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ABSTRACT. We introduce the concept of intermittency dimension for the mag-
netohydrodynamics (MHD) to quantify the intermittency effect. With depen-
dence on the intermittency dimension, we derive phenomenological laws for
intermittent MHD turbulence with and without the Hall effect. In particular,
scaling laws of dissipation wavenumber, energy spectra and structure functions
are predicted. Moreover, we are able to provide estimates for energy spectra
and structure functions which are consistent with the predicted scalings.

1. Introduction. The incompressible magnetohydrodynamics (MHD) with Hall
effect featuring the physics of magnetic reconnection is governed by the system of
partial differential equations (PDEs)

du+u-Vu—B-VB+Vp=vAu,
B+ u-VB—B-Vu+d,V x ((Vx B)x B) =uAB, (1)
V-u=0.

Here, u, p and B represent the fluid velocity field, scalar pressure, and magnetic field,
respectively; they are unknown functions on the spacial-time domain © x [0, c0).
The parameters v and p denote respectively the viscosity and resistivity. The
parameter d; stands for the ion inertial length, below the scale of which the ions
tend to separate from the magnetic field. Some simple facts follow from the general
form (1):
(i) If B =0, system (1) reduces to the Navier-Stokes equation (NSE).
(ii) If d; = 0, system (1) reduces to the classical MHD, and the magnetic field is
frozen into the fluid.
(iii) If d; > 0, the Hall effect breaks the frozen-in property and the system can
capture the fast magnetic reconnection process very well.
(iv) At scales much smaller than d;, the magnetic field is frozen again, albeit this
time into the electron fluid. In the limit of small scales, the ion flow appears
too slow against the motion of electrons and tends to form a neutralizing
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background, i.e., u vanishes. Thus (1) reduces to the electron magnetohydro-
dynamics (EMHD)

0B+ d;V x (V x B) x B) = pAB. (2)

(v) The Hall term V x ((V x B) x B) appears to be more singular and exhibit
higher order derivative than v - Vu and B - VB in the NSE. It captures intri-
cate dynamics responsible for striking turbulence phenomena and complicated
energy cascade associated with magnetic reconnection processes.

(vi) If V- B(0) = 0 at the initial time, V - B(¢) = 0 remains for all the time ¢ > 0.

One observes immediately that the MHD system involves more complicated inter-
actions than the NSE since the former contains nonlinear couplings of the magnetic
field and the velocity field. The fact (v) indicates, from a surface level, the dynamics
of the Hall MHD is more intricate than that of the classical MHD.

1.1. Background. Proposed by Alfvén in 1942, the classical theory of MHD con-
nects the Maxwell electrodynamics with the Navier-Stokes hydrodynamics. Over
the next decades, classical MHD theory has evolved to lie at the heart of under-
standing most of the phenomena in plasma physics such as solar winds, interstellar
clouds, planetary magnetospheres, etc. Derived from the classical MHD, Alfvén’s
famous frozen-in theorem demonstrates that magnetic field lines move with the
ion flow. However, this frozen-in property is found to be invalid in some violent
events, like solar flares. The widely accepted theory to explain the mystery is that
the violent events involve active dynamics at small scales that are comparable or
smaller than the ion inertial length d;. At such small scales, ions tend to decouple
from the magnetic field which becomes no longer frozen into the bulk plasma and
changes topology through a rapid magnetic reconnection process. At the reconnec-
tion occurrence, an intense current sheet is created and a vast amount of energy
gets released. Various models have been proposed to characterize the feature of
the striking magnetic reconnection process. Among them, the MHD model with
Hall effect is widely adapted, which is derived under the umbrella of the two-fluid
reconnection theory.

The MHD and Hall MHD models have been extensively studied by physicists
[4, 5, 7, 9, 10, 11, 12, 13, 14, 21, 28, 29, 30, 34, 58, 59, 60] and mathematicians
[1, 16, 17, 18, 19, 20, 23, 27, 31, 38]. In particular, the Hall MHD has attracted
relentless interest in the community of mathematics in the past decades. Never-
theless, many peculiar phenomena in plasma physics remain to be resolved. Of
crucial importance, the topic of turbulence is still an outstanding challenge in both
of the mathematics and physics communities in the new century. The (Hall) MHD
turbulence plays a vital role in many complex plasma phenomena, such as the for-
mation of accretion discs, explosions on the surface of the Sun which lead to solar
flares and coronal mass ejections, solar dynamo process, etc. These phenomena
involve intricate interactions between the magnetic field and turbulent motions of
the electrically conducting fluid, which cause complicated energy transfer between
the kinetic and magnetic spectra. Applications of (Hall) MHD in nuclear fusion
and electrical power generation appear to be very inviting nowadays and require a
thorough understanding of turbulence phenomena associated with the dynamics.

With the keenness of finding the order in chaos, numerous scientists have made
extensive efforts to study the nature of turbulence in fluid motions for centuries.
Our understanding of hydrodynamic turbulence has been greatly enriched since
the middle of last century, with contributions of Kraichnan [44, 45], Kolmogorov
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[40, 41, 42], Onsager [55], Taylor [62, 63], etc. On one hand, the theory of hydro-
dynamic turbulence serves as a good foundation for building the MHD turbulence
theory. On the other hand, in contrast with the NSE governing the hydrodynam-
ics, the MHD models comprise richer nonlinear structures which are the origins of
complicated energy cascade in turbulence phenomena. Especially, the Hall MHD
model contains a higher order nonlinear Hall term which is responsible for many
striking turbulence phenomena. There is an enormous body of literature on theo-
retical, experimental and computer assisted studies of MHD turbulence. For MHD
turbulence with low magnetic Reynolds number R,,, reasonable phenomenological
models are available and well supported by numerical simulations. However, the
theory of MHD turbulence with high R,,, which is a regime of great importance in
plasma physics, is far from being satisfactory. In fact, there is still a lively debate
over several existing phenomenological models for high-R,,, turbulence, which are
not well consistent. Meanwhile, the understanding of Hall MHD turbulence with
high R,, is very limited, due to the difficulty that the PDE model (1) involves more
intricate nonlinear interactions within a broader range of active space-time scales.

Therefore, it urges advancements in theoretical study of the (Hall) MHD tur-
bulence to formulate quantitative and testable predictions. In the present paper,
ideas on quantifying intermittency effect will be emerged dimly into the study of
phenomenological theory for both the Hall MHD and MHD systems. More details
on the topic of intermittency will be provided in Subsection 1.4 and Section 3.

