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1. Introduction

We will study dyadic models of the incompressible magneto-
hydrodynamics (MHD) with Hall effect governed by the following
system of partial differential equations

u+u-vVu—B-VB+ Vp =vAu,
Bi+u-VB—B-Vu+d;V x ((V xB) xB) = uwAB, (1.1)
V.-u=0,

which is a coupled system of hydrodynamics and Maxwell elec-
trodynamics. Defined on R? x [0, oo), u, p and B are respectively
the fluid velocity field, scalar pressure, and magnetic field. The pa-
rameters v, u and d; represent the kinematic viscosity, magnetic
resistivity and ion inertial length, respectively. More physical
background on this system can be found in [1,2]. If B = 0, system
(1.1) reduces to the well-known Navier-Stokes equation (NSE);
while if u = 0, it reduces to the electron magnetohydrodynamics
(EMHD)

B:+diV x (V x B)x B)= uAB, V-B=0, (1.2)

in which the nonlinearity comes from the Hall effect; in the case
d; = 0, (1.1) is the relatively well-understood MHD system.
Increasing interest in the Hall MHD system (1.1) has arisen
in the mathematics community recently. Intensive studies in
the last two decades involve existence of weak solutions [3],
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regularity and blow-up criterion [4-6], well-posedness [7-9], ill-
posedness [10], singularity formation [11], asymptotic behavior
of solutions [12,13], non-uniqueness of weak solutions [14], etc.
However, the understanding of energy cascade mechanism of the
Hall MHD turbulence is still at a primitive stage, by virtue of
the intricate coupling and nonlinear interactions of fluid velocity
and magnetic field, and the extra complexity brought in by the
Hall term. To gain some insights into the complex system, we
propose a type of toy model - dyadic model - which preserves
the essential nonlinear and coupling features of (1.1). This was
inspired by the study of dyadic models for the Euler equation and
NSE.

To understand the mysterious nonlinear term (u- V)u in Euler
equation and NSE, among other approximating models, various
dyadic models were proposed and investigated by many authors,
for instance, see [15-34]. Among them, the Katz-Pavlovi¢ (KP)
type dyadic model introduced in [29] has attracted tremendous
attentions. The KP model was derived by considering the evolu-
tion of wavelet coefficients of a solution to the Euler equation
or NSE and appears to be an infinite system of nonlinear ODEs.
In particular, well-posedness problem and smooth solutions were
studied in [15,19]; finite time blow-up was established in [19,25,
28-30].

In this paper we will first derive dyadic models to approxi-
mate (1.1) and investigate properties of solutions to such dyadic
models. The derivation is based on energy transfer among dyadic
shells and employs techniques from harmonic analysis, during
the process of which the parameter of intermittency effect comes
into play naturally. It is widely believed that turbulent flow may
experience spatial and temporal inhomogeneity and hence is
intermittent. Such inhomogeneity can be measured quantitatively
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by the parameter of intermittency dimension, see [35,36]. More
details on this topic will be provided in Section 2. As an important
feature, the dyadic models we derive include the parameter of
intermittency dimension of the turbulent flow in the nonlinear
terms. The main drawback is that, like the dyadic models for
the Euler equation and NSE, these models do not preserve any
geometry structure of the original system (1.1).

Following the derivation, notions of weak solutions and strong
solutions will be introduced. We then show the existence of
global in time weak solutions. Local in time strong solution is
obtained as well; such solution is shown to be global provided
that the intermittency dimension is higher than a threshold value.
In addition, if the intermittency dimension is lower than a thresh-
old (unphysical) value, we prove that positive solution with large
initial data develops blow-up in finite time.

2. Intermittency dimension: A quantitative measure of inter-
mittency effect

Kolmogorov’s phenomenological theory [37] for hydrodynam-
ics was derived under the assumption of homogeneity, isotropy
and self-similarity on the flow. Landau [38] made a remark that
a fully developed turbulent flow may be spatially and temporally
inhomogeneous, which is termed as the intermittent nature. In
a general principle, intermittency is characterized as a deviation
from Kolmogorov’s predictions.

In the recent work [35], we gave a mathematical definition of
intermittency dimension § of a flow through saturation level of
Bernstein’s inequality. For 3D flow, § belongs to [0, 3]. The general
formulation of both Kolmogorov’s dissipation wavenumber and
the energy spectrum by taking into account the intermittency
effect was provided as well in [35]. Kolmogorov's theory corre-
sponds to the extreme intermittency regime § = 3, in which
turbulent eddies fill the space. On the other hand, numerical
simulations and experimental studies show that § ~ 2.7.

Let L be the domain length scale. Denote ; = 2/ /L for integers
j = —1. Let v; be the jth Littlewood-Paley projection of a vector
field v. Recall that Bernstein’s inequality in three dimensional
space takes the form

-
il < ca; lvjllee-

Adapting the idea of [35], we can define the intermittency dimen-
sion §, for a 3D turbulent vector field v in the vein of saturation
level of Bernstein’s inequality,

8y

=sup{seR: <Z A;‘+Sl|vjllfoo> <L <Z AZ||v,—||fz> ,
j j

(2.3)

where c is an absolute constant. Thus we have §, € [0, 3] and the

optimal Bernstein’s relationship
lvjllee ~ AZ*2 vy 2 (2.4)

at each scale A;. Throughout the paper, we denote A < B by an
estimate of the form A < ¢B for some constant ¢, and A ~ B an
estimate of ¢;B < A < ¢, B for constants ¢; and c;.

3. Derivation of dyadic models with dependence on the inter-
mittency dimension

3.1. Dyadic model for the 3D NSE

There have been various derivations of dyadic models for the
3D NSE in the literature, for instance, see [20,27,29,32,33]. Below
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we provide a self-contained derivation of the KP and Obukov
models by applying harmonic analysis tools. The models are built
in with the intermittency effect by including the parameter of

intermittency dimension. Recall that the 3D NSE is given by
u+u-vVu+ Vp =vAu,

‘ P (35)
V-u=0.

Let &, be the intermittency dimension for the turbulent field wu.
Then we have the generalized Bernstein’s relation

B—du)p—7)
Il ~ 2 7 Tyl (36)
We will derive the following dyadic model for the NSE
d . saau 5 saau
o j +VATa — o ()‘j—l a_q — X ajaj+1>
(3.7)

5-bu Shu
2 . A 2 —
- B\ A3 g1g—A; % g ) =0

with constants «, 8 > 0. We start from the energy balance in the
jth shell:

1d 2 2
apls [ vuy o de v o (38
which is obtained by projecting the NSE onto the jth shell, taking

dot product with u;, and integrating over the space R3. The next
step is to analyze the flux through the jth shell,

I = / (u-Vu); - ujdx.
R3

We make the assumption on local interactions that only the
nearest shells interact with each other. On the other hand, we
notice that fR3(u,- - Vu;) - ujdx = 0 for any i,j > —1 due to the
divergence free property V - u; = 0. Therefore, we are able to list
the non-vanishing terms in the flux as

I = f (uj - Vi) - uyj dx—i—/ (Ujy1 - V) - ujdx
R3 R3
+ / (Uj—1 - Vuj_1) - u; dx+/ (uj - Vuj_q) - ujdx
R3 R3
= / (Llj . Vlljur]) - Uj dx + / (UjJr] . VUj+1) - Uj dx
R3 R3

- / (uj—1 - Vi) - uj_q dx — / (uj - Vi) - uj_q dx
R3 R3

where in the second step we applied integration by parts to the
first and second integrals. We denote

Q= f (uj - Vujpq) -ujdx, Pj= f (Ujt1 - V) - ujdx.
R3 R3

Thus, the flux I7; can be rewritten as

j=Q — Q-1+ PP

Assume Q; > 0 and P; > O for all j > —1. The terms Q; and P; are
regarded as the energy escaping to the next shell, while Q;_; and
P;_; are regarded as energy coming from the previous shell. It is
important to note that in the inviscid case v = 0, the total energy
lu(t)% = i 4 lu(t)l1% is conserved.

