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Abstract
In this paper, we introduce a theoretical framework for semi-discrete optimization
using ideas from optimal transport. Our primary motivation is in the field of deep
learning, and specifically in the task of neural architecture search. With this aim in
mind, we discuss the geometric and theoretical motivation for new techniques for
neural architecture search [in the companion work (García-Trillos et al. in Traditional
and accelerated gradient descent for neural architecture search, 2021); we show that
algorithms inspired by our framework are competitive with contemporaneous meth-
ods]. We introduce a Riemannian like metric on the space of probability measures
over a semi-discrete space R

d × G where G is a finite weighted graph. With such
Riemannian structure in hand, we derive formal expressions for the gradient flow of a
relative entropy functional, as well as second-order dynamics for the optimization of
said energy. Then, with the aim of providing a rigorousmotivation for the gradient flow
equations derived formally we also consider an iterative procedure known as mini-
mizing movement scheme (i.e., Implicit Euler scheme, or JKO scheme) and apply it to
the relative entropy with respect to a suitable cost function. For some specific choices
of metric and cost, we rigorously show that the minimizing movement scheme of the
relative entropy functional converges to the gradient flow process provided by the
formal Riemannian structure. This flow coincides with a system of reaction–diffusion
equations on Rd .
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1 Introduction

Let (G, K ) be a weighted graph over the finite set G and consider the semi-discrete
space Rd × G; the function K : G × G → [0,∞) is assumed to be symmetric. In this
paper, we study, from geometric and variational perspectives, the system of reaction
diffusion PDEs:

∂t ft (x, g) = �x ft (x, g)+ divx ( ft (x, g)∇x V (x, g))

+
∑

g′∈G

[
log ft (x, g)+ V (x, g)− (log ft (x, g

′)+ V (x, g′))
]
K (g, g′)θx,g,g′

( ft (x, g), ft (x, g
′)),

(1.1)
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for g ∈ G. In the above, V : R
d × G → R is a potential function defined on

the semi-discrete space R
d × G. The function ft , i.e., the solution to the system

of PDEs, is a function from R
d × G into R (alternatively, ft can be thought of as

a collection of real valued functions on R
d indexed by G), and can be interpreted

as the density of a probability distribution on R
d × G. Finally, the mobility function

θx,g,g′ : [0,∞)×[0,∞) → [0,∞) serves as “interpolator" for themasses at the points
(x, g) and (x, g′) and in general dictates the rate at which mass can be exchanged
between nodes in G.

In the first part of the paper, we provide a geometric interpretation of system (1.1)
by casting it as a formal gradient flow of a relative entropy functional defined on the
space P(Rd × G) of probability measures on R

d × G with respect to an appropriate
semi-discrete optimal transport metric; this optimal transport metric is reminiscent to
the Wasserstein metric in Euclidean space in its dynamic form. While the geometric
interpretation that we study here is largely formal, the framework that we introduce is
quite rich and allows us to give formal definitions of geodesic equations and second-
order dynamics in the space P(Rd × G).

The second perspective that we take has a variational flavor. We introduce a static
optimal transport problem that serves as cost function in a minimizing movement
scheme (a.k.a. JKO scheme) for the relative entropy functional E . Then, we rigorously
show that for a mobility that is independent of the masses to be interpolated (i.e.,
θx,g,g′ does not depend on ft (x, g) and ft (x, g′)), system (1.1) can be recovered as
the limit of the minimizing movement scheme as the time discretization converges to
zero; see Theorem 2.14 for a precise statement.

Regardless of the perspective taken, the main conceptual insight stemming from
our work is that the system of equations (1.1) can be interpreted as a gradient flow of
relative entropy in the space of probabilitymeasuresP(Rd×G).What interests us from
this interpretation is that it allows us to motivate new schemes for the optimization
of an objective function of the form V : Rd × G → R, with applications in machine
learning such as neural architecture search in mind (see the discussion in Sect. 7). The
discussion in the next section in the familiar Euclidean setting will help us motivate
the prospects of using semi-discrete optimal transport for semi-discrete optimization;
we also motivate the theoretical results that we seek in this paper by providing a
brief historical background on gradient flows in the space of probability measures.
Our companion paper (Trillos et al. 2021) discusses more concretely how part of the
theoretical framework presented in this work can be used to define scalable neural
architecture search algorithms.

1.1 Motivation from Euclidean Space: Otto Calculus inP(Rd)

Consider an optimization problem on R
d of the form

min
x∈Rd

V (x),
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where for the sake of exposition V is assumed to be a nice enough differentiable
function. Let us consider the following dynamics on the state space Rd :

{
dx(t) = −∇x V (x(t))dt, t > 0

x(0) = x0,
(1.2)

{
dx(t) = −∇x V (x(t))dt +

√
η

2 dBt , t > 0

x(0) = x0,
(1.3)

The usual calculation in normal coordinates at x yields:

∫

M
η

(
dM(x, y)

ε

)
(ρ(x)− ρ(y)) dVolM(y)

= εm
∫

B(0,1)⊂TxM
η(|w|)(ε〈∇ρ(x), w〉 +O(ε2)

)
(1+O(ε2)) dw

= O(εm+2),

for ε � 1 when the integration variable y is close to x ∈M.

{
dx j (t) = −Ct∇x V (x j (t))dt +√2CtdB

j
t , t > 0 j = 1, . . . , J

Ct := 1
J

∑J
j=1(x j (t)− x(t))⊗ (x j (t)− x(t)).

(1.4)

All of the above dynamics can be interpreted as gradient-based continuous time algo-
rithms for the optimization of the function V . (1.2) is gradient descent. (1.3) is gradient
descent with Brownian noise; in principle useful to help gradient descent scape local
minima. (1.4) is a preconditionedgradient descentwith noise. In (1.4)multiple interact-
ing particles are used to define the preconditioning matrix Ct (in this case the running
covariance matrix associated to the particles). Besides being used for the optimization
of the objective V defined onRd , Eqs. (1.2), (1.3) and (1.4) share a common underlying
structure: they can be associated to certain gradient flows in the space of probability
measures P(Rd) when endowed with an appropriate optimal transport cost. In what
follows we revisit this connection for (1.3) (notice that while degenerate, (1.2) can be
seen as a special case of (1.3)) and refer the interested reader to Garbuno-Inigo et al.
(2019) for details on how to interpret (1.4).

It is well known that the law of the process x(t) in (1.3) denoted μt solves a
Fokker–Planck equation of the form:

μ̇t − divx (μt∇x V )− η�x (μt ) = 0, t > 0, (1.5)

with initial datum μ0, where in the above divx is the divergence operator in R
d , ∇x

the gradient operator, and�x the Laplacian operator�x := divx ◦∇x . In general, Eq.
(1.5) must be interpreted in weak form.

Mathematicians and physicists have studied Fokker–Planck equations for decades,
and more recently, the seminal work of Jordan et al. (1998) has provided a gradient
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flow interpretation for these equations. This interpretation uses the setting of gradient
flows in the space of probability measures endowed with the Wasserstein distance.
To be more precise let us first recall the definition of the Wasserstein distance with
quadratic cost for a pair of probability measures μ, ν ∈ P2(R

d) (i.e., probability
measures with finite second moments):

W2(μ, ν)2 := min
π∈
(μ,ν)

∫

Rd×Rd
|x − y|2dπ(x, y), (1.6)

where 
(μ, ν) is the set of couplings between μ and ν. The above definition can be
thought of as describing a static optimal transport problem, where one seeks for an
optimal assignment of sources and targets of mass without specifying how said trans-
port is actually realized dynamically in time. An alternative dynamic reformulation
due to Benamou and Brenier (2000) states that

W2(μ, ν)2 = inf
t∈[0,1]�→(μt ,∇xϕt )

∫ 1

0

∫

Rd
|∇xϕt |2dμtdt,

where the minimum is taken over all solutions (μt ,∇xϕt ) to the continuity equation

μ̇t + div(μt∇xϕt ) = 0, (1.7)

with μ0 = μ and μ1 = ν. The Benamou–Brenier reformulation highlights the oth-
erwise unclear dynamic nature of the optimal transport problem (1.6) and it reveals
a deeper geometric structure that we now discuss. First, solutions to the continuity
equation t ∈ [0, 1] �→ (μt ,∇xϕt ) which represent the different ways in which one
can dynamically transport mass from μ0 to μ1 can be mathematically interpreted as
curves in the space of probability measures. Here, μt specifies the location of a par-
ticle at time t while the potential ϕt : Rd → R is interpreted as “tangent vector"
characterizing an allowed infinitesimal change to the location μt . Second, the objec-
tive function in the Benamou–Brenier problem can be interpreted as the “length" of a
given curve (in this case a kinetic energy). A formal Riemannian metric tensor 〈·, ·〉μ
can be defined according to:

〈ϕ, ϕ′〉μ :=
∫

Rd
∇xϕ · ∇xϕ

′dμ

for any two potentials ϕ, ϕ′ : Rd → R (i.e., any two tangent vectors at μ). From
the above discussion one can now see that the Wasserstein distance corresponds to
the geodesic distance associated to the above formal metric tensor, and reveals that
the metric space (P2(R

d),W2) can be treated (at least formally) as a Riemannian
manifold.
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Now, seeing (P2(R
d),W2) as a formal Riemannian manifold allows one to give a

heuristic definition for the gradient flow of a functional E defined on P2(R
d):

{
μ̇(t) = −∇W2E(μ(t))

μ(0) = μ0.
(1.8)

With the Fokker–Planck equation in (1.5) in mind, let us consider the functional

E(μ) =
∫

Rd
V dμ+ ηH(μ),

where H is the negative Shannon entropy

H(μ) =
{∫

Rd f log f dx if dμ = f (x)dx,

+∞ otherwise .

In the Riemannian formalism, ∇W2E(μ) must be interpreted as a tangent vector to μ

(i.e., a potential) which serves as Riesz representer to themap of directional derivatives
of the energy E . Namely, for an arbitrary curve t �→ μt ∈ P2(R

d)which at time t = 0
passes through μ with tangent vector ϕ one must have

d

dt
E(μt )|t=0 = 〈∇W2E(μ), ϕ〉μ.

The set of heuristic computations used to determine the gradient ∇W2E(μ) from the
above formula is nowadays widely known as Otto Calculus (see chapter 15 in Villani
2009), and in the case of the relative entropy it gives the formula:

−∇W2E(μ) = −V − η log f ,

for every dμ = f (x)dx; a similar computation will be presented in more detail in
Sect. 2.3 for the semi-discrete setting explored here. Plugging the above potential
back in the continuity equation, we recover the Fokker–Planck equation (1.5). In
other words, through heuristic arguments from Riemannian geometry that rely on the
geometric structure of the optimal transport distance W2, the dynamics (1.3) used for
optimization of V can be lifted to the space P2(R

d) where one can give a gradient
flow interpretation.

There is a second way of motivating an interpretation of (1.8) which coincides with
the one coming from the Riemannian formalism. To discuss this alternative let us first
consider a more general setting and let us assume that M is an arbitrary topological
space, E : M → (−∞,∞] is an objective function to optimize, C : M ×M →
[0,∞) is a driving cost function, and τ > 0 is a time step. One can then consider the
minimizing movement scheme (also known as JKO scheme)

μk+1 ∈ argminμ∈M E(μ)+ 1

2τ
C(μk, μ)2, (1.9)
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as a discrete time scheme for optimization.
Under suitable conditions, in the limit τ → 0 iterates (1.9) define a function in

time describing what one can refer to as a “gradient flow of E” with respect to the
cost function C . Notice that whenM = R

d and C is the Euclidean metric, the above
scheme is essentially the variational formulation of implicit Euler iterates (i.e., the
computation of a proximal operator for the function E).

When M = P2(R
d), C is the Wasserstein distance W2, and E = E is the relative

entropy, the iteratesμ0, μ1, . . . , μk, . . . (whereμ0 is assumed to satisfy E(μ0) <∞)
defined recursively by the JKO scheme, i.e.,

μk+1 ∈ argminμ∈P2(Rd ) E(μ)+ 1

2τ
W 2

2 (μk, μ), (1.10)

can be shown to converge as τ → 0, to a solution of the Fokker–Planck equation (1.5)
(see Jordan et al. 1998). Historically, the JKO scheme (1.10) was the first approach
used to give a “gradient flow" interpretation to the Fokker–Planck equation (1.5). In
more generality, evolution equations of the form

μ̇t = divx

(
∇xμt + μt∇x V + μt (∇xU ∗ μt

))
,

are limits of the JKO scheme (1.9) for appropriate functionals defined on P2(R
d)

using theWasserstein distance as cost function. The gradient flow interpretation via the
minimizing movement scheme allows one to prove entropy estimates and functional
inequalities (see Villani 2009 for more details on this area, which is still very active
and in constant evolution).

The minimization problem can be stated in a Lagrangian form as the problem of
finding

μk+1 ∈ argminμ∈P2(Rd ) E(μ)+Aτ (μk, μ), (1.11)

whereAτ (μk, μ) denotes the action of the curve in the tangent bundle of (P2(R
d),W2)

with minimal kinetic energy connecting μk and μ in τ units of time.
In summary, the gradient-based dynamics (1.3) used for optimization of an objective

V defined on the state space Rd are closely linked to a gradient flow on the space of
probability measures P(Rd). This gradient flow can be motivated using either the
formal Riemannian structure that the dynamic formulation of optimal transport has,
or the minimizing movement scheme with driving cost taken to be the Wasserstein
distance (given that the two interpretations coincide).

1.2 Outline

We organize the rest of the paper as follows. In Sect. 2, we introduce the main objects
studied in the paper and state our main results precisely. We start in Sect. 2.1 introduc-
ing the basic analytical objects on graphs used throughout the paper. In Sect. 2.2, we
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introduce a family of distances on the space of probability measures overRd×G based
on a dynamic formulation of optimal transport. We highlight the formal Riemannian
structure of the metric introduced and explore the connections between our definition
and the literature on discrete optimal transport. In Sect. 2.3, we use the Riemannian
formalism from Sect. 2.2 in order to motivate a definition for the gradient flow of a
relative entropy energy closely related to the objective function in the semi-discrete
optimization problem of interest. In Sect. 2.4, we use the Riemannian formalism once
again and motivate a method for optimization of the relative entropy. In Sect. 2.5,
we provide concrete theoretical support for the formal definitions and computations
presented in the earlier sections. In particular, we state our main theoretical result,
which establishes a connection between the formal definitions from Sect. 2.3 and
the minimizing movement scheme discussed in the introduction. To realize the JKO
scheme, we introduce a new cost that can be interpreted as a static semi-discrete
optimal transport cost.

Section 3 explores metric and geometric properties of the transport distances
introduced in Sect. 2.2 (i.e., the dynamic semi-discrete transport problems). More
specifically, in Sect. 3.1 we prove that these “distances” are indeed metrics. Section
3.2 aims at providing concrete and rigorous support for the heuristic discussion in
Sect. 2.2. The discussion in this section motivates more concretely (and rigorously)
the characterization of tangent planes of the space of probabilitymeasures overRd×G.
Section 3.3 presents some heuristic computations justifying the definition of the accel-
erated method for optimization presented in Sect. 2.4.

Section 4 studies the static semi-discrete transport problem introduced in Sect. 2.5.
This section is used later on in the paper, but is also of independent interest. We estab-
lish a characterization for solutions to the static semi-discrete optimal transportation
problem that is analogous to the celebrated result by Brenier characterizing solutions
to the quadratic (Euclidean) optimal transport problem.