1.2. Review of K41 theory and K62 theory. The celebrated Kolmogorov 1941
phenomenological turbulence theory [40] (referred as K41) for hydrodynamics was
derived for homogeneous and isotropic flows under the assumption of self-similarity.
It drew important predications on energy cascade from scale to scale, scaling laws
for structure functions and energy spectrum, and even exact relation for the third
order structure function. The main results comprise the four-fifths law for the third
order structure function, two-thirds law for the second order structure function,
negative five-thirds power law for the energy spectrum, and the derivation of Kol-
mogorov’s dissipation wavenumber k4 and dissipation scale  with kg4 = 1/n, which
separates the dissipation range from the inertial range. The following universality
was postulated in the derivations: at very high Reynolds number, the small-scale
statistical properties are uniquely and universally determined by the scale ¢, the
mean energy dissipation rate € and the viscosity v. However, this universality was
objected by Landau [46]. There is evidence that Kolmogorov was actually aware
of such issue and modified the K41 theory in early 1960s [43]. Nevertheless, as a
consequence of K41 theory, investigations have been extended to the topics of esti-
mating degrees of freedom, comparing macroscopic and microscopic length scales,
finding the law of energy decay, etc.; and fruitful results have been established.
An important issue was that the plausible assumption of self-similarity (and ho-
mogeneity, isotropy) in K41 theory can be invalid for some turbulent flows. In fact,
experimental evidences [2] show discrepancies from the K41 predictions in some
situations. The deviation from K41 scaling suggests that small scales have fractal
properties. As a general principal, the notion of intermittency was defined to corre-
spond such deviation from the K41 theory. Two classes of phenomenological models
with intermittency correction were introduced by Kolmogorov [43] to modify the
K41 theory; the updated theory was referred as K62. In one class, intermittency is
studied via velocity increments; while in another, intermittency is studied via dissi-
pation fluctuation and a bridging argument of connecting inertial range quantities
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with such fluctuation, [33, 43, 54]. In the former class, based on the idea of quan-
tifying space-filling of eddies in the Richardson cascade image, a fractal dimension
parameter D was introduced; and the so-called S-model, bifractal model, and mul-
tifractal model were derived to modify the K41 scaling laws with the dependence
on D. In the latter class, the central idea was to define and measure multifrac-
tality in terms of the fluctuations of the local dissipation rather than in terms of
velocity increments. In fact, the mean energy dissipation is a crucial quantity in
the K41 theory; Landau’s objection to the universality assumption also concerned
mainly with the dissipation fluctuations. Kolmogorov [43] also found a bridge con-
necting the two multifractal formalizations. Predictions of the modified models in
K62 theory by taking into account the intermittency effect are well consistent with
experimental data, for instance, see [51].

1.3. Review of scaling theories for MHD turbulence. In the context of MHD
turbulence, the magnetic field is a large-scale feature that remains at small scales
[53]. In contrast, large-scale features in hydrodynamic turbulence always regress to
the Kolmogorov state at small scales. Therefore, MHD turbulence shares certain
analogy with hydrodynamic turbulence but is primarily different from the latter.
Systematic study of MHD turbulence was initiated by Iroshnikov [37] and Kraichnan
[44] in 1960s, who proposed a scaling theory (referred as IK) for flow with a uniform
background magnetic field (Alfvén speed) and in a state of weak turbulence under
the assumption of isotropy in the inertial range. By realizing the anisotropic feature
of the turbulent motions along and across the background state, Goldreich and
Sridhar [35, 36] proposed a phenomenological theory (noted as GS) standing on the
critical balance conjecture in 1990s. As many physicists [48, 8] realized the crucial
effect of alignment between the Elsésser fields in the nonlinear interactions, Boldyrev
[12, 13] presented an appealing theory based on the concept of dynamic alignment in
2000s. Brief review of the development of these theories will be highlighted below.

Let By be the background uniform magnetic field. The Alfvén speed is the as-
sociated background velocity. Kraichnan [44] first realized that By preserves at
small scales through the energy cascade process. Relying on this argument, Irosh-
nikov and Kraichnan [37, 44] derived the —3/2 power law for the magnetic energy
spectrum. The scaling law was achieved via dimensional analysis and based on the
assumption that turbulence in the inertial range is isotropic, in the spirit of the K41
theory. However, the fluctuations of the turbulent fields parallel and perpendicular
to By are not necessarily the same. In fact, since the magnetic field is frozen into
the ion flow, the parallel variation goes with the propagation of Alfvén waves, and
the perpendicular variation results from nonlinear interactions. It is thus natural
to imagine that MHD turbulence is anisotropic at small scales; specifically, the
characteristic scale of parallel fluctuation is larger than that of the perpendicular
fluctuation. With such belief, Goldreich and Sridhar [35, 36] postulated that the
parallel propagation wave period and the characteristic time of perpendicular vari-
ation are comparable, which is known as the critical balance conjecture. In view
of the critical balance conjecture, Goldreich and Sridhar derived the —5/3 power
law for the magnetic energy spectrum for the perpendicular fluctuation. This (per-
pendicular) scaling for anisotropic turbulence coincides with the K41 scaling for
isotropic turbulence. While some solar wind turbulence observations were consis-
tent with GS predictions, high resolution numerical simulations of MHD turbulence
in early 2000s showed consistence with IK theory, see [48, 52].
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By realizing the significance of the alignment between the two Elsésser fields,
Boldyrev made an assumption on the minimal degree of misalignment. Based on
this alignment assumption, Boldyrev derived the —3/2 power law for the magnetic
energy spectrum for the perpendicular variation. Thus, Boldyrev’s perpendicular
scaling returns to the IK thoery, which was supported by numerical studies [49, 50,
56, 57]. Regarding the parallel cascade, it was derived [36] that the magnetic energy
spectrum in parallel direction satisfies the —2 power law, as a consequence of the
critical balance conjecture. It remains true in the framework of Boldyrev’s theory.

Nevertheless, up to the appearance of Boldyrev’s theory the story is not yet
complete, as Beresnyak [4, 5, 6] brought up objection. In Beresnyak’s opinion,
Boldyrev’s alignment theory violates the scaling symmetry of the Elsasser fields
equations and fails at small enough scales. Numerical simulations [57, 6] performed
by the two groups also showed disagreement. Thereafter, serious debate on MHD
turbulence follows from the competing theories and numerical results over the last
decade. However the intermittency effect brings hope to reconcile Boldyrev’s align-
ment theory and Beresnyak’s objection. The dynamic alignment theory can be
interpreted as a qualitative ideology of intermittency. Recently, it was realized in
[21, 47] by the team of Schekochihin et al. that a model with intermittency con-
sideration is crucial to derive the scaling laws. They revised Boldyrev’s alignment
theory by introducing the parallel outer scale as an extra parameter and incorpo-
rating dimensional correctness. The inclusion of the parallel outer scale indicates
the invalidation of self-similarity of the MHD turbulence. They argue that the
anisotropy depends on the local direction of the fluctuating fields. The turbulent
field is then viewed as an ensemble of structures which have three scales correspond-
ing to the parallel, perpendicular, and fluctuation directions. Analysis on the joint
probability distribution of these quantities is carried through to fix scalings. Their
revision of the alignment theory resembles the K62 theory for the hydrodynamic
turbulence in which intermittency correction is the central idea to deal with the
failure of self-similarity.