Next we estimate the size of Q; and P; by using Bernstein’s
relation (3.6). It follows from integration by parts, Holder’s in-
equality, and (3.6) that

Q= /3(“1 - V) - uipg dx Syl Vgl lugll 2
R

5—8u

2
~ 2 gl el
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2
P = /3(uj+l V) - tj dx SVl g1l
R

5—d8u

~a 7 lullz gl
Define a;(t) = [|u;(t)|l;2. We can approximate Q; and P; as
5-8y L
Q=ak? @ay, P=pr7 ga,
for some constants « > 0 and 8 > 0. Motivated by (3.8) and the
analysis above, we consider the approximating equation

1d 2 2.2
iaaj +Q;_Qj—l+Pj_Pj—l+V}hjaj =0,

which leads to the shell model (3.7). For the total energy a(t)* =
ij_1 aj2 of the approximating model, we also have the energy

law
1d 2 2.2
Eaa +vJ;AJaJ =0

which indicates energy conservation for smooth solutions in the
inviscid case v = 0.

We notice that the dyadic model (3.7) withae = 1and 8 =0
corresponds to Katz-Pavlovi¢ model, while (3.7) with « = 0 and
B =1 is Obukov model.

3.2. Dyadic model for the EMHD

Let §, be the intermittency dimension for the turbulent mag-
netic field B. Then we have the generalized Bernstein’s relation

BN E—%

(- )
1Bjlle ~ 2 l1Bjllp- (3.9)

The goal is to derive the following dyadic model for the EMHD
d 7 ')

abj + [L)\.jzbj - d,‘Ol ()»1_21 bj2_1 - )‘j 2 bjbj+1>

(310)

—dif (Kj?bjbf—l X7 b;2+1> =f

for some constants @ > 0 and 8 > 0.
The energy balance of the EMHD (1.2) for the jth shell is given

by
d

5 7 1Bl +d ‘/]];3((V><B)><B),~V><Bjdx+u||VBj||fz =0. (3.11)

Notice that [i5((V x Bj) x Bj)- V x Bjdx = 0 for any i,j > —1.

The assumption that there are only local interactions between the
nearest shells indicates the energy flux can be written as

/3((VXB)XB)j-VXBjdX

R

= /3((V><Bj+1)><Bj)-V><Bjdx
R
+/R3((VxBjH)xB,-H).vXBjdx
+/]]‘§3((VxBj,1)xBj)~VxBjdx

+/ ((V x Bj_1) XBj_1)-V X BjdX.
R3

By vector calculus identity A-Bx C =B-CxA =C-AxB
for any vectors A, B, C € R?, the third and fourth integrals in the
equation above can be written as

/((VXBj,])XBj)~VXBjdX=—/((VXBj)XBj)~VXBj,]dX,
R3 R3

Physica D 428 (2021) 133066

/3((VXBJ',1)XBJ',])-VXB]' dx = */3((VXBJ')><BJ;1)-VXBJ;1 dx.
R R

Denote

Qj=/ ((V x Biy1) X B)) - V x Bjdx,
R3

Pj = /3((V X Bj+1) X Bj-H) -V x BjdX.
R
Thus, the energy flux can be reformulated as
di/B((V x B) x B)j - V x Bjdx = di(Qj — Qi—1 + P; — Pi—1).
R

We assume Q; > 0 and P; > 0 again. The portions d;(Q; + P;) and
di(Qj—1 + Pj_1) respectively stand for the energy escaping to the
next shell and the energy coming from the previous shell.

Now we estimate Q; and P; with dependence on the intermit-
tency dimension Jp. Applying Holder’s inequality and the Bern-
stein relationship (3.9) gives rise to

5-38p

2 2
Q S IV x Birall2 IBjll 2 IV % Billiee ~ Ajad; * [1Bisall2 1Bl .

5-5p
=z 2
Py <11V X Biall2 1Bisall2 IV X Bjlliee ~ A1y * [1Byallz 1Byl 2-

Denote b; = ||B;j||;2. We approximate Q; and P; as
7oy 7%

Q = ak 7 biabf, P= B : bj2+1bj

for some constants «, 8 > 0. It then follows from the energy law

(3.11) that

1d, 242

Eabj + di(Qj — Qj_] +Pj - Pj-]) + ,LL)LJ» bj =0

which turns to (3.10) after simplification. We notice that the total

magnetic energy b(t)* = )", b7 formally satisfies

by A =0,

==
and hence energy conservation holds for smooth solutions in the
inviscid case u = 0.

3.3. Dyadic model for the Hall-MHD and MHD

The framework shown above will be applied to derive a dyadic
model for the Hall-MHD and the usual MHD. In contrast with
the NSE and EMHD, we have to take care of the coupling terms,
B - VB, u - VB, and B - Vu. Specifically, to obtain a good ap-
proximation, it correlates with which Bernstein’s relation, (3.6) or
(3.9), should be used. Heuristically, the more intermittent vector
field correspo3n§:ls to a smaller intermittency dimension and hence

the factor A;? in the saturated Bernstein’s relation is larger.
It suggests that the saturated Bernstein's relation for the more
intermittent vector field plays a dominant role. In plasma physics,
numerical and experimental evidences show that the magnetic
field is in generally more intermittent than the velocity field, that
is, 8, < &,. Therefore, the saturated Bernstein’s relation (3.9) for
the magnetic field will be applied to the coupling terms in our
derivation below.