Section 5 studies properties of the variational problem used to define the JKO
scheme relative to the static semi-discrete cost. We provide a full characterization of
solutions to this variational problem. We also establish a maximum principle that is
characteristic of Fokker–Plank equations.

In Sect. 6, we put together the results proved in Sects. 4 and 5 and prove our main
theoretical result Theorem 2.14, i.e., we show the convergence of the JKO scheme
proposed in Sect. 2.5.

We wrap up the paper in Sect. 7 where we provide some conclusions, perspective
on future research directions, and discussion on some of the applications in machine
learning that have motivated this work.

Note Throughout the paper, some computations will be carried out at a formal level.
One of our aims is to stress the importance of the intuition emanating from the formal
Riemannian structure that the dynamic formulation of optimal transport has. After all,
it is this Riemannian formalism that motivates the algorithms that are implemented in
our companion paper (Trillos et al. 2021) for the purposes of neural architecture search
(including accelerated methods). The formal computations (or heuristic arguments)
that we present here are, for the most part, accompanied by rigorous counterparts.
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2 Semi-discrete Optimal Transport and Gradient Flows

2.1 Some Differential Operators on Graphs

In this section, we introduce the discrete differential operators that will later be used
to introduce a semi-discrete optimal transport problem on Rd × G.

Throughout the paper, we assume that (G, K ) is connected, meaning that for every
g, g′ ∈ G, there exists a path g0, . . . , gm ∈ G with g0 = g, gm = g′ and K (gl , gl+1) >

0 for every l = 0, . . . ,m − 1.
Given a function φ : G → R, we define its discrete gradient as the function

∇gφ : G × G → R

∇gφ(g, g′) := φ(g′)− φ(g).

We use the subscript g in ∇g to distinguish the discrete gradient from the gradient of a
function defined on Rd (where we use the notation ∇x ). This distinction will become
important later on when we consider functions φ : Rd × G → R for which we can
compute its gradient ∇x as well as its discrete gradient ∇g .

Given a function h : G×G → R (i.e., a discrete vector field), we define its discrete
divergence as the function divgh : G → R defined by

divg h(g) :=
∑

g′
(h(g, g′)− h(g′, g))K (g, g′).

Discrete gradients and discrete divergences are related to each other via a discrete
integration by parts formula. Namely, a straightforward computation shows that for
every h : G × G → R and φ : G → R it holds

∑

g

divg(h)(g)φ(g) = −
∑

g,g′
h(g, g′)∇gφ(g, g′)K (g, g′). (2.1)

In particular if h is of the form h = ∇gψ · S (where · is interpreted as a coordinate
wise product) for some S : G × G → R, then

∑

g

divg(∇gψ · S)(g)φ(g) = −
∑

g,g′
∇gφ · ∇gψS(g, g′)K (g, g′). (2.2)

In the remainder, we use the following result establishing existence and uniqueness
of solutions to elliptic graph PDEs.

Proposition 2.1 Suppose that the graph (G, K ) is connected. Let φ : G → R be such
that

∑

g

φ(g) = 0,
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and let S : G×G → [0,∞) be a symmetric functionwhich is strictly positive whenever
K (g, g′) > 0. Then, there exists a unique solution η : G → R to the graph PDE

divg(∇gη · S) = φ (2.3)

satisfying

∑

g

η(g) = 0.

Moreover,

∑

g,g′
|∇gη(g, g′)|2S(g, g′)K (g, g′) ≤ 1

λS

∑

g

|φ(g)|2,

where λS represents the first nonzero eigenvalue of the graph Laplacian matrix LS

with entries:

LS(g, g
′) := 1g=g′

∑

g′′
2S(g, g′′)K (g, g′′)− 2S(g, g′)K (g, g′).

Proof The graph PDE can be written in matrix form as

LSη = −φ,

whereφ and η are interpreted as vectorswhose coordinates are indexed by the elements
in G, and where the matrix LS is the (unnormalized) graph Laplacian for a weighted
graph (G, ω) with weights ωg,g′ := 2S(g, g′)K (g, g′)—see Chung (1996) for the
definition of graph Laplacians. The assumptions on S guarantee that the graph (G, ω)

is connected and thus its graph Laplacian LS is a positive semi-definite matrix with
zero eigenvalue of multiplicity one. The assumption on φ guarantees that it belongs
to the orthogonal complement of the null space of LS , and thus is an element of the
range of LS . We conclude that the graph PDE indeed has a unique solution η with
average zero.

Finally, according to (2.2),

∑

g,g′
|∇gη(g, g′)|2S(g, g′)K (g, g′) =

∑

g

−divg(∇gηS)η(g) = −
∑

g

φ(g)η(g)

=
∑

g

LSη(g)η(g),

and thus from Cauchy–Schwarz inequality it follows that

∑

g,g′
|∇gη(g, g′)|2S(g, g′)K (g, g′) ≤

(
∑

g

|φ(g)|2
)1/2 (∑

g

|η(g)|2
)1/2

.
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From the fact that the graph (G, ω) is connected it follows that

∑

g

|η(g)|2 ≤ 1

λS

∑

g

LSη(g)η(g),

where λS is the first nonzero eigenvalue of LS . Combining the above two inequalities,
we obtain the desired result.

��

2.2 A Riemannian Structure for Semi-discrete OT

Let us denote by P2(R
d ×G) the space of Borel probability measures onRd ×G with

finite second moments. In this section we introduce a metricW2 onP2(R
d×G)which

can be formally interpreted as the geodesic distance associated to a formal Riemannian
structure onP2(R

d×G). ViewingP2(R
d×G) as a Riemannian manifold, in Sect. 2.3

we will be able to give a concrete heuristic interpretation for the gradient descent
equation:

{
μ̇(t) = −∇W2E(μ(t))

μ(0) = μ0,
(2.4)

for a conveniently chosen function E on P2(R
d × G) that depends on the objective

function V in (7.1). Here, t �→ μt describes a path in the space P2(R
d × G).

2.2.1 A Dynamic Optimal Transport Problem inP2(R
d × G)

Motivated by the (Euclidean) Otto Calculus discussed in Sect. 1.1, in order to define
an optimal transport problem in the semi-discrete setting, we first introduce an appro-
priate notion of continuity equation. As in the Euclidean case, semi-discrete continuity
equations are used to describe paths in the space P2(R

d × G).
The definition of a semi-discrete continuity equation depends on the choice of a

mobility function θ which in full generality is a function of the form

θ : Rd × G × G × R+ × R+ −→ R+.

In the remainder, we will often write θx,g,g′(s, t) and drop the subscripts when no
confusion may arise from doing so. The mobility function is used to quantify how
easy it is to move mass from a point (x, g) to a point (x, g′) when the amount of
mass at each of these points is s and t respectively. Mobilities as described above are
motivated by the literature on discrete optimal transport. See Chow et al. (2012), Maas
(2011), Mielke (2011) and Mielke (2013)) where discrete optimal transport was first
introduced and Erbar and Maas (2012), Erbar et al. (2016) and Esposito et al. (2019)
for other references where the topic has been developed further. A rigorous passage
to the limit from discrete OT to OT in R

d , at least for certain classes of geometric
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graphs, has been explored in Gigli and Maas (2013), García Trillos (2021), Gladbach
et al. (2020) and Gladbach et al. (2020).

Throughout the paper, wewillmake the following assumptions on θ . These assump-
tions are closely related to those in Erbar andMaas (2012) andMaas (2011) for discrete
OT.

Assumption 2.2 The mobility function θ satisfies either:

(A0) θ is nonzero, does not depend on s, t and satisfies the symmetry condition:
θx,g,g′ is equal to θx,g′,g for all x ∈ R

d , g, g′ ∈ G. In addition, θx,g,g is
uniformly bounded away from zero on compact sets of Rd × G × G.

or all of the following

(A1) Symmetry: θx,g,g′(s, t) = θx,g,g′(t, s) for all s, t .
(A2) Differentiability: The function θx,g,g′(·, ·) is differentiable.
(A3) Monotonicity: θx,g,g′(r , t) ≤ θx,g,g′(s, t) for all r ≤ s and all t .
(A4) Positive homogeneity: θx,g,g′(λs, λt) = λθx,g,g′(s, t) for all λ ≥ 0 and all s, t .
(A5) The quantity

Cx,g,g′ :=
∫ 1

0

1√
θx,g,g′(1− t, t)

dt,

is uniformly bounded above on compact subsets of Rd × G × G, and the
quantity θx,g,g′(1, 1) is uniformly bounded away from zero on compact subsets
of Rd × G × G.

Definition 2.3 In what follows, we consider vt : Rd×G → R
d , ht : Rd×G×G → R

andμt ∈ P2(R
d×G).We say that t ∈ [0, T ] �→ (μt , vt , ht ) satisfies the semi-discrete

continuity equation and write

μ̇t + divx (vtμt )+ divg(htμt ) = 0, (2.5)

if for all smooth test functions ζ ∈ C∞c (Rd×G) (i.e., ζ(·, g) isC∞c (Rd) for all g ∈ G)
we have

d

dt

∫

Rd

∑

g

ζ(x, g)dμt =
∫

Rd

∑

g

∇xζ(x, g) · vt (x, g)dμt

+
∫

Rd

∑

g,g′
∇gζ(x, g, g′)ht (x, g, g′)dμ̂t (x, g, g

′).
(2.6)

In the above expression, for a given μ ∈ P2(R
d × G), we use μ̂ to denote the

measure on R
d × G × G given by

dμ̂(x, g, g′) = θx,g,g′dxdgdg
′
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when θ satisfies (A0) in Assumption 2.2 and

dμ̂(x, g, g′) = θ(μg|x (g), μg|x (g′))dμx (x)dgdg
′.

when θ satisfies (A1)–(A5) instead. Here, μg|x denotes the conditional distribution of
g given x . Also, here and in the remainder dg represents the measure on G that gives
mass one to every element of G.

Remark 2.4 We notice that when μ has a density with respect to dxdg, i.e.,

dμ(x, g) = f (x, g)dxdg,

then

dμ̂(x, g, g′) = θ( f (x, g), f (x, g′))dxdgdg′.

Indeed, this is immediate if θ satisfies (A0) and otherwise follows from the homo-
geneity of the mobility θ , i.e., condition (A4).

Remark 2.5 Let t ∈ [0, T ] �→ (μt , vt , ht ) be a solution to the semi-discrete continuity
equation and suppose that for every t , μt is absolutely continuous with respect to
dxdg and has density ft (x, g). Additionally, suppose that the mappings (t, x, g) �→
f (t, x, g), (t, x, g) �→ vt (x, g, g′) and (t, x, g) �→ ht (x, g, g′) are all smooth. In that
case we can see that for every test function ζ ∈ C∞c (Rd × G) we have

∫

Rd

∑

g

ζ(x, g)
∂

∂t
ft (x, g)dx = d

dt

∫

Rd

∑

g

ζ(x, g)dμt (x, g)

=
∫

Rd

∑

g

∇xζ(x, g) · vt (x, g)dμt

+
∫

Rd

∑

g,g′
∇gζ(x, g, g′)ht (x, g, g′)K (g, g′)θ( ft (x, g), ft (x, g

′))dx

= −
∫

Rd

∑

g

ζdivx (vt ft )dx −
∫

Rd

∑

g

ζdivg(ht · f̂t )dx,

where f̂t (x, g, g′) := θ( ft (x, g), ft (x, g′)). The last equality follows using integra-
tion by parts in x for the first term and in g for the second term (i.e., identity (2.1)).
We conclude that

∂

∂t
ft + divx (vt ft )+ divg (ht f̂ )(x, g) = 0, ∀t, x, g.

which justifies the notation (2.5) used in Definition 2.3.

With the above notion of continuity equation in hand, we are now able to introduce
the following dynamic optimal transport problem.
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Definition 2.6 Let μ0 and μ1 be two elements in P2(R
d × G). We define

W2(μ0, μ1)
2 := inf

t∈[0,1]�→(μt ,∇xφt ,∇gψt )

∫ 1

0

(∫

Rd

∑

g∈G
|∇xφt (x, g)|2dμt (x, g)

+
∫

Rd

∑

g,g′
(∇gψt (x, g, g

′))2K (g, g′)dμ̂t (x, g, g
′)
)
dt,

(2.7)

where the infimum is taken among all solutions to the semi-discrete continuity equation
of the form t ∈ [0, 1] �→ (μt ,∇xφt ,∇gψt ), where φt : Rd × G → R and ψt :
R
d × G → R.

In words,W (μ0, μ1)
2 is obtained byminimizing the total kinetic energy associated

to paths connectingμ0 andμ1. In Sect. 3, we rigorously show thatW2 as defined above
is indeed a metric on the space P2(R

d × G). The precise statement is the following.

Theorem 2.7 Let (G, K ) be a connected weighted graph, where K is a symmetric
weight matrix with nonnegative entries. Suppose that the mobility function θ : Rd ×
G × G × R × R → [0,∞) satisfies Assumptions 2.2. Then, W2 as introduced in
Definition 2.6 is a metric on the space P2(R

d × G).

Remark 2.8 In the above definition, we have introduced the semi-discrete Wasserstein
distance as an optimization problem over a specific class of solutions to the continuity
equation, namely, solutions whose driving vector fields are gradients of potentials. It
is actually possible to show that removing the restriction to this smaller class of vector
fields does not change the definition given. We have introduced W2 in this way for
convenience.

Later on we will show that the class of vector fields can actually be restricted even
further (at least for regular enough measures). In particular the potentials φ andψ may
be taken to be the same. This observation will be useful when interpretingP2(R

d×G)

as a formal Riemannian manifold with geodesic distance that coincides with W2.

Remark 2.9 The definition given in (2.6) is a particular case of the formal definition
given in Mielke (2011). Here, we present some heuristic computations providing a
characterization of tangent planes (see the informal Theorem 2.10 and its rigorous
counterpart in Sect. 3.2), and a formal computation of the acceleration of curves which
in turnmotivates: (1) geodesic equations, and (2) acceleratedmethods for optimization
(see Sects. 2.4 and 3.3).

2.2.2 A Formal Riemannian Structure for (P2(R
d × G),W2)

In differential geometry, when working in the setting of a smooth manifold M, a
tangent vector at a given point q is interpreted as the velocity of a curve in M when
passing through q. The collection of tangent vectors at q, i.e., q’s tangent plane, is
typically denoted by TqM. When M is endowed with a Riemannian structure, one
can compute inner products 〈p, p̃〉q between elements p, p̃ ∈ TqM and introduce a
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notion of distance between points q, q̃ ∈M according to

d(q, q̃)2 := inf
t∈[0,1]�→q(t)

∫ 1

0
〈q̇(t), q̇(t)〉q(t)dt,

where the infimum ranges over all paths connecting q to q̃ .
We now provide some heuristics that motivate how the space (P2(R

d × G),W2)

can actually be interpreted in light of this Riemannian formalism. The first step is an
informal statement that will justify some of the subsequent discussion. A precise (and
rigorous) version will be presented in Sect. 3.2.

Theorem 2.10 Characterization of potentials (informal) Let t → μt , be an arbitrary
curve in P2(R

d × G) with velocity fields generated by the potentials (φt , ψt ). Then,
we can replace the potentials with a pair of the form (ϕt , ϕt ) such that it acts as a
velocity field for the same curve t → μt , and has minimal total kinetic energy.

