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a b s t r a c t

We derive dyadic models for the magnetohydrodynamics with Hall effect by including the inter-
mittency dimension as a parameter. For such dyadic models, existence of global weak solutions is
established. In addition, local strong solution is obtained; while global strong solution is obtained in
the case of high intermittency dimension. Moreover, we show that positive solution with large initial
data develops blow-up in finite time provided the intermittency dimension is lower than a threshold.
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1. Introduction

We will study dyadic models of the incompressible magneto-
hydrodynamics (MHD) with Hall effect governed by the following
system of partial differential equations

ut + u · ru � B · rB+ rp = ⌫�u,

Bt + u · rB � B · ru+ dir ⇥ ((r ⇥ B) ⇥ B) = µ�B,

r · u = 0,
(1.1)

which is a coupled system of hydrodynamics and Maxwell elec-
trodynamics. Defined on R3 ⇥ [0,1), u, p and B are respectively
the fluid velocity field, scalar pressure, and magnetic field. The pa-
rameters ⌫, µ and di represent the kinematic viscosity, magnetic
resistivity and ion inertial length, respectively. More physical
background on this system can be found in [1,2]. If B ⌘ 0, system
(1.1) reduces to the well-known Navier–Stokes equation (NSE);
while if u ⌘ 0, it reduces to the electron magnetohydrodynamics
(EMHD)

Bt + dir ⇥ ((r ⇥ B) ⇥ B) = µ�B, r · B = 0, (1.2)

in which the nonlinearity comes from the Hall effect; in the case
di = 0, (1.1) is the relatively well-understood MHD system.

Increasing interest in the Hall MHD system (1.1) has arisen
in the mathematics community recently. Intensive studies in
the last two decades involve existence of weak solutions [3],
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regularity and blow-up criterion [4–6], well-posedness [7–9], ill-
posedness [10], singularity formation [11], asymptotic behavior
of solutions [12,13], non-uniqueness of weak solutions [14], etc.
However, the understanding of energy cascade mechanism of the
Hall MHD turbulence is still at a primitive stage, by virtue of
the intricate coupling and nonlinear interactions of fluid velocity
and magnetic field, and the extra complexity brought in by the
Hall term. To gain some insights into the complex system, we
propose a type of toy model – dyadic model – which preserves
the essential nonlinear and coupling features of (1.1). This was
inspired by the study of dyadic models for the Euler equation and
NSE.

To understand the mysterious nonlinear term (u ·r)u in Euler
equation and NSE, among other approximating models, various
dyadic models were proposed and investigated by many authors,
for instance, see [15–34]. Among them, the Katz–Pavlovi¢ (KP)
type dyadic model introduced in [29] has attracted tremendous
attentions. The KP model was derived by considering the evolu-
tion of wavelet coefficients of a solution to the Euler equation
or NSE and appears to be an infinite system of nonlinear ODEs.
In particular, well-posedness problem and smooth solutions were
studied in [15,19]; finite time blow-up was established in [19,25,
28–30].

In this paper we will first derive dyadic models to approxi-
mate (1.1) and investigate properties of solutions to such dyadic
models. The derivation is based on energy transfer among dyadic
shells and employs techniques from harmonic analysis, during
the process of which the parameter of intermittency effect comes
into play naturally. It is widely believed that turbulent flow may
experience spatial and temporal inhomogeneity and hence is
intermittent. Such inhomogeneity can be measured quantitatively
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by the parameter of intermittency dimension, see [35,36]. More
details on this topic will be provided in Section 2. As an important
feature, the dyadic models we derive include the parameter of
intermittency dimension of the turbulent flow in the nonlinear
terms. The main drawback is that, like the dyadic models for
the Euler equation and NSE, these models do not preserve any
geometry structure of the original system (1.1).

Following the derivation, notions of weak solutions and strong
solutions will be introduced. We then show the existence of
global in time weak solutions. Local in time strong solution is
obtained as well; such solution is shown to be global provided
that the intermittency dimension is higher than a threshold value.
In addition, if the intermittency dimension is lower than a thresh-
old (unphysical) value, we prove that positive solution with large
initial data develops blow-up in finite time.

2. Intermittency dimension: A quantitative measure of inter-
mittency effect

Kolmogorov’s phenomenological theory [37] for hydrodynam-
ics was derived under the assumption of homogeneity, isotropy
and self-similarity on the flow. Landau [38] made a remark that
a fully developed turbulent flow may be spatially and temporally
inhomogeneous, which is termed as the intermittent nature. In
a general principle, intermittency is characterized as a deviation
from Kolmogorov’s predictions.

In the recent work [35], we gave a mathematical definition of
intermittency dimension � of a flow through saturation level of
Bernstein’s inequality. For 3D flow, � belongs to [0, 3]. The general
formulation of both Kolmogorov’s dissipation wavenumber and
the energy spectrum by taking into account the intermittency
effect was provided as well in [35]. Kolmogorov’s theory corre-
sponds to the extreme intermittency regime � = 3, in which
turbulent eddies fill the space. On the other hand, numerical
simulations and experimental studies show that � ⇡ 2.7.

Let L be the domain length scale. Denote �j = 2j/L for integers
j � �1. Let vj be the jth Littlewood–Paley projection of a vector
field v. Recall that Bernstein’s inequality in three dimensional
space takes the form

kvjkLq  c�
3( 1

p
� 1

q
)

j
kvjkLp .

Adapting the idea of [35], we can define the intermittency dimen-
sion �v for a 3D turbulent vector field v in the vein of saturation
level of Bernstein’s inequality,

�v

:= sup

8
<

:s 2 R :
*
X

j

��1+s

q
kvjk2

L1

+
 c

3�s
L
�s

*
X

j

�2
q
kvjk2

L2

+9=

; ,

(2.3)

where c is an absolute constant. Thus we have �v 2 [0, 3] and the
optimal Bernstein’s relationship

kvjkL1 ⇠ �(3��v )/2
q

kvjkL2 (2.4)

at each scale �j. Throughout the paper, we denote A . B by an
estimate of the form A  cB for some constant c , and A ⇠ B an
estimate of c1B  A  c2B for constants c1 and c2.

3. Derivation of dyadic models with dependence on the inter-
mittency dimension

3.1. Dyadic model for the 3D NSE

There have been various derivations of dyadic models for the
3D NSE in the literature, for instance, see [20,27,29,32,33]. Below

we provide a self-contained derivation of the KP and Obukov
models by applying harmonic analysis tools. The models are built
in with the intermittency effect by including the parameter of
intermittency dimension. Recall that the 3D NSE is given by

ut + u · ru+ rp = ⌫�u,

r · u = 0.
(3.5)

Let �u be the intermittency dimension for the turbulent field u.
Then we have the generalized Bernstein’s relation

kujkLq ⇠ �
(3��u)( 1p � 1

q
)

j
kujkLp . (3.6)

We will derive the following dyadic model for the NSE

d

dt
aj + ⌫�2

j
aj � ↵

✓
�

5��u
2

j�1 a
2
j�1 � �

5��u
2

j
ajaj+1

◆

� �

✓
�

5��u
2

j�1 aj�1aj � �
5��u

2
j

a
2
j+1

◆
= 0

(3.7)

with constants ↵,� � 0. We start from the energy balance in the
jth shell:
1
2

d

dt
kujk2

L2
+
Z

R3
(u · ru)j · uj dx+ ⌫krujk2

L2
= 0, (3.8)

which is obtained by projecting the NSE onto the jth shell, taking
dot product with uj, and integrating over the space R3. The next
step is to analyze the flux through the jth shell,

⇧j :=
Z

R3
(u · ru)j · uj dx.

We make the assumption on local interactions that only the
nearest shells interact with each other. On the other hand, we
notice that

R
R3 (ui · ruj) · uj dx = 0 for any i, j � �1 due to the

divergence free property r · uj = 0. Therefore, we are able to list
the non-vanishing terms in the flux as

⇧j =
Z

R3
(uj · ruj+1) · uj dx+

Z

R3
(uj+1 · ruj+1) · uj dx

+
Z

R3
(uj�1 · ruj�1) · uj dx+

Z

R3
(uj · ruj�1) · uj dx

=
Z

R3
(uj · ruj+1) · uj dx+

Z

R3
(uj+1 · ruj+1) · uj dx

�
Z

R3
(uj�1 · ruj) · uj�1 dx �

Z

R3
(uj · ruj) · uj�1 dx

where in the second step we applied integration by parts to the
first and second integrals. We denote

Qj =
Z

R3
(uj · ruj+1) · uj dx, Pj =

Z

R3
(uj+1 · ruj+1) · uj dx.

Thus, the flux ⇧j can be rewritten as

⇧j = Qj � Qj�1 + Pj � Pj�1.