The energy balance of the Hall-MHD (1.1) for the jth shell is
written as

1d.
Eallujlle + RB(u.Vu)j.ujdx
- fRB(B.VB)j-ujder vl|Vy|1?, =0,

1d
2dt
R3

IIB;I2, +/ (uAVB)ijjdx—f (B- Vu); - B;dx
R3 R3
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We introduce the notations for flux terms

gt = [ ¢-Vey bk mG.am= [ (e hax.
R R

Therefore, the flux terms in the two equations are noted as
ITj(u, u, u), ITy(B, B, u), IT(u, B, B), ITy(B, u, B), and IT(B, B, V x B).
Obviously, ITj(u, u, u) and IT;(B, B, V x B) can be handled the same

way as for the NSE and EMHD. We denote the approximation by
525 525
Mi(u, u, u) = oy <Aj 2 @a — 27 a}-zf]aj>

5-48 5 5-48
2 2
+ B\ &7 aiaiy — A0 g 1a
7=8p

78,
ITi(B, B, V x B) = dias (xj ? bibj — A3 b].{lbj>
78 73
+ dﬂ4< T bjbf+1 P bfbj,1>

for some constants «q, 81, @4, B4 > 0. In a similar spirit but
with the employment of (3.9), the coupling terms IT;(B, B, u),
IIj(u, B, B) and ITj(B, u, B) are approximated in the following.
Assume §, < §, and interactions only exist between the nearest
shells. Therefore, the coupling terms can be rewritten as

ITi(u, B, B) = IT(u;, Bjy1, Bj) + I (ujy1, Bjy1, Bj) + IT(uj—1, Bj—1, B;)
+ H(uj, Bi—1, Bj),

ITi(B, B, u) = I1(Bj, Bj11, uj) + M1(Bjy1, By, uj) + [1(Bj—1, Bj—1, 1))
+ I1(B;, Bi_1, uj) + I1(Bjj—1j+1, Bj, 1),

ITi(B, u, B) = I(B;, ujt1, Bj) + II(Bj11, ujr1, Bj) + I1(Bj_1, uj_1, B;)

+ I1(Bj, uj—1, Bj) + IT(Bjj—1j41, Uj, By).

To explore the cancellation and obtain a system with conserved
energy, we apply integration by parts to some particular items
above and arrive at

IT(u, B, B) =I1(u;, Bjy1, Bj) + IT(ujy1, Bjy1, Bj) — I1(uj_1, Bj, Bji_1)
— I1(u;, B, Bi1),

ITi(B, B, u) =I1(Bj, Bj11, U;) + I1(Bjy 1, Bjy1, 1) — IT(Bj—1, uj, Bi1)
— II(Bj, uj, Bj_1) — II(Bj-1,j+1, Uj, By),

I1i(B, u, B) =I1(Bj, ujt1, B;) + I(Bj11, U1, Bj) — I1(Bj—1, B, uj—1)

— I(B;, Bj, uj—1) + I (Bj_1j+1). U, Bj).

We assume all of the flux terms II(-, -, -) appeared on the right
hand sides of the equations above are positive. The items in
ITi(u, B, B) can be estimated by using (3.9),

ESN
M (uj, Biv1, By) Slujll 2 VBjall 2 |1Bjllie < Ajad; 2
£
I (tjs1, Biv1, B) Sl ll2 I VBiwa llio IBill 2 < 25,5 @j1bibyn,
3-5,
M(uj—1, Bj, Bi1) Sl 2 IVBill 2 IBi-1llie S AjA; 5 @j-1bj1bj,
5-5,

M(uj, By, Bi—1) SIuill 2 I VBl |1Bi-illz < 4 %

ajbjbj1,

ajbj_1 bj.

Therefore, we approximate /7(u, B, B) by

LR Sty
IYj(U, B, B) =y (A‘j 2 ajb,-ij — )‘j—zl aj,1b1;1bj>

5= sfsb
+ B2 < Myt Gsabibia — 4 ajqubj)
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for some constants «, B, > 0. Similarly, /T;(B, B, u) and IT;(B, u, B)
are approximated as

L L
IT(B, B, u) = a3 <)"j * ajbbiyr — 23 bj?—ﬂj)

5-8p 5-8p

2 K2 2 b .a:

+ B3 (Ajﬂ abiq — A bJ_lbja,>
sfab

—U\ a;bj(b; 1+bj+b +])

S s-ip
ITi(B, u, B) = a3 ()"j : b]‘zaj+1 - 23 aj—lbj—1bj>

5-5, 5-8 "
2 2
+ B3 ( i+1 Dibjaip — X aj—lbj>
sy

+ ¢ % abilbi—tinby,)

for some constants o3, f3 and ¢. The constants in [T;(B, B, u) and
IT;(B, u, B) are chosen the same to ensure the conservation of the
total energy [[u(t)[1%, + |B(O)II%

Finally, the energy balance of [[uj(t)||?, and ||B;(t)||?, and the
approximation of the flux terms give rise to the approximating
shell model of the Hall-MHD,

d 5—8u 5—8u 5
Eaj—i-al (}"j 2 Qj0j4q _)"j—zl aj_l)
A 21 aj— 1“1)
) (3.12)
b;— 1b)

bj(bj—1 + bj + bj1) + vifa; =0,

+ B ()"j Gy —
5-3,
— O3 (}»j 2 b; bJJr]
,3 ()‘]+21 b]2+1

5-5p

d L} R}

abj + ay ()xj 2 aibjy1 — )»jj] aj,leq)
58

)L]- 2 ajb}q)

5-3) 5-3)
2 b, 2 q. .
}»j bjﬂj+1 )\771 aj,1bj,1>

58
2
+ B2 < i1 aj1bjq —
— a3

— B3

/\/-\

5-5) 5-3,
2 . . _ 2 . .
)\.jJr] b]+1a]+1 )Lj ﬂj,lb]>

5-38) i)'} %
o, 2 aj(bj—1 + bj + bjy1) + diog ()Lj > bbja =23 b,-2,1>

7-8p

+ d,‘ﬂ4 <)\‘ Sz b12+1 )\‘] 2] b; b] 1> + /J.)njzbj =0.
(3.13)

Remark 3.1. We point out that the approximating system
(3.]2)—(3,13) with v = pu = 0 conserves the total energy
ZP 1(a + bJZ) The total energy is also conserved for the system
with: (i ) a = 0 for 1 < 4, in which case the dyadic model is
the Obukov type associated with backward energy cascade; and
(ii) B = 0 for 1 < 4, in which case the dyadic model is the
KP type with forward energy cascade mechanism. When ¢ = 0,
the system is more symmetric in the view of the nonlinear terms
B-VBand B- Vu. When d; = 0, (3.12)-(3.13) is a dyadic model
for the usual MHD.

Remark 3.2. A dyadic model with §, < §, can be derived in the
same vein by using (3.6) instead of (3.9) under the assumption
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that the velocity field is more intermittent. We will not get into
details here.

3.4. A special case of Hall MHD with forward energy cascade

In the rest of the paper, attention will be on a particular form
of the dyadic model (3.12)-(3.13) with &, = 1 and B¢ = 0 for
1<4,¢=0,and §, =8, =6, i.e.

A0 b?

_ 20 a0, o 2 0p p.
aj = — VA G — A{ QjGj1 + A0 + A bibjy1 — b1,

de
d
abj = — M}L-zb' — )L?"ajbj“ + )u(-')b‘a]ur]

— d; ( bibjs 1 —)\j’ﬂlbf )

(3.14)

with 6 = 222, By convention, we take ag = by = 0.

4. Notions of solutions

Although dyadic models are systems of ODEs, we introduce
notions of weak solutions and strong solutions for them by mim-
icking those for PDE systems. We start with some functional
setting. Denote H = > endowed with the standard scalar product
and norm,

(u,v) = Zunvn, lul .= +/(u, u).

n=1

Let A > 1 be a constant (a conventional choice is A = 2) and
denote A, = A". Define H® to be the space endowed with the
scaler product

oo
(u, v)s == Zkﬁsunvn

n=1

and the norm

lulls = +/(u, u)s.