The above suggests that there is some redundancywhen considering different poten-
tials φ,ψ and actually one may take both potentials to be the same. Indeed, such a
characterization allows us to formally identify the tangent plane at a measure μ in
P2(R

d × G) as:

TμP2(R
d × G) :=

{
ϕ :

∫

Rd×G
|∇xϕ|2dμ(x, g)

+
∫

Rd×G×G
[ϕ(x, g′)− ϕ(x, g)]2K (g, g′)dμ̂(x, g, g′) <∞

}
.

(2.8)

endowed with the inner product:

〈ϕ, ϕ̃〉μ :=
∫

Rd

∑

g

∇xϕ(x, g) · ∇x ϕ̃(x, g)dμ(x, g)

+
∫

Rd

∑

g,g′
∇gϕ · ∇gϕ̃K (g, g′)dμ̂(x, g, g′).

(2.9)

A rigorous definition of the tangent plane is out of the scope of this work. Putting aside
all technicalities, we can observe formally that the semi-discrete Wasserstein distance
W2 from Definition (2.6) can be rewritten as

W 2
2 (μ0, μ1) = inf

∫ 1

0
〈ϕt , ϕt 〉μt dt,

where the inf ranges over solutions to the continuity equation t ∈ [0, 1] �→
(μt ,∇xϕt ,∇gϕt ) connecting μ0 with μ1 (i.e., over paths in P2(R

d ×G), according to
the informal Theorem 2.10): this formula and its interpretation reveal the Riemannian
structure of the metric W2. In the next subsection, we use this Riemannian formalism
to motivate a concrete interpretation for (2.4).
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2.3 Computation of Gradient Flows Using the Riemannian Formalism

In this section, we use the Riemannian formalism for (P2(R
d × G),W2) discussed in

the previous section to motivate a definition for the gradient of a given energy function
E : P2(R

d × G) → R ∪ {∞}, and ultimately give a concrete meaning to the gradient
flow ODE (2.4). Looking forward to our applications, here we will focus on energies
of the form

E(μ) :=
{∫

Rd

∑
g ϑ( f (x, g), x, g) dx if dμ(x, g) = f (x, g) dxdg

+∞ otherwise,
(2.10)

where ϑ : [0,∞)× R
d × G → R is given by

ϑ(r , x, g) := r log r + V (x, g)r .

We think of the function V : Rd × G → R as the objective of the semi-discrete
optimization problem (7.1). Here, we assume for simplicity that V is differentiable in
the x coordinate. Notice that E is a relative entropy and can be written as the sum of
the two terms

E(μ) = H(μ)+
∫

Rd×G
V (x, g)dμ(x, g),

where H denotes the (negative) entropy of μ when the base measure on Rd ×G is the
product measure dxdg. The entropy term H may be multiplied by a positive factor for
generality without that entailing any meaningful changes in the computations below.
This choice of energy is motivated by the discussion presented in Sect. 1.1.

Let us recall that in Riemannian geometry, the gradient of a differentiable function
E : M → R at a point q is defined as a tangent vector ∇ME(q) at q characterized
by: for every smooth curve t ∈ (−ε, ε) �→ q(t) ∈M with q(0) = q,

〈∇ME(q), q̇(0)〉q = d

dt
E(q(t))

∣∣∣∣
t=0

.

In words, the above means that the gradient of a given function E at a given point q
on the Riemannian manifoldM serves as Riesz representer (with respect to the inner
product at that point) for the map of directional derivatives of the function E at the
point q.

Using the above discussion as motivation, we notice that for arbitraryμ ∈ P2(R
d×

G) such that E(μ) <∞, the gradient of E (with respect to W2) at the point μ must be
interpreted as a potential ϕμ. Our goal is to identify ϕμ. In order to achieve this, we
consider t ∈ (−ε, ε) �→ (μt ,∇xψt ,∇gψt ) an arbitrary curve in P2(R

d × G) which
at time t = 0 passes through the point μ (i.e., μ0 = μ ). We assume dμt = ftdxdg
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and write f = f0. We want ϕμ to satisfy

〈ϕμ,ψ0〉μ = d

dt
E(μt )

∣∣∣∣
t=0

. (2.11)

A formal computation shows that

d

dt
E(μt )

∣∣∣∣
t=0

= d

dt

∣∣∣∣
t=0

∫

Rd

∑

g

(
log ft + V

)
ftdx

=
∫

Rd

∑

g

(
log f0 + 1+ V

)
∂t f0(x, g)dx .

Using the semi-discrete continuity equation, the last line can be rewritten as

∫

Rd

∑

g

∇x (log f + V ) · ∇xψ0dμ(x, g)

+
∫

Rd

∑

g,g′
∇g(log f + V ) · ∇gψ0K (g, g′)dμ̂(x, g, g′),

which in turn can be rewritten as 〈log f + V , ψ0〉μ. It follows that ϕμ can be taken to
be

∇W2E(μ) := ϕμ = log f + V . (2.12)

Having found the gradient of E through the above heuristic computations, we can
now give a concrete interpretation to (2.4) by plugging in the potential −(log f + V )

in the semi-discrete continuity equation. In particular, t ∈ [0,∞) → μt in (2.4) is
interpreted as

dμt (x, g) = ft (x, g)dxdg,

where ft follows (1.1). Equation (1.1) can be described as a coupled system of
reaction–diffusion equations indexed by g ∈ G. The presence of the last term in
(1.1) is responsible for the coupling of the dynamics. From the transport point of view,
this coupling term induces mass to be exchanged between different nodes (and thus
the total mass at a single g ∈ G changes in time). From the optimization point of view,
a coupled system implies that information on the optimization over parameters x for
a given node g is used for the optimization of parameters x for nearby nodes g′ and
vice versa.

We finish this section with two examples of mobility functions θ and their corre-
sponding gradient flows.
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Example 2.11 Let W : Rd → R be a function in the Sobolev space W 1,2(Rd) satisfy-
ing

∫
|x |2e−Wdx <∞. (2.13)

We define a mass independent mobility θ according to

θx,g,g′(s, t) := e−W (x).

This mobility function satisfies (A0) in Assumptions 2.2. We notice that in the corre-
sponding optimal transport problem from definition (2.6) the transfer of mass between
points (x, g) and (x, g′) is cheap precisely when W (x) is large. We also notice that
the cost of transporting mass along the graph G does not depend on the actual amount
of mass that is initially located at the nodes of G, a situation that contrasts with the
one presented in the next example.

Finally, for this choice of mobility the system of Eq. (1.1) becomes the system of
nonlinear reaction diffusion equations:

∂t f (x, g) = �x ft (x, g)+ divx ( ft (x, g)∇x V (x, g))+
∑

g′∈G

[
log f (x, g)+ V (x, g)

− (log f (x, g′)+ V (x, g′)
]
K (g, g′)e−W (x).

(2.14)

Example 2.12 Suppose that the mobility θ takes the form

θx,g,g′(s, t) = θlog(s exp(V (x, g)), t exp(V (x, g′))

where θlog is the logarithmic interpolation function:

θlog(a, b) := a − b

log(a)− log(b)
=
∫ 1

0
arb1−rdr .

For this choice of mobility, the dynamic cost of transporting mass from (x, g) into
(x, g′) depends on the value of the potential V at these points, as well as on the value
of the mass that is currently located at them. In particular, it is more expensive to
move mass between these points when the amount of mass at one of them is close to
zero. This mobility function satisfies (A1)–(A5) in Assumptions (2.2). In this case,
Eq. (1.1) take the form

∂t ft (x, g) =�x ft (x, g)+ divx ( ft (x, g)∇x V (x, g))

+
∑

g′∈G

[
ft (x, g) exp(V (x, g))− ft (x, g

′) exp(V (x, g′))
]
K (g, g′).

which is a linear system of reaction diffusion equations.
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2.4 Hamiltonian Dynamics: Formal Computation of Geodesic Equations and
AcceleratedMethods for Optimization

In this section, we discuss how a formal Riemannian structure can be used to introduce
accelerated methods for optimization of energies on P2(R

d × G). We first provide a
characterization of the geodesic equations in the spaceP2(R

d×G), and then introduce
a system of accelerated dynamics for theminimization of the energy E in (2.10). These
two sets of equations are related to certain Hamiltonian systems in P2(R

d ×G) which
can be formally defined using a notion of acceleration of curves. Throughout this
section, we continue to work at a formal level.

2.4.1 Geodesics

To motivate the characterization of geodesics in P2(R
d × G), let us recall that when

working on a smooth Riemannian manifold M, the local equation satisfied by a
geodesic t �→ q(t) ∈M can be written as

{
q̇(t) = p(t)

ṗ(t) = 0,

where t �→ p(t) is understood as a vector field along the curve t �→ q(t), and its
derivative as the covariant derivative of p along the curve q (using the Levi-Civita
connection) written ∇q̇ p. The second equation states that geodesics have zero accel-
eration, i.e., ∇q̇ q̇ = 0. This system can be understood as a Hamiltonian system on the
tangent bundle T M with Hamiltonian H(q, p) := 1

2 |p|2q .
Following the above intuition, in Sect. 3.3 we will formally derive for the formal

Riemannian manifold (P2(R
d × G),W2) the system of equations:

{
μ̇t + divx (∇xϕtμt )+ divg(∇gϕt μ̂t ) = 0

∂tϕt + 1
2 |∇xϕt |2 +∑

g′
(∇gϕt

)2
K (g, g′)∂1θx,g,g′( ft (x, g), ft (x, g′)) = 0,

(2.15)

characterizing geodesics in the space (P2(R
d × G),W2); in the above dμ(x, g) =

f (x, g)dxdg, and we interpret ∂1θx,g,g′(s, t) as the derivative in s of the mobility
function. The first of the two equations, i.e., the continuity equation, simply states that
the curve t �→ μt moves with velocity (∇xϕt ,∇gϕt ). On the other hand, the left hand
side of the second equation can be understood as the derivative of the velocity along
the curve (i.e., the acceleration), and so by setting it to zero one matches the intuition
coming from Riemannian geometry that was discussed earlier.

2.4.2 Second-Order Dynamics

In order to introduce a system of second-order dynamics for the optimization of an
energy E like that in (2.10), we once again return to the setting of a smooth Riemannian
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manifoldM and consider the optimization of an objective function q ∈M �→ E(q).
The system

{
q̇(t) = p(t)

ṗ(t) = −γ p(t)− ∇ME(q(t)),

can be interpreted as a continuous time accelerated method for the optimization of
the objective E . Here we abuse the use of the term accelerated method slightly given
the motivation coming from the Euclidean setting. Indeed, in the case M = R

d and
when the parameter γ is allowed to depend on time according to γ = γt = 3/t , the
above dynamics correspond to the continuous time analogue of the celebratedNesterov
acceleratedmethod for optimization (Su et al. 2016). For generalM, the above system
may be interpreted again as a dynamical system on the tangent bundle T M, and can
be understood as the flow map induced by a vector field that is the addition of a
Hamiltonian vector field on T M with Hamiltonian H(q, p) = 1

2 |p|2q + E(q) and a
dissipative term that corresponds to the gradient of an energy (q, p) �→ γ

2 |p|2q for a
positive parameter γ > 0.

Following the above intuition, we can introduce an accelerated method for the
optimization of an objective on P2(R

d × G) such as the relative entropy E . For this
purpose we use the formal computation of the gradient of the relative entropy (2.12)
from Sect. 2.3 as well as the expression for the acceleration of curves in the formal
Riemannian structure (which actually was already usedwhen introducing the geodesic
equation (2.15) and will be formally computed in Sect. 3.3). We obtain the system:

⎧
⎪⎨

⎪⎩

μ̇t + divx (∇xϕtμt )+ divg(∇gϕt μ̂t ) = 0

∂tϕt + 1
2 |∇xϕt |2 +∑

g′
(∇gϕt

)2
K (g, g′)∂1θx,g,g′( ft (x, g), ft (x, g′))

= −[γ ϕt (x, g)+ log ft (x, g)+ V (x, g)];
(2.16)

in the above, we interpret dμ(x, g) = f (x, g)dxdg.

Remark 2.13 Notice that when the interpolation map θ is like the one in Example 2.11
the expression for the acceleration of a curve with velocity induced by the potentials
ϕt reads

∂tϕt + 1

2
|∇xϕt |2.

2.5 Main Theoretical Result

In the previous sections, we have taken a formal Riemannian approach to make sense
of the gradient descent ODE (2.4) when the energy E is the relative entropy defined in
(2.10). In this section, we provide amore solid theoretical groundmotivating equations
(1.1). For that purpose, we will define the gradient flow of E using the minimizing
movement scheme approach that we mentioned at the end of Sect. 1.1. To achieve
this, we first introduce a family of static transport costs that are used to define the
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iterations (1.9) (thinking ofM = P2(R
d ×G)). Our main theoretical result, Theorem

2.14, states that for a suitable static cost (see (2.20) below), and for a suitable choice
of mobility θ (the one in Example 2.11), the resulting minimizing movement scheme
converges, as the time discretization parameter τ goes to zero, toward a solution of
the equation formally derived in (2.14).

It is worth highlighting that the minimizing movement scheme that we consider
here has the advantage of being defined in terms of a (static) transport cost that is
closer to the Kantorovich formulation of the classical optimal transport problem (i.e.,
(1.6)), rather that in terms of the dynamic problem (2.6). First, the static formulation is
computationally cheaper (e.g., using the entropic regularization methods from Peyré
and Cuturi (2019) which can be used in our context). Additionally, for the static
formulation we will be able to use techniques similar to those developed in Figalli and
Gigli (2010) to show that the resulting minimizing movement scheme satisfies a type
of maximum principle characteristic of Fokker–Planck equations.

To define our static transportation costs, we first introduce some notation. Given a
measure μ ∈ P2(R

d × G) we will consider the unique collection {μg}g∈G of positive
measures over Rd , such that

μ =
∑

g∈G
μg ⊗ δg. (2.17)

In the remainder, we will often deal with absolutely continuous measures dμ(x, g) =
f (x, g)dxdg in P2(R

d ×G), and by abuse of notation, in that case we will simply use
the density f to denote the measure μ. For example in the above decomposition, we
will use the functions fg : Rd → R, (i.e., fg(x) = f (x, g)) to denote the measures
μg.We now introduce our static transportation problemwhich we remark is of interest
in its own right.

Static semi-discrete transportation problem Let τ > 0 be a positive time step
and let W be as in Example 2.11. For arbitrary measures μ, σ in P2(R

d × G), we
define ADM(μ, σ ) to be the set of pairs (γ, h) (the admissible pairs) that satisfy:

i) γ = {γg}g∈G where each γg is a Borel positive measure on R
d × R

d and whose
first marginal π1�γg is equal to μg .

ii) h : Rd × G × G → R is antisymmetric in G × G (i.e., for all g, g′ ∈ G, x ∈ R
d

we have h(x, g, g′) = −h(x, g′, g)), and it belongs to

L2
W ,K (Rd × G × G) :=

{
h ∈ R

d × G × G → R :
∑

g,g′

∫
h2gg′e

−W K (g, g′)dx <∞
}
. (2.18)

iii) For every g ∈ G

σg = π2#γg − τ
∑

g′
hgg′(x)K (g, g′)e−W (x). (2.19)
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The last term on the right hand side of the identity (2.19) must be interpreted as the
positive measure onRd whose density (with respect to the Lebesgue measure) is given
by

τ
∑

g′
hgg′(x)K (g, g′)e−W (x).

