. Letovsky, “Cognitive processes in program comprehension,” Journal
of Systems and software, vol. 7, no. 4, pp. 325–339, 1987.

[22] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey on
the usage of eye-tracking in computer programming,” ACM Comput.
Surv., vol. 51, no. 1, pp. 5:1–5:58, Jan. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3145904

[23] Z. Sharafi, B. Sharif, Y. Guéhéneuc, A. Begel, R. Bednarik, and
M. E. Crosby, “A practical guide on conducting eye tracking studies in
software engineering,” Empir. Softw. Eng., vol. 25, no. 5, pp. 3128–3174,
2020. [Online]. Available: https://doi.org/10.1007/s10664-020-09829-4

[24] M. E. Crosby and J. Stelovsky, “How do we read algorithms? A case
study,” Computer, vol. 23, no. 1, pp. 24–35, 1990. [Online]. Available:
https://doi.org/10.1109/2.48797

[25] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte,
B. Sharif, and S. Tamm, “Eye movements in code reading: Relaxing the
linear order,” in 2015 IEEE 23rd International Conference on Program
Comprehension. IEEE, 2015, pp. 255–265.

[26] T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and
B. Sharif, “itrace: enabling eye tracking on software artifacts within
the IDE to support software engineering tasks,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, E. D.
Nitto, M. Harman, and P. Heymans, Eds. ACM, 2015, pp. 954–957.
[Online]. Available: https://doi.org/10.1145/2786805.2803188

[27] B. Sharif and J. I. Maletic, “itrace: Overcoming the limitations of short
code examples in eye tracking experiments,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016, pp.
647–647.

[28] V. Zyrianov, D. T. Guarnera, C. S. Peterson, B. Sharif, and J. I.
Maletic, “Automated recording and semantics-aware replaying of high-
speed eye tracking and interaction data to support cognitive studies
of software engineering tasks,” in IEEE International Conference on
Software Maintenance and Evolution, ICSME 2020, Adelaide, Australia,
September 28 - October 2, 2020. IEEE, 2020, pp. 464–475. [Online].
Available: https://doi.org/10.1109/ICSME46990.2020.00051

[29] “Realeye.” [Online]. Available: https://www.realeye.io/
[30] A. Papoutsaki, P. Sangkloy, J. Laskey, N. Daskalova, J. Huang, and

J. Hays, “Webgazer: Scalable webcam eye tracking using user inter-
actions,” in Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI). AAAI, 2016, pp. 3839–3845.

[31] G. Funke, E. Greenlee, M. Carter, A. Dukes, R. Brown, and L. Menke,
“Which eye tracker is right for your research? performance evaluation
of several cost variant eye trackers,” in Proceedings of the Human
Factors and Ergonomics Society annual meeting, vol. 60, no. 1. SAGE
Publications Sage CA: Los Angeles, CA, 2016, pp. 1240–1244.

[32] J. Titz, A. Scholz, and P. Sedlmeier, “Comparing eye trackers by
correlating their eye-metric data,” Behavior Research Methods, vol. 50,
no. 5, pp. 1853–1863, 2018.

[33] S. Fakhoury, D. Roy, H. Pines, T. Cleveland, C. S. Peterson, V. Ar-
naoudova, B. Sharif, and J. Maletic, “gazel: Supporting source code
edits in eye-tracking studies,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2021, pp. 69–72.

[34] “Qualtrics.” [Online]. Available: https://www.qualtrics.com/
[35] “Amazon mechanical turk.” [Online]. Available: https://www.mturk.com/
[36] “Amazon mechanical turk faq.” [Online]. Available: https://www.mturk.

com/worker/help
[37] “Acm sigplan empirical evaluation guidelines.” [Online]. Available:

https://www.sigplan.org/Resources/EmpiricalEvaluation/
[38] P. M. Uesbeck, C. S. Peterson, B. Sharif, and A. Stefik, “A

randomized controlled trial on the effects of embedded computer
language switching,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020,
P. Devanbu, M. B. Cohen, and T. Zimmermann, Eds. ACM, 2020, pp.
410–420. [Online]. Available: https://doi.org/10.1145/3368089.3409701

[39] “Osf.” [Online]. Available: osf.io/
[40] “Figshare.” [Online]. Available: https://figshare.com/
[41] “Zenodo.” [Online]. Available: https://zenodo.org/
[42] “Replication package for developer reading behavior while summarizing

java methods: Size and context matters.” [Online]. Available:
https://zenodo.org/record/2550768#.Yd3jIVjMI-Q

https://doi.org/10.1145/3230977.3230992
https://doi.org/10.1007/978-3-319-20816-9_77
https://doi.org/10.1109/ICPC52881.2021.00025
https://doi.org/10.1109/SANER48275.2020.9054848
https://doi.org/10.1145/3448018.3457424
https://doi.org/10.1145/3448018.3457424
https://doi.org/10.1016/j.jss.2016.03.030
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1007/978-3-540-45143-3_2
https://doi.org/10.1109/APSEC.2015.53
http://doi.acm.org/10.1145/3145904
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1109/2.48797
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1109/ICSME46990.2020.00051
https://www.realeye.io/
https://www.qualtrics.com/
https://www.mturk.com/
https://www.mturk.com/worker/help
https://www.mturk.com/worker/help
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://doi.org/10.1145/3368089.3409701
osf.io/
https://figshare.com/
https://zenodo.org/
https://zenodo.org/record/2550768#.Yd3jIVjMI-Q


[43] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic,
“Developer reading behavior while summarizing java methods: Size and
context matters,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 384–395.

[44] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect
of poor source code lexicon and readability on developers’ cognitive
load,” in 2018 IEEE/ACM 26th International Conference on Program

Comprehension (ICPC), 2018, pp. 286–28 610.
[45] B. Sharif, B. Clark, and J. I. Maletic, “Studying developer gaze to

empower software engineering research and practice,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 940–943. [Online].
Available: https://doi.org/10.1145/2950290.2983988

https://doi.org/10.1145/2950290.2983988

	Introduction
	The Need for Multiple Data Collection Modes
	Eye Tracking Studies
	iTrace - Eye Tracking Community Infrastructure
	Challenges
	Design and Metrics
	Webcams as eye trackers
	Editing in Eye tracking studies


	Online Studies
	Designing Surveys Using Qualtrics
	Crowdsourcing Using Mechanical Turk
	Challenges

	Community and Guidelines
	Our Vision for Human-Centric Studies
	Conclusions
	References