We regard H as the energy space and H' the enstrophy space for
the shell models with diffusion terms in the form Aﬁun. Strong
distance ds and weak distance d,, are defined on H as follows,

ii |ty — v
n=1 2% 14 |ty — vg|”

A weak topology on any bounded subset of H is generated by d,,.
We define the functional space

ds(u, v) ;= [u—v|, dw(u,v):= u,v eH.

C([0, T]; Hw) := {u(-) : [0, T] — H, uy(t) is continuous for all n}
equipped with the distance
sup dw(u(t), v(t)).

tel0,T]

de(o,13:Hy)(U, V) 1=

We also define
C([0, 00); Hy) == {u(-) : [0, 00) — H, uy,(t) is continuous for all n}
endowed with the distance

Z 1 sup{deqo,rim)(u(t), v(t) : 0 <t < T} 4
£~ 2" 14 sup{dcgo.rm,)(u(t), v(t)) : 0 <t < T}

deqro,c0);Hw) =

We are ready to introduce the notions of solutions for the
dyadic model system (3.14). Solutions for the general system
(3.12)-(3.13) with other values of coefficient parameters can be
defined analogously.
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Definition 4.1. A pair of H-valued functions (a(t), b(t)) defined on
[to, 00) is said to be a weak solution of (3.14) if a; and b; satisfy
(3.14) and g;, b; € C!([to, 00)) for all j > 0.

Definition 4.2. A solution (a(t), b(t)) of (3.14) is strong on [Ty, T>]
if ||la|l; and ||b||; are bounded on [Ty, T>]. A solution is strong on

[Ty, o0) if it is strong on every interval [Ty, T,] for any T, > T;.

Definition 4.3. A Leray-Hopf solution (a(t), b(t)) of (3.14) on
[to, 00) is a weak solution satisfying the energy inequality

t t
la(t)* + |b(t)|2+2v/ la(z)ll; dr +2uf lIb(z)ll1 d=
t t
< la(t;y)* + |b(t1)?
forall tp < t; <t and a.e. t; € [tp, 00).

5. Existence of weak solutions

The Galerkin approximating method will be adapted to show
the existence of Leray-Hopf solutions to the dyadic model (3.14).
The first step is to establish the a priori estimate.

Lemma 5.1. Let (a(t), b(t)) be a strong solution of (3.14) with initial
data (a(0), b(0)). It satisfies the following energy law,

1d
Sq (la(O)I* + b)) + viia(Ol? + wllb(©)]F = 0. (5.15)
Moreover, we have
la(6)]* + |b(t)[* < e 2™t (1a(0)|? + [b(0)?) (5.16)
t
1
/ (vila()lI} + wlib()II}) dr =5 (la(0)I> + [b(0)1?) . (5.17)
0

Proof. Multiplying the first equation in (3.14) by g; and taking
sum over j yields

d oo
Ed— t)+vZA22

o0 o0

_ 90 bb . — 0 2

= E A; abjbj1 E Ai_1bj_qq5
j=1 j=1

(5.18)
by noticing that

[o¢] oo

0 2 0,2 _
Z)‘j—laj—laf - Z)‘j a; a1 = 0.
j=1 j=1

Similar operations on the second equation of (3.14) give rise to

d oo o0 o0
212 012

ELT +ME )»b (t)= E Ajbjaj+1— E

j=1 j=1

j=1

[4
Ajflajbjbjﬂ

(5.19)

where we used the fact

DAy S | <o
j=1

It is clear that the right hand side of (5.18) cancels the right hand
side of (5.19). Obviously, (5.15) is obtained by adding (5.18) and
(5.19). The inequality (5.16) follows immediately from (5.15) and
Gronwall’s inequality; (5.17) is also an immediate consequence of
(5.15). O

The approximating and convergence scheme of Galerkin then
leads to the existence of Leray-Hopf solutions.
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Theorem 5.2. There exists a Leray-Hopf solution (a(t), b(t)) to
(3.14) on [0, 0o) for any given initial data (a°, b°) € H x H with
(a®, b%) = (a(0), b(0)).

Proof. Consider

a“(t) = (af(t). db(t), ..., al(1),0,0,...)

b¥(t) = (b5(6), bE(E), ..., (), 0,0,...)

with
a(0)=(a%d,...,a,0,0,...) and
b*(0) = (b9, b9, ..., b2,0,0,...)
satisfying the system
d . 2.k _ 40k
aaj VA —A]aja]+1+kj 1( e
+ )\%‘b"b]’;l — M40 1=j<k—1,
b == bt — el + bl
A ), 1k,
%a’,ﬁ = —vagag + Ay (@i, P = A (B P
%bk — uA2bk bk )R

(5.20)

with af = bf = 0. It is clear that (a¥(t), b¥(t)) satisfies the a priori
energy estimate

@O + PO < e (10" 4 1°F) (521)
Therefore, there exists a unique solution (ak(t), b¥(t)) to the ODE
system (5.20) on [0, co).

Next, we apply Ascoli-Arzela theorem to show that a subse-
quence of {(ak(t), b¥(t))} converges to a limit pair of functions. The
energy estimate (5.21) implies that for some constant M > 0
laf(6)l <M, [bj(O)] <M., Yj k.t=>0.
As a consequence, we deduce from (5.20)

|af(£) — af(s)]

t
24k _ 50 gkgh 0
/ —VAaf = Afaa + A (a )
N

0 pkpk
+}\'J b] bj-H

— A4 (bf Y dr
< (WA/M 4247\ M? +22]M?) |t — s
for all j, k, t, s > 0. Similarly, we have
IB(t) = DE(S)| < (1AM + 22/ M? + 2din{ ' M?) |t — s
for all j, k, t, s > 0. It then follows that

( =1 lae) — af(s)]
(0.0 =2 2 T -
Z Ia"(t) - a"(S)I

1
<|t—sl Z >
=1

=<c|t — |

2 [4 2 0ng2
(VAPM + 217 M? + 21]M?)
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for a constant ¢ independent of k. Similarly, the estimate
dw ((£), b(s)) < clt — |

holds for an absolute constant c¢ as well. Thus, the sequence
{(ak(t), bX(t))} is equicontinuous on C([0, 00); Hy,)x C([0, 00); Hy).
It follows from the Ascoli-Arzela theorem that {(a*(t), b*(t))} is
compact on C([0, T]; H,) x C([0, T]; H,) for any T > 0 and hence
compact on C([0, 00); H,,) x C([0, c0); Hy,). Therefore, there exists
at least a subsequence {(aki(t), b%(t))} that converges to a limit
pair (a(t), b(t)) of weakly continuous H-valued functions, i.e.

adi —>a, b —>b, as ki— oo in C([0, c0); Hy).

We then show that the limit (a(t), b(t)) is a solution of (3.14).
Indeed, the components converge pointwisely, i.e.
as ki — oo, forall j,t>0.

afi(t) — at), bji(t) > by(t),

It follows that a(0) = a® and b(0) = b°. Moreover, we have

ali(t) = a(0) +

t
kl ’I ’I ’X kl
/O( vaZa — aafial + A7 1( L+ A b
- xf,l(bjil)z)dz
bii(t) = bli(0) +
t
2 0 k, 0 1.k l<,
/0(—%17 — bl b

0+1pki pki
—d; (34 bfibf, —

AL ?)) de
for j < k; — 1. Taking the limit k; — oo yields
ai(t) = a;(0)+
/O[(fvxfa,- — M aajy + )y (ai1)* + A bibjy — A7, b7 ) d,
bi(t) = bj(0)+
/O[ (—uA?b; — A @by + A bjaj

b)) dr.