In the remainder, we refer to the measures γg as transport plans and to the functions
h as mass exchange maps.

A static transportation cost between μ, σ is defined by

AG,W ,τ (μ, σ ) := inf
(γ,h)∈ADM(μ,σ )

CW ,K
τ (γ, h), (2.20)

where

CW ,K
τ (γ, h) :=

∑

g,g′∈G

(
1

2τ

∫

Rd

∫

Rd
|x − x ′|2dγg + τ

4

∫

Rd
h2gg′K (g, g′)e−W dx

)
. (2.21)

Since the set ADM(μ, σ ) may very well be the empty set, we follow the convention
that the infimum of a quantity over an empty set is equal to +∞. We use Opt(μ, σ )

to denote the set of minimizers of (2.20) when AG,W ,τ (μ, σ ) is finite.
The static semi-discrete optimal transport problem introduced above can be inter-

preted as an optimal two stagemass transport process fromone distribution overRd×G
to another. In the first stage, mass is transported along each fiber ofRd (i.e., a set of the
form R

d ×{g}). In the second stage, mass gets exchanged along every fiber of G (i.e.,
a set of the form {x} × G). The optimal transport plans and optimal exchange maps
(and implicitly the optimal intermediate mass distribution after stage 1) are chosen
so as to minimize the sum of two terms: one that corresponds to aggregate quadratic
cost in stage one, and the other that corresponds to an average of discrete H−1 norms
of the mass exchanged during stage two. In Sect. 4, we study the above semi-discrete
(static) transport problem mathematically. In particular, we study properties of the set
ADM(μ, σ ) and characterize Opt(μ, σ ) in a way that resembles Brenier’s theorem
for optimal transport in Euclidean space. Part of the motivation for the definition of
this static problem comes from the theoretical desire of recovering the system (1.1) as
limit of a JKO scheme relative to some meaningful cost function. While this transport
problem is not the same as the dynamic one from Definition 2.6, we believe that they
are actually closely related. This is a topic that we may explore in future work.

Let us now return to our aim of defining the gradient descent of the relative entropy
energy E using theminimizingmovement scheme.We use the cost function 2τAG,W ,τ

introduced above to produce the series of iterates in (1.9) for M = P2(R
d × G) and

E = E . We will assume that the initial datum μ0 ∈ P2(R
d ×G) satisfies E(μ0) <∞.

Moreover, we will impose a further technical condition and assume that μ0 has a
probability density f0 such that

λe−V ≤ f0 ≤ �e−V , (2.22)
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for some positive constants λ and �. Setting μτ
0 := μ0, we will then let μτ

n+1 be a
minimizer of

σ ∈ P2(R
d × G) �−→ E(σ )+AG,W ,τ (μ, σ ), (2.23)

where we set μ = μτ
n . In Sect. 5 we study properties of the minimization prob-

lem (2.23), and in particular provide conditions under which minimizers exist (see
Proposition 5.6). It will then be straightforward to see that the resulting iterates must
be absolutely continuous with respect to the measure dxdg, and thus can be written
as dμτ

n(x, g) = f τ
n (x, g)dxdg. A continuous-time extension of the above iterates is

defined via piecewise constant interpolation in time. Namely,

f τ (t) := f τ
n+1, t ∈ (nτ, (n + 1)τ ].

Comparing the minimization problems (1.11) and (2.23), we see our semi-discrete
transportation cost plays the role of the kinetic energy in the Lagrangian formulation
of the JKO scheme.

Our main theoretical result is the following:

Theorem 2.14 Suppose that f0 satisfies (2.22), W satisfies the conditions from Exam-
ple (2.11) and in addition for some constants λ′,�′

λ′e−W (x) ≤ e−V (x,g) ≤ �′e−W (x). (2.24)

where V : Rd × G → R is a differentiable function in x that also satisfies

∑

g

∫

Rd
|∇x V (x, g)|2e−V (x,g)dx <∞.

Then, for any sequence τk ↓ 0 there exists a subsequence, not relabeled, for which
f τk converges to f in L2(0; tF , L2

loc(R
d × G))) for any tF > 0, where the map

t ∈ [0,∞) → f (t) belongs to L2
loc([0,∞),W 1,2(Rd × G))) and is a weak solution

of (2.14) (see Definition 6.1).
Moreover, for every t > 0

λe−V (x,g) ≤ f (t, x, g) ≤ �e−V (x,g), (2.25)

for almost every (x, g) in Rd × G, where λ,� are the constants in (2.22).

We prove Theorem 2.14 in Sect. 6.

Remark 2.15 The function

f∞(x, g) = ce−V (x,g),
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with c chosen so that

∑

g∈G

∫
c f∞(x, g) dx = 1,

is an equilibrium point and solves Eq. (2.14). Consequently, the property described
in (2.25) coincides with a well-known maximum principle for the Fokker–Planck
equation.

3 Metric and Geometric Properties ofW2

3.1 Proof of Theorem 2.7

1. Let μ0, μ1 be two elements in P2(R
d × G). First, we prove that the infimum in the

definition ofW 2
2 (μ0, μ1) is finite by exhibiting one solution to the continuity equation

connecting μ0 and μ1 with finite kinetic energy. One such solution is described as
follows.

Let us first assume that μ0 and μ1 are supported on the set B(0, R)× G for some
R > 0. For each g ∈ G, let mg := μ0(R

d × {g}) be the total mass assigned to the
fiber Rd × {g} by μ0 and let μ0g , μ1g be the positive measures over Rd defined by

μ0g(A) := μ0(A × {g}), μ1g(A) := μ1(A × {g}) ∀A ⊆ R
d , Borel.

Also, let μ̃1 be the first marginal of the measure μ1, i.e.,

μ̃1(A) = μ1(A × G), ∀A ⊆ R
d , Borel.

Since the measures μ0g and mgμ̃1 have the same amount of total mass, we can find a
solution t ∈ [0, 1] �→ (νt,g,∇xφt (·, g)) to the continuity equation on Rd

ν̇t,g + divx (∇xφt (·, g)νt,g) = 0,

satisfying ν0,g = μ0g , ν1,g = mgμ̃1, and

∫ 1

0

∫

Rd
|∇xφt (x, g)|2dνt,g(x)dt <∞.

On the other hand, notice that for every g ∈ G the measure μ1g is absolutely
continuous with respect to μ̃1, and for μ̃1-a.e. x we have

∑

g

dμ1g

dμ̃1
(x) = 1.
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For each such x , we can find a solution to the discrete continuity equation t ∈ [0, 1] �→
(γt,x ,∇gψt (x, ·))

γ̇t,x + divg(∇gψt (x, ·) · γ̂t,x ) = 0

satisfying γ0,x (g) = mg and γ1,x (g) = dμ1g
dμ̃1

(x) for all g ∈ G, and satisfying

∫ 1

0

∑

g,g′
|∇gψt (x, g, g

′)|2K (g, g′)dγ̂t,x (g, g′)dt ≤ C,

for some constant C that only depends on R. Such solution exists due to assumptions
(A0) or (A5) on θ and the fact that discrete optimal transport is well defined in that
case (see Maas 2011; Erbar and Maas 2012).

We define

μt :=
{∑

g∈G mgdν2t,g(x)⊗ δg, t ∈ [0, 1/2]
∑

g∈G γ(2t−1),x (g)dμ̃1(x)⊗ δg, t ∈ [1/2, 1]

and

φt (x, g) :=
{

φ2t (x, g), t ∈ [0, 1/2]
0, t ∈ [1/2, 1] ψt (x, g) :=

{
0, t ∈ [0, 1/2]
ψ2t−1(g), t ∈ [1/2, 1]

It is straightforward to verify that t ∈ [0, 1] �→ (μt ,∇xφt ,∇gψt ) solves the semi-
discrete continuity equation, connects μ0 and μ1, and has finite kinetic energy.

If μ0, μ1 are not compactly supported as assumed above, then pick any μ̃0, μ̃1
compactly supported satisfying

μ0(R
d × {g}) = μ̃0(R

d × {g}), μ1(R
d × {g}) = μ̃1(R

d × {g}), ∀g ∈ G.

One can then dynamically transport mass from μ0 to μ̃0 restricting the transport to
each fiberRd×{g} using a continuity equation with finite kinetic energy on each fiber
(this is simply OT in R

d ). Then, one can transport dynamically from μ̃0 to μ̃1 (as
done above) and finally transport dynamically from μ̃1 to μ1 restricting the transport
to each fiber Rd × {g} (again doing OT just on Rd ).

2. Let us now show thatW2(μ0, μ1) = 0 if and only if μ0 = μ1. First notice that if
μ0 = μ1 we may take φt ≡ 0, ψt ≡ 0 and μt = μ0 for all t ∈ [0, 1]. Then, it is clear
that t ∈ [0, 1] → (μt , φt ) solves the continuity equation, has zero kinetic energy, and
connects μ0 and μ1, from where it follows that W 2

2 (μ0, μ1) = 0.
Now let us suppose that W 2

2 (μ0, μ1) = 0. We want to show that μ0 = μ1. Fix
an arbitrary test function ζ : Rd × G → R where ζ(·, g) is smooth and compactly
supported for all g ∈ G. From the condition W2(μ0, μ1) = 0, we see that for every
ε > 0 there is a solution to the continuity equation t �→ (μt ,∇xφt ,∇gψt ) connecting
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μ0 and μ1 with kinetic energy less than ε, i.e.,

K :=
∫ 1

0

(∫

Rd

∑

g

|∇xφt (x, g)|2dμt (g, x)

+
∫

Rd

∑

g,g′
∇gψt (x, g, g

′)2K (g, g′)dμ̂t (x, g, g
′)

⎞

⎠ dt ≤ ε.

Using (2.6) (after integration over t ∈ [0, 1]) for the above test function ζ , we conclude
that

∣∣∣∣∣∣

∑

g∈G

∫

Rd
ζ(x, g)dμ1(x, g)−

∑

g∈G

∫

Rd
ζ(x, g)dμ0(x, g)

∣∣∣∣∣∣
≤ Cζ

√
K ≤ Cζ

√
ε

where Cζ is a constant that only depends on the test function ζ . Given that ε was
arbitrary we can conclude that

∑

g∈G

∫

Rd
ζ(x, g)dμ1(x, g) =

∑

g∈G

∫

Rd
ζ(x, g)dμ0(x, g).

Finally, since ζ was an arbitrary smooth compactly supported test function we deduce
that μ0 = μ1.

3. Next, we show that W2(μ0, μ1) = W2(μ1, μ0). To see this, simply notice that
any solution t ∈ [0, 1] �→ (μt ,∇xφt ,∇gψt ) to the continuity equation starting at μ0
and ending at μ1, can be reverted in time t ∈ [0, 1] → (μ1−t ,−∇xφ1−t ,−∇gψ1−t )
producing in this way a solution to the continuity equation that starts at μ1 and ends
at μ0, and has the exact same kinetic energy as the original curve.

4. Lastly, we prove the triangle inequality. First, we observe that after a standard
reparametrization (of time) by arc-length it follows that for every μ, μ̃ ∈ P2(R

d ×G)

and every T > 0,

W2(μ, μ̃) = inf
t∈[0,T ]�→(μt ,∇xφt ,∇gψt )

∫ T

0

(∫

Rd

∑

g∈G
|∇xφt (x, g)|2dμt (x, g)

+
∫

Rd

∑

g,g′
(∇gψt (x, g, g

′))2K (g, g′)dμ̂t (x, g, g
′)
)1/2

dt,

(3.1)

where the inf ranges over all solutions t ∈ [0, T ] �→ (μt ,∇xφt ,∇gψt ) to the semi-
discrete continuity equation with μ0 = μ and μT = μ̃

Let nowμ0, μ1, μ2 be arbitrary elements inP2(R
d×G). From (3.1), for any ε > 0

we may consider t ∈ [0, 1] �→ (μt ,∇xφt ,∇gψt ) and t ∈ [0, 1] �→ (μ̃t ,∇x φ̃t ,∇gψ̃t )

solutions to the semi-discrete continuity equation satisfyingμ0 = μ0,μ1 = μ1 = μ̃0,
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μ̃1 = μ2 and

∫ 1

0

(
1

2

∑

g

∫

Rd
|∇xφt (x, g)|2dμt (x, g)

+
∫

Rd

∑

g,g′
∇gψt (x, g, g

′)2K (g, g′)dμ̂t (x, g, g
′)

⎞

⎠
1/2

dt

≤ W2(μ0, μ1)+ ε,

∫ 1

0

(
1

2

∑

g

∫

Rd
|∇x φ̃t (x, g)|2dμ̃t (x, g)

+
∫

Rd

∑

g,g′
∇gψ̃t (x, g, g

′)2K (g, g′)d ˆ̃μt (x, g, g
′)

⎞

⎠
1/2

dt

≤ W2(μ1, μ2)+ ε.

We then consider

γt :=
{

μt , t ∈ [0, 1]
μ̃t−1, t ∈ [1, 2]

and the potentials

αt (x, g) :=
{

φt (x, g), t ∈ [0, 1]
φ̃t−1(x, g), t ∈ [1, 2] βt (x, g) :=

{
ψt (x, g), t ∈ [0, 1]
ψ̃t−1(x, g), t ∈ [1, 2].

It follows that t ∈ [0, 2] �→ (γt ,∇xαt ,∇gβt ) solves the semi-discrete continuity
equation, connects μ0 and μ2, and satisfies

∫ 2

0

(
1

2

∑

g

∫

Rd
|∇x φ̃t (x, g)|2dμ̃t (x, g)

+
∫

Rd

∑

g,g′
∇gψ̃t (x, g, g

′)2K (g, g′)d ˆ̃μt (x, g, g
′)

⎞

⎠
1/2

dt

≤ W2(μ0, μ1)+W1(μ1, μ2)+ 2ε.

From (3.1), it follows thatW2(μ0, μ2) ≤ W2(μ0, μ1)+W2(μ1, μ2)+2ε. Since ε > 0
was arbitrary the result now follows.
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3.2 Tangent Plane Characterization

In this section, we provide concrete conditions under which the statement of Theorem
2.10 can be made rigorous. The bottom line is that the arguments presented in this
section motivate the formal characterization for the tangent plane TμP2(R

d ×G), i.e.,
infinitesimal curves on P2(G×R

d) passing through μ. The main result of this section
can be interpreted as a minimal selection principle for the potentials (φ,ψ) driving
a given solution to the continuity equation. Some of the results proved below will be
used again later on when we get to analyze the static semi-discrete transport problem
from Sect. 2.5.

Throughout this section, we work with measures of the form dμ(x, g) =
f (x, g)dxdg for a density function f satisfying basic boundedness conditions. We
also use the following spaces of potentials:

� :=
{
ε ∈ L2c (R

d × G) s.t.
∫

Rd
ε(x, g)dx = 0 ∀g,

∑

g
ε(x, g) = 0 a.e. x ∈ R

d
}
, (3.2)

where L2
c(R

d×G) stands for the space of L2(Rd×G) functions with compact support
(i.e., almost everywhere equal to zero outside a set of the form B(0, R)×G), and also

�⊥ :=
{
ϕ ∈ L2

loc(R
d × G) s.t.

∫

Rd

∑

g

ϕ(x, g)ε(x, g)dx = 0, ∀ε ∈ �

}
.