There is a vast literature of active research on other aspects of MHD turbulence.
We list a few topics without the intention of being complete. The magnetorota-
tional dynamo was studied by statistical simulation [61]; the role of magnetorota-
tional instability and plasmoid instability was investigated in [26]. The formation
of accretion discs has been extensively studied by many scientists. Another signifi-
cant subject concerns ideal invariants for intermittent flows and their conservation
versus anomalous dissipation [3, 62, 63].

1.4. Quantification of intermittency. Since the K62 theory, there has been
growing interest in the study of intermittency. Various theoretical interpretations
have been proposed, which are based on traditional statistical and probability theory
of turbulence. In this paper, in order to quantify the intermittency effect, we will
introduce an intermittency parameter — intermittency dimension ¢, for the magnetic
field, through the saturation level of Bernstein’s inequality in harmonic analysis.
Bernstein’s inequality provides quantitative relationships between different Lebegue
norms associated with LP spaces. The essential idea is that the LP? norms may be
different for different values of p for a turbulent field due to intermittency. According
to our definition, when the LP norms of an n dimensional field are the same for all
1 < p < oo, the intermittency dimension is n; oppositely, when the LP norms
are different up to the full saturation of Bernstein’s inequality, the intermittency
dimension is 0. For instance, the Kolmogorov regime in K41 theory corresponds to
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the case of intermittency dimension being 3, and the eddies at each scale occupy
the whole region in the Richardson cascade image. The quantitative interpolation
relationship equipped in Bernstein’s inequality allows us to measure and quantify
the intermittency effect of a turbulent field precisely by the intermittency dimension
parameter.

In this paper, we intend to implement the quantification of intermittency effect
into the MHD and Hall MHD turbulence theory. In particular, we will pursue the
following objectives.

e Introduce magnetic intermittency dimension J, as a parameter to quantify the
non-uniformity of a turbulent magnetic field; such concept of intermittency
dimension will be adapted to turbulent Elsésser fields as well,

e Establish phenomenological scaling laws of energy spectra and structure func-
tions for the Hall MHD turbulence, with dependence on the intermittency
dimension; and justify the phenomenology mathematically;

e Explore transition scales between different energy cascade regimes with dif-
ferent energy spectra for the Hall MHD;

e Derive scaling laws of energy spectra and structure functions with intermit-
tency correction for intermittent MHD turbulence;

e Seek connections between findings above and the existing scaling theories of
MHD turbulence, i.e. Iroshnikov-Kraichnan, Goldreich-Sridhar and Boldyrev’s
theories.

2. Preliminaries and notations.

2.1. Notations regarding constants. Throughout the paper, we denote A < B
by an estimate of the form A < ¢B for some constant ¢ and A ~ B an estimate of
c1B < A < ¢9B for constants ¢; and cs.

2.2. Littlewood-Paley decomposition. The important parameter - intermit-
tency dimension - will be defined via the saturation level of Bernstein’s inequality.
Therefore, we briefly introduce notations associated with Littlewood-Paley decom-
position theory. Let L be the domain size. We denote wavenumber )\, = % for
integers q. For a tempered distribution vector field v on T? = [0, L]3, we denote Ug
by the g-th Littlewood-Paley projection of v. We also fix the notation

'Uéq - E Up, 'U>q - E Up.

p<q p>q
2.3. Energy flux. For the EMHD (2), we denote

My, =di | (VxB)xB)-VxBg,dz
T3

by the magnetic energy flux below wavenumber A,. Thanks to the vector identity
vxw-v=0,
we have

/ ((V X Beg) X B) -V x Bgdz =0,
T3
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which indicates that eddies larger than £, ~ )\;1 on average do not carry the energy
across the scale £,. Thus, in fact, we can write

I, = di/ (VX B>q) x B) -V x Begdax.
TS
The formula can be further reduced to
mﬂ:m/‘ > ((V x Bp,) X Bp,) -V x By, dz
’]1‘3

P12>q,p2>q9—1,p3<q,|p1—p2|<2

in view of the Fourier support of the projections. The idea is that remote scales do
not contribute to the energy budget. We also define the energy flux density as

g = di Z ((V x Bp,) X Bp,) - V X By,.

P12q,p2>q—1,p3<q,|p1—p2|<2

2.4. Energy spectrum and average energy dissipation rate. We use the
symbol () to represent time-space average of a vector field. For a vector field v, we
denote

1
3 (IP<kol*)

by the mean energy per unit mass carried by wavenumber < k. The energy spectrum

for v can be defined as

1d
W(k) = 5o
£o(k) 2 dk

Thus the total mean energy can be represented as

%<|B|2> - /Ooo £, (k) dk.

(IP<kv[?).

Note that we also have

£uln) ~ L2

Denote the average dissipation rate of the magnetic energy by

ey = u([IVBI[12) -

2.5. Structure function. Let ¢ be the characteristic eddy size in the turbulence
and L the size of reference scale. Denote the characteristic scale of the fluctuating
vector field v by

dov =v(x+£4,t) — v(z,t).
The p-th order structure function of v at scale ¢ is defined to be

Sp(€) = ([6ev]”) -
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3. Intermittency dimension: a quantitative measure of intermittency ef-
fect. A central assumption of K41 turbulence theory is the self-similarity of the
random velocity field in the inertial range. This assumption seems plausible but
may well be invalid for intermittent flow. The revised K62 theory took into account
the intermittency effect, which indicates certain fractal or multifractal properties
of the turbulent flow. In K62 theory, intermittency was studied via velocity incre-
ments and dissipation fluctuation within the traditional framework of statistics and
probability. Recently, intermittency was also analytically studied in [25].

Different from the methods of K62 theory, the intermittency effect for the NSE/Euler
flows is quantified in [22] by measuring the saturation level of Bernstein’s inequality
based on harmonic analysis techniques. We introduce the notion of intermittency
dimension for a turbulent field as follows.

Let L denote the length scale of the space domain €. For integers ¢ > 0, let
Ay = 29/L be the wavenumber of the g-th shell. For a vector field u, u, stands for
the Littlewood-Paley projection of u onto the g-th shell. One can understand it in
the simple way that the Fourier transform of u, is supported on and near the g-th
shell.

Lemma 3.1. [Bernstein’s inequality] Let n be the spacial dimension and py > p >
1. Then for all tempered distributions u, the inequality

13
lugll e < C’/\Z(pl pz)HuqHLm holds for a constant C.

A particular case of Bernstein’s inequality for n = 3, po = co and p; = 2 reads
as
-1 2 2 2
Ay gz < CAGlluglz2-

On the other hand, we estimate the integral directly as

/Q g2 dz < 12 utg |2

which leads to
X [lugllie < llugllz~
by realizing A9 = 1/L and |[Q| = L3 for an absolute constant ¢. Combining the
two inequalities above yields
XAT NluglZe < A lugllZoe < CAZllugllZ2- (3)

It is obvious that there is a scaling difference (A3) between the lower and upper
bounds of the quantity A, '[|ug[|Z~. Inspired by this observation, we introduce the
intermittency parameter — intermittency dimension, for a vector field wu.