Assume Qj � 0 and Pj � 0 for all j � �1. The terms Qj and Pj are
regarded as the energy escaping to the next shell, while Qj�1 and
Pj�1 are regarded as energy coming from the previous shell. It is
important to note that in the inviscid case ⌫ = 0, the total energy
ku(t)k2

L2
=P

j��1 kuj(t)k2
L2

is conserved.
Next we estimate the size of Qj and Pj by using Bernstein’s

relation (3.6). It follows from integration by parts, Hölder’s in-
equality, and (3.6) that

Qj =
Z

R3
(uj · ruj) · uj+1 dx .kujkL2krujkL1kuj+1kL2

⇠�
5��u

2
j

kujk2
L2

kuj+1kL2

2
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Pj =
Z

R3
(uj+1 · ruj) · uj+1 dx .krujkL1kuj+1k2

L2

⇠�
5��u

2
j

kujkL2kuj+1k2
L2
.

Define aj(t) = kuj(t)kL2 . We can approximate Qj and Pj as

Qj = ↵�
5��u

2
j

a
2
j
aj+1, Pj = ��

5��u
2

j
aja

2
j+1

for some constants ↵ � 0 and � � 0. Motivated by (3.8) and the
analysis above, we consider the approximating equation
1
2

d

dt
a
2
j
+ Qj � Qj�1 + Pj � Pj�1 + ⌫�2

j
a
2
j
= 0,

which leads to the shell model (3.7). For the total energy a(t)2 =P
j��1 a

2
j
of the approximating model, we also have the energy

law
1
2

d

dt
a
2 + ⌫

X

j��1

�2
j
a
2
j
= 0

which indicates energy conservation for smooth solutions in the
inviscid case ⌫ = 0.

We notice that the dyadic model (3.7) with ↵ = 1 and � = 0
corresponds to Katz–Pavlovi¢ model, while (3.7) with ↵ = 0 and
� = 1 is Obukov model.

3.2. Dyadic model for the EMHD

Let �b be the intermittency dimension for the turbulent mag-
netic field B. Then we have the generalized Bernstein’s relation

kBjkLq ⇠ �
(3��b)( 1p � 1

q
)

j
kBjkLp . (3.9)

The goal is to derive the following dyadic model for the EMHD

d

dt
bj + µ�2

j
bj � di↵

✓
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✓
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2
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2
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2
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◆
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(3.10)

for some constants ↵ � 0 and � � 0.
The energy balance of the EMHD (1.2) for the jth shell is given

by
1
2

d

dt
kBjk2

L2
+di

Z

R3
((r⇥B)⇥B)j ·r⇥Bj dx+µkrBjk2

L2
= 0. (3.11)

Notice that
R
R3 ((r ⇥ Bj) ⇥ Bi) · r ⇥ Bj dx = 0 for any i, j � �1.

The assumption that there are only local interactions between the
nearest shells indicates the energy flux can be written as
Z

R3
((r ⇥ B) ⇥ B)j · r ⇥ Bj dx

=
Z

R3
((r ⇥ Bj+1) ⇥ Bj) · r ⇥ Bj dx

+
Z

R3
((r ⇥ Bj+1) ⇥ Bj+1) · r ⇥ Bj dx

+
Z

R3
((r ⇥ Bj�1) ⇥ Bj) · r ⇥ Bj dx

+
Z

R3
((r ⇥ Bj�1) ⇥ Bj�1) · r ⇥ Bj dx.

By vector calculus identity A · B ⇥ C = B · C ⇥ A = C · A ⇥ B

for any vectors A, B, C 2 R3, the third and fourth integrals in the
equation above can be written as
Z

R3
((r ⇥Bj�1)⇥Bj) ·r ⇥Bj dx = �

Z

R3
((r ⇥Bj)⇥Bj) ·r ⇥Bj�1 dx,

Z

R3
((r⇥Bj�1)⇥Bj�1)·r⇥Bj dx = �

Z

R3
((r⇥Bj)⇥Bj�1)·r⇥Bj�1 dx.

Denote

Qj =
Z

R3
((r ⇥ Bj+1) ⇥ Bj) · r ⇥ Bj dx,

Pj =
Z

R3
((r ⇥ Bj+1) ⇥ Bj+1) · r ⇥ Bj dx.

Thus, the energy flux can be reformulated as

di

Z

R3
((r ⇥ B) ⇥ B)j · r ⇥ Bj dx = di(Qj � Qj�1 + Pj � Pj�1).

We assume Qj � 0 and Pj � 0 again. The portions di(Qj + Pj) and
di(Qj�1 + Pj�1) respectively stand for the energy escaping to the
next shell and the energy coming from the previous shell.

Now we estimate Qj and Pj with dependence on the intermit-
tency dimension �b. Applying Hölder’s inequality and the Bern-
stein relationship (3.9) gives rise to

Qj . kr ⇥ Bj+1kL2kBjkL2kr ⇥ BjkL1 ⇠ �j+1�
5��b

2
j

kBj+1kL2kBjk2
L2
,

Pj . kr ⇥ Bj+1kL2kBj+1kL2kr ⇥ BjkL1 ⇠ �j+1�
5��b

2
j

kBj+1k2
L2

kBjkL2 .

Denote bj = kBjkL2 . We approximate Qj and Pj as

Qj = ↵�
7��b

2
j

bj+1b
2
j
, Pj = ��

7��b
2

j
b
2
j+1bj

for some constants ↵,� � 0. It then follows from the energy law
(3.11) that
1
2

d

dt
b
2
j
+ di(Qj � Qj�1 + Pj � Pj�1)+ µ�2

j
b
2
j
= 0

which turns to (3.10) after simplification. We notice that the total
magnetic energy b(t)2 =P

j��1 b
2
j
formally satisfies

1
2

d

dt
b
2 + µ

X

j��1

�2
j
b
2
j
= 0,

and hence energy conservation holds for smooth solutions in the
inviscid case µ = 0.

3.3. Dyadic model for the Hall-MHD and MHD

The framework shown above will be applied to derive a dyadic
model for the Hall-MHD and the usual MHD. In contrast with
the NSE and EMHD, we have to take care of the coupling terms,
B · rB, u · rB, and B · ru. Specifically, to obtain a good ap-
proximation, it correlates with which Bernstein’s relation, (3.6) or
(3.9), should be used. Heuristically, the more intermittent vector
field corresponds to a smaller intermittency dimension and hence
the factor �

3��
2

j
in the saturated Bernstein’s relation is larger.

It suggests that the saturated Bernstein’s relation for the more
intermittent vector field plays a dominant role. In plasma physics,
numerical and experimental evidences show that the magnetic
field is in generally more intermittent than the velocity field, that
is, �b  �u. Therefore, the saturated Bernstein’s relation (3.9) for
the magnetic field will be applied to the coupling terms in our
derivation below.

The energy balance of the Hall-MHD (1.1) for the jth shell is
written as
1
2

d

dt
kujk2

L2
+
Z

R3
(u · ru)j · uj dx

�
Z

R3
(B · rB)j · uj dx+ ⌫krujk2

L2
= 0,

1
2

d
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+
Z
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(u · rB)j · Bj dx �

Z
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(B · ru)j · Bj dx

+ di

Z

R3
((r ⇥ B) ⇥ B)j · r ⇥ Bj dx+ µkrBjk2

L2
= 0.

3
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We introduce the notations for flux terms

⇧j(f , g, h) =
Z

R3
(f · rg)j · hj dx, ⇧ (f , g, h) =

Z

R3
(f · rg) · h dx.

Therefore, the flux terms in the two equations are noted as
⇧j(u, u, u), ⇧j(B, B, u), ⇧j(u, B, B), ⇧j(B, u, B), and ⇧j(B, B,r ⇥B).
Obviously, ⇧j(u, u, u) and ⇧j(B, B,r⇥B) can be handled the same
way as for the NSE and EMHD. We denote the approximation by

⇧j(u, u, u) = ↵1
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2

j
a
2
j
aj+1 � �
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⇧j(B, B,r ⇥ B) = di↵4
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2
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2
j
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◆

for some constants ↵1,�1,↵4,�4 � 0. In a similar spirit but
with the employment of (3.9), the coupling terms ⇧j(B, B, u),
⇧j(u, B, B) and ⇧j(B, u, B) are approximated in the following.
Assume �b  �u and interactions only exist between the nearest
shells. Therefore, the coupling terms can be rewritten as

⇧j(u, B, B) = ⇧ (uj, Bj+1, Bj)+ ⇧ (uj+1, Bj+1, Bj)+ ⇧ (uj�1, Bj�1, Bj)
+ ⇧ (uj, Bj�1, Bj),

⇧j(B, B, u) = ⇧ (Bj, Bj+1, uj)+ ⇧ (Bj+1, Bj+1, uj)+ ⇧ (Bj�1, Bj�1, uj)
+ ⇧ (Bj, Bj�1, uj)+ ⇧ (B[j�1,j+1], Bj, uj),

⇧j(B, u, B) = ⇧ (Bj, uj+1, Bj)+ ⇧ (Bj+1, uj+1, Bj)+ ⇧ (Bj�1, uj�1, Bj)
+ ⇧ (Bj, uj�1, Bj)+ ⇧ (B[j�1,j+1], uj, Bj).