Lemma 3.1 Let f : Rd × G → R be a probability density such that in every compact
subset of Rd ×G is bounded and bounded away from zero. Let φ,ψ be two potentials
belonging to L2

loc(R
d × G) for which

∫

Rd

∑

g
|∇xφ(x, g)|2 f (x, g)dx +

∫

Rd

∑

g,g′
|∇gψ(x, g, g′)|2K (g, g′) f̂ (x, g, g′)dx <∞.

Consider the minimization problem:

inf
φ̃,ψ̃∈L2

loc(R
d×G)

∫

Rd

∑

g

|∇x φ̃(x, g)|2 f (x, g)dx +
∫

Rd

∑

g,g′
|∇gψ̃(x, g, g′)|2K (g, g′)

f̂ (x, g, g′)dx (3.3)

subject to

divx ( f∇x φ̃)+ divg( f̂∇gψ̃) = divx ( f∇xφ)+ divg( f̂∇gψ),

where the equality must be interpreted in the sense of distributions.
Then, there exists a minimizing pair φ̃, ψ̃ for the above problem. In addition, any

minimizing pair must satisfy φ̃ − ψ̃ ∈ �⊥.
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Proof 1. Let us start by proving the existence of minimizers. First, we consider the
slightly modified problem

inf
φ̃,h

∫

Rd

∑

g
|∇x φ̃(x, g)|2 f (x, g)dx +

∫

Rd

∑

g,g′
|hgg′ (x)|2K (g, g′) f̂ (x, g, g′)dx (3.4)

subject to

divx ( f∇x φ̃)+ divg( f̂ · h) = divx ( f∇xφ)+ divg( f̂∇gψ),

where the minimization is now over pairs (φ̃, h) for φ̃ as in problem (3.3) and h ∈
L2
loc(R

d × G × G) an antisymmetric function on G × G (i.e., hgg′(x) = −hg′g(x) for
every x, g, g′). Existence of solutions to (3.4) follows immediately from the direct
method of the calculus of variations. From a solution (φ̃, h) to problem (3.4) we now
construct a solution to (3.3). Fix x ∈ R

d . Thanks to Proposition 2.1, there exists a
solution ψ̃(x, ·) = ψ̃x to the graph PDE

divg(∇gψ̃x f̂x ) = divg(hx f̂x ),

which satisfies
∑

g ψ̃x (g) = 0. Following the proof of Proposition 2.1 and using the

fact that
∑

g ψ̃x (g) = 0, we can conclude that there exists a constant Cx > 0 for
which

∑

g

|ψ̃(x, g)|2 ≤ Cx

∑

g,g′
|∇gψ̃(x, g, g′)|2K (g, g′) f̂ (x, g, g′). (3.5)

The constant Cx can be assumed to be uniform on compact subsets of Rd thanks to
the assumptions on θ and the fact that in each compact subset of Rd × G the function
f is assumed to be bounded and bounded away from zero. Using (2.1), we obtain

∑

gg′
|∇gψ̃x |2K (g, g′) f̂x (g, g′) = −

∑

g

divg(∇gψ̃x f̂x )ψ̃x = −
∑

g

divg(hx f̂x )ψ̃x

=
∑

gg′
∇gψ̃x · hx K (g, g′) f̂x (g, g′),

and thus, from Cauchy–Schwarz inequality

∑

gg′
|∇gψ̃x (g, g

′)|2K (g, g′) f̂x (g, g′) ≤
∑

gg′
|hx (g, g′)|2K (g, g′) f̂x (g, g′).

The above implies that (φ̃,∇gψ̃) is also a solution to (3.4). Given that ψ̃ is in L2
loc

thanks to (3.5), we deduce that (φ̃, ψ̃) is a minimizing pair for (3.3).
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2. Let (φ̃, ψ̃) be an arbitrary minimizing pair. Let ε be an arbitrary element in �

and pick a specific measurable representative for it (which we also denote by ε). For
each fixed g consider the PDE (in x)

ε(·, g) = divx ( f (·, g)∇xη(·, g)). (3.6)

Existence of a solution η(·, g) in L2
loc(R

d) follows from standard arguments in the
theory of elliptic PDEs, given that ε has compact support and that in each compact
subset ofRd×G f is bounded and bounded away from zero. Also, let x be a Lebesgue
point for all the functions ε(·, g), and consider the graph PDE

− ε(x, ·) = divg( f̂x · ∇gβ(x, ·)). (3.7)

This equation has a unique solution (that we denote by β(x, ·)) that averages to zero
according to Lemma 2.1 (given that ε(x, ·) has average zero). Moreover, the function
β can be seen to be in L2

loc using the inequalities from Proposition 2.1.
Now, for each s ∈ R consider the perturbed potentials:

φs(x, g) := φ̃(x, g)+ sη(x, g),

ψs(x, g) := ψ̃(x, g)+ sβ(x, g),

and notice that

divx ( f∇xφs) = divx ( f∇x φ̃)+ sdivx ( f∇xη) = divx ( f∇x φ̃)+ sε

divg( f̂ · ∇gψs) = divg( f̂ · ∇gψ̃)+ sdivg( f̂ · ∇gβ) = divg( f̂ · ∇gψ̃)− sε,

so that in particular, for every s ∈ R,
The pair (φs, ψs) is admissible in the minimization of (3.3). LetK : R→ R be the

function

K(s) :=
∑

g

∫

Rd
|∇xφs |2 f (x, g)dx +

∑

g,g′

∫

Rd
(ψs (x, g)− ψs (x, g

′))2K (g, g′) f̂ (x, g, g′)dx,

which isminimized at s = 0 by definition of (φ̃, ψ̃). Computing d
dsK(s) and evaluating

at s = 0, we deduce that

0 =
∑

g

∫

Rd
∇xη(x, g) · ∇x φ̃(x, g) f (x, g)dx

+
∫

Rd

∑

g,g′
(β(x, g)− β(x, g′))(ψ̃(x, g)− ψ̃(x, g′))K (g, g′) f̂ (x, g, g′)dx

=
∑

g

∫

Rd
ε(x, g)φ̃(x, g)dx −

∫

Rd

∑

g

ε(x, g)ψ̃(x, g)dx

=
∑

g

∫

Rd
ε(x, g)(φ̃(x, g)− ψ̃(x, g))dx
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where the second equality follows from the fact that η(·, g) solves (3.6) and β(x, ·)
solves (3.7). Since ε ∈ � was arbitrary, it follows that φ̃ − ψ̃ belongs to �⊥ as we
wanted to show.

��
Lemma 3.2 For any ϕ in �⊥, there exists ϕ1 : Rd → R in L2

loc(R
d) and ϕ2 : G → R

such that

ϕ(x, g) = ϕ1(x)+ ϕ2(g), ∀g ∈ G, a.e. x ∈ R
d .

Conversely, if ϕ admits the above decomposition then ϕ ∈ �⊥.

Proof Let ϕ ∈ �⊥ and fix a Lebesgue point x0 for all the functions ϕ(·, g̃). Let

ϕ2(g̃) := ϕ(x0, g̃), g̃ ∈ G.

Observe that from Fubini’s theorem any function that is independent of x belongs to
�⊥, and thus, ϕ2 must be contained in �⊥. Define now the function

ϕ1(x̃, g̃) := ϕ(x̃, g̃)− ϕ2(g̃).

To complete our proof, we must show that ϕ1 does not depend on g̃. For this purpose,
let x be an arbitrary Lebesgue point for all the functions ϕ(·, g̃). Fix g, g′ ∈ G. Let
r > 0 and consider the test function

εr := ξ rx,g − ξ rx,g′ − ξ rx0,g + ξ rx0,g′ , (3.8)

where ξ rx,g : Rd × G → R is given by

ξ rx,g(x̃, g̃) :=
1

|B(x, r)|1B(x,r)(x̃)1{g̃=g}.

Notice that by construction εr is contained in �. Also, since ϕ and ϕ2 are contained
in �⊥, ϕ1 is contained in �⊥ too. Hence,

0 =
∑

g

∫

Rd
εr (x̃, g̃)ϕ1(x̃, g̃)dx̃

= 1

|B(x, r)|
∫

B(x,r)
ϕ1(x̃, g)dx̃ − 1

|B(x, r)|
∫

B(x,r)
ϕ1(x̃, g

′)dx̃

− 1

|B(x0, r)|
∫

B(x0,r)
ϕ1(x̃, g)dx̃ + 1

|B(x0, r)|
∫

B(x0,r)
ϕ1(x̃, g

′)dx̃ .

We may now take r → 0 and use the fact that x0 and x were assumed to be Lebesgue
points for the functions ϕ(·, g) and ϕ(·, g′) (thus also for ϕ1) to conclude that

0 = ϕ1(x, g)− ϕ1(x, g
′)− ϕ1(x0, g)+ ϕ1(x0, g

′).
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By construction, ϕ1(x0, g) = ϕ1(x0, g′) = 0. Consequently, we deduce that

ϕ1(x, g) = ϕ1(x, g
′).

Since x, g and g′ were arbitrary, we conclude that ϕ can be written as the sum of a
function of x only and a function of g only.

The converse statement is a direct consequence of Fubini’s theorem.
��

Remark 3.3 Notice that from the proof of Lemma 3.2, it actually follows that if ϕ ∈
L2
loc(R

d × G) is such that
∑

g

∫
Rd ϕ(x, g)ε(x, g)dx for all ε of the form (3.8) then ϕ

can be written as ϕ(x, g) = ϕ1(x)+ ϕ2(g) (and in particular it follows that ϕ ∈ �⊥).
We will use this observation in Proposition 4.5.

We may now combine the previous two lemmas to deduce the following minimum
selection principle providing concrete support to Theorem 2.10.

Proposition 3.4 Under the same assumptions on f from Lemma 3.1, there exists a
minimizing pair for problem (3.3) of the form (ϕ, ϕ).

Proof Consider an arbitrary minimizing pair for problem (3.3). By Lemma 3.1 we
know that this pair must satisfy φ̃ − ψ̃ ∈ �⊥, and by Lemma 3.2 we can conclude
that

φ̃ − ψ̃ = ϕ1 + ϕ2,

for some ϕ1 : Rd → R in L2
loc(R

d ×G) and ϕ2 : G → R. Consider now the function

ϕ(x, g) := φ̃(x, g)− ϕ2(g)

and notice that we can also write it as

ϕ(x, g) = ψ̃(x, g)+ ϕ1(x).

It follows that

∇xϕ = ∇x φ̃, ∇gϕ = ∇gψ̃.

Due to the above relationship, it follows that (ϕ, ϕ) is admissible for the optimization
problem (3.3) and that it achieves the same value as that of the minimizing pair (φ̃, ψ̃).
Therefore, (ϕ, ϕ) solves (3.3).

��
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3.3 A Formal Computation of the Acceleration of a Curve inP2(R
d × G): Geodesic

Equations and AcceleratedMethods for Optimization

In this section, we present a heuristic argument that motivates the discussion in
Sect. 2.4. The heuristics are based on the formal computation of the acceleration
of a given curve in P2(R

d × G).
Let us recall that the covariant derivative ∇q̇(t) along a smooth curve t �→ q(t)

on a smooth Riemannian manifold M is a mapping taking vector fields into vector
fields along the curve q. This mapping makes sense of the idea of differentiation
of a vector field t �→ p(t) along the curve in a way that is compatible with the
Riemannian structure ofM. We will now recall a formula from Riemannian geometry
that characterizes ∇q̇ q̇ (the covariant derivative of the velocity of the curve, i.e., the
acceleration of the curve) in terms of variations of the kinetic energy. For that purpose,
we let t ∈ [0, T ] �→ q(t) be a fixed smooth curve in M. We recall that a (smooth)
proper variation of the curveq is a smooth functionα : (s, t) ∈ (−ε, ε)×[0, T ] →M
satisfying α(0, t) = q(t) for all t ∈ [0, T ] and α(s, 0) = q(0), α(s, T ) = q(T ) for
all s ∈ (−ε, ε). In particular, the maps t ∈ [0, T ] �→ α(s, t) can be understood as
describing nearby curves to the original curveq, and in that light, the vector field v(t) =
∂
∂sα(0, t) known as the variational field of α (which is a vector field along the curve q)
describes an infinitesimal deformation of the curvemaintaining its endpoints anchored.
A well-known result in Riemannian geometry (e.g., Proposition 2.4 in Chapter 9 in
do Carmo 1992) states that:

d

ds

∣∣∣∣
s=0

(
1

2

∫ T

0

∣∣∣∣
∂

∂t
α(s, t)

∣∣∣∣
2

q(t)
dt

)
= −

∫ T

0

〈
v(t),∇q̇ q̇

〉
q(t) dt . (3.9)

Since in the above one can take arbitrary variations of q, the previous expression indeed
characterizes∇q̇ q̇ completely: regardless of the smooth proper variation taken, the first
variation of the kinetic energy (the left hand side)mustmatch the right hand sidewhich
is expressed in terms of the corresponding variational field and the acceleration of the
curve ∇q̇ q̇ .

Using the above discussion as motivation, let us now consider a curve t ∈ [0, T ] �→
ft ∈ P2(R

d × G) and let us provide a formal definition for its acceleration; here and
in what follows we identify a measure dμ(x, g) = f (x, g)dxdg with its density,
and let (∇xϕt ,∇gϕt ) be the velocity of the curve at time t . Let (s, t) ∈ (−ε, ε) ×
[0, T ] �→ ( fs,t ,∇xϕs,t ,∇gϕs,t ) be a proper variation of t �→ ft . Namely, we assume
( f0,t , ϕ0,t ) = ( ft , ϕt ) for all t , and fs,0 = f0, fs,T = fT for all s ∈ (−ε, ε). We
use ψs,t to denote a potential associated to the curve s ∈ (−ε, ε) �→ fs,t . The map
t ∈ [0, T ] �→ ψt := ψ0,t can then be interpreted as the corresponding variational
field of the variation (s, t) �→ fs,t . We assume all functions are smooth, and smooth
in s and t so that we can take derivatives in x, s, t at will.
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Relative to the proper variation introduced above, we define

F(s) := 1

2

∫ T

0

(
∑

g

∫

Rd
|∇xϕs,t |2 fs,t (x, g)dx

+
∫ T

0

∑

g,g′

∫

Rd
|∇gϕs,t |2 f̂s,t (x, g, g′)dx

⎞

⎠ dt,

for s ∈ (−ε, ε), which according to (2.9) can also be written as

1

2

∫ T

0
〈ϕs,t , ϕs,t 〉 fs,t dt .

We show that

d

ds
F(s)

∣∣∣∣
s=0

= −
∫ T

0

〈
ψt , ∂tφt + 1

2
|∇xϕt |2

+
∑

g′
|∇gϕt (·, ·, g′)|2∂1θ( ft (·, ·), ft (·, g′))

〉

ft

dt, (3.10)

which when compared to (3.9) motivates the definition of the acceleration of the curve
t ∈ [0, T ] �→ ( ft ,∇xϕt ,∇gϕt ) at time t as the potential:

(x, g) ∈ R
d × G �→ ∂tϕt (x, g)+ 1

2
|∇xϕ(x, g)|2

+
∑

g′
|∇gϕt (x, g, g

′)|2∂1θ( ft (x, g), ft (x, g
′)).