—d; (Af“b,-b,-H anl i

Thus we have a;, b; € C1([0, 00)) since ¢; and b; are continuous;
and hence (aj, b;) satisfies (3.14) for all j > 1.

In the end, we show that (g;, b;) satisfies the energy inequality.
Indeed, for all k; > 1, (aki(t), bk (t)) satisfies the energy equality

t t
|a4())” + D) 4 2v f ()12 dr + 2 / IB(2)|2 de
to to
. 2 . 2
= |d"(to)|” + I"(to)]
for any t > to > 0. It implies that the subsequence {(a%, b%)} is

bounded in L%([to, t]; H') x L*([to, t]; H'). In view of this and the
convergence of the subsequence, we infer

/ |di(z) — a(7)|* dr — 0 and

[we

for any t > tg > 0. Thus, we have

r)l dt - 0 as kj > o©

|ai(t)] — la(t)] and |b%i(t)] — |b(t)| as k; — oo a.e.in [0, 00).
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For any t; > 0 at which the above convergence holds and for any

N > 1, we deduce
Zx?(ajﬁ(r))z dr
o J<N

1d4(e) + [b5(6)) + 2v

Y

o j<N
) . 2
< 1di(to)l” + Ibbi(to)I”.

As a consequence, the weak convergence of the subsequence
{(a%, b%)} in H for all time t > 0 implies

+2u (1)) dr

la(t)1 + [b(t)* 4 2v ZA-Z(aj(r))zdr
to Jj<N
t
+2u/ > a3 by(r)) dr
L}

j=N
< la(to)* + Ib(to) .
In the end, taking the limit N — oo leads to

t t
la(t)” + |b(t)* + Zv/ la(o)lF dz + 2#/ Ib(e)1IF de
to to

< la(to)[* + |b(to)I?

for any t > ty > 0 and a.e. tp on [0, co). It concludes the proof of
the theorem. O

6. Existence of strong solutions

In this section, we show the local existence and global exis-
tence of strong solution for the dyadic model of the Hall-MHD
(and MHD) with different intermittency dimensions.

Theorem 6.1. If § € (1, 3], there exists a strong solution (a(t), b(t))
to (3.14) with d; > 0 for any initial data (a°, b°) € H' x H' on
[0, T] for some T > 0. If § = 3, the strong solution is global, i.e. on
[0, c0).

Theorem 6.2. If § € [0, 3], there exists a strong solution (a(t), b(t))
to (3.14) with d; = 0 for any initial data (a°, b°) € H' x H'! on
[0, T] for some T > 0. If § € [1, 3], the strong solution is global,
i.e. on [0, co).

Remark 6.3. Reflected in the proofs below, in terms of the pa-
rameter 0, system (3.14) with d; > 0 has a local strong solution
when 0 < 2 and global strong solution when 6 < 1; while the
system with d; = 0 has a local strong solution when 6 < 3 and a
global strong solution when 6 < 2.

Remark 6.4. The dyadic system (3.14) is equivalent to

d - _ _ _ _
Eaj = — v)ujz"‘aj — Ajajaj+] + )Lj_la]»{] + )ijjbﬁq — )\‘j_1bj‘271
d - - _
w=- 1A by — hjaib + Aybyajy
— di (3" bybja — XD} )
(6.22)
with « = 1/6, by rescaling the wavenumber A; = X%, The

system (6.22) can be seen as the dyadic model of the Hali-MHD
system with generalized diffusions (—A)*u and (— A)*B. Based on
Remark 6.3, in the case of d; > 0, the system has a local strong
solution for @ > 1/2 and a global strong solution for « > 1; when
d; = 0, the system has a local strong solution for « > 1/3 and a
global strong solution for o > 1/2.
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Proof of Theorem 6.1. It is sufficient to show that the norm
Ha(t)ll% + ||b(t)|ﬁ is bounded on some finite time interval [0, T)
in the first case and on [0, co) in the second case. Multiplying the
ﬁrst equation in (3.14) by Aj?aj and taking sum over j > 1 gives
rise to

A +6Cljbjbj+1 ] 1)szb]2 1 )

=1
o0
=—vY Ma+h+h.
Similarly, we obtain

oo o0
Edizxfbf=—uZA b2+Z (A7 bfapr — A7 ajbyby)
j=1

;:1

— d Z (A0 b2y,

=— MZAfbf +15+ 1
j=1

O+14212
_)‘]-:)‘ij lb)

Adding the last two equations gives

d
— (la(Ol1F + 1b(6)11) = — vila()ll3 — wllb(e)ll3

1
2dt (6.23)
+h+h+5+1,

Next, we estimate the flux terms I; for 1 < i < 4. Applying
Hoélder’s and Young's inequality, we obtain

L] <c max }Aja]| ZAHG 2
j_

<clla(t)]ls Zkfflf" (A7a)" (@)™
=1

n 2—n
2 2

00
Z)"ZZ

2(3 n)

||a(f)||1

oo
<clla(t)s Zx @

1 2
SZVIla(f)IIZ

provided that & < 1+n and 0 < n < 2. Analogously, we estimate
L+,

A MDY a)

o0
2+l = | (4 b — A a7b7,
j=1

<cmax ‘)» aj| Z)\Hgbz
j=1

<clla(t)|+ Zkf”*" (37by)" (iby)*”

j=1

scna(tnhub(t)u”nb(t)nz*"

1
Szullb(t)llﬁ *Ila(f)ll " Ib(t)II3
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for parameters 6 and 7 satisfying the same conditions: 8 < 1+
and 0 < n < 2. The flux I, is estimated as

(o]
, . 0+2p2
L] <cd; max | s ij b;

j=1
ad 2
<cdillb(O)ll Y A" (37;)" (iby)
j=1
n 2-n
00 2 [ o 2
<cdilbo)lly | Yoafn? | | D] azn?
j=1 j=1

2(3—n)

1 c
~ b + — b)), "
54//«” (Ol + i 1b(E)Il4

provided that # <npand 0 < n < 2.
In conclusion of the analysis above, we claim that

d
= (14O + 1b(O11)
2(3—n)

c —
< —vlla(t)|3 — wlb®)]3 + ;ua(t)nf "

c c 25-n) (6.24)
+ —lla(t)l; ”ub(t)uﬂd—nb(t)\hz !
w i
-1

< —vlla(O)l3 — wlib(t)lI3
+ (v, w, di) (la(®)lIF + b)) ="

under the assumptions

2
2—

w

0<n 0<n<?2. (6.25)

It follows from (6.24) that there exists a time T > 0 depending
on ||a®||; and ||b°||; such that

la(e)13 + b1
< c(v, o di, . [1@ll4, 116°014) (@®l5 + 1B°11F) . vt € [0, T).

In view of (6.25), the estimate holds for all 6 < 2. Noting 6 = %
it corresponds to § € (1, 3]. Thus, the first statement of theorem
is justified.
In addition, if n = 1, (6.24) becomes
d
= (1aO1F + 1B(OIF) < = vla(®)l3 — w3
2
+ c(v, s d) (Ol + 16OII)

for & < 1 which is equivalent to § > 3. It follows from the
inequality above that

la(t)13 + 11b(t)I13
t
< (1a°1% + 116°11%) exp {c(v, e d,-)/ (la(x)I3 + I1b(x)IIF) d=
0
< c(v, i, 1@, 16°110) (1a® 113 + 116°113)

for any t > 0, where we employed the a priori energy estimate
(5.17). It concludes the second statement of the theorem. O

Proof of Theorem 6.2. In the case d; = 0, the flux I; = 0 holds in
the energy equality (6.23). Therefore, the previous analysis leads
to the estimate

d
= (14O + 1b(O11)

< —vlla(©)l3 — 1lb®)I3 + c(v, ) (a2 + I1bE)[3) >
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under the assumptions

06<1+n O0<n<?2. (6.26)

In analogy with (6.24), the energy estimate above gives rise to a
local upper bound for [la(t)[|? + [|b(t)]|? for any 6 < 3 thanks
to (6.26). Furthermore, if n = 1 and hence 6 < 2, the norm
lla(®)II2+11b(t)1? attains an upper bound globally on [0, co). Again,
since § = % the condition # < 3 yields § > —1and 6 < 2
is equivalent to § > 1. Combining with the fact § € [0, 3], the

arguments of the theorem follow immediately. O

7. Blow-up of positive solutions

In this part, we show that positive solution of the Hall MHD
dyadic model (3.14) with large initial data develops blow-up in
finite time provided 6 > 3 (equivalently § < —1). The main result
is stated below.

Theorem 7.1. Let (a(t), b(t)) be a positive solution to (3.14) with

di > 0and 6 > 3. For any y > 0, there exists a constant

Mo such that if a(0)|% + [[b(0)|2 > Mg, then ||a(t)\|3le+gy +
3 3

IIb(t) , is not locally integrable on [0, o).

3
||l(9+1)+1
3 3

Proof. We apply a contradiction argument to justify the state-
ment. Noting that it is sufficient to show the statement for
an arbitrarily small y > 0, we fix y € (0,6 — 3). Suppose
that (a(t), b(t)) is a solution to (3.14) with d; > 0 such that

3 3 ST
||a(t)||%9+%y + ||b(t)||%(0+n+%y is integrable on [0, T] for any

T > 0. The goal is to show that ||a(0)||2 + [[b(0)|Z < Mg for
a constant M, dependent on y. To achieve it, we apply another
contradiction argument: assume [|a(0)||2 + [|b(0)||2 > Mg; show
that a Lyapunov function £(t) satisfies simultaneously that it is
continuous on [0, co) and it blows up in finite time, which of
course forms a contradiction.

The task now is to find a such Lyapunov function £(t). We
consider

() = lla(O))% + 1B + 1 Y A7 a(0)aga()
j=1

oo
+ Y A7 b0y (0)

j=1

(7.27)

for some constants c¢; and ¢, as defined in (7.55). To limit the
number of parameters, we fix d; = 1 in the system (3.14). The
result holds for any d; > 0 with rescaled A.

Lemma 7.5 shows that £(t) is continuous on [0, c0); while
Lemma 7.6 proves that £(t) blows up in finite time provided
lla0)lI2 + [Ib(0)|IZ > Mg with Mo defined by (7.50). In (7.50),
the constant ¢y = (A2?=7=3) — 1)V/2; ¢4, ¢, and c3 are defined in
(7.55). O

Theorem 7.2. Let (a(t), b(t)) be a positive solution to (6.22) with
di>0and a < % For any y > 0, there exists a constant My such
that if [|a(0)||2 + |b(0)||2 > Mg, then ||a(t) ,+ lIb(t) ) is not

13,
3
locally integrable on [0, c0).

3
12,
3

Proof. Recall 4 = A* and # = 1. The statement follows
automatically from Theorem 7.1 and the scaling relationship. O

Remark 7.3. The shell model of Navier-Stokes equation in [19] is

a special case of (6.22). In [19], it was shown that the NSE shell

model blows up in finite time if & < %
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Before establishing Lemmas 7.5 and 7.6, we first show some
auxiliary estimates as follows.

Lemma 74. (i) If 0 > 3 + y, there exists a constant ¢y > 0 such
that

2y+60 3 2y+60,3
ZN > collall? s, ZA b} > collbl} 5.
j=1

(ii) The following inequalities
oo
oA
j=1

1
a}aJ+1 <A ||a||y+1

o0

S APy < A7 b2,
j=1

hold.

Proof. Applying Hélder’s inequality, we deduce

o [ Br+2-20 202r+0)
a2 =3 (175 ) (5774

Jj=1
2
> 3(2y42-20) > ’
3v+im3 2y+0 3
s DI
=1 =1
Let ¢g = (A2?—r=3) — 1)1/2_ The conclusion of (i) follows from the

assumption 6 > 3 4+ y and the inequality above.
The inequalities in (ii) are also obtained from Holder’s inequal-
ity, for instance,

o0
zw a1 =513 (47) (4 0)

[Tl
[Tl

oo
—y-1 2y+2 2 2y+2 z
= > W )‘1+1 i
P P

1
<A77 Mal2,,. O

Lemma 7.5. Let (a(t), b(t)) be a solution to (3.14) with d; >

0. Assume ||a(t)\| 1942y + ||b(t)|\3 L0412y is locally integrable on

[0, 00). Then ﬁ(t) is continuous on [0, oo)

Proof. We will show that both

E, (t) = lla(t)Il + [1b(t)]I2

and
oo o0

fO) =1 Y A7 a(O)aa() + ¢ Yy A7 bi(Ebya(0)
j=1 j=1

are continuous on [0, co).
Multiplying the first equation of (3.14) by kj-zyaj and the second

one by )\jzybj, taking the sum over j > 1, and integrating from 0
to t leads to the energy equation

Ey(t) - Ey(o)
t
= —Zf vla(m)?

+ RIBOI 4 de + 202 = 1) / ZV”“ @l de
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t o0
1) / Zx}”g“bfbw dt
0 j=1

— 202 —1) / szy**’lﬂam dr.

+ 200 —

Since § > 3 + y, it follows that y + 1 < 16 + 2y and hence

1O} 11 < 16O, o - IO < 1B, o -

Thus the assumption that [la(t)||3 lo+2y +||b(t)||3 G+1)+37 is locally

integrable implies ||a(t)|\zJrl and ||b(t)|| 41 are locally mtegrable.
On the other hand, we have

2
ZA2V+ azaj+1 <Z)‘2y+0 <3 @ 5 J+1> 22)\2y+6 3

j=1
o0 2 2
—2y+9
2| > =2llal’, s,
j=1

and similarly

2y+60+1 2
ZA bibjer = 201 2
j=1
o0

2y+46
ZAJV b} a1

o0

2y+9 3 2y+6 a3 2y+013
< 2 (G gt = A A
j=1
3
+ |Ib

<la II% 12, I ”19+

Therefore, the assumption of the lemma again implies

Zji] A].2V+9a]?aj+1, ijl A]2V+9+1b2b 41 and Zj‘:l Ajz”gbjzajH are
all locally integrable. To summarize, the integrals on the right
hand side of the energy equation are well defined for any t > 0.
As a consequence, the function E, (t) is continuous on [0, co).
Next we will show that the function f is continuous on [0, c0).

Denote
Fi(0) = 12" ai(Oaga(t) + A7 b(Obya(0), j = 1

which is automatically continuous by the definition of solution.
For any t; > 0, we deduce

lim sup [£(t) — f(to)|

t—to
o0

= limsup |c; Z 2T ai()aja(t) — ¢ Z Afyaj(to)ajﬂ(to)

t—tp j=1 j=1
+c Zk bj(t)bj+1(t) — ¢2 Zkfybj(fo)bj+1(fo)
j=1
J-1 J-1 00 00 (7.28)
= lim lim sup DR = fite)+ D F) =Y filto)
= =1 = =
J-1

< lim limsup Y [f(t) — £(to)|
J=o0 toig =1

lim li (to)
+1£20 im sup Z] Zf] 0)
J

t—tp
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Since f; is continuous for any j > 1, the first limit on the right
hand side of (7.28) vanishes, i.e.

J-1
lim limsup " |fi(t) — fi(to)| = 0.
J=00 toty =

On the other hand, it follows from Lemma 7.4(ii) that

0 < f(t) < cilla(®)l + 2013 < (c1 + C)E, (1)

Since E,(t) is continuous on [0, oo), f(t) is bounded on every
interval [Ty, T], for any T, > T; > 0. Thus, the second limit
in (7.28) vanishes as well. Consequently, it indicates that f is
continuous on [0, c0). O

Lemma 7.6. Let 6 > 3+ y and 0 < y < 1. Assume ||a(0)||f, +

[Ib(0)||2 > Mg for a certain constant Mo > 0. The function L(t)
defined in (7.27) is a Lyapunov function and it blows up in finite
time.

Proof. It follows from (3.14) that

d
()»-zya,-ajﬂ)

dt
—v(1+ 207 Paai g + 2047 ag

i )Lzy bjajs1bjsq +A2y+9 3 +)\.2V)\.J+]ajbj+]bj+2 (7.29)
- Af”ea] @y — A 4B ag
o
— A0 — A ab?
d
- (37 i)
= —p(1+4 22 Pbybygr + 27 bjag by
+ AL bybyaay + xf*fx/bf Wb (7.30)
+ A2V+9+1b3 AT ab? = A AY, bajabyio
_ )»]-ZHQ“bjb]zH _ )‘zy}‘]g+1 bibjs1bjsa.
On the other hand, we have the energy equality
d 2 2
i@ (la(OlI2 + Ib(O)II3)
2
= 20lla()I5 1 = 20 lbO)I 4 +2 ZM’ aly
o0
2+ 240 0 42
+ 2Zx " p2ag g — 2Zx "atay, — 2ij,lxjyb?
= —20]la(®)I2; — 2ullb(O)]1% 1 + 2007 — sz”aazam
o0
=202 = 1)) A7 bl + 202 1) Z AT Db
=1 =1
(7.31)
On the right hand side of the equations above, kzﬁg a, kf7+0+1b3
A7 a2a;,q and A7 b2b;, 1 are good terms whlch will be used

to absorb the negatives terms.
For any j > 1, we apply Young’s inequality to the negative
terms and obtain that

1 1
3@ty (5 2@rF0) o
alaj =12 (Aj aaz

1 1
(2y 0), 2y+6 3 (2y 0)
<54 W@ + 522005

2y+60
A

(7.32)

2y+6 2
ajdjt1;

(4
Aj71A b _10j+1
2
_ —j 2(14y—-0 5Qy+0+1), 9 32y+9)
= A3y )(/\H A

b j+1

=
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)
2y+6 3

aJ+1)
1
+ EA%(V’Q)»H a

N(
aj+2>

1
;0= 20 a?

2
< 3A3(V Q)A]Zyrgﬂf
)‘ )‘]H

(A—2y+§e(2y+9) (k

{

2y 1
56)»774@(2)’“))},

401042

2y+0 2
a; Gj+1

2

2y+0 2
a; it +

1
3(1-2€)2y+60) 1_
kj3 aj] 2e

)

, Ja-aey+e) 1

)L3(2y+9)
j+1 J+1

2 (7.34)

1 2y+9 3

2y+6 e
A 3 J+2 a

+ j+1

1+

1
5(1 _6) 420

where the constant € € (0, 1) will be determined later;

loy+o 202p+6+1
(Af( y )aj> <A3( y+6+1)

i
<Lihreg g 2ty

2(2y+6+1) (Aj%(zy#))aj) <A%(27’+9“)

2

=A, 3

2y+6
P ;

Jj bj

2 2
a;b; ) )

(7.35)

)

2y40+41,3 .
)‘] 1 b]+1’

(7.36)

bj+2>

A2 -3 2
J bj+l _)‘ A J+1 b]+1

A5 @rHo42), 246 3+ 25 -ker+e+)

<
- ]

W =

)‘ )‘Hlb Gj11bji2

-5 . _9,_2 2y+6+1)
=Aj3k Zy 3(}\3 b)( a,~+)<
_1 1

_ - 2y—4.2y+6 3
A AR G
1

3

33 (2y+0)

A3(2y+9+1)
j+1

J+2

4
,§A12y+9+1b3 +

w

2),_§ A2y+6+1b3

+ 2 D

(7.37)

2y+0+1 2
W2

I TC ) <A2(2y+9+1 Ly +o+1)

2 2
by b}+1 J+1 bJ-H

)

1 1
FLPES [O2T2S
2

)

)5 2y +0+1 .
)‘JH bj+1’

(7.38)

1

1
=3 A_7(2y+8+1))»j2y+9+1bj2b

2y 4 6+1
A A

oyl la-26)2y+6+1), 1_
— ()\ 2y+3s(2y+0+1) (}"jzy+0+1bj2bj+l) ) ()»3 €)(2y )bj] 26>

( ) (57

<er™ y+ (2V+9+]))\,]2y+6+1b2bj 1+ (1

bibj1bj2

A3 (1—€)2y+6+1)

}L3(2y+9+1
41

1—€
b; J+2

J+1

2¢ ))L2y+0+1b3

1 2y+6+1 1. 2y4641
+ 5(] - 6))“1+1 bj+l 3)‘]+2 bj+2;
Jor40 (7.39)
j}/+ bzaj+1
12y+6) 2y+6+1), 5 2y+6)
= 3A (2r+6) ()»3 b; ) ()\,]il aj+]) (7.40)
2 1 1
—3(2y4+0+2), 2y+6+1,3 —3Q2y+642)y2r+0 3
55)‘ e A bj +§)‘ i Akt Gy
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Multiplying (7.29) by cy, taking the sum over j > 1, applying
(7.32)-(7.35) to the resulted equation, and dropping the positive

terms with a’ ,a;;1, bjbjy10;11 and ajbj.1bj;», we obtain

dt

clg A a;jaj4q

j=1

o0
> —cv(1+ )\,Z)Z)\fy+2ajaj+l
j=1

1 1 1 2
_ a3y H0) _ 2y 5(v=0) _ Z -3 2y+0 3
+c1(e A7 ek A )Ex
2
_“ (y—0) -2 2y+0+1,3
S (M )2 s)§ 2
( e (A A (2”‘*) § AT atag.