Definition 3.2. The intermittency dimension §, for a magnetic field u(¢) in three
dimensions (3D) is defined as

Jy 1= sup {s €R: <Z Aq”slluq(t)lliw> <CL™ <Z /\ﬁluq(t)li2>} (4)

where the symbol (-) denotes time average and C' is a constant.
It follows from (3) and (4) that §, € [0,3]. Moreover, we have the following
scaling relationship for a 3D vector field with intermittency dimension d,,

,5@(% 1

3 -
[ugllzre = CAq " gl e (5)

for some constant C. We infer from (5) that:
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e when §, = 3, the L? norms for all 1 < p < co are equivalent at each scale;

e when §, = 0, the difference between different LP norms reaches the extreme
scaling; in this case, Bernstein’s inequality in Lemma 3.1 becomes an equality
and hence is said to be saturated.

According to this interpretation, the homogeneous, isotropic, and self-similar tur-
bulent flow in K41 theory has intermittency dimension 3. In the extreme case of
intermittency dimension being 0, we understand it as there is only one eddy at
each scale and the flow is very singular. On the other hand, numerical simulations
and experimental studies show that § ~ 2.7 for classical hydrodynamics. By con-
vention, a turbulent field with smaller intermittency dimension is said to be more
intermittent.

Intermittency dimension can be defined in the same way as in Definition 3.2 for
a magnetic field B and the Elsiisser variables Z+ = u+ B and Z~ = u — B, respec-
tively, denoted by d5, 6 and 6~. Analogously, we have the scaling relationship

(3=80)(3-—75)
”Bq”L”Z:C)‘q ST ||Bq||L”17

3—0T) (-1
1Z:H s = Cre T T2 2 (6)

_ B (E—)
1Z; ||zre = C)q s Z

A statistical concept of intermittency is also introduced in the context of stochas-
tic processes by Khoshnevisan [39]. The definition of [39] is not quantitative but
rather qualitative. That is, it can tell whether a random field is intermittent or not;
it can not describe how intermittent the random field is. Nevertheless, definition
(4) is quantitative; it measures how intermittent a turbulent field is.

4. Phenomenologies of intermittent turbulence for Hall MHD and es-
timates. In this section, we aim to develop some phenomenological scaling laws
of turbulence for the MHD with Hall effect by including intermittency dimensions
of the velocity and the magnetic field. The Hall MHD turbulence is not well un-
derstood, by virtue of the intricate coupling of fluid velocity and magnetic field,
and the extra complexity brought in by the Hall effect. In particular, the Hall
term launches new physics into the system at small scales, which cause the system
more “chaotic”. We will emphasize on predicting scaling laws for energy spectrum
and structure functions; we will also extend the study to find the transition scales
separating different regimes of energy cascade.

4.1. Phenomenologies of intermittent EMHD and estimates. For the EMHD
model (2) with reduced complications of multi-scales and nonlinear interactions, we
have the main scaling laws regarding the dissipation wavenumber that separates the
dissipation range from the sub-ion range, magnetic energy spectrum in the sub-ion
range, and structure functions.

Conjecture 1. Let B be a solution of the 3D EMHD (2) with intermittency di-
mension d,. There exists a dissipation wavenumber kg for the 3D EMHD (2) with
the scaling

KG ~ (pPd2e) T (7)

such that kG separates the dissipation range from the sub-ion range.
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Conjecture 2. For the 3D EMHD equation (2), the magnetic energy spectrum
Ep(k) in the sub-ion range obeys the scaling law

—10

Es(k) ~ (d7e)* K (8)

Remark 1. If the magnetic field is homogeneous, isotropic, and self-similar, i.e. in
the case of §, = 3, it follows from (8) that

2
Ep(k) ~ (d7'ey)? k3
which coincides with the scaling derived by physicists, for instance, see [34].

We point out that Conjecture 1 is in anal-
ogy with Kolmogorov’s prediction on the ¢
dissipation wavenumber for hydrodynam-
ics with intermittency correction. In fact,
Kolmogorov’s prediction on the dissipation
wavenumber was recently justified mathe-
matically by the author and collaborator in
[22, 24]. We expect to be able to justify 2
Conjecture 1 as well following the line of
the previous work [22], and we will address <o <1
it in future work.

A rigorous proof of Conjecture 2 is un- 0
likely to be achieved with existing tech-
niques. Nevertheless, we are able to obtain
upper and lower bounds for the magnetic
energy spectrum. Namely, we have:

FIGURE 1. Structure function expo-
nent as a function of p for EMHD with
different intermittency level.

Theorem 4.1. Denote
Eb:supdi)\§<|Bq|3>, & :irqlf<|7rb7q|>.
q
The energy spectrum Ey(k) satisfies the following upper bound
_1..2,_1 S _q
E(k) S (di"8)3k™3(Lk)™
and an average lower bound

2 1 _
S K ATVE0,) > (47198
p

(2

1

for any q, with K, = )\‘q‘“"

Beside dissipation wavenumber and energy spectrum, we can also predict scal-
ing law for structure functions of the intermittent magnetic field. Indeed, scaling
analysis suggests:

Conjecture 3. Let B be a solution of the 3D EMHD (2) with intermittency di-
mension 6,. The p-th order structure function S,(¢) = (|6,B|?) has the scaling

Sp(0) ~ (dytey) £ +GE=0=5), (9)

We denote the exponent of the structure function scaling by ((p, dy) = %” +(3-
G)(1 — %)
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Remark 2. We notice that ((3,d,) = 2 which does not dependent on the intermit-
tency dimension. It suggests that there is an exact law for the 3rd-order structure
function.

Remark 3. We also notice that ((p,dp) is a linear function in both p and dy.

For homogeneous, isotropic, and self-similar magnetic field, that is §, = 3, the
scaling (9) represents 4/3 law for the second order structure function, which is
consistent with the derivation of physicists, for instance, see [34]. Two special
cases are: if p = 3, the scaling of the third structure function is of ¢? for the
magnetic field with any intermittency dimension, see point A in Figure 1; if §, = 1,
the scaling is of ¢ for the structure function of any order. It is also important
to notice that how intermittency level affects the property of structure functions.
The exponent ((p,dp) increases with p if &, > 1 (red line in Figure 1); while it
decreases with p if &, < 1 (blue line in Figure 1). The second and third order
structure functions are illustrated for homogeneous isotropic self-similar turbulence
and extremely anisotropic turbulence respectively in Figure 2 and Figure 3.