Notice that in turn, the above definition motivates the geodesic equations given in
(2.15), as well as the (continuous time) accelerated scheme in (2.16) for the optimiza-
tion of the relative entropy defined in (2.10) (using the expression for its gradient that
we found in Sect. (2.3)) in light of the discussion in Sect. 2.4.

We now formally obtain (3.10). First,

d

ds
F(s) =

∫ T

0

∑

g

∫

Rd
(∇x∂sϕs,t · ∇xϕs,t ) fs,t (x, g)dt

+
∫ T

0

∑

g,g′

∫

Rd
(∇g∂sϕs,t · ∇gϕs,t )K (g, g′) f̂s,t (x, g, g′)dt

+1

2

∫ T

0

∑

g

∫

Rd
|∇xϕs,t |2∂s fs,t (x, g)dt + 1

2

∫ T

0

∑

g,g′

∫

Rd
|∇gϕs,t |2

K (g, g′)∂s f̂s,t (x, g, g′)dt =
∫ T

0

∑

g

∫

Rd
(∇x∂sϕs,t · ∇xϕs,t ) fs,t (x, g)dt
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+
∫ T

0

∑

g,g′

∫

Rd
(∇g∂sϕs,t · ∇gϕs,t )K (g, g′) f̂s,t (x, g, g′)dt

+1

2

∫ T

0

∑

g

∫

Rd
|∇xϕs,t |2∂s fs,t (x, g)dt

+
∫ T

0

∑

g,g′

∫

Rd
|∇gϕs,t |2K (g, g′)∂1θ( fs,t (x, g), fs,t (x, g

′))∂s fs,t (x, g)dt .

(3.11)

On the other hand, integration by parts and the fact that ∂sϕ(0, s) = 0 and
∂sϕ(s, T ) = 0 for all s (because the variation is proper) lead to∫ T

0
∂tϕs,t (x, g)∂s fs,t (x, g)dt = −

∫ T

0
ϕs,t (x, g)∂s∂t fs,t (x, g)dt

= − d

ds

(∫ T

0
ϕs,t∂t fs,tdt

)
+
∫ T

0
∂sϕs,t∂t fs,tdt .

After integration over x, g and using the continuity equation, the above implies

∫ T

0

∑

g

∫

Rd
∂tϕs,t (x, g)∂s fs,t (x, g)dxdt

= − d

ds

⎛

⎝
∫ T

0

⎛

⎝
∑

g

∫

Rd
|∇xϕs,t |2 fs,tdx +

∑

g,g′

∫

Rd
|∇gϕs,t |2 f̂s,tdx

⎞

⎠ dt

⎞

⎠

+
∫ T

0

∑

g

∫

Rd
∂sϕs,t∂t fs,tdxdt

= −2 d

ds
F(s)

+
∫ T

0

∑

g

∫

Rd
(∇x∂sϕs,t · ∇xϕs,t ) fs,t (x, g)dt

+
∫ T

0

∑

g,g′

∫

Rd
(∇g∂sϕs,t · ∇gϕs,t ) f̂s,t (x, g, g

′)dt .

(3.12)

Combining (3.11) and (3.12), we deduce that d
ds F(s) can be written as:

−
∫ T

0

∫

Rd

∑

g

⎛

⎝∂tϕs,t + 1

2
|∇xϕs,t |2 +

∑

g′
|∇gϕs,t |2K (g, g′)∂1θ( fs,t (x, g), fs,t (x, g

′)

⎞

⎠

∂s fs,t (x, g)dxdt .

Finally, at s = 0 we have ∂s fs,t = −divx (∇xψt ft )− divg(∇gψt f̂t ), and thus (3.10)
follows combining the above with the semi-discrete continuity equation.
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4 Properties of Minimizing Pairs of the Static Semi-discrete Optimal
Transport Problem

In this section, we study the minimizers of the static semi-discrete transportation
problem that we introduced in Sect. 2.5. Some of the results presented in this section
will be used in the sequelwhile others are of interest on their own.We seek to reproduce
the result of Brenier Ambrosio and Gigli (2013), Theorem 1.26 that characterizes
optimal transport maps in the Euclidean setting in terms of convex functions. Our
characterization is presented in Proposition 4.5. We begin by studying the existence
of optimal pairs.

Lemma 4.1 (Existence of Optimal pairs) Let μ, σ ∈ P2(R
d × G) and suppose that

WG,W ,τ
2 (μ, σ ) < ∞. Then, the set Opt(μ, σ ) (i.e., the set of solutions to (2.20)) is

non-empty.

Proof Let us consider a minimizing sequence of admissible pairs {(γn, hn)}∞n=1 and
note that sinceAG,W ,τ (μ, σ ) <∞wehave that, passing to a subsequence if necessary,
we can assume that the second moments of {γn}∞n=1, and the norm of {hn}∞n=1 in
the weighted space L2

W (Rd × G × G) are equibounded (see (2.18)). Consequently,
since L2

W (Rd × G × G) is a Hilbert space, the existence of a minimizer follows by
a standard lower compactness/lower semicontinuity and weak convergence argument
(see Ambrosio and Gigli (2013), Theorem 1.2). Indeed, since the constraint (2.19) is
linear, we can pass it to the limit by weak convergence of γn and hn in duality with
smooth functions with compact support. ��

Notice that if μ = σ then WG,W ,τ
2 = 0 < ∞. The following lemma will not be

used in the sequel, but provides other examples of μ and σ for which one can prove
that WG,W ,τ

2 (μ, σ ) <∞.

Lemma 4.2 Let μ, σ ∈ P2(R
d ×G) be absolutely continuous w.r.t. dxdg and assume

that σ ’s density belongs to the space:

L2
W (Rd × G) :=

{
f : Rd × G → R s.t.

∑

g∈G

∫
| fg|2eWdx <∞

}
. (4.1)

Then, WG,W ,τ
2 (μ, σ ) <∞.

Proof We begin by showing that the cost AG,W ,τ (μ, σ ) is finite. Let f and f̃ be the
densities for μ and σ respectively, and define

mg :=
∫

Rd
fg(x)dx, g ∈ G,

f̃ (x) :=
∑

g

f̃g(x), x ∈ R
d .
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Notice that for every g ∈ G the positive measures fg and mg f̃ have the same total
mass, and thus there exists a coupling γg between them. In particular, π1�γ = fg ,
π2�γ = mg f̃ and also

∫

Rd×Rd
|x − x̃ |2dγg <∞.

Now, notice that for every x ∈ R
d we have

∑

g

(mg f̃ (x)− f̃g(x)) = 0.

Therefore, we may use Proposition 2.1 in order to find η(x, ·) satisfying

mg f̃ (x)− f̃g(x) =
∑

g′
(η(x, g)− η(x, g′))K (g, g′), ∀g ∈ G, (4.2)

as well as

∑

g,g′
|η(x, g)− η(x, g′)|2K (g, g′) ≤ C

∑

g

|mg f̃ (x)− f̃g(x)|2e2W (x), (4.3)

for some constant C that only depends on the weighted graph (G, K ). We let

hgg′(x) := eW (x)

τ
(η(x, g)− η(x, g′)), x ∈ R

d , g, g′ ∈ G

and notice that from (4.2) it follows that

σg = π2�γg − τ
∑

g′
hgg′(x)K (g, g′)e−W (x).

We observe that h is clearly antisymmetric in G × G, and thanks to (4.3) and the fact
that f̃ ∈ L2

W (Rd × G) also satisfies

∑

gg′

∫

Rd
h2gg′e

−W K (g, g′)dx <∞.

The bottom line is that (γ, h) ∈ ADM(μ, σ ) and CW ,K
τ (γ, h) < ∞. It follows that

WG,W ,τ
2 (μ, σ ) <∞. ��

Remark 4.3 To provide an example where the cost is infinite suppose that G consists
of two elements g1, g2 and K (g1, g2) > 0. Let μ be the measure with representation
μg1 = δx1 for some x1 ∈ R

d and μg2 = 0 (i.e., all mass is in g1), and let σ be the
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measure with σg1 = 0 and σg2 = δx2 for some x2 ∈ R
d . We show that ADM(μ, σ ) =

∅. Indeed, if there existed an admissible pair, from (2.19) we would have that

δx2 = σg2 = π2�γg2 − τhg2g1 (x)K (g1, g2)e
−W (x)dx = −τhg2g1(x)K (g1, g2)e

−W (x)dx .

In other words, we would conclude that δx2 admits a density w.r.t. Lebesgue measure.

The main ingredient necessary to prove the main result of this section, i.e., Propo-
sition 4.5, is a set of variational inequalities satisfied by optimal pairs. We obtain such
inequalities by computing the first variation of minimizing pairs under suitable pertur-
bations. We do this in the next lemma. Before stating this result let us first introduce
some notation that will be used in the remainder of the section. We let μ, σ be as in
Lemma 4.1 and assume that σ has a density. To a given minimizing pair (γ, h), we
associate the density

f̄g(x) := σg(x)+ τ
∑

g′
hgg′K (g, g′)e−W , (4.4)

which corresponds to the density of the measure π2�γg . An immediate observation is
that each γg is an optimal plan for the OT problem between μg and π2�γg for the cost

c(x, y) = |x−y|2
2τ . Given that π2�γg has a density, we know that there exists a unique

map Sg : Rd → R
d such that (Sg, Id)# f̄g = γg (see Ambrosio and Gigli 2013[The-

orem 6.2.4 and Remark 6.2.11], for example). We will use the maps {Sg}g∈G to state
the variational inequalities satisfied by minimizers of the static semi-discrete trans-
portation problem. This set of inequalities serves as analogue to the notion of cyclical
monotonicity that appears in the classical (Euclidean) optimal transport setting.

Lemma 4.4 (Variational inequalities) Let μ and σ satisfy the hypothesis of Lemma
4.1 and suppose that in addition σ has a density w.r.t. dxdg. Let (γ, h) be an element
in Opt(μ, σ ). Then, the following properties hold:

• For any g in G and any y in R
d , suppose we have two sequences {gl}Ml=0 and

{g′l}M
′

l ′=0 in G, that satisfy both:

a) The two sequences describe paths in the graph with the same initial and final
endpoints, i.e, we have that g0 = g′0, gM = g′M ′, K (gl , gl+1) > 0, and
K (g′l , g′l+1) > 0.

b) The point y is a Lebesgue point for all the functions hgl−1gl and hg′l−1,g′l .

Then,

M∑

l=1
hgl−1gl (y) =

M ′∑

l ′=1
hg′l−1g′l (y). (4.5)

• Fix g and g′ satisfying K (g, g′) > 0 and assume that y is a Lebesgue point for
Sg which also belongs to the support of π2�γg, and that y′ is a Lebesgue point for
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Sg′ which also belongs to the support of π2�γg′ . Then,

(hgg′(y
′)− hgg′(y))+

[ |y′ − Sg(y)|2
2τ

− |y − Sg(y)|2
2τ

]

+
[ |y − Sg′(y′)|2

2τ
− |y

′ − Sg′(y′)|2
2τ

]
≥ 0.

(4.6)

Proof Let us start with a small outline describing the main ideas behind the proof.
Heuristic Proof We begin analyzing (4.6). The idea is to perturb γg by transporting

a small amount of mass from (Sg(y), g) into (y′, g) instead of transporting it to (y, g).
On the other hand, γg′ is perturbed by transporting a small amount of mass from
(S(y′), g′) into (y, g′) instead of transporting it to (y′, g′). By modifying the plans γg
and γg′ , we create a transport cost differential

[ |y′ − Sg(y)|2
2τ

− |y − Sg(y)|2
2τ

]
+
[ |y − Sg′(y′)|2

2τ
− |y

′ − Sg′(y′)|2
2τ

]
, (4.7)

per unit of mass transported. To balance the above perturbation in the transportation
and remain with an admissible pair, we must also perturb hy′(gg′) and hy′(g′g) so
that the extra amount of mass created by the transportation perturbation gets removed
from (y′, g) and put into (y′, g′). We must also perturb hy(g′g) and hy(gg′) so that
the extra amount of mass created by the transportation perturbation gets removed from
(y, g′) and put into (y, g).Modifying themass exchange function h in this way creates
a mass exchange cost differential of

hgg′(y
′)− hgg′(y),

per unit of mass transported. The resulting modified pair is still admissible, and by
optimality of the original pair (γ, h), it must be the case that

(hgg′(y
′)− hgg′(y))+

[ |y′ − Sg(y)|2
2τ

− |y − Sg(y)|2
2τ

]

+
[ |y − Sg′(y′)|2

2τ
− |y

′ − Sg′(y′)|2
2τ

]
≥ 0,

which is precisely (4.6).
To deduce (4.5), we consider two sequences {gl}Ml=1 and {g′l}M

′
l=1 satisfying the given

conditions a) and b) for some y inRd .We send some extra mass from the point (y, g0)
to the point (y, g1) by increasing hy(g0g1). Then, we take the extra mass at (y, g1)
and send it to (y, g2) by increasing hy(g1g2). We can continue in this fashion until we
reach the point (y, gM ) = (y, g′M ′). At this stage, we will have a deficit of mass at the
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point (y, g1) and an excess of mass at the point (y, g′M ′) and we will pay an excess
exchange cost given by:

M∑

l=1
hgl−1gl (y),

per unit of mass transported.We can balance the previous perturbation by reversing the
mass exchange along the sequence {g′l}M

′
l=1. Namely, for each pair g′l , g′l+1 we reduce

the mass sent from (y, g′l) to (y, g′l+1) by decreasing hg′l g′l+1(y). Doing this we save

M ′∑

l=1
hg′l−1g′l (y)

in terms of the cost. By optimality, we must have

M∑

l=1
hgl−1gl (y) ≥

M ′∑

l=1
hg′l−1g′l (y).

We can then switch the roles of the sequences and obtain the opposite inequality and
from this deduce (4.5).

Let us now make the previous ideas rigorous.
Rigorous proof: 1. We begin with the proof of (4.5). Let us fix two positive real

numbers r , ε > 0 . We perturb our minimizer (γ, h) by considering a new mass
exchange function:

hr ,εgl−1gl (ŷ) :=
{
hgl−1gl (ŷ) if ŷ ∈ Bc

r (y)

hgl−1gl (ŷ)+ ε

τK (gl−1,gl )e−W (ŷ) if ŷ ∈ Br (y),

hr ,εg′l−1g′l
(ŷ) :=

⎧
⎨

⎩
hg′l−1g′l (ŷ), if ŷ ∈ Bc

r (y)

hg′l−1g′l (ŷ)− ε

τK (g′l−1,g′l )e−W (ŷ) if ŷ ∈ Br (y),

hr ,εgl gl−1 = −hgl gl−1 and hr ,εg′l g′l−1
= −hg′l g′l−1 to maintain the asymmetry, and finally

hr ,εgg′ = hgg′ whenever (g, g′) is not one of the consecutive pairs in the sequences. In
the above, we use Br (y) to denote the Euclidean ball of radius r centered at y.

It is straightforward to see that the pair (γ, hr ,ε) is admissible, and thus by the
optimality of (γ, h) we have Cτ (γ, h) ≤ Cτ (γ, hr ,ε), which simplifies to
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0 ≤ τ

2

M∑

l=1

∫

Br (y)

((
hgl−1gl +

ε

τK (gl−1, gl)e−W (ŷ)

)2

− (hgl−1gl )
2

)

K (gl−1, gl)e−W (ŷ)d ŷ

+ τ

2

M ′∑

l=1

∫

Br (y)

⎛

⎝
(
hg′l−1g′l −

ε

τK (g′l−1, g′l)e−W (ŷ)

)2

− (hg′l−1g′l )
2

⎞

⎠

K (g′l−1, g′l)e−W (ŷ)d ŷ.