(7.41)

Similarly working with (7.30) and applying (7.36)-(7.39) gives
rise to

[eS)
C Z )\jzy bjbj+1

j=1

dt

o
> —cu(1+22) Z )‘j‘zy+2bjbj+1

j=1
+ C (6 -

E);%(zwen)

o0

2., 1 I
__ y—3 _ _ (2y+60+1) 2y+6+1,3
3 3 SA ) > o b;
j=1
_ lc A—%(2y+9+2)+k—2y—% ik27+9a3
372 i Y
j=1
2 1
— 0 (d—%+%(2y+9+1) + 2)\ 32y +6+1) ) Z}Lz”e“bzbﬁ
j=1
(7.42)
Applying (7.40) to (7.31) yields
d 2 2
i (||a(t)||y + ||b(t)||y)
= —2v]ja©)lf} 1, — 2ullbOIZ 4y + 2007 — 1>Zx2”"a2aj+1
o0
+ 200 — 1)foy+"+‘b}bj+l
=1
2 1 it
_ g()\‘l}/ _ 1)}\7§(2y+¢9+2) Z)\‘jzy-l-eaf
=1
_ é()LZ}/ _ 1)}\7%(2y+9+2) ix2y+9+lb3
3 J i
=1
(7.43)
Comparing the coefficients of Y, )»2”9 3 pRap 2V+(9Jr1b3
Y Af”e afajyr and ) )»12”+9+1b2b1+1 on the right hand 51de
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of (7.41)-(7.43), we impose the following conditions for a con-
stant c3 > 0 (to be determined later)

o (e~ Li-tero _ Lio-0 _1,-3
2 3 3

_ %Cz (A*%(2y+9+2) + )sz;/fg) _ g(AZy _ 1)A7%(2y+0+2) > s,
(7.44)
o e— E);%(zwreﬂ) _ %xzyfg _ 1)\‘—%(2;/+9+1)
3 2 (7.45)
_ %Cl (A%w—o) +A—%) _ f(kzy e (O
202 — 1) — ¢ (a +3@r+0) ;x %<2V+9>) >0, (7.46)

1

207 —1)— ¢ (ek +3@y+o+1) o <2V+9+”> >0. (7.47)

We postpone to show that the parameters chosen in (7.55) satisfy
(7.44)-(7.47). With (7.44)-(7.47) satisfied, adding (7.41)-(7.43)
gives

Eﬁ(t) > — C]V(

oo
2y+2
at +22) 347 ey

=1
— ou(1+21%) Z }vzyﬂbjbjﬂ
p

o0

2 2 2y+6 3

— 2llal2,y = 2ulIbl%y + 6 Y A7 a
j=1

(7.48)

oo
+oay A7)
j=1
In view of the inequalities in Lemma 7.4 and (7.48), we obtain
d

—L(t) =

” (=2v —cv(1 4+ 227777 llall?

+ (=21 — cu(1 4+ W71 b2 44
+ cocsllall’,y + cocslIbI 44

1
> — My (lall} 4y + 1bI15 4p) + 5C0C3 (lally oy +1b13 1)

1 1
— (Il + IBI2,) (5 a2y + DI, )F — MI)

N[

(7.49)
with My :=2(v 4+ u) + (c1v + o )(1 + A2)A~7 1, Define
am am
Mo = —(1+4(ci+)n 7)1 > L (7.50)
CoC3 CoC3

Thus, the assumption [|a(0)[|2 + [|b(0)[|Z > Mg implies that

a(0)II2 1 + 1612, = [la(0)I|2 + [Ib(0)]12 > M

and hence

1 1
56063 (1901511 + IB(O)I41)* — M

1
> §COC3M0 — M] > M] > 0.

It then follows from (7.49) that

EL(t)

0.
dr =

t=0
Therefore, there exists a small time T > 0 such that

£(t) > £(0), Vt € (0,TI.
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On the other hand, due to the estimates in Lemma 7.4(ii) and the
definition of £(t), we have for any t > 0
la(O)II2 + Ib(o)I1% < £(t)

< (T+(cr+ 777 (la)l2 + b)) -
Consequently, on this interval [0, T], we obtain

£(6) = £(0) = (0| + b(O)I% > M.

(7.51)

In view of (7.51), it is also true that for any t > 0

£(t) < (14 (e + 7771 (Ol 1y + 163 1)

since [|al,, < [lall,+1 and [|b]l, <
inequalities yields

(7.52)

Ibll, +1. Combining the last two

£L(t)
t b(t DT e —
la()I2,, + IBOI2,, > o+ o
Ms t €[0,T]
TS U
and hence we deduce that, on [0, T]
(lalOl12 41 + 16N )
1 1
(56063 (la(O)12 41 + IBONZ ) ? —M1>
1 3
= 4 CoC3 (Il 1y + 16O 44)
+ (a2 1y + 1112 )
1 1
x (ZCOC3 (la(®)12 44 + IBONZ 1) — M1) (753)
1 3
=z 4 CoCs (a(OI 41 + 16O )
+ (la(®)13 41 + 11612 )
1 Mo
x | =coc - —M;
4 (1+(C1+C2))» r=1)2
1 3
Z 4 Cocs (la(®)12 4y + 1I1b(ONZ 44)* -
Combining (7.49), (7.53) and (7.52), we obtain
1 3
—L(t) >— t b(t
i ( )_LllCoCs (la(OI1% 41 + l1b( )Ily+1)3 (754)
zzcoc3(1 T+ 2L3(e), telo,Tl.

In fact, since £(T) > £(0) > M?, we can repeat the process
starting from the new initial time at T and eventually show that
the Riccati type inequality (7.54) holds for all t > 0. Therefore,
L(t) approaches infinity in finite time.

It is left to find appropriate parameters cy, ¢, c3, ¥, and 6
satisfying (7.44)-(7.46). We first note that 6 > 3+y,0 <y K 1,
and X is typically taken as A > 2. Analyzing the leading order
terms in (7.44)-(7.45), we are led to select € = 273, Moreover,
we realize that ¢; and ¢, have to satisfy

cn i — %CZA_ZV_% - g(w — AT IR S

ATE - gqr% - g(/\“ — 3@+ g,

Combining with the analysis of (7.46)-(7.47), we can take, for
instance

16, 2y 1
_ _ 92y _ +2—1y+0)
c;=18c1, ¢ = 7(A 1)A3 3 , (7.55)
c3 = min{LHS. of (7.44), LHS. of (7.45)}.
One can verify that for such cq, ¢;, c3 and € = 2173, condi-

tions (7.44)-(7.47) hold for arbitrarily small y > 0 and any

12
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A > 20. Hence the restriction & > 3 4 y implies that 6 > 3.
To ensure the argument holds for any A € (1,20), one can
fine tune the coefficients in (7.32)-(7.40) when applying Holder’s
inequalities. O
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