An Eye Tracking Perspective on How Developers
Rate Source Code Readability Rules

Cole S. Peterson, Kang-il Park, Isaac Baysinger, Bonita Sharif
University of Nebraska - Lincoln
Lincoln, Nebraska USA
{cole.scott.peterson, kangil.park, isaacbaysinger} @huskers.unl.edu, bsharif @unl.edu

Abstract—Writing readable source code is generally considered
good practice because it reduces comprehension time for both the
original developer and others that have to read and maintain it.
We conducted a code readability rating study using eye tracking
equipment as part of a larger project where we compared pairs
of Java methods side by side. The methods were written such
that one followed a readability rule and the other did not.
The participants were tasked with rating which method they
considered to be more readable. An explanation of the rating
was also optionally provided. Eye tracking data was collected
and analyzed during the rating process. We found that developers
rated the snippet in the pair of methods that avoided nested if
statements as more readable on average. There was no clear
preference in the use of do-while statements. In addition, more
developer fixation attention was on the snippet that avoided do-
while loops and the snippet pairs relating to nested if statements
had more equal fixation attention across the snippets.

Index Terms—source code readability, program comprehen-
sion, eye tracking

I. INTRODUCTION

Code that is difficult to read often has issues that remain
undetected. Posnett et al. present a reflection of how studies an
models on code readability evolved over the years [4] starting
with the work of Buse and Weimer [2]. Scalabrino et al. [6]
conducted a study that measured the effects of incorporating
textual features along with structural code features proposed
by state-of-the art readability models. Their findings show
that textual features of code complement structural ones —
improving accuracy of readability models. Scalabrino et al.
then take this one step further into assessing understand-
ability (for which there are currently no metrics) [5]. They
conducted another study evaluating existing and new code-
related, documentation-related, and developer-related metrics.
The study found no correlation, in most cases, between con-
sidered metrics and code understandability. Where correlation
was observed, the magnitude was small.

Johnson et al. conducted an online study [3] assessing two
code readability rules: minimizing nesting and avoiding do-
while loops [1]. In this paper, we extend part of their work
by providing an eye tracking perspective to how developers
rate source code methods. The use of an eye tracker enables
us to see exactly what parts of the code the developers are
looking at while they are rating the readability rules. The main
contributions of this short paper are a) the first eye tracking
study that investigates how developers rate code methods
written in different readability styles and b) analysis of how the

rating relates to the eye movements on code during the rating
task. This paper is part of a larger project of readability studies
being conducted with human participants. We only report on
the ratings of a subset of the population on a subset of the
tasks.

The two research questions we seek to answer are as
follows:

RQ1 Do developers prefer source code following code read-
ability rules?

RQ2 What is the distribution of eye movements on the code
snippets following and not following rules and how does
this align with their preference?

RQI1 can help determine if following code readability rules

can increase the confidence of a developer’s understanding.

RQ2 can help determine whether eye gaze can be used to

determine developer preference for code readability rules and

the cognitive effort needed for comprehension.

II. RATING STUDY OVERVIEW

As part of our larger project on readability, each rule (min-
imize nesting, avoid do-while) has four algorithmic problems,
and each algorithmic problem has four solutions presented as
Java methods. There are a total of 32 Java methods, 16 for
each readability rule. For the scope of this paper, we only
focus on the rating aspect of the project where each participant
carries out 4 method comparison tasks associated with R1 and
4 method comparison tasks in R2. For each rule, the participant
was shown two methods side-by-side on the screen (see Figure
1) where one method was following the rule and the other was
not following the rule. The method’s functionality was given
in plain English at the top. The prompt assigned to them was
to analyze the code and choose which method they thought
was more readable with an optional comment justifying their
choice. The code that followed the rule was always placed
on the left but we found that participants transitioned to both
code snippets before making their selection.

We used the Tobii X60 eye tracker running at 60Hz and
Tobii Studio to record eye gaze on the code snippets that
were displayed on the screen side by side. The responses were
collected via a Google form after they were done analyzing
the code snippets. We run the I-VT fixation filter on the raw
gazes and then map each fixation to lines of source code.
Each stimulus was presented as a static image and an area of
interest (AOI) was created for every line in the source code.



public static char findGrade (int marks) { |public static char findGrade (int marks) {
if (marks >= 90) { char grade;

return 'A'; if (marks >= 90) {

) grade = 'A";

if (marks >= 80) {

else {
return 'B';

}

if (marks >= 70) {
return 'C";

)

if (marks >= 60) {

if (marks >= 80) {
grade = 'B";
} else {
if (marks >= 70) {
grade = 'C';
} else {

if (marks >= 60) {

return 'D';
i
return 'E';

}

grade = 'D";
} else {

P R T T I

Fig. 1: A gaze heatmap from one participant for R1: minimize
nesting with the left (V1) following the rule and the right (V2)
not following the rule.