Dividing by ε and letting ε → 0 yields

0 ≤
∫

Br (y)

⎛

⎝
M∑

l=1
hgl−1gl (ŷ)−

M ′∑

l=1
hg′l−1g′l (ŷ)

⎞

⎠ d ŷ.

Dividing by the volume of Br (y), letting r → 0, and recalling that y was assumed to
be a Lebesgue point for all the functions hgl−1gl and hg′l−1,g′l we conclude that

M∑

l=1
hgl−1gl (y) ≥

M ′∑

l=1
hg′l−1g′l (y).

Switching the roles of the sequences we obtain the reverse inequality. (4.5) follows.
2. Let us now consider (y1, g1) and (y2, g2) such that K (g1, g2) > 0, y1 is a

Lebesgue point of Sg1 and belongs to the support of π2�γg1 , y2 is a Lebesgue point of
Sg2 and belongs to the support of π2�γg2 , and y1 �= y2. Fix ε > 0, and let r be a small
enough positive number so that Br (y1) ∩ Br (y2) = ∅. We now construct measures
γ
r ,ε
g1 , γ r ,ε

g2 and a function hr ,εg1g2 which we use to formalize the perturbation argument
provided in the heuristic proof. To define these measures and function, we first need
to introduce some objects.

Let us start by defining

m1 := γg1(R
d × Br (y1)), m2 := γg2(R

d × Br (y2)).

Notice that both numbers are nonzero given that y1 belongs to the support of π2�γg1
and y2 belongs to the support of π2�γg2 . To ease the notation, we use μ̄g1 and μ̄g2 to
denote the positive measures

μ̄g1 := π2�γg1 = f̄g1dx, μ̄g2 := π2�γg2 = f̄g2dx,

and consider also the positive measures μ̄g1 |Br (y1) and μ̄g2 |Br (y2) defined by

μ̄g1 |Br (y1)(A) := μ̄g1(A ∩ Br (y1)), μ̄g2 |Br (y2)(A) := μ̄g2(A ∩ Br (y2)),

for all Borel subsets A of Rd .
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Let us consider the maps T y2
y1 (y) := (y − y1 + y2) and T y1

y2 (y) := (y − y2 + y1).
Also, let T1 : Br (y1) → Br (y1) be an optimal transport map (for the quadratic cost)
between the measures T y1

y2 �(m1
m2

μ̄g2 |Br (y2)) and the measure μ̄g1 |Br (y1) (measures that
can be checked to have the same total mass), and let T2 : Br (y2) → Br (y2) be
an optimal transport map between the measures T y2

y1 �(μ̄g1 |Br (y1)) and the measure
m1
m2

μ̄g2 |Br (y2).
We can now define the measures γ

r ,ε
g1 and γ

r ,ε
g1 by

γ r ,ε
g1 (A × C) := γg1(A × C)− εγg1(A × (C ∩ Br (y1)))

+ ε(Sg1 , T2 ◦ T y2
y1 )�μ̄g1 |Br (y1)(A × C),

and

γ r ,ε
g2 (A × C) := γg2(A × C)− ε

m1

m2
γg2(A × (C ∩ Br (y2)))

+ ε(Sg2 , T1 ◦ T y1
y2 )�(

m1

m2
μ̄g2 |Br (y2))(A × C),

for all A,C Borel subsets of Rd . For g that is neither g1 nor g2 we set γ
r ,ε
g = γg .

Notice that π1�γ
r ,ε
g1 = μg1 and π2�γ

r ,ε
g2 = μg2 .

Finally, we define

hr ,εg1g2 (y) := hg1g2 (y)+
ε

τK (g1, g2)e−W (y)

(
m1

m2
f g2 (y)1Br (y2)(y)− f g1(y)1Br (y1)(y)

)

and set hr ,εg2g1 = −hr ,εg1g2 , and hr ,εgg′ = hgg′ for pairs g, g′ different from g1g2. It is

straightforward to check that hr ,ε ∈ LW ,K
2 (Rd × G × G) and that for every g ∈ G

σg = π2�γ
r ,ε
g − τ

∑

g′
hgg′K (g, g′)e−W .

That is, (γ r ,ε, hr ,ε) ∈ ADM(μ, σ ) and thus by optimality of (γ, h) we deduce that
Cτ (γ, h) ≤ Cτ (γ

r ,ε, hr ,ε). This inequality simplifies to

ε

∫

Br (y1)

[ |I d − Sg1 |2
2τ

− |T2◦T
y2
y1 − Sg1 |2
2τ

]
f̄g1dy

≤ ε
m1

m2

∫

Br (y2)

[ |T1◦T y1
y2 − Sg2 |2
2τ

− |I d − Sg2 |2
2τ

]
f̄g2dy

+ τ

2

∫

Br (y1)

[
(hg1g2 −

ε

τK (g1, g2)e−W
f̄g1 )

2 − h2g1g2

]
K (g1, g2)e

−W dy

+ τ

2

∫

Br (y2)

[
(hg1g2 +

ε

τK (g1, g2)e−W
m1

m2
f̄g2 )

2 − h2g1g2

]
K (g1, g2)e

−W dy.
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If we divide by ε and let ε → 0, we obtain

∫

Br (y1)

[ |I d − Sg1 |2
2τ

− |T2◦T
y2
y1 − Sg1 |2
2τ

]
f̄g1dy

≤ m1

m2

∫

Br (y2)

[ |T1◦T y1
y2 − Sg2 |2
2τ

− |I d − Sg2 |2
2τ

]
f̄g2dy

−
∫

Br (y1)
hg1g2 f̄g1dy +

m1

m2

∫

Br (y2)
hg1g2 f̄g2dy.

Consequently, dividing by m1 and expanding we obtain

1

m1

∫

Br (y1)

[ |I d − Sg1 |2
2τ

− |T
y2
y1 − Sg1 |2

2τ
+ R2(y)

]
f̄g1dy

≤ 1

m2

∫

Br (y2)

[ |T y1
y2 − Sg2 |2

2τ
− |I d − Sg2 |2

2τ
+ R1(y)

]
f̄g2dy

− 1

m1

∫

Br (y1)
hg1g2 f̄g1dy +

1

m2

∫

Br (y2)
hg1g2 f̄g2dy,

(4.8)

where

1

m1

∫

Br (y1)
|R2(y)| f̄g1dy =

1

m1

∫

Br (y1)

∣∣∣∣
|T y2

y1 − Sg1 |2
2τ

− |T2◦T
y2
y1 − Sg1 |2
2τ

∣∣∣∣ f̄g1dy

= 1

2τm1

∫

Br (y1)
|〈T y2

y1 − T2◦T y2
y1 , T

y2
y1 + T2◦T y2

y1 − 2Sg1〉| f̄g1dy

≤ r

τ

1

m1

∫

Br (y1)
|T y2

y1 + T2◦T y2
y1 − 2Sg1 | f̄g1dy,

and by a similar computation

1

m2

∫

Br (y2)
|R1(y)| f̄g2dy ≤

r

τ

1

m2

∫

Br (y2)
|T y1

y2 + T1◦T y1
y2 − 2Sg2 | f̄g2dy.

We now use the above estimates and let r ↓ 0 in (4.8) to deduce (4.6) (with (y, g) =
(y1, g1) and (y′, g′) = (y2, g2)). ��

Before proceeding with our characterization of optimal pairs, let us first recall some
useful definitions from the classical optimal transport theory. First, given a symmetric
c : R

d × R
d → R, we say that a function ϕ : R

d → R is c-concave, if it can
be written as

ϕ(y) = inf
x∈Rd

c(x, y)− ψ(x), ∀y ∈ R
d ,
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for some ψ : R
d → R. The c-transform of a given ϕ is the function ϕc defined

by

ϕc(x) := inf
y∈Rd

c(x, y)− ϕ(y), (4.9)

and its c-superdifferential is the set

∂c+ϕ :=
{
(x, y) ∈ R

d × R
d : ϕc(x)+ ϕ(y) = c(x, y)

}
. (4.10)

To characterize minimizers of Problem 2.4, in the proposition below we will use the
quadratic cost

c(x, y) := 1

2τ
|x − y|2.

We will also use the spaces � and �⊥ defined in (3.2).

Proposition 4.5 (Characterization ofOptimal pairs) Letμ, σ be absolutely continuous
with respect to dxdg and assume that WG,W ,τ

2 (μ, σ ) < ∞. Also, let (γ, h) be in
ADM(μ, σ ) and assume that μg’s density and f̄g as defined in (4.4) are strictly
positive for every g in G. Then, the following are equivalent

i . Cτ (γ, h) is minimal among all pairs in ADM(μ, σ ).

i i . There exist functions φ,ψ : R
d × G → R satisfying the following properties:

a) For every g inG, the plan γg is supported on ∂c+φg, for some c-concave function
φg(·) = φ(·, g).

b) ForLebesgue almost every point y ∈ R
d , the functionψy(·) = ψ(y, ·) satisfies

ψy(g
′)− ψy(g) = hgg′(y), ∀g, g′ with K (g, g′) > 0. (4.11)

c) The difference φ − ψ belongs to �⊥ as defined in (3.2).

i i i . We can find a single potential ϕ : R
d × G → R satisfying properties a), b),

and c) from item ii .

Proof 1. Optimality of (γ, h) implies that γg is an optimal coupling between μg and
π2�γg for every g, and thus the proof that i .  ⇒ i i .a) follows directly from the
classical (Euclidean) optimal transport theory (seeAmbrosio andGigli 2013, Theorem
1.13). To prove that i .  ⇒ i i .b), let us fix y0 in Rd and g0 in G and define

ψ(y0, g) :=
M∑

l=1
hgl−1gl (y0),

for some sequence {gl}Ml=0 starting at g0, with K (gl , gl+1) > 0, and for which gM = g.
Such sequence exists given that (G, K ) was assumed to be connected. On the other
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hand, observe that by (4.5) the potential ψ is well defined (i.e., does not depend on
the actual sequence connecting g0 and g). In particular, we also have

ψ(y0, g
′) =

M∑

l=1
hgl−1gl (y0)+ hgg′(y0).

i i .b) now follows.
We proceed to show that i .  ⇒ i i .c). According to Remark 3.3, it suffices to

show that the difference ψ − φ is orthogonal to any ε of the form (3.8)

ε = ξ ry′,g − ξ ry′,g′ − ξ ry,g + ξ ry,g′ ,

for arbitrary y, y′, g, g′ and r > 0. To show this, we proceed as follows.
Fix g, g′ with K (g, g′) > 0. We first claim that the function

ugg′(y) := ψg′(y)− ψg(y)+ φg(y)− φg′(y).

is a.e. constant, where ψ is as in item i i .b). To see this, notice that from Brenier’s
theorem for the classical optimal transport problem with the (rescaled) quadratic cost
the following holds: the functions φg, φg′ can be written as

φg(y) = −βg(y)+ |y|
2

2τ
, φg′(y) = −βg′(y)+ |y|

2

2τ
,

for convex functions βg and βg′ , and the maps Sg and Sg′ are a.e. equal to τ∇yβg and
τ∇yβg′ respectively. In particular, we can write

ugg′(y) = ψg′(y)− ψg(y)− βg(y)+ βg′(y), y ∈ R
d .

Now, for a given pair y, y′ ∈ R
d , we have ugg′(y) ≥ ugg′(y′) or ugg′(y′) ≥ ugg′(y).

Suppose for the moment that the first inequality holds. In that case,

βg(y)− βg′(y)− βg(y
′)+ βg′(y

′) ≤ ψg′ (y)− ψg(y)+ ψg(y
′)− ψg′(y

′). (4.12)

After simplification, item i i .a) and (4.6) imply

ψg′ (y)− ψg(y)+ ψg(y
′)− ψg′ (y′) ≤ −〈y′ − y,∇yβg(y)〉 − 〈y − y′,∇yβg′ (y′)〉, (4.13)

for a.e. y, y′. Combining (4.12) and (4.13), and recalling the definition of ugg′ we
obtain

|ugg′(y)− ugg′(y
′)| ≤ βg(y

′)− (βg(y)+ 〈y′ − y,∇yβg(y)〉)
+ βg′(y)− (βg′(y

′)+ 〈y − y′,∇yβg′(y
′)〉). (4.14)
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Notice that if instead ugg′(y′) ≥ ugg′(y) we would have obtained the same inequality
as the one above changing the roles of g and g′ on the right hand side, so we do not
lose generality in assuming the former inequality. Given that along every straight line
� the functions βg, βg′ are convex, their distributional second derivatives (along �) are
characterized in terms of Radon positive measures, implying that along almost every
line � inRd the right hand side in (4.14) is O(|y−y′|), and in particular ugg′ is a locally
Lipschitz function along �. Furthermore, along almost every line in � and for almost
every y, y′ on that line, the right hand side of (4.14) is o(|y − y′|) (given that Radon
measures can only have at most a countable number of point masses). This implies
that the locally Lipschitz function ugg′ (restricted to �) has derivative a.e. equal to
zero, thus implying that the function is constant along almost every line �. From this
it follows that ugg′ is almost everywhere constant in R

d . The bottom line is that for
almost every y, y′ ∈ R

d we have

(
ψg′(y

′)− ψg(y
′)− ψg′(y)+ ψg(y)

)− (
φg′(y

′)− φg(y
′)− φg′(y)+ φg(y)

) = 0.

From the above it now follows that

∫

Rd

∑

g̃

(ψ(y, g̃)− φ(y, g̃))ε(y, g̃) dy = 0,

for ε as in (3.8). This concludes the proof.
2.We now show that ii. implies iii. By Lemma (3.2) we can find ϕ1 : R

d → R

in L2
loc(R

d) and ϕ2 : G → R such that

φg(y)− ψy(g) = ϕ1(y)+ ϕ2(g).

Let us define

ϕ(y, g) := φg(y)− ϕ2(g) = ψy(g)+ ϕ1(y).

Clearly, we have that

ϕ(y, g′)− ϕ(y, g) = ψy(g
′)− ψy(g).