To explore the cancellation and obtain a system with conserved
energy, we apply integration by parts to some particular items
above and arrive at

⇧j(u, B, B) =⇧ (uj, Bj+1, Bj)+ ⇧ (uj+1, Bj+1, Bj) � ⇧ (uj�1, Bj, Bj�1)
� ⇧ (uj, Bj, Bj�1),

⇧j(B, B, u) =⇧ (Bj, Bj+1, uj)+ ⇧ (Bj+1, Bj+1, uj) � ⇧ (Bj�1, uj, Bj�1)
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⇧j(B, u, B) =⇧ (Bj, uj+1, Bj)+ ⇧ (Bj+1, uj+1, Bj) � ⇧ (Bj�1, Bj, uj�1)
� ⇧ (Bj, Bj, uj�1)+ ⇧ (B[j�1,j+1], uj, Bj).

We assume all of the flux terms ⇧ (·, ·, ·) appeared on the right
hand sides of the equations above are positive. The items in
⇧j(u, B, B) can be estimated by using (3.9),
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Therefore, we approximate ⇧j(u, B, B) by
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for some constants ↵2,�2 � 0. Similarly, ⇧j(B, B, u) and ⇧j(B, u, B)
are approximated as

⇧j(B, B, u) = ↵3

✓
�

5��b
2

j
ajbjbj+1 � �

5��b
2

j�1 b
2
j�1aj

◆

+ �3

✓
�

5��b
2

j+1 ajb
2
j+1 � �

5��b
2

j
bj�1bjaj

◆

� ⇣�
5��b

2
j

ajbj(bj�1+bj+bj+1 )

⇧j(B, u, B) = ↵3

✓
�

5��b
2

j
b
2
j
aj+1 � �

5��b
2

j�1 aj�1bj�1bj

◆

+ �3

✓
�

5��b
2

j+1 bjbj+1aj+1 � �
5��b

2
j

aj�1b
2
j

◆

+ ⇣�
5��b

2
j

ajbj(bj�1+bj+bj+1 )

for some constants ↵3,�3 and ⇣ . The constants in ⇧j(B, B, u) and
⇧j(B, u, B) are chosen the same to ensure the conservation of the
total energy ku(t)k2

L2
+ kB(t)k2

L2
.

Finally, the energy balance of kuj(t)k2
L2

and kBj(t)k2
L2

and the
approximation of the flux terms give rise to the approximating
shell model of the Hall-MHD,
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✓
�

5��b
2

j+1 aj+1bj+1 � �
5��b

2
j

ajbj�1

◆

� ↵3

✓
�

5��b
2

j
bjaj+1 � �

5��b
2

j�1 aj�1bj�1

◆

� �3

✓
�

5��b
2

j+1 bj+1aj+1 � �
5��b

2
j

aj�1bj

◆

� ⇣�
5��b

2
j

aj(bj�1 + bj + bj+1)+ di↵4

✓
�

7��b
2

j
bjbj+1 � �

7��b
2

j�1 b
2
j�1

◆

+ di�4

✓
�

7��b
2

j
b
2
j+1 � �

7��b
2

j�1 bjbj�1

◆
+ µ�2

j
bj = 0.

(3.13)

Remark 3.1. We point out that the approximating system
(3.12)–(3.13) with ⌫ = µ = 0 conserves the total energyP

j��1(a
2
j
+b

2
j
). The total energy is also conserved for the system

with: (i) ↵k = 0 for 1  4, in which case the dyadic model is
the Obukov type associated with backward energy cascade; and
(ii) �k = 0 for 1  4, in which case the dyadic model is the
KP type with forward energy cascade mechanism. When ⇣ = 0,
the system is more symmetric in the view of the nonlinear terms
B · rB and B · ru. When di = 0, (3.12)–(3.13) is a dyadic model
for the usual MHD.

Remark 3.2. A dyadic model with �u  �b can be derived in the
same vein by using (3.6) instead of (3.9) under the assumption

4
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that the velocity field is more intermittent. We will not get into
details here.

3.4. A special case of Hall MHD with forward energy cascade

In the rest of the paper, attention will be on a particular form
of the dyadic model (3.12)–(3.13) with ↵k = 1 and �k = 0 for
1  4, ⇣ = 0, and �u = �b =: �, i.e.

d

dt
aj = � ⌫�2

j
aj � �✓

j
ajaj+1 + �✓

j�1a
2
j�1 + �✓

j
bjbj+1 � �✓

j�1b
2
j�1,

d

dt
bj = � µ�2

j
bj � �✓

j
ajbj+1 + �✓

j
bjaj+1

� di

�
�✓+1
j

bjbj+1 � �✓+1
j�1 b

2
j�1
�

(3.14)

with ✓ = 5��
2 . By convention, we take a0 = b0 = 0.

4. Notions of solutions

Although dyadic models are systems of ODEs, we introduce
notions of weak solutions and strong solutions for them by mim-
icking those for PDE systems. We start with some functional
setting. Denote H = l

2 endowed with the standard scalar product
and norm,

(u, v) :=
1X

n=1

unvn, |u| :=
p
(u, u).

Let � > 1 be a constant (a conventional choice is � = 2) and
denote �n = �n. Define H

s to be the space endowed with the
scaler product

(u, v)s :=
1X

n=1

�2s
n
unvn

and the norm

kuks :=
p
(u, u)s.

We regard H as the energy space and H
1 the enstrophy space for

the shell models with diffusion terms in the form �2
n
un. Strong

distance ds and weak distance dw are defined on H as follows,

ds(u, v) := |u � v|, dw(u, v) :=
1X

n=1

1
2n2

|un � vn|
1+ |un � vn|

, u, v 2 H.

A weak topology on any bounded subset of H is generated by dw.
We define the functional space

C([0, T ];Hw) := {u(·) : [0, T ] ! H, un(t) is continuous for all n}
equipped with the distance

dC([0,T ];Hw)(u, v) := sup
t2[0,T ]

dw(u(t), v(t)).

We also define

C([0,1);Hw) := {u(·) : [0,1) ! H, un(t) is continuous for all n}
endowed with the distance

dC([0,1);Hw) :=
X

T2N

1
2T

sup{dC([0,T ];Hw)(u(t), v(t)) : 0  t  T }
1+ sup{dC([0,T ];Hw)(u(t), v(t)) : 0  t  T } .

We are ready to introduce the notions of solutions for the
dyadic model system (3.14). Solutions for the general system
(3.12)–(3.13) with other values of coefficient parameters can be
defined analogously.

Definition 4.1. A pair of H-valued functions (a(t), b(t)) defined on
[t0,1) is said to be a weak solution of (3.14) if aj and bj satisfy
(3.14) and aj, bj 2 C

1([t0,1)) for all j � 0.

Definition 4.2. A solution (a(t), b(t)) of (3.14) is strong on [T1, T2]
if kak1 and kbk1 are bounded on [T1, T2]. A solution is strong on
[T1,1) if it is strong on every interval [T1, T2] for any T2 > T1.

Definition 4.3. A Leray–Hopf solution (a(t), b(t)) of (3.14) on
[t0,1) is a weak solution satisfying the energy inequality

|a(t)|2 + |b(t)|2 + 2⌫
Z

t

t1

ka(⌧ )k1 d⌧ + 2µ
Z

t

t1

kb(⌧ )k1 d⌧

 |a(t1)|2 + |b(t1)|2

for all t0  t1  t and a.e. t1 2 [t0,1).

5. Existence of weak solutions

The Galerkin approximating method will be adapted to show
the existence of Leray–Hopf solutions to the dyadic model (3.14).
The first step is to establish the a priori estimate.

Lemma 5.1. Let (a(t), b(t)) be a strong solution of (3.14) with initial

data (a(0), b(0)). It satisfies the following energy law,

1
2

d

dt

�
|a(t)|2 + |b(t)|2

�
+ ⌫ka(t)k2

1 + µkb(t)k2
1 = 0. (5.15)

Moreover, we have

|a(t)|2 + |b(t)|2  e
�2min{⌫,µ}t �|a(0)|2 + |b(0)|2

�
, (5.16)

Z
t

0

�
⌫ka(⌧ )k2

1 + µkb(⌧ )k2
1
�
d⌧  1

2
�
|a(0)|2 + |b(0)|2

�
. (5.17)

Proof. Multiplying the first equation in (3.14) by aj and taking
sum over j yields

1
2

d

dt

1X

j=1

a
2
j
(t)+ ⌫

1X

j=1

�2
j
a
2
j
(t) =

1X

j=1

�✓
j
ajbjbj+1 �

1X

j=1

�✓
j�1b

2
j�1aj

(5.18)

by noticing that
1X

j=1

�✓
j�1a

2
j�1aj �

1X

j=1

�✓
j
a
2
j
aj+1 = 0.

Similar operations on the second equation of (3.14) give rise to

1
2

d

dt

1X

j=1

b
2
j
(t)+ µ

1X

j=1

�2
j
b
2
j
(t) =

1X

j=1

�✓
j
b
2
j
aj+1 �

1X

j=1

�✓
j�1ajbjbj+1

(5.19)

where we used the fact

di

0

@
1X

j=1

�✓+1
j�1 b

2
j�1bj �

1X

j=1

�✓+1
j

b
2
j
bj+1

1

A = 0.