S, s)
5 — S3 ~ s Sy ~ 07/3
b=3 5 =0
Sy ~ (A/3 Sy ~ (2
0 0

FIGURE 2. Second
(red) and  third
(blue) order struc-
ture functions
for homogeneous
isotropic self-similar
EMHD turbulence.

FIGURE 3. Second
(red) and  third
(blue) order struc-
ture functions for ex-
tremely anisotropic
EMHD turbulence.

Although lack of a proof of Conjecture 3, an upper bound on the structure
functions with 2 < p < 3 can be established.

Theorem 4.2. Assume &, € [1,3]. Let 2 < p < 3. There exists a constant Cp, > 0
such that

Sp(l) < C, (di—lg—b)g PE+B-5)(1-5)

4.2. Phenomenologies of intermittent Hall MHD. The situation for the Hall
MHD system is more complicated than that of the EMHD, due to more intricate
nonlinear couplings and interactions. Moreover, the intermittency dimension §,
of the velocity field and d, of the magnetic field both play vital roles here. The
interesting question bas been raised in the field: whether the fluid velocity u or
the magnetic field B plays a dominant role in the dynamics? We expect that the
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answer depends on the intermittency level of both §, and d,. The scaling laws of
intermittent Hall MHD turbulence should also depend on §,, and J,.

Denote the average dissipation rate of the kinetic energy by e, = v (||[Vu||2,) and
the kinetic energy spectrum by &, (k). We consider the situation that the velocity
plays a dominant role, i.e., the influence of the velocity field over the magnetic field
is stronger than the influence of the magnetic field over the velocity field. In this
case, it is natural to assume that the velocity field is more intermittent than the
magnetic field, i.e. §, < d,. We have the following predictions in this regime.

Conjecture 4. Assume 6, < 0. In the kinetic inertial range, the kinetic energy
spectrum of the intermittent Hall MHD system exhibits the scaling

Sy —8

Eulk) ~ el k5,

The magnetic energy spectrum exhibits two power laws,

11 54435, 8
cleSk™ 1= 3 in ton-inertial range
5 (k) ~ b cu Y g 2
b

1 2, 9,10 . .
(d;"ep)3k™ 3, in sub-ion range.

We proceed to further predict the transition scales that separate different regimes
of cascade.

Conjecture 5. The kinetic dissipation wavenumber x4 that separates the dissipa-
tion range from the kinetic inertial range for the fluid velocity has the scaling

ki~ (v7%,) 7T (10)

For the magnetic field, the critical wavenumber kP that separates the ion-inertial
range from the sub-ion range satisfies

b —1.
Hi Nd,L 5

and the magnetic dissipation wavenumber Hg that separates the sub-ion range from
the dissipation range obeys the scaling

1
o —1 3\ 35T
/{Zw(u 35u2€§) T (11)

From (10) and (11), one can observe that larger intermittency dimensions d,, and
0p indicate higher regularity and henceforth smaller dissipation wavenumber x$ and
% and narrower kinetic inertial range and magnetic sub-ion range. As a principal
application, the dissipation wavenumber is often used to estimate the number of
degrees of freedom and thereby brings hope to improve numerical simulation algo-
rithms.
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log &,

«sub-ion-»

ion-inertial ¢ sub-ion - dissipation

1d; kb, K k

FIGURE 4. Magnetic energy spectra of Hall MHD when 6, = §, =
3 (blue lines) and when d,, = 6, = 0 (red lines).

Figure 4 illustrates the information contained in Conjecture 4 and Conjecture 5.
We notice that the kinetic energy spectrum does not depend on the magnetic field
intermittency dimension, which is consistent with the hypothesis that the velocity
plays a dominant role. One can also see that the magnetic energy spectrum in
ion-inertial range depends on average dissipation rates of both the kinetic energy
and magnetic energy, and intermittency effect of both the velocity and magnetic
field. It indicates intricate interactions and coupling within the ion inertial range.
While in the sub-ion range, the magnetic energy spectrum does not depend on the
velocity field, since the Hall term plays a dominant role within this regime. The
special case of §, = J, = 3 for homogeneous isotropic self-similar turbulence has
the scaling =7/ in the ion-inertial range and k~%/3 in sub-ion range, which again
is consistent with physics phenomenology [34]. While the most steep scaling is that
of the most extremely anisotropic turbulence with 6, = §, = 0.

Similarly as for Conjecture 1, it is hopeful to justify Conjecture 5 by applying
the framework of determining wavenumber and the wavenumber splitting approach
developed in the previous work [22] for 3D Navier-Stokes equation. While a rigorous
proof will be pursued in future research, a heuristic analysis will be provided in
Section 5 to motivate the scalings.

By the definition of structure function, we can see that the structure function
of a vector field does not depend on the particular equation it satisfies, rather it
depends on the intermittency effect. Thus, in view of Conjecture 3 and Theorem
4.2, we state the scaling law of structure functions and their estimate for the Hall
MHD system (1) in the following.

Conjecture 6. Let (u, B) be a solution of the 3D Hall MHD (1) with intermittency
dimension (0, 0p). The p-th order structure functions Sy, = (|0¢B|P) and Sy, =
(I6¢ul?) satisfy

Sup(€) ~ (ditey) T LFFETIOD),

fe (12)
Su7p(€> ~ (gu)§ €%+(3—5u)(1_§ .

Theorem 4.3. Let (u, B) be a solution of the 3D Hall MHD (1) with intermittency
dimension (0, 0p). Assume 6, € [0,3] and 0y € [1,3]. Let 2 < p < 3. There exists
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a constant Cp, > 0 such that
Sep(l) < Cp (di‘lgb)g (F+E-0)(1-5)
Sup(l) < Cp (su)% 05+(3-0.)0-%)

Remark 4. In the case d, < ¢,, similar phenomenologies as in Conjectures 4-6 can
be derived as well. In this situation, one has to analyze which nonlinear interactions
dominate in the inertial range and which nonlinear terms in (27)-(29) to be used at
each step of the scaling analysis.

5. Derivation of phenomenologies and proof of estimates.

5.1. Scaling derivation of Conjecture 1 and Conjecture 2. The heuristic
scaling analysis starts with the formal energy identity for the EMHD equation (2),

th/ |B|2d:c+d/ V x ((V x B) x B) - de+u/ |VB|*dz = 0.