This mapping is done using eyeCode' using the fixations x and
y coordinates. In this paper, we only analyze a subset of 14
participants on two stimuli. Of these, 4 were native English
speakers and 11 rated their English proficiency as Good or
Very Good. Nine participants were undergraduate students and
5 were graduate students. In terms of programming experience,
3 participants had actively programmed for less than a year,
7 had programmed between 1 and 3 years, and the remaining
4 programmed between 3 and 5 years.

III. RESULTS AND DISCUSSION

RQ1 Results: Readability Rule Preference: Twelve out
of fourteen participants in our study (85.71%) preferred the
snippet that follows the readability rule R1: minimize nesting,
and there was an even split (seven each, both 50%) between
preference for the snippet that follows the readability rule R2:
avoid do-while loops. The results corroborate the Johnson et
al. study for R1, where 86.82% of participants responded with
the rule-following snippet as having higher readability than the
snippet that does not. R2’s results somewhat differ from our
data which suggest that there is some importance to avoiding
do-while loops, as 67.44% of participants in that study [3]
rated snippets that follow R2 as having higher readability.
However, the study also found no significant impact on other
readability metrics and noticed many participants commented
that the selection came down to mostly personal preference.
Developers also displayed stronger opinions in their comments
toward minimizing nesting versus avoiding do-while loops. For
example, one participant’s response regarding R1 was: ”Using
singular if statements rather than if else helps to avoid nesting
and makes the code easier to read and understand.”

RQ2 Results: Eye Gaze Distribution and Preference:
With respect to R1-minimize nesting, Figure 2 shows the
average fixation count and duration. The code snippet that
follows R1 (and avoids nested if statements) had an average
of 47.9 fixations with 12.6 secs. of average fixation duration
compared to the one that did not follow R1 (41.1 fixations
and 11.3 secs. of fixation duration). The code that does not
follow R1 is longer and has 21 lines compared to the 15 lines

Thttps://github.com/synesthesiam/eyecode

125 N .
= E 40000/
5 100 = .
S ‘ 5 30000
c >
S 5 A 20000
;] 5
i 25 | % 100001
I X
L

V1 Code V2 Code
R1 Rule Code Area

o

V1 Code V2 Code
R1 Rule Code Area

Fig. 2: Fixation counts and durations for a code snippet
following R1 (V1 Code) and not Following R1 (V2 Code)

in the code snippet that follows R1. For R2-avoid do/while,
we found that the on average participants looked at the code
snippet that followed the rule more often than they looked
at the code snippet that did not follow the rule. The code
snippet that follows R2 (and avoids do/while) had an average
of 116.2 fixations with 32.0 secs. of average fixation duration
compared to the one that did not follow R2 (75.6 fixations and
17.3 secs. of fixation duration). The code snippet lengths in
this case differed by only 1 line. We observe that the fixation
attention for the nested if statements was split evenly, whereas
more fixation attention was given to the code snippet that did
not use a do-while loop.

As part of future work, we will extend this analysis to all
participants on all the different code snippet comparisons and
provide a detailed eye tracking assessment of different chunks
in the code that make up the readability rules. This will provide
us finer grained insight into what specific lines were looked
at during the rating process as well as during comprehension
tasks.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
foundation grant numbers CCF 18-55756 and CNS 18-55753.

REFERENCES

[1] D. Boswell and T. Foucher. The Art of Readable Code: Simple and
Practical Techniques for Writing Better Code. ” O’Reilly Media, Inc.”,
2011.

[2] R. P. L. Buse and W. R. Weimer. Learning a metric for code readability.
IEEE Transactions on software engineering, 36(4):546-558, 2010.

[3] J. Johnson, S. Lubo, N. Yedla, J. Aponte, and B. Sharif. An empirical
study assessing source code readability in comprehension. In [EEE
ICSME, pages 513-523, 2019.

[4] D. Posnett, A. Hindle, and P. Devanbu. Reflections on: A simpler model
of software readability. ACM SIGSOFT Software Engineering Notes,
46(3):30-32, 2021.

[5] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vésquez, D. Poshy-
vanyk, and R. Oliveto. Automatically assessing code understandability.
TSE, 47(3):595-613, 2021.

[6] S. Scalabrino, M. Linares-Vésquez, R. Oliveto, and D. Poshyvanyk. A
comprehensive model for code readability. Journal of Software Systems,
30(6):e1958, 2018.