It is clear that the right hand side of (5.18) cancels the right hand
side of (5.19). Obviously, (5.15) is obtained by adding (5.18) and
(5.19). The inequality (5.16) follows immediately from (5.15) and
Grönwall’s inequality; (5.17) is also an immediate consequence of
(5.15). ⇤

The approximating and convergence scheme of Galerkin then
leads to the existence of Leray–Hopf solutions.

5
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Theorem 5.2. There exists a Leray–Hopf solution (a(t), b(t)) to

(3.14) on [0,1) for any given initial data (a0, b0) 2 H ⇥ H with

(a0, b0) = (a(0), b(0)).

Proof. Consider

a
k(t) = (ak1(t), a

k

2(t), . . . , a
k

k
(t), 0, 0, . . .)

b
k(t) = (bk1(t), b

k

2(t), . . . , b
k

k
(t), 0, 0, . . .)

with

a
k(0) = (a01, a

0
2, . . . , a

0
k
, 0, 0, . . .) and

b
k(0) = (b01, b

0
2, . . . , b

0
k
, 0, 0, . . .)

satisfying the system

d

dt
a
k

j
= � ⌫�2

j
a
k

j
� �✓

j
a
k

j
a
k

j+1 + �✓
j�1(a

k

j�1)
2

+ �✓
j
b
k

j
b
k

j+1 � �✓
j�1(b

k

j�1)
2, 1  j  k � 1,

d

dt
b
k

j
= � µ�2

j
b
k

j
� �✓

j
a
k

j
b
k

j+1 + �✓
j
b
k

j
a
k

j+1

� di

�
�✓+1
j

b
k

j
b
k

j+1 � �✓+1
j�1 (b

k

j�1)
2� , 1  j  k � 1,

d

dt
a
k

k
= � ⌫�2

k
a
k

k
+ �✓

k�1(a
k

k�1)
2 � �✓

k�1(b
k

k�1)
2,

d

dt
b
k

k
= � µ�2

k
b
k

k
+ di�

✓+1
k�1 (b

k

k�1)
2,

(5.20)

with a
k

0 = b
k

0 = 0. It is clear that (ak(t), bk(t)) satisfies the a priori

energy estimate

|ak(t)|2 + |bk(t)|2  e
�2min{⌫,µ}t

⇣
|a0|2 + |b0|2

⌘
. (5.21)

Therefore, there exists a unique solution (ak(t), bk(t)) to the ODE
system (5.20) on [0,1).

Next, we apply Ascoli–Arzela theorem to show that a subse-
quence of {(ak(t), bk(t))} converges to a limit pair of functions. The
energy estimate (5.21) implies that for some constant M > 0

|ak
j
(t)|  M, |bk

j
(t)|  M, 8j, k, t � 0.

As a consequence, we deduce from (5.20)

|ak
j
(t) � a

k

j
(s)|

=
����

Z
t

s

�⌫�2
j
a
k

j
� �✓

j
a
k

j
a
k

j+1 + �✓
j�1(a

k

j�1)
2

+�✓
j
b
k

j
b
k

j+1 � �✓
j�1(b

k

j�1)
2
d⌧

����


�
⌫�2

j
M + 2�✓

j�1M
2 + 2�✓

j
M

2� |t � s|
for all j, k, t, s � 0. Similarly, we have

|bk
j
(t) � b

k

j
(s)| 

�
µ�2

j
M + 2�✓

j
M

2 + 2di�✓+1
j

M
2� |t � s|

for all j, k, t, s � 0. It then follows that

dw
�
a
k(t), ak(s)

�
=

1X

j=1

1
2j2

|ak
j
(t) � a

k

j
(s)|

1+ |ak
j
(t) � a

k

j
(s)|


1X

j=1

|ak
j
(t) � a

k

j
(s)|

2j2

|t � s|
kX

j=1

1
2j2

�
⌫�2

j
M + 2�✓

j�1M
2 + 2�✓

j
M

2�

c|t � s|

for a constant c independent of k. Similarly, the estimate

dw
�
b
k(t), bk(s)

�
 c|t � s|

holds for an absolute constant c as well. Thus, the sequence
{(ak(t), bk(t))} is equicontinuous on C([0,1);Hw)⇥C([0,1);Hw).
It follows from the Ascoli–Arzela theorem that {(ak(t), bk(t))} is
compact on C([0, T ];Hw)⇥C([0, T ];Hw) for any T > 0 and hence
compact on C([0,1);Hw)⇥C([0,1);Hw). Therefore, there exists
at least a subsequence {(aki (t), bki (t))} that converges to a limit
pair (a(t), b(t)) of weakly continuous H-valued functions, i.e.

a
ki ! a, b

ki ! b, as ki ! 1 in C([0,1);Hw).

We then show that the limit (a(t), b(t)) is a solution of (3.14).
Indeed, the components converge pointwisely, i.e.

a
ki

j
(t) ! aj(t), b

ki

j
(t) ! bj(t), as ki ! 1, for all j, t � 0.

It follows that a(0) = a
0 and b(0) = b

0. Moreover, we have

a
ki

j
(t) = a

ki

j
(0)+

Z
t

0
(�⌫�2

j
a
ki

j
� �✓

j
a
ki

j
a
ki

j+1 + �✓
j�1(a

ki

j�1)
2 + �✓

j
b
ki

j
b
ki

j+1

� �✓
j�1(b

ki

j�1)
2) d⌧

b
ki

j
(t) = b

ki

j
(0)+

Z
t

0

⇣
�µ�2

j
b
ki

j
� �✓

j
a
ki

j
b
ki

j+1 + �✓
j
b
ki

j
a
ki

j+1

� di

⇣
�✓+1
j

b
ki

j
b
ki

j+1 � �✓+1
j�1 (b

ki

j�1)
2
⌘⌘

d⌧

for j  ki � 1. Taking the limit ki ! 1 yields

aj(t) = aj(0)+Z
t

0
(�⌫�2

j
aj � �✓

j
ajaj+1 + �✓

j�1(aj�1)2 + �✓
j
bjbj+1 � �✓

j�1b
2
j�1) d⌧ ,

bj(t) = bj(0)+Z
t

0

�
�µ�2

j
bj � �✓

j
ajbj+1 + �✓

j
bjaj+1

� di

�
�✓+1
j

bjbj+1 � �✓+1
j�1 b

2
j�1
��

d⌧ .

Thus we have aj, bj 2 C
1([0,1)) since aj and bj are continuous;

and hence (aj, bj) satisfies (3.14) for all j � 1.
In the end, we show that (aj, bj) satisfies the energy inequality.

Indeed, for all ki � 1, (aki (t), bki (t)) satisfies the energy equality

|aki (t)|2 + |bki (t)|2 + 2⌫
Z

t

t0

kaki (⌧ )k2
1 d⌧ + 2µ

Z
t

t0

kbki (⌧ )k2
1 d⌧

= |aki (t0)|2 + |bki (t0)|2

for any t � t0 � 0. It implies that the subsequence {(aki , bki )} is
bounded in L

2([t0, t];H1)⇥ L
2([t0, t];H1). In view of this and the

convergence of the subsequence, we infer
Z

t

t0

|aki (⌧ ) � a(⌧ )|2 d⌧ ! 0 and
Z

t

t0

|bki (⌧ ) � b(⌧ )|2 d⌧ ! 0 as ki ! 1

for any t � t0 � 0. Thus, we have

|aki (t)| ! |a(t)| and |bki (t)| ! |b(t)| as ki ! 1 a.e. in [0,1).

6
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For any t0 � 0 at which the above convergence holds and for any
N � 1, we deduce

|aki (t)|2 + |bki (t)|2 + 2⌫
Z

t

t0

X

jN

�2
j
(aki

j
(⌧ ))2 d⌧

+ 2µ
Z

t

t0

X

jN

�2
j
(bki

j
(⌧ ))2 d⌧

 |aki (t0)|2 + |bki (t0)|2.
As a consequence, the weak convergence of the subsequence
{(aki , bki )} in H for all time t � 0 implies

|a(t)|2 + |b(t)|2 + 2⌫
Z

t

t0

X

jN

�2
j
(aj(⌧ ))2 d⌧

+ 2µ
Z

t

t0

X

jN

�2
j
(bj(⌧ ))2 d⌧

 |a(t0)|2 + |b(t0)|2.
In the end, taking the limit N ! 1 leads to

|a(t)|2 + |b(t)|2 + 2⌫
Z

t

t0

ka(⌧ )k2
1 d⌧ + 2µ

Z
t

t0

kb(⌧ )k2
1 d⌧

 |a(t0)|2 + |b(t0)|2
for any t � t0 � 0 and a.e. t0 on [0,1). It concludes the proof of
the theorem. ⇤

6. Existence of strong solutions

In this section, we show the local existence and global exis-
tence of strong solution for the dyadic model of the Hall-MHD
(and MHD) with different intermittency dimensions.

Theorem 6.1. If � 2 (1, 3], there exists a strong solution (a(t), b(t))
to (3.14) with di > 0 for any initial data (a0, b0) 2 H

1 ⇥ H
1
on

[0, T ] for some T > 0. If � = 3, the strong solution is global, i.e. on

[0,1).