The energy identity suggests that the nonlinear flux d;||V x ((V x B) x B) - B||:
and the dissipation term p||VB||3, have the same scaling as the dissipation rate of
the magnetic energy Ey(t) = 3||B(t)||2.. We consider such scaling relationship at
the level of the g-th shell. In fact, projecting the equation (2) onto the g-th shell,
taking inner product with B, and integrating over T? gives us the energy law

th/ | B, |2dx+d/V>< (V x B) x B), Bdw—i—,u/ |VB,[*dz = 0. (13)

Denote &4 = p||VBy||%2, which can represent the energy dissipation rate at the
g-th shell, since it follows from (13) that

537 | Bl o ~ VB

Further, we can infer the following scaling relationship from (13), by applying
Holder’s inequality and the saturated Bernstein’s relationship (6)

PGBy 72 ~ VBl 72 ~ dil|V x ((V x By) x By) - Byl 11
~ d->\2IIB 17211 Bgll L~
~ d; >\ || By 2.
It follows that

—3

1Byllze ~ pdi 1A% (14)
Applying (14) to the energy dissipation rate of the g-th shell, we obtain
€bq = 1V Bgll72 ~ X2l BglFz ~ pP A0~ d 2. (15)

We extract the scaling relationship from (15)
3 2 1
Ag ~ (1 diep,q) o

which motivates the scaling law (7) in Conjecture 1.
On the other hand, (15) also implies

o~ d?ebé,q)é(l_éb). (16)
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Therefore, combining (14) and (16), we infer

B |2 5 0p—10
)~ L gyt g1
q

which suggests the energy spectrum scaling (8) of Conjecture 2.

2
5.2. Proof of Theorem 4.1. Since &,(A;) ~ <Uiq| >, let us first estimate (|Bqy|?).

By the definition of structure function, we have, applying Holder’s inequality
1 T
|B,|? :7/ /\B | dedt
< q > T|Q| 0 O q

T 2
< 1 / (/|B|3d>3dt v,
< o x :
T Jo \Jo * !
1 T s
< = |B,2dadt | -T3V,
i ([ fmaea) i

< (B v

[SE

where V,, = (£,/L)3~% is the active volume at scale £, ~ A, ' Recall

&p = sup di/\g <\Bq|3> .
q

Thus, we have

2 3—45 1.2 _ 4 3—45
<|Bq|2> < <|Bq|3>3 (bq/L)3 . < (d; 15)3)‘61 *(€y/L)3 g (17)
It follows from (17) that
B, |2 _z - _z
UBP)  arayingtie,/ny < rtoha g%

Ag

which gives the upper bound of the energy spectrum.
We move forward to establish the lower bound of the energy spectrum. By (6),
we have

l(g_s
1Bqllzs ~ A5~ || Byl 2,
and hence
lig_5§ 3
(B ~ 237 (1B, %) * (18)
Applying Holder’s inequality, we obtain

/ Tb,q dx
T3

< d; > TS|((V><Bzal)><sz)-V><Bzos|dfﬂ

P1>q—1,p2>q,p3<q,|p1—p2|<2

<d; > Api|Bpy |23 [ Bps || 23 Aps || Bps || Lo

p12>2q—1,p2>q,p3<q,|p1—p2|<2

Sdi Y AnlBo 3oy 1By o

P1>q—2,p3<q
1

2
3 3 3
<di<z A5||Bp||%3> (zmwpis) |

p>q—2 p<q
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Rearranging the wavenumber multiples in the last inequality, we have

Tb,q dx
T3

2 1

3 3
<d ( S i Bpllia> (zxpxqugan@a)
(19)

p>q—2 p<gq

5 d; Z [(qu)‘;%lprH%3

ol

with the kernel K, = 3 . Recall that
g, = inf (jm ).

Applying (19) and (18), we obtain

g < (Imbql) %5 d; (ZKq p)‘ (IBy| >>

SN

<df Z LT (1B, )

< YR,
where we used the scaling &(A\,) ~ <|Ei’; ‘ > The last inequality gives an average

lower bound for the energy spectrum.

5.3. Scaling derivation of Conjecture 3. Denote the typical magnetic field dif-
ference associated with scale ¢ by ;B = B(x + ¢,t) — B(z,t). The eddy turnover
time is hence

EQ
d;6¢B’
Active eddies of size ¢ fill only a fraction (¢/L)37% of the total volume. The energy
per unit mass associated with scale ¢ is Ey, ~ (§,B)? (E/L)g_éb. According to the
energy law, we have

ty ~

ep ~ Bty ~ d;(5,B)> 072 (£/00)>% . (20)
Taking ¢ = L in (20) indicates
ey ~ d;i(0pB)3/L2. (21)
Combining (20) and (21) leads to
§¢B ~ 6.,B (¢/L)% 13 (22)

Henceforth, applying (21) and (22), the structure function is expected to satisfy
([6:BJP) ~ (8:B)? (£/L)°~"
~ (BB (/1) (/1)
N (di—lgb)gg%+(3—6b)(1—§

which gives the scaling of (9).
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5.4. Proof of Theorem 4.2. Recall that
£, = sup di)\g <\Bq|3> ;
q
hence, we have
(16:B*) < d; 'ep®. (23)

In the following, we will estimate (|0,B|*) and then (|6,B[F) with 2 < p < 3 by
interpolation.

Recall 6, B(z,t) = B(z+y,t)— B(z,t). Let ¢ be the integer such that A\, ~ |y| .
We infer, by applying the Mean-value theorem

1 T
< |6,B|? >= m/0 /Q\B(x—i—y,t) — B(x,t)|* dadt
I )
< — By(x+y,t) — By(z,t)|” dzdt
) /Q§j| o+ 3,1) = By ()
B 2
+T|Q\/ / E |Bp(x +y,t) — Bp(x,t)|” dedt

p>q
< ly[*A2|By|? dadt + —— / / |B,|? dzdt
T|ﬂ|/ / Z ] Z
< Z|y|2/\;27 ‘Bpl +Z<|Bp|2>~
P<q P>q

Employing (17) and noticing that £, ~ A;! and Xy ~ |y|~!, we continue with the
last inequality

1— 1%
19,8) £ S PN et (7 +Zd it () 7
L L

p<q p>q
< /\ 2 Z % p 3 _|_Z % % L/\ )
p<q P>q
For &, € [1, 3], we have
2 O 4 b
-+ —=1> —+—=-1
3 + 3 >0, 3 + 3 < 0.
Thus, we further deduce that
S s
(6,B12) S 2727 0) EAd (IA) 71+ (d71a) A T (1) ¥

. s 5 (24)
S (7€) 52 * (LAg)

Now, for 2 < p < 3, we have by interpolation and using (23) and (24)
3— 3\ p—2
(18, BI") <10, B2)"" (I8, BI*)”
< (dz 5) 3 33— p))\ 5(3-p) (LA )( )(3 ) (d; 15b)p—2)\3(2—p)

< (d_ g )gA;T+(6b73)(17%)

_1_ 2p
S (ditep) Sy E OO,

It completes the proof of Theorem 4.2.
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5.5. Scaling derivation of Conjecture 4. The scalings in Conjecture 4 will be
attained through heuristic analysis and estimates all the flux terms using harmonic
analysis tools. For the magnetic field in the sub-ion range, the dynamics captured
by the Hall term is active and dominant. In this scale range, the magnetic energy
spectrum is expected to be similar as that of the EMHD, which is predicted in
Conjecture 2. Thus we focus on the ion-inertial range here and neglect the flux
from the Hall term.
The energy law of the Hall MHD system (1) at the ¢-th shell is given by