Thus i i .b), follows. On the other hand, since φg is c-concave, φg(·) − ϕ2(g) is c-
concave too. Also, it is straightforward to verify that the superdifferential of φg(y)
and φg(y)− ϕ2(g) agree. In particular, i i .a) holds for the potential ϕ.
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3. To prove that i i i .  ⇒ i ., let (γ̃ , h̃) be any element of ADM(μ, σ ). Then,
using item i i .a), (2.19), (4.9), and (4.10), we have that

Cτ (γ, h) =
∑

g∈G

[ ∫

Rd×Rd
c(x, y)dγg + τ

4

∑

g′∈G

(∫
h2gg′(y)K (g′, g)e−Wdy

)]

=
∑

g∈G

[ ∫

Rd×Rd
(ϕc

g(x)+ ϕg(y))dγg + τ

4

∑

g′∈G

(∫
h2gg′(y)K (g′, g)e−Wdy

)]

=
∑

g∈G

[ ∫

Rd
ϕc
gdμg +

∫

Rd
ϕgdσg + τ

∑

g′∈G

∫ (
ϕg(y)(hgg′(y))K (g′, g)e−W

)
dy

+ τ

4

∑

g′∈G

(∫
h2gg′(y)K (g′, g)e−Wdy

)]

=
∑

g∈G

[ ∫

Rd×Rd
(ϕc

g(x)+ ϕg(y))dγ̃g + τ
∑

g′∈G

(∫
ϕg(y)

(
hgg′(y)− h̃gg′(y)

)

K (g′, g)e−Wdy

)

+ τ

4

∑

g′∈G

(∫
h2gg′(y)K (g′, g)e−Wdy

)]

≤
∑

g∈G

[ ∫

Rd×Rd
c(x, y)dγ̃g +

∑

g′∈G

τ

2

(∫ (
ϕg(y)− ϕg′(y)

)([hgg′(y)− h̃gg′(y)]

K (g′, g)e−Wdy

)

+ τ

4

∑

g′∈G

(∫
h2gg′(y)K (g′, g)e−Wdy

)]
,

where in the last line we have used the antisymmetry of h and h̃. Now, from item i i .b)
and the above inequality we obtain

Cτ (γ, h) ≤
∑

g

∫

Rd×Rd
c(x, y)dγ̃g + τ

4

∑

g,g′

(∫
h̃2gg′(y)K (g′, g)e−Wdy

)

+ τ

4

∑

g,g′

(∫
(h2gg′(y)− h̃2gg′(y))K (g′, g)e−Wdy

)

+
∑

g,g′

τ

2

(∫ (
hgg′(y)

)(
h̃gg′(y)− hgg′(y)

)
K (g′, g)e−Wdy

)

≤ Cτ (γ̃ , h̃).

��
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5 Properties of JKOMinimizers andMaximum Principle

In this section, we prove a series of preliminary results characterizing solutions to
the optimization problem (2.23). In Proposition 5.3, we show that the iterates of the
minimizingmovement scheme satisfy amaximumprinciple that is characteristic of the
Fokker–Plank equation. In Proposition 5.6, we show that the corresponding potential
ϕ generating the associated optimal transport map and optimal exchange function
from Proposition 4.5 agrees with (2.12), i.e., with the formula for the gradient of E
suggested by the formal computation from Sect. 2.2.

We begin by showing that minimizers of (2.23) exist.

Lemma 5.1 (Existence of minimizers to (2.23)) Let μ be a measure in P2(R
d × G)

with the property that E(μ) < ∞. Then, there exists a minimizer μτ ∈ P2(R
d × G)

of

σ → E(σ )+AW ,G,τ (μ, σ ). (5.1)

Moreover, such aminimizer is absolutely continuous with respect to themeasure dxdg.

Proof Since the entropy ofμ is finite, by considering the competitor σ = μwe deduce
that the infimum in (5.1) if finite as well. Now, consider a minimizing sequence of
measures {σ n}∞n=1, with corresponding optimal pairs {(γ n, hn)}∞n=1 in ADM(μ, σ n).

Then, by construction, the second moments of {γ n}∞n=1 and the norm of {hn}∞n=1 in the
weighted space L2

W (Rd × G × G) are equibounded. Thus, following the argument of
Lemma 4.1 we can guarantee the existence of a pair (γ, h) such that up to subsequence
not relabeled, γ n converges weakly to γ , hn converges weakly (in L2

W ) to h and

lim inf
n→∞ Cτ (γ

n, hn) ≥ Cτ (γ, h).

From

σ n
g = π2#γ

n
g − τ

∑

g′
hngg′(x)K (g, g′)e−W ,

and the weak convergence of the sequences {(γ n, hn)}∞n=1, we deduce that

μτ := lim
n→∞π2#γ

n
g − τ

∑

g′
hngg′(x)K (g, g′)e−W

= π2#γg − τ
∑

K (g′,g)>0

hgg′(x)K (g, g′)e−W .

Consequently, the pair (γ, h) belongs to AMD(μ,μτ ). Finally, the inequality

lim inf
n→∞ E(σ n) ≥ E(μτ ),
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is a consequence of the weak convergence of σ n toward μτ and the weak lower semi
continuity of the relative entropy. The desired result follows. ��

In the next lemma, we prove a set of variational inequalities satisfied by minimizers
of (2.23). These inequalities are themain ingredient necessary to attain themain results
of this section, i.e., Propositions 5.3 and 5.6.We obtain these inequalities by computing
the first variation of minimizing pairs under suitable perturbations.

Proposition 5.2 (Variational inequalities of JKO minimizers) Let μ and μτ be as in
Lemma 5.1, and let fτ be μτ ’s density. Let {γg}g and h be the optimal transport plans
and optimal exchange functions for the static semi-discrete optimal transport between
μ and σ = μτ . The following inequalities hold:

• Let y ∈ R
d be a Lebesgue point for the function hg1g2 where K (g1, g2) > 0, and

suppose that (y, g2) is an element in the support of fτ . Then,

log fτ (y, g1)+ V (y, g1)− [log fτ (y, g2)+ V (y, g2)] ≥ hg1g2(y). (5.2)

• Let y1 be a Lebesgue point for Sg and suppose that (y1, g), (y2, g) belong to the
support of fτ . Then,

log fτ (y2, g)+ V (y2, g)− [log fτ (y1, g)+ V (y1, g)] + |Sg(y1)− y2|2
2τ

≥ |Sg(y1)− y1|2
2τ

. (5.3)

• Let (x, y) be an element in the support of γg for some g in G, and suppose that x
and y belong to the support of fτ,g. Then,

log fτ (x, g)+ V (x, g)− [log fτ (y, g)+ V (y, g)] ≥ |x − y|2
2τ

. (5.4)

Proof Let us start with a small outline describing the main ideas behind the proof.
Heuristic Proof We begin by proving (5.2). For this purpose, we consider the

following perturbation of the optimal pair (γ, h). The idea is to stop exchanging a
small amount of mass between (y, g1) and (y, g2). By doing this we save

hg1g2(y)+ log fτ (y, g2)+ 1+ V (y, g2),

in terms of the mass exchange cost and the entropy, and we pay an extra

log fτ (y, g1)+ 1+ V (y, g1),

in terms of the entropy of the excess mass we now have in (y, g1). Thus, (5.2) follows
by optimality.
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We proceed to the proof of (5.3). We perturb γg as follows. Instead of transporting
a small amount of the mass from (Sg(y1), g) into (y1, g), we transport it to (y2, g).
By doing this, we create a transport cost differential

|y2 − Sg(y1)|2
2τ

− |y1 − Sg(y1)|2
2τ

.

The resulting excess mass in (y2, g) and deficit of mass in (y1, g) create an entropy
differential of

log fτ (y2, g)+ V (y2, g)− [log fτ (y1, g)+ V (y1, g)].

Thus, (5.3) follows by optimality.

Finally, to prove (5.4) we take a pair (x, y) in the support of γg where both x, y are
assumed to belong to the support of fτ,g . Now, by setting y = y1 and x = S(y1) = y2
in inequality (5.3) we have

log fτ (x, g)+ V (x, g)− [log fτ (y, g)+ V (y, g)] ≥ |y − x |2
2τ

.

Rigorous proof We only prove (5.2). The proof of (5.3) follows exactly as in
Proposition 3.7 from Figalli and Gigli (2010) and the proof of (5.4) follows the same
lines as Lemma 4.4.

Let y ∈ R
d be a Lebesgue point for the function hg1g2 and suppose that (y, g2) is an

element in the support of fτ . Let r and ε be positive numbers.We perturb the minimiz-
ing pair (γ, h) by considering the new mass exchange function hr ,εg1g2 : R

d → R

defined by

hr ,εg1g2(ŷ) =
{
hg1g2(ŷ), if ŷ ∈ Bc

r (y)

hg1g2(ŷ)− ε fτ,g2 (ŷ)

τK (g1,g2)e−W (ŷ) if ŷ ∈ Br (y),

hr ,εg2g1 := −hr ,εg2g1 and h
r ,ε
gg′ = hgg′ whenever (g, g′) is not (g1, g2) or (g2, g1).Observe

that this produces a competitor μr ,ε
τ whose densities are given by

f r ,ετ,g1(ŷ) =
{
fτ,g1(ŷ), if ŷ ∈ Br (y)c

fτ,g1(ŷ)+ ε fτ,g2(ŷ) if ŷ ∈ Br (y)
,

f r ,ετ,g2(ŷ) =
{
fτ,g2(ŷ), if ŷ ∈ Br (y)c

(1− ε) fτ,g2(ŷ) if ŷ ∈ Br (y),

and fτ,g = f r ,ετ whenever g is not g1 or g2. From the minimality of μτ we get that

∑

g

∫

Rd
ϑ( fτ , ŷ, g)d ŷ + Cτ (γ, h) ≤

∑

g

∫
ϑ( f r ,ετ , ŷ, g)d ŷ + Cτ (γ, hr ,ε),
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which simplifies to

∫

Br (y)

[
ϑ
(
fτ,g1(ŷ), ŷ, g1

)+ ϑ
(
fτ,g2(ŷ), ŷ, g2

)+ τ

2
h2g1g2(ŷ)K (g1, g2)e

−W (ŷ)
]
d ŷ

≤
∫

Br (y)

[
ϑ
(
fτ,g1(ŷ)+ ε fτ,g2(ŷ), ŷ, g1

)+ ϑ
(
(1− ε) fτ,g2(ŷ), ŷ, g2

)

+ τ

2

(
hg1g2(ŷ)−

ε fτ,g2(ŷ)

τK (g1, g2)e−W (ŷ)

)2

K (g1, g2)e
−W (ŷ)

]
d ŷ.

Reordering terms, we obtain

∫

Br (y)

[
ϑ
(
fτ,g1(ŷ), ŷ, g1

)− ϑ
(
fτ,g1(ŷ)+ ε fτ,g2(ŷ), ŷ, g1

)]
d ŷ

≤
∫

Br (y)

[
ϑ
(
(1− ε) fg2(ŷ), ŷ, g2

)− ϑ
(
fτ,g2(ŷ), ŷ, g2

)

+ τ

2

[(
hg1g2(ŷ)−

ε fτ,g2(ŷ)

τK (g1, g2)e−W (ŷ)

)2

− h2g1g2(ŷ)

]
K (g1, g2)e

−W (ŷ)
]
d ŷ.

Dividing by ε and letting ε → 0 yields

∫

Br (y)

[
− log fτ,g1(ŷ)− 1− V (ŷ, g1)

]
fτ,g2(y)dy

≤
∫

Br (y)

[
− log fτ,g2(ŷ)− 1− V (ŷ, g2)− hg1g2(ŷ)

]
fτ,g2(ŷ)d ŷ.

Dividing by
∫
Br (y)

fτ,g2(ŷ)d ŷ, and letting r → 0 we obtain the desired inequality. ��
In the next proposition, we prove that minimizers of (2.23) satisfy a maximum

principle that is characteristic of Fokker–Planck equations.

Proposition 5.3 (Consistent barriers) Suppose that μ and μτ are as in Lemma 5.1.
Suppose in addition that μ’s density satisfies:

λe−V (x,g) ≤ f (x, g) ≤ �e−V (x,g),

for every (x, g). Then, fτ satisfies

λe−V (x,g) ≤ fτ (x, g) ≤ �e−V (x,g), (5.5)

as well.

Proof We only prove the lower bound in (5.5) since the argument for the upper bound
is completely analogous. Let us define the set

A := {(x, g) : λe−V (x,g) > fτ (x, g)},
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and consider the auxiliary positive measure

dμλ = λe−V (x,g)dxdg.

Suppose for the sake of contradiction that

μλ(A) > 0.

Then,

μ(A) ≥ μλ(A) > μτ (A),

and thus the set A has to lose mass during the transportation. Consequently, at least
one of the following facts should hold:

i. There exist g ∈ G and y a Lebesgue point of Sg such that (Sg(y), g) ∈ A and
(y, g) /∈ A.

ii. There exist a pair of nodes g, g′ with K (g, g′) > 0 and x a density point of hgg′
for which (x, g) and (x, g′) belong to the support of fτ , hgg′(x) > 0, (x, g) ∈ A
and (x, g′) /∈ A.

Let us show that in both cases we reach a contradiction.
Case i: In this case, we apply (5.3) with y1 = y and y2 = Sg(y) to obtain that

log fτ (y, g)+ V (y, g)+ 1

2τ
|Sg(y)− y|2 ≤ log fτ (Sg(y), g)+ V (Sg(y), g).

Now, observe that the assumption that (y, g) /∈ A implies that the left-hand side of
the above inequality is bigger than log λ, whereas the assumption that (Sg(y), g) ∈ A
implies the right-hand side is strictly smaller than log λ.Thus,we reach a contradiction.

Case ii: In this case we apply (5.2) with g2 = g′, g1 = g and y = x, to obtain that

0 < hgg′(x) ≤ log fτ (x, g)+ V (x, g)− log fτ (x, g
′)− V (x, g′).

Moreover, our assumption that (x, g′) /∈ A and (x, g) ∈ A implies that the right hand
side is negative. Thus, we reach a contradiction. ��

As a by-product of the above proposition, we obtain a uniform control on the
distance traveled by the transported mass.

Lemma 5.4 (Transportation bound) Let μ, μτ , λ, and � be as in Proposition 5.3.
Then, there exists C > 0 such that for all g ∈ G

|y − x | ≤ C
√

τ ∀(x, y) ∈ supp(γg),

where we recall γ = {γg}g∈G is the set of optimal plans between μ and μτ . The
constant C can be taken to be C = √2(log(�)− log(λ)).
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Proof The estimate follows by combining (5.4) with Proposition 5.3. ��
In the next lemma, we show that the target density fτ and the transported density

f̄τ (x, g) = fτ (x, g)+ τ
∑

g′
hgg′(x)K (g, g′)e−W (x),

are comparable. Recall that f̄τ,g is nothing but the density of the positive measure
π2�γg .

Lemma 5.5 (Positivity of the transported mass) Letμ,μτ , λ, and� be as in Proposi-
tion 5.3, and let λ′,�′ be as in (2.24). Finally, let f̄τ be defined as above. Then, there
exists a positive constant τ0 := τ0(λ,�, λ′,�′) < 1/2 such that for any τ in (0, τ0)
we have that f̄τ > 0, i.e., the support of π2#γg is all of Rd for all g ∈ G. Moreover,
we have that

C

1− τ
<

f̄τ,g
fτ,g

< C(1+ τ), (5.6)

for any τ in (0, τ0) for some constant C that only depends on λ,�, λ′,�′.

Proof To prove (5.6), we note that thanks to (5.2) and (5.5), we have that the mass
exchange function h is uniformly bounded in terms of λ and �. Additionally, (5.5)
and the assumption (2.24) imply that the quotient of e−W and fτ is uniformly bounded
as well. Hence, the desired result follows. ��

In the next proposition, we show that the potential ϕ that generates the optimal
transport map and exchange function betweenμ andμτ forμ satisfying the conditions
from Proposition 5.3 (see item iii. in Proposition 4.5) agrees with the negative of (2.12)
which is the gradient of the relative entropy suggested by the formal Riemannian
structure from Sect. 2.2.

Proposition 5.6 (The gradient of the relative entropy and JKOminimizers) Letμ,μτ ,
λ, and � be as in Proposition 5.3, let λ′,�′ be as in (2.24), and let τ0 > 0 be as in
Lemma 5.5. Then, for every τ in (0, τ0) we have:

i. For each g in G the optimal transport plan γτ,g is given by

γτ,