Theorem 6.2. If � 2 [0, 3], there exists a strong solution (a(t), b(t))
to (3.14) with di = 0 for any initial data (a0, b0) 2 H

1 ⇥ H
1
on

[0, T ] for some T > 0. If � 2 [1, 3], the strong solution is global,

i.e. on [0,1).

Remark 6.3. Reflected in the proofs below, in terms of the pa-
rameter ✓ , system (3.14) with di > 0 has a local strong solution
when ✓ < 2 and global strong solution when ✓  1; while the
system with di = 0 has a local strong solution when ✓ < 3 and a
global strong solution when ✓  2.

Remark 6.4. The dyadic system (3.14) is equivalent to

d

dt
aj = � ⌫�̄2↵

j
aj � �̄jajaj+1 + �̄j�1a

2
j�1 + �̄jbjbj+1 � �̄j�1b

2
j�1,

d

dt
bj = � µ�̄2↵

j
bj � �̄jajbj+1 + �̄jbjaj+1

� di

�
�̄↵+1
j

bjbj+1 � �̄↵+1
j�1 b

2
j�1
�

(6.22)

with ↵ = 1/✓ , by rescaling the wavenumber �j = �̄↵
j
. The

system (6.22) can be seen as the dyadic model of the Hall-MHD
system with generalized diffusions (��)↵u and (��)↵B. Based on
Remark 6.3, in the case of di > 0, the system has a local strong
solution for ↵ > 1/2 and a global strong solution for ↵ � 1; when
di = 0, the system has a local strong solution for ↵ > 1/3 and a
global strong solution for ↵ � 1/2.

Proof of Theorem 6.1. It is sufficient to show that the norm
ka(t)k2

1 + kb(t)k2
1 is bounded on some finite time interval [0, T )

in the first case and on [0,1) in the second case. Multiplying the
first equation in (3.14) by �2

j
aj and taking sum over j � 1 gives

rise to

1
2

d

dt

1X

j=1

�2
j
a
2
j
= � ⌫

1X

j=1

�4
j
a
2
j
+

1X

j=1

�
�✓
j�1�

2
j
a
2
j�1aj � �2+✓

j
a
2
j
aj+1

�

+
1X

j=1

�
�2+✓
j

ajbjbj+1 � �✓
j�1�

2
j
b
2
j�1aj

�

=: � ⌫

1X

j=1

�4
j
a
2
j
+ I1 + I2.

Similarly, we obtain

1
2

d

dt

1X

j=1

�2
j
b
2
j
= � µ

1X

j=1

�4
j
b
2
j
+

1X

j=1

�
�2+✓
j

b
2
j
aj+1 � �2+✓

j
ajbjbj+1

�

� di

1X

j=1

�
�2+✓+1
j

b
2
j
bj+1 � �✓+1

j�1 �2
j
b
2
j�1bj

�

=: � µ

1X

j=1

�4
j
b
2
j
+ I3 + I4.

Adding the last two equations gives

1
2

d

dt

�
ka(t)k2

1 + kb(t)k2
1
�
= � ⌫ka(t)k2

2 � µkb(t)k2
2

+ I1 + I2 + I3 + I4.
(6.23)

Next, we estimate the flux terms Ii for 1  i  4. Applying
Hölder’s and Young’s inequality, we obtain

|I1| c max
j�1

���jaj

��
1X

j=1

�1+✓
j

a
2
j

cka(t)k1

1X

j=1

�
✓�1�⌘
j

�
�2
j
aj

�⌘ �
�jaj

�2�⌘

cka(t)k1

0

@
1X

j=1

�4
j
a
2
j

1

A

⌘
2
0

@
1X

j=1

�2
j
a
2
j

1

A

2�⌘
2

1
4
⌫ka(t)k2

2 +
c

⌫
ka(t)k

2(3�⌘)
2�⌘

1

provided that ✓  1+⌘ and 0 < ⌘ < 2. Analogously, we estimate
I2 + I3,

|I2 + I3| =

������

1X

j=1

�
�2+✓
j

b
2
j
aj+1 � �✓

j�1�
2
j
b
2
j�1aj

�
������

c max
j�1

���jaj

��
1X

j=1

�1+✓
j

b
2
j

cka(t)k1

1X

j=1

�
✓�1�⌘
j

�
�2
j
bj

�⌘ �
�jbj

�2�⌘

cka(t)k1kb(t)k⌘
2kb(t)k

2�⌘
1

1
4
µkb(t)k2

2 +
c

µ
ka(t)k

2
2�⌘

1 kb(t)k2
1

7
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for parameters ✓ and ⌘ satisfying the same conditions: ✓  1+ ⌘
and 0 < ⌘ < 2. The flux I4 is estimated as

|I4| cdi max
j�1

���jbj

��
1X

j=1

�✓+2
j

b
2
j

cdikb(t)k1

1X

j=1

�
✓�⌘
j

�
�2
j
bj

�⌘ �
�jbj

�2�⌘

cdikb(t)k1

0

@
1X

j=1

�4
j
b
2
j

1

A

⌘
2
0

@
1X

j=1

�2
j
b
2
j

1

A

2�⌘
2

1
4
µkb(t)k2

2 +
c

diµ
kb(t)k

2(3�⌘)
2�⌘

1

provided that ✓  ⌘ and 0 < ⌘ < 2.
In conclusion of the analysis above, we claim that

d

dt

�
ka(t)k2

1 + kb(t)k2
1
�

 �⌫ka(t)k2
2 � µkb(t)k2

2 +
c

⌫
ka(t)k

2(3�⌘)
2�⌘

1

+ c

µ
ka(t)k

2
2�⌘

1 kb(t)k2
1 +

c

diµ
kb(t)k

2(3�⌘)
2�⌘

1

 �⌫ka(t)k2
2 � µkb(t)k2

2

+ c(⌫, µ, di)
�
ka(t)k2

1 + kb(t)k2
1
� 3�⌘

2�⌘

(6.24)

under the assumptions

✓  ⌘, 0 < ⌘ < 2. (6.25)

It follows from (6.24) that there exists a time T > 0 depending
on ka0k1 and kb0k1 such that

ka(t)k2
1 + kb(t)k2

1

 c(⌫, µ, di, ⌘, ka0k1, kb0k1)
�
ka0k2

1 + kb0k2
1
�
, 8t 2 [0, T ).

In view of (6.25), the estimate holds for all ✓ < 2. Noting ✓ = 5��
2 ,

it corresponds to � 2 (1, 3]. Thus, the first statement of theorem
is justified.

In addition, if ⌘ = 1, (6.24) becomes

d

dt

�
ka(t)k2

1 + kb(t)k2
1
�

 � ⌫ka(t)k2
2 � µkb(t)k2

2

+ c(⌫, µ, di)
�
ka(t)k2

1 + kb(t)k2
1
�2

for ✓  1 which is equivalent to � � 3. It follows from the
inequality above that

ka(t)k2
1 + kb(t)k2

1


�
ka0k2

1 + kb0k2
1
�
exp

⇢
c(⌫, µ, di)

Z
t

0
(ka(⌧ )k2

1 + kb(⌧ )k2
1) d⌧

�

 c(⌫, µ, di, ka0k1, kb0k1)
�
ka0k2

1 + kb0k2
1
�

for any t > 0, where we employed the a priori energy estimate
(5.17). It concludes the second statement of the theorem. ⇤

Proof of Theorem 6.2. In the case di = 0, the flux I4 = 0 holds in
the energy equality (6.23). Therefore, the previous analysis leads
to the estimate
d

dt

�
ka(t)k2

1 + kb(t)k2
1
�

 �⌫ka(t)k2
2 � µkb(t)k2

2 + c(⌫, µ)
�
ka(t)k2

1 + kb(t)k2
1
� 3�⌘

2�⌘

under the assumptions

✓  1+ ⌘, 0 < ⌘ < 2. (6.26)

In analogy with (6.24), the energy estimate above gives rise to a
local upper bound for ka(t)k2

1 + kb(t)k2
1 for any ✓ < 3 thanks

to (6.26). Furthermore, if ⌘ = 1 and hence ✓  2, the norm
ka(t)k2

1+kb(t)k2
1 attains an upper bound globally on [0,1). Again,

since ✓ = 5��
2 , the condition ✓ < 3 yields � > �1 and ✓  2

is equivalent to � � 1. Combining with the fact � 2 [0, 3], the
arguments of the theorem follow immediately. ⇤

7. Blow-up of positive solutions

In this part, we show that positive solution of the Hall MHD
dyadic model (3.14) with large initial data develops blow-up in
finite time provided ✓ > 3 (equivalently � < �1). The main result
is stated below.

Theorem 7.1. Let (a(t), b(t)) be a positive solution to (3.14) with

di > 0 and ✓ > 3. For any � > 0, there exists a constant

M0 such that if ka(0)k2
� + kb(0)k2

� > M
2
0 , then ka(t)k3

1
3 ✓+ 2

3 �
+

kb(t)k3
1
3 (✓+1)+ 2

3 �
is not locally integrable on [0,1).