/ |uq|2dx—|—/ (u-Vu)g - uqu—/ (B-VB)4-uqde
th T3 T3 (25)

—H// |Vu,|? dz = 0,
T3

th/ 1B, |2dx+/ (u-VB),-B dx—/ (B-Vu), - Bydr
T3

V x ((V x B) x B), Bdm+u/ |VB,|?dz = 0.
’H‘S
Denote

Eu,g = 1// Vg |® da
T3

by the kinetic energy dissipation rate at the g-th shell; and

Ebq = u/ |VB,|? dx
T3

is similarly introduced previously. Based on (25), we have the following scaling
relationships at the scale of A, by considering the nonlinearity (u - V)u

1d
ua ~ 5 luallEa ~ A2 ugl2a ~ g Vergug s (27)

and the following scaling by considering the nonlinearity (B -V)B
Eu,q ™~ V)‘znuq”%? ~ || B¢V Bgugllr- (28)
In the sub-ion range neglecting the Hall effect, the energy identity (26) suggests

€bq ™ IIB 72 ~ AN BgllZ2 ~ IV x (uq x Bg) - Byl (29)

2 dt
It follows from (27), Holder’s inequality and the crucial relationship (5) with inter-
mittency dependence that
—
Cuq ~ VAglugl T ~ Aqllugllallugllzoe ~ AP~02 g,
which implies

Sy —1
lugllL2 ~vAq = (30)

Combining e,,4 ~ vA2|Jugl|7. with (30) also gives

1 Sufl
VeoEdghg P (31)
Similarly, it follows from (28), Holder’s inequality and (’) that
€uq ~ VAGIUglI T2 ~ Mgl ByllZa lugllze ~ Ao ® g2 1By 122
and hence

1Byl1Z2 ~ wAT =72 |lug | o (32)
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Analogously, applying (29), Holder’s inequality and (6), we have
€bg ~ 1N Bgllzz ~ Aqllugll 2l Byl 2| Bl o

(33)
~ AL g 2 | Byl -
Combining (30), (31), (32) and (33) we obtain
10— 150u—3
W~ Ey 6b ZAg . (34)

Finally, we postulate that, by employing (30), (32), (31) and (34)
Euha) ~ lugllFa /A ~ V2N ~ () S0

Ey(Ag) ~ || Byl2a/Ag ~ vpurg OO 37 (O8R5

(qu) (e, q) Aq
which inspire the predictions in Conjecture 4 by noticing both A, and k are wavenum-
ber notations.

5.6. Scaling derivation of Conjecture 5. It follows from (31) that
Ag ~ (’/73<°5u,(1)T14rl

which inspires the scaling (10). While, (34) implies
R
Ag ~ (/F%;ésb%aq) LI

which is the reason of the prediction of (11). Physical evidence shows that Ii? should
have the scale of 1/d;.

6. Phenomenologies of intermittent turbulence for classical MHD. Since
the establishment of Iroshnikow-Kraichnan (IK) [37] scaling theory for MHD tur-
bulence in 1960s based on K41 theory, outstanding breakthrough has been made in
this area during the last few decades. Goldreich and Sridhar (GS) [35] developed a
theory with the awareness of the anisotropic feature of MHD turbulent motions at
small scales and based on the so-called critical balance conjecture in 1990s. Later
on, Boldyrev’s theory [12] based on dynamic alignment in 2000s turns out to be
appealing and receives lots of attention. However, Beresnyak [4] brought up the
objection that Boldyrev’s alignment theory violates the scaling symmetry of the
system and fails at small scales in early 2010s. Up to now, there are still serious
debates over which theory is more feasible. Nevertheless, Boldyrev’s theory can
be viewed as a qualitative theory of intermittency for the turbulent MHD system.
In this part of the project, we derive some phenomenological laws for the MHD
turbulence with dependence on the intermittency dimension.

6.1. Energy spectrum and structure functions for MHD turbulence with
intermittency correction. The incompressible MHD system (1) with d; = 0 can
be formulated into a more symmetric form by using Elsésser variables

Zt=u+DB, Z- =u—B

introduced by Elsasser [32]. Let By be the background mean magnetic field. Let
po and pg be the constant density of plasma and the permeability of free space.
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The Alfvén speed is given by v4 = Bo/(popo)*/?

system

. The Elséasser variables satisfy the

WZE F(By-V)ZE + (ZF -V)ZF +Vp=nTAZ* 4+~ AZT,

35
V-Zt =0, (35)

with n* = (v 4 p)/2. In principle, the Elsisser variables represent Alfvén wave
perturbations propagating in the direction or the opposite direction of the back-
ground magnetic field By. There are evidences both from theoretical analysis [30]
and in-situ data observations [15] that it is useful to apply the Elsésser formulation
(35) in the study of plasma turbulence.

Remark 5. Since we are interested in plasmas with high magnetic Reynolds num-
ber which indicates p is small enough, it is thus natural to assume n~ > 0.

In the means of Definition 3.2, we define the intermittency dimension 6 for the
field Z*, and the intermittency dimension 6~ for Z~. In 3D, we have 6% € [0, 3]
and the crucial relations at the scale A,

5t — _5 —
1Z5 poe ~ S22 ey 125 e ~ AS0 2012 e (36)

Denote the energy quantities associated with each Elsésser variable as
1
+ + 2
E=(t) = 5127 @)lz.-

Denote
gi — nﬂ: <|Vzﬂ:|2>
as the average energy dissipation rate of Z* and £%(k) as the energy spectrum.

We have the following predictions on the energy spectra scaling for the turbulent
fields Z*.

Conjecture 7. The energy spectra E*(k) in the inertial range for the 3D MHD
model (35) in Elsasser formulation obey the scaling law

5*(1@) -~ ((5*)2/5—)2/3 k(25*—6+—8)/3’

E (k) ~ ((5_)2/5+)2/3 (267 =07 =8)/3, (37

When both fields Z* are homogeneous isotropic and self-similar, i.e. 6+ = 3,

the scaling law becomes £¥ (k) ~ ((&:i)z/5¢)2/d k=5/3. Tt is worth to notice that
this scaling is consistent with Goldreich-Sridhar theory [35] in the perpendicular
cascade. In the extreme anisotropic case of 6 = 0, the scaling (37) becomes
EX(k) ~ ((a?i)Q/st)Q/3 k=8/3. Therefore, the conjecture gives a good explanation
why experimental data showed energy spectra between k~5/3 and k~8/3 for differ-
ent turbulent fields. The crucial point is that turbulent fields may have different
intermittency levels.

Upper and lower bounds for £+ (k) are expected to be attained in an analogous
way as for Theorem 4.1.

We explain below how to attain the prediction (37) by using scaling analysis and
harmonic analysis techniques in analogy with the analysis of Conjecture 4. The
energy law of (35) implies the following scaling relations at each scale,

e~ HIIVZENL ~ (2 V)25 Z |
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Based on Littlewood-Paley theory in harmonic analysis, it is trivial to see
+ 412 +42 742
o IVZg e ~ Al Zg Nz
On the other hand, thanks to (36), it follows from Hélder’s inequality and Littlewood-
Paley theory that
I(ZF - V)Z - Z o~ Al ZE A D212 e
Combining the above relations leads to
+ +
1ZE |2 ~nTAL D2 e ~pE(nT)2ALTT,
Thus, we infer by scaling that
1Z5 117
Ag
Further heuristic scaling analysis leads to the prediction of the cutoff scaling
between the dissipation range and the inertial range.

2
EEN) ~ ~ ((e5)?/e¥)® )\ffﬁ_‘si_&/?’ — inspires Conjecture 7.

Conjecture 8. There exists a critical dissipation wavenumber nj for the field Z
and a critical dissipation wavenumber k3 for Z~ such that /@'f separate the dissi-
pation regime from the inertial regime for Z* respectively. Moreover, we predict
that

1/(1+57)

kg~ (£7/[(v + v —w)?) ;

_ _ 1/(1467)

kq ~ (€7/[(v = w)(v + 1)?]) :

We notice the dissipation wavenumber /{X depends on the intermittency dimen-
sion 6F of Z*, not on 6~ ; vice versa for x7 . Nevertheless, both xT depend on both
of the fluid and magnetic Reynolds number 1/v and 1/u. The motivation of (38)

(38)

comes from the early derived relation e* ~ ni(vﬁ)z)\};*‘;i which is equivalent to
1/(1+6%)
Ag ~ (5 /m* (7)) :
Regarding structure functions, we have:

Conjecture 9. The p-th order structure functions <|6tht|p> for intermittent fields
Z% obeys the scaling law

(J0e2%[7) ~ () (7 C=R08), (39)
We present a brief heuristic analysis below to produce (39). Denote
60 Z% = ZF(x + 4,t) — ZF(a,t)

by the difference of Z* associated with scale £. The eddy turnover time is hence

tp ~ ———.
£z
For Z*, active eddies of size / fill only a fraction (Z/L)?’_‘Si of the total volume. The

3—6+

energy per unit mass associated with scale ¢ is EF ~ (6,2%)? (¢/L) . According

to the energy law, we have
st
eF ~ Ef Jty ~ (8,25)2071 (0/L)* 0. (40)
Taking ¢ = L in (40) indicates
et~ (60,2%)3/L. (41)



22 MIMI DAI

Combining (40) and (41) leads to
7% ~ 1, 2% (0 )0 2/ (42)
Henceforth, applying (41) and (42), the structure function is expected to satisfy

(6.2 ) ~ (8,2%) (0/1)*

p(sE —2)

~ (OnZEP (/L) (/D)

- (gi) 5 pB+3-sH)(1-5)

which gives the scaling of (39).

6.2. Perpendicular cascade of intermittent MHD. The assumption that MHD
turbulence consists of perturbations with k; > k)| but the Alfvénic propagation
remains important leads to the equations:

8tZ:f3FUAVHZit+ZI-VJ_Zit—i-VJ_p:niAJ_Zit, (43)
Vi-ZE=o.

Since Zf oscillate in R?, their intermittency dimensions cﬁ can be defined similarly
as Definition 3.2 with dimension n = 2 and hence 6% € [0,2]. The L> norm and
L? norm are thus related at each scale as

n _
125 e ~ NP2 e 127 e ~ AT P20 e ()

Denote the energy quantities associated with each Elsasser variable perpendicular
to the background magnetic field by E¥(t) = %||Zf(t)||2L2 Let ¥ stand for the
average energy dissipation rate of Ei[ (t). Let £%(k, ) represent the energy spectrum
corresponding to Z7.

Analogous heuristic analysis and energy law of Z* lead to the following scaling
law.

Conjecture 10. Assume the nonlinear interactions dominate over the Alfvénic
propagation. Then the energy spectra E%(k1) in their inertial range for the 3D
MHD model (43) obey the scaling law

3 ,(200-61-7)/3

EX (ki) ~ ((e)2/e7) " & :

— — 2. (26T-67-7)/3
£ (ki) ~ ((c7)2/et) " K e,

It is important to notice that for homogeneous isotropic and self-similar turbulent
fields, i.e., 5f = 2, the scaling exponent is —5/3 which recovers GS scaling [35], see
Figure 5. In general, assume 51 =6, = 0., then the scaling is EX (kL) ~ k|7 with
v=(7—101)/3, see Figure 6.



PHENOMENOLOGIES OF HALL-MHD TURBULENCE 23

v
log £F
. i
3 M% (intermittent)
_:3 S
5 \
3 .
cali 3
GS scaling -5 (IK)
inertial dissipation
0 2 o1
ki
FIGURE 5. Negative
exponent vy of per- FIGURE 6. Energy
pendicular  energy spectra of perpen-
spectrum with dicular cascade un-
dependence on inter- der different assump-
mittency dimension tions.

0.

Conjecture 11. There exist critical dissipation wavenumber /i(i_ for the fields Z*
such that m(jf | separate the dissipation regime from the inertial regime for Z +. More-
over, we predict that

1/(2+67)
kgL~ (1[0 + (v = w)?) 7,
_ _ 1/(2467)
gy ~ (e1/[(v =) (v + M)ZD .
We notice that /ijll depends on 51L not on 4 ; vice versa for k. Nevertheless,
both /-edi | depend on both of the velocity and magnetic Reynolds number.
The next conjecture recovers Boldyrev’s (and IK) scaling as well as GS scaling
(see Figure 6).

(45)

Conjecture 12. Assume the Alfvénic propagation is strong compared to the non-
linear interactions. The energy spectra in the inertial regime satisfy

(sf)%klg, if the critical balance conjecture €, ~ 2 (vA/KH)fg
EF (kL) ~ holds,
3
(e¥va)zk |2, if the alignment condition O/t ~v3/Z7 holds.

Remarkably, the second case recovers IK and Boldyrev’s scaling. While under
the assumption of critical balance conjecture, it is consistent with GS scaling and
Conjecture 10 with 6Ji_ =2.

To support Conjecture 12, we extract the Alfvénic propagation part and dissi-
pation part from the energy law and deduce

+ + + + +
&1~V LZ T ~vallV) 25 - 2] |l
Performing scaling analysis and using harmonic analysis tools, we infer
— + E\—1_+y—
VAN ~ TN L~ AL, 12T ~ () TIETALE. (46)
It is worth to point out that (46) shows the relationship between the changes of the
parallel and perpendicular scales. The critical balance conjecture along with (46)
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gives rise to

EX (A1) ~ 125 22/ Ag1 ~ (5)2/50 212,

On the other hand, the alignment condition v3/Z7 ~ /01 ~ Xg1/Aq|| together
with (46) implies
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