Proof. We apply a contradiction argument to justify the state-
ment. Noting that it is sufficient to show the statement for
an arbitrarily small � > 0, we fix � 2 (0, ✓ � 3). Suppose
that (a(t), b(t)) is a solution to (3.14) with di > 0 such that
ka(t)k3

1
3 ✓+ 2

3 �
+ kb(t)k3

1
3 (✓+1)+ 2

3 �
is integrable on [0, T ] for any

T > 0. The goal is to show that ka(0)k2
� + kb(0)k2

�  M
2
0 for

a constant M0 dependent on � . To achieve it, we apply another
contradiction argument: assume ka(0)k2

� + kb(0)k2
� > M

2
0 ; show

that a Lyapunov function L(t) satisfies simultaneously that it is
continuous on [0,1) and it blows up in finite time, which of
course forms a contradiction.

The task now is to find a such Lyapunov function L(t). We
consider

L(t) := ka(t)k2
� + kb(t)k2

� + c1

1X

j=1

�
2�
j
aj(t)aj+1(t)

+ c2

1X

j=1

�
2�
j
bj(t)bj+1(t)

(7.27)

for some constants c1 and c2 as defined in (7.55). To limit the
number of parameters, we fix di = 1 in the system (3.14). The
result holds for any di > 0 with rescaled �.

Lemma 7.5 shows that L(t) is continuous on [0,1); while
Lemma 7.6 proves that L(t) blows up in finite time provided
ka(0)k2

� + kb(0)k2
� > M

2
0 with M0 defined by (7.50). In (7.50),

the constant c0 = (�2(✓���3) � 1)1/2; c1, c2 and c3 are defined in
(7.55). ⇤

Theorem 7.2. Let (a(t), b(t)) be a positive solution to (6.22) with

di > 0 and ↵ < 1
3 . For any � > 0, there exists a constant M0 such

that if ka(0)k2
� +kb(0)k2

� > M
2
0 , then ka(t)k3

1
3+�

+kb(t)k3
1
3+�

is not

locally integrable on [0,1).

Proof. Recall �j = �̄↵
j

and ✓ = 1
↵
. The statement follows

automatically from Theorem 7.1 and the scaling relationship. ⇤

Remark 7.3. The shell model of Navier–Stokes equation in [19] is
a special case of (6.22). In [19], it was shown that the NSE shell
model blows up in finite time if ↵ < 1

3 .
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Before establishing Lemmas 7.5 and 7.6, we first show some
auxiliary estimates as follows.

Lemma 7.4. (i) If ✓ > 3 + � , there exists a constant c0 > 0 such

that

1X

j=1

�
2�+✓
j

a
3
j

� c0kak3
�+1,

1X

j=1

�
2�+✓
j

b
3
j

� c0kbk3
�+1.

(ii) The following inequalities

1X

j=1

�
2�+2
j

ajaj+1  ����1kak2
�+1

1X

j=1

�
2�+2
j

bjbj+1  ����1kbk2
�+1

hold.

Proof. Applying Hölder’s inequality, we deduce

kak2
�+1 =

1X

j=1

✓
�

2
3 �+2� 2

3 ✓

j

◆✓
�

2
3 (2�+✓ )
j

a
2
j

◆



0

@
1X

j=1

�
3( 23 �+2� 2

3 ✓ )
j

1

A

1
3
0

@
1X

j=1

�
2�+✓
j

a
3
j

1

A

2
3

.

Let c0 = (�2(✓���3) � 1)1/2. The conclusion of (i) follows from the
assumption ✓ > 3+ � and the inequality above.

The inequalities in (ii) are also obtained from Hölder’s inequal-
ity, for instance,

1X

j=1

�
2�+2
j

ajaj+1 =����1
1X

j=1

⇣
�

�+1
j

aj

⌘⇣
�

�+1
j+1 aj+1

⌘

����1

0

@
1X

j=1

�
2�+2
j

a
2
j

1

A

1
2
0

@
1X

j=1

�
2�+2
j+1 a

2
j+1

1

A

1
2

����1kak2
�+1. ⇤

Lemma 7.5. Let (a(t), b(t)) be a solution to (3.14) with di >
0. Assume ka(t)k3

1
3 ✓+ 2

3 �
+ kb(t)k3

1
3 (✓+1)+ 2

3 �
is locally integrable on

[0,1). Then L(t) is continuous on [0,1).

Proof. We will show that both

E� (t) := ka(t)k2
� + kb(t)k2

�

and

f (t) := c1

1X

j=1

�
2�
j
aj(t)aj+1(t)+ c2

1X

j=1

�
2�
j
bj(t)bj+1(t)

are continuous on [0,1).
Multiplying the first equation of (3.14) by �

2�
j
aj and the second

one by �
2�
j
bj, taking the sum over j � 1, and integrating from 0

to t leads to the energy equation

E� (t) � E� (0)

= �2
Z

t

0
⌫ka(⌧ )k2

�+1

+ µkb(⌧ )k2
�+1 d⌧ + 2(�2� � 1)

Z
t

0

1X

j=1

�
2�+✓
j

a
2
j
aj+1 d⌧

+ 2(�2� � 1)
Z

t

0

1X

j=1

�
2�+✓+1
j

b
2
j
bj+1 d⌧

� 2(�2� � 1)
Z

t

0

1X

j=1

�
2�+✓
j

b
2
j
aj+1 d⌧ .

Since ✓ > 3+ � , it follows that � + 1 < 1
3✓ + 2

3� and hence

ka(t)k2
�+1  ka(t)k2

1
3 ✓+ 2

3 �
, kb(t)k2

�+1  kb(t)k2
1
3 (✓+1)+ 2

3 �
.

Thus the assumption that ka(t)k3
1
3 ✓+ 2

3 �
+kb(t)k3

1
3 (✓+1)+ 2

3 �
is locally

integrable implies ka(t)k2
�+1 and kb(t)k2

�+1 are locally integrable.
On the other hand, we have

1X

j=1

�
2�+✓
j

a
2
j
aj+1 

1X

j=1

�
2�+✓
j

✓
2
3
a
3
j
+ 1

3
a
3
j+1

◆
 2

1X

j=1

�
2�+✓
j

a
3
j

2

0

@
1X

j=1

�
2
3 (2�+✓ )
j

a
2
j

1

A

3
2

= 2kak3
1
3 ✓+ 2

3 �

and similarly
1X

j=1

�
2�+✓+1
j

b
2
j
bj+1  2kbk3

1
3 (✓+1)+ 2

3 �
,

1X

j=1

�
2�+✓
j

b
2
j
aj+1


1X

j=1

�
2�+✓
j

✓
2
3
b
3
j
+ 1

3
a
3
j+1

◆


1X

j=1

�
2�+✓
j

a
3
j
+

1X

j=1

�
2�+✓
j

b
3
j

 kak3
1
3 ✓+ 2

3 �
+ kbk3

1
3 ✓+ 2

3 �
.

Therefore, the assumption of the lemma again impliesP1
j=1 �

2�+✓
j

a
2
j
aj+1,

P1
j=1 �

2�+✓+1
j

b
2
j
bj+1 and

P1
j=1 �

2�+✓
j

b
2
j
aj+1 are

all locally integrable. To summarize, the integrals on the right
hand side of the energy equation are well defined for any t > 0.
As a consequence, the function E� (t) is continuous on [0,1).

Next we will show that the function f is continuous on [0,1).
Denote

fj(t) = c1�
2�
j
aj(t)aj+1(t)+ c2�

2�
j
bj(t)bj+1(t), j � 1

which is automatically continuous by the definition of solution.
For any t0 > 0, we deduce

lim sup
t!t0

|f (t) � f (t0)|

= lim sup
t!t0

������
c1

1X

j=1

�
2�
j
aj(t)aj+1(t) � c1

1X

j=1

�
2�
j
aj(t0)aj+1(t0)

+ c2

1X

j=1

�
2�
j
bj(t)bj+1(t) � c2

1X

j=1

�
2�
j
bj(t0)bj+1(t0)

������

= lim
J!1

lim sup
t!t0

������

J�1X

j=1

fj(t) �
J�1X

j=1

fj(t0)+
1X

j=J

fj(t) �
1X

j=J

fj(t0)

������

 lim
J!1

lim sup
t!t0

J�1X

j=1

��fj(t) � fj(t0)
��

+ lim
J!1

lim sup
t!t0

������

1X

j=J

fj(t) �
1X

j=J

fj(t0)

������
.

(7.28)
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Since fj is continuous for any j � 1, the first limit on the right
hand side of (7.28) vanishes, i.e.

lim
J!1

lim sup
t!t0

J�1X

j=1

��fj(t) � fj(t0)
�� = 0.

On the other hand, it follows from Lemma 7.4(ii) that

0  f (t)  c1ka(t)k2
� + c2kb(t)k2

�  (c1 + c2)E� (t)

Since E� (t) is continuous on [0,1), f (t) is bounded on every
interval [T1, T2], for any T2 > T1 � 0. Thus, the second limit
in (7.28) vanishes as well. Consequently, it indicates that f is
continuous on [0,1). ⇤

Lemma 7.6. Let ✓ > 3 + � and 0 < � ⌧ 1. Assume ka(0)k2
� +

kb(0)k2
� > M

2
0 for a certain constant M0 > 0. The function L(t)

defined in (7.27) is a Lyapunov function and it blows up in finite

time.

Proof. It follows from (3.14) that

d

dt

⇣
�
2�
j
ajaj+1

⌘

= �⌫(1+ �2)�2�+2
j

ajaj+1 + �✓
j�1�

2�
j
a
2
j�1aj+1

+ �
2�+✓
j

bjaj+1bj+1 + �
2�+✓
j

a
3
j
+ �

2�
j

�✓
j+1ajbj+1bj+2

� �
2�+✓
j

aja
2
j+1 � �✓

j�1�
2�
j
b
2
j�1aj+1

� �
2�
j

�✓
j+1ajaj+1aj+2 � �

2�+✓
j

ajb
2
j
,

(7.29)

d

dt

⇣
�
2�
j
bjbj+1

⌘

= �µ(1+ �2)�2�+2
j

bjbj+1 + �
2�+✓
j

bjaj+1bj+1

+ �
2�
j

�✓
j+1bjbj+1aj+2 + �✓+1

j�1 �
2�
j
b
2
j�1bj+1

+ �
2�+✓+1
j

b
3
j
� �

2�+✓
j

ajb
2
j+1 � �

2�
j

�✓
j+1bjaj+1bj+2

� �
2�+✓+1
j

bjb
2
j+1 � �

2�
j

�✓+1
j+1 bjbj+1bj+2.

(7.30)

On the other hand, we have the energy equality

d

dt

�
ka(t)k2

� + kb(t)k2
�

�

= � 2⌫ka(t)k2
�+1 � 2µkb(t)k2

�+1 + 2
1X

j=1

�✓
j�1�

2�
j
a
2
j�1aj

+ 2
1X

j=1

�
2�+✓
j

b
2
j
aj+1 � 2

1X

j=1

�
2�+✓
j

a
2
j
aj+1 � 2

1X

j=1

�✓
j�1�

2�
j
b
2
j�1aj

= � 2⌫ka(t)k2
�+1 � 2µkb(t)k2

�+1 + 2(�2� � 1)
1X

j=1

�
2�+✓
j

a
2
j
aj+1

� 2(�2� � 1)
1X

j=1

�
2�+✓
j

b
2
j
aj+1 + 2(�2� � 1)

1X

j=1

�
2�+✓+1
j

b
2
j
bj+1.

(7.31)

On the right hand side of the equations above, �2�+✓
j

a
3
j
, �2�+✓+1

j
b
3
j
,

�
2�+✓
j

a
2
j
aj+1 and �

2�+✓+1
j

b
2
j
bj+1 are good terms which will be used

to absorb the negatives terms.
For any j � 1, we apply Young’s inequality to the negative

terms and obtain that

�
2�+✓
j

aja
2
j+1 =�� 1

2 (2�+✓ )
✓

�
1
2 (2�+✓ )
j

aja

1
2
j+1

◆✓
�

1
2 (2�+✓ )
j+1 a

3
2
j+1

◆

1
2
�� 1

2 (2�+✓ )�
2�+✓
j+1 a

3
j+1 +

1
2
�� 1

2 (2�+✓ )�
2�+✓
j

a
2
j
aj+1;

(7.32)

�✓
j�1�

2�
j
b
2
j�1aj+1

= �
� 2

3
j

�
2
3 (1+��✓ )

✓
�

2
3 (2�+✓+1)
j�1 b

2
j�1

◆✓
�

1
3 (2�+✓ )
j+1 aj+1

◆

 2
3
�

2
3 (��✓ )�

2�+✓+1
j�1 b

3
j�1 +

1
3
�

2
3 (��✓ )�

2�+✓
j+1 a

3
j+1;

(7.33)

�
2�
j

�✓
j+1ajaj+1aj+2

=
⇣
��2�+ 1

3 ✏(2�+✓ )
⇣
�
2�+✓
j

a
2
j
aj+1

⌘✏⌘✓
�

1
3 (1�2✏)(2�+✓ )
j

a
1�2✏
j

◆

·
✓

�
1
3 (1�✏)(2�+✓ )
j+1 a

1�✏
j+1

◆✓
�

1
3 (2�+✓ )
j+2 aj+2

◆

✏�� 2�
✏ + 1

3 (2�+✓ )�
2�+✓
j

a
2
j
aj+1 +

1
3
(1 � 2✏)�2�+✓

j
a
3
j

+ 1
3
(1 � ✏)�2�+✓

j+1 a
3
j+1 +

1
3
�
2�+✓
j+2 a

3
j+2,

(7.34)

where the constant ✏ 2 (0, 1) will be determined later;

�
2�+✓
j

ajb
2
j
=�

� 2
3

j

✓
�

1
3 (2�+✓ )
j

aj

◆✓
�

2
3 (2�+✓+1)
j

b
2
j

◆

1
3
�� 2

3 �
2�+✓
j

a
3
j
+ 2

3
�� 2

3 �
2�+✓+1
j

b
3
j
;

(7.35)

�
2�+✓
j

ajb
2
j+1 =�

� 2
3

j
�� 2

3 (2�+✓+1)
✓

�
1
3 (2�+✓ )
j

aj

◆✓
�

2
3 (2�+✓+1)
j+1 b

2
j+1

◆

1
3
�� 2

3 (2�+✓+2)�
2�+✓
j

a
3
j
+ 2

3
�� 2

3 (2�+✓+2)�
2�+✓+1
j+1 b

3
j+1;

(7.36)

�
2�
j

�✓
j+1bjaj+1bj+2

= �
� 2

3
j

��2�� 2
3

✓
�

1
3 (2�+✓+1)
j

bj

◆✓
�

1
3 (2�+✓ )
j+1 aj+1

◆✓
�

1
3 (2�+✓+1)
j+2 bj+2

◆

 1
3
��2�� 4

3 �
2�+✓+1
j

b
3
j
+ 1

3
��2�� 4

3 �
2�+✓
j+1 a

3
j+1

+ 1
3
��2�� 4

3 �
2�+✓+1
j+2 b

3
j+2;

(7.37)

�
2�+✓+1
j

bjb
2
j+1

=�� 1
2 (2�+✓+1)

✓
�

1
2 (2�+✓+1)
j

bjb

1
2
j+1

◆✓
�

1
2 (2�+✓+1)
j+1 b

3
2
j+1

◆

1
2
�� 1

2 (2�+✓+1)�
2�+✓+1
j

b
2
j
bj+1 +

1
2
�� 1

2 (2�+✓+1)�
2�+✓+1
j+1 b

3
j+1;

(7.38)

�
2�
j

�✓+1
j+1 bjbj+1bj+2

=
⇣
��2�+ 1

3 ✏(2�+✓+1)
⇣
�
2�+✓+1
j

b
2
j
bj+1

⌘✏⌘✓
�

1
3 (1�2✏)(2�+✓+1)
j

b
1�2✏
j

◆

✓
�

1
3 (1�✏)(2�+✓+1)
j+1 b

1�✏
j+1

◆✓
�

1
3 (2�+✓+1)
j+2 bj+2

◆

✏�� 2�
✏ + 1

3 (2�+✓+1)�
2�+✓+1
j

b
2
j
bj+1 +

1
3
(1 � 2✏)�2�+✓+1

j
b
3
j

+ 1
3
(1 � ✏)�2�+✓+1

j+1 b
3
j+1 +

1
3
�
2�+✓+1
j+2 b

3
j+2;

(7.39)
�
2�+✓
j

b
2
j
aj+1

= �
� 2

3
j

�� 1
3 (2�+✓ )

✓
�

2
3 (2�+✓+1)
j

b
2
j

◆✓
�

1
3 (2�+✓ )
j+1 aj+1

◆

 2
3
�� 1

3 (2�+✓+2)�
2�+✓+1
j

b
3
j
+ 1

3
�� 1

3 (2�+✓+2)�
2�+✓
j+1 a

3
j+1.

(7.40)
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Multiplying (7.29) by c1, taking the sum over j � 1, applying
(7.32)–(7.35) to the resulted equation, and dropping the positive
terms with a

2
j�1aj+1, bjbj+1aj+1 and ajbj+1bj+2, we obtain

d

dt

0

@c1

1X

j=1

�
2�
j
ajaj+1

1

A

� � c1⌫(1+ �2)
1X

j=1

�
2�+2
j

ajaj+1

+ c1

✓
✏ � 1

2
�� 1

2 (2�+✓ ) � 1
3
�

2
3 (��✓ ) � 1

3
�� 2

3

◆ 1X

j=1

�
2�+✓
j

a
3
j

� 2
3
c1

⇣
�

2
3 (��✓ ) + �� 2

3

⌘ 1X

j=1

�
2�+✓+1
j

b
3
j

� c1

✓
✏�� 2�

✏ + 1
3 (2�+✓ ) + 1

2
�� 1

2 (2�+✓ )
◆ 1X

j=1

�
2�+✓
j

a
2
j
aj+1.

(7.41)

Similarly working with (7.30) and applying (7.36)–(7.39) gives
rise to

d

dt

0

@c2

1X

j=1

�
2�
j
bjbj+1

1

A

� �c2µ(1+ �2)
1X

j=1

�
2�+2
j

bjbj+1

+ c2

✓
✏ � 2

3
�� 2

3 (2�+✓+2)

�2
3
��2�� 4

3 � 1
2
�� 1

2 (2�+✓+1)
◆ 1X

j=1

�
2�+✓+1
j

b
3
j

� 1
3
c2

⇣
�� 2

3 (2�+✓+2) + ��2�� 4
3

⌘ 1X

j=1

�
2�+✓
j

a
3
j

� c2

✓
✏�� 2�

✏ + 1
3 (2�+✓+1) + 1

2
�� 1

2 (2�+✓+1)
◆ 1X

j=1

�
2�+✓+1
j

b
2
j
bj+1.

(7.42)

Applying (7.40) to (7.31) yields

d

dt

�
ka(t)k2

� + kb(t)k2
�

�

� �2⌫ka(t)k2
�+1 � 2µkb(t)k2

�+1 + 2(�2� � 1)
1X

j=1

�
2�+✓
j

a
2
j
aj+1

+ 2(�2� � 1)
1X

j=1

�
2�+✓+1
j

b
2
j
bj+1

� 2
3
(�2� � 1)�� 1

3 (2�+✓+2)
1X

j=1

�
2�+✓
j

a
3
j

� 4
3
(�2� � 1)�� 1

3 (2�+✓+2)
1X

j=1

�
2�+✓+1
j

b
3
j
.

(7.43)

Comparing the coefficients of
P1

j=1 �
2�+✓
j

a
3
j
,
P1

j=1 �
2�+✓+1
j

b
3
j
,P1

j=1 �
2�+✓
j

a
2
j
aj+1 and

P1
j=1 �

2�+✓+1
j

b
2
j
bj+1 on the right hand side

of (7.41)–(7.43), we impose the following conditions for a con-
stant c3 > 0 (to be determined later)

c1

✓
✏ � 1

2
�� 1

2 (2�+✓ ) � 1
3
�

2
3 (��✓ ) � 1

3
�� 2

3

◆

� 1
3
c2

⇣
�� 2

3 (2�+✓+2) + ��2�� 4
3

⌘
� 2

3
(�2� � 1)�� 1

3 (2�+✓+2) � c3,

(7.44)

c2

✓
✏ � 2

3
�� 2

3 (2�+✓+2) � 2
3
��2�� 4

3 � 1
2
�� 1

2 (2�+✓+1)
◆

� 2
3
c1

⇣
�

2
3 (��✓ ) + �� 2

3

⌘
� 4

3
(�2� � 1)�� 1

3 (2�+✓+2) � c3,

(7.45)

2(�2� � 1) � c1

✓
✏�� 2�

✏ + 1
3 (2�+✓ ) + 1

2
�� 1

2 (2�+✓ )
◆

� 0, (7.46)

2(�2� � 1) � c2

✓
✏�� 2�

✏ + 1
3 (2�+✓+1) + 1

2
�� 1

2 (2�+✓+1)
◆

� 0. (7.47)

We postpone to show that the parameters chosen in (7.55) satisfy
(7.44)–(7.47). With (7.44)–(7.47) satisfied, adding (7.41)–(7.43)
gives

d

dt
L(t) � � c1⌫(1+ �2)

1X

j=1

�
2�+2
j

ajaj+1

� c2µ(1+ �2)
1X

j=1

�
2�+2
j

bjbj+1

� 2⌫kak2
�+1 � 2µkbk2

�+1 + c3

1X

j=1

�
2�+✓
j

a
3
j

+ c3

1X

j=1

�
2�+✓+1
j

b
3
j
.

(7.48)

In view of the inequalities in Lemma 7.4 and (7.48), we obtain

d

dt
L(t) �

�
�2⌫ � c1⌫(1+ �2)����1� kak2

�+1

+
�
�2µ � c2µ(1+ �2)����1� kbk2

�+1

+ c0c3kak3
�+1 + c0c3kbk3

�+1

� � M1
�
kak2

�+1 + kbk2
�+1

�
+ 1

2
c0c3

�
kak2

�+1 + kbk2
�+1

� 3
2

=
�
kak2

�+1 + kbk2
�+1

� ✓1
2
c0c3

�
kak2

�+1 + kbk2
�+1

� 1
2 � M1

◆

(7.49)

with M1 := 2(⌫ + µ)+ (c1⌫ + c2µ)(1+ �2)����1. Define

M0 :=
4M1

c0c3
(1+ (c1 + c2)����1)

1
2 >

4M1

c0c3
. (7.50)

Thus, the assumption ka(0)k2
� + kb(0)k2

� > M
2
0 implies that

ka(0)k2
�+1 + kb(0)k2

�+1 � ka(0)k2
� + kb(0)k2

� > M
2
0

and hence
1
2
c0c3

�
ka(0)k2

�+1 + kb(0)k2
�+1

� 1
2 � M1

>
1
2
c0c3M0 � M1 > M1 > 0.

It then follows from (7.49) that

d

dt
L(t)

����
t=0

> 0.

Therefore, there exists a small time T > 0 such that

L(t) > L(0), 8t 2 (0, T ].
11
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On the other hand, due to the estimates in Lemma 7.4(ii) and the
definition of L(t), we have for any t � 0

ka(t)k2
� + kb(t)k2

�  L(t)

�
1+ (c1 + c2)����1� �ka(t)k2

� + kb(t)k2
�

�
.

(7.51)

Consequently, on this interval [0, T ], we obtain

L(t) � L(0) � ka(0)k2
� + kb(0)k2

� > M
2
0 .

In view of (7.51), it is also true that for any t � 0

L(t) 
�
1+ (c1 + c2)����1� �ka(t)k2

�+1 + kb(t)k2
�+1

�
(7.52)

since kak�  kak�+1 and kbk�  kbk�+1. Combining the last two
inequalities yields

ka(t)k2
�+1 + kb(t)k2

�+1 � L(t)
1+ (c1 + c2)����1

>
M

2
0

1+ (c1 + c2)����1 , t 2 [0, T ],

and hence we deduce that, on [0, T ]
�
ka(t)k2

�+1 + kb(t)k2
�+1

�
✓
1
2
c0c3

�
ka(t)k2

�+1 + kb(t)k2
�+1

� 1
2 � M1

◆

= 1
4
c0c3

�
ka(t)k2

�+1 + kb(t)k2
�+1

� 3
2

+
�
ka(t)k2

�+1 + kb(t)k2
�+1

�

⇥
✓
1
4
c0c3

�
ka(t)k2

�+1 + kb(t)k2
�+1

� 1
2 � M1

◆

� 1
4
c0c3

�
ka(t)k2

�+1 + kb(t)k2
�+1

� 3
2

+
�
ka(t)k2

�+1 + kb(t)k2
�+1

�

⇥
 
1
4
c0c3

M0

(1+ (c1 + c2)����1)
1
2

� M1

!

� 1
4
c0c3

�
ka(t)k2

�+1 + kb(t)k2
�+1

� 3
2 .

(7.53)

Combining (7.49), (7.53) and (7.52), we obtain
d

dt
L(t) �1

4
c0c3

�
ka(t)k2

�+1 + kb(t)k2
�+1

� 3
2

�1
4
c0c3(1+ (c1 + c2)����1)�

3
2 L

3
2 (t), t 2 [0, T ].

(7.54)

In fact, since L(T ) � L(0) > M
2
0 , we can repeat the process

starting from the new initial time at T and eventually show that
the Riccati type inequality (7.54) holds for all t � 0. Therefore,
L(t) approaches infinity in finite time.

It is left to find appropriate parameters c1, c2, c3, � , and ✓
satisfying (7.44)–(7.46). We first note that ✓ > 3+� , 0 < � ⌧ 1,
and � is typically taken as � � 2. Analyzing the leading order
terms in (7.44)–(7.45), we are led to select ✏ = 2�� 2

3 . Moreover,
we realize that c1 and c2 have to satisfy

c1�
� 2

3 � 5
12

c2�
�2�� 4

3 � 2
3
(�2� � 1)�� 1

3 (2�+✓+2) > 0,

c2�
� 2

3 � 4
5
c1�

� 2
3 � 4

3
(�2� � 1)�� 1

3 (2�+✓+2) > 0.

Combining with the analysis of (7.46)–(7.47), we can take, for
instance

c2 = 1.8c1, c2 =
16
17

(�2� � 1)�
1
3+

2�
✏ � 1

3 (2�+✓ ),

c3 = min{LHS. of (7.44), LHS. of (7.45)}.
(7.55)

One can verify that for such c1, c2, c3 and ✏ = 2�� 2
3 , condi-

tions (7.44)–(7.47) hold for arbitrarily small � > 0 and any

� � 20. Hence the restriction ✓ > 3 + � implies that ✓ > 3.
To ensure the argument holds for any � 2 (1, 20), one can
fine tune the coefficients in (7.32)–(7.40) when applying Hölder’s
inequalities. ⇤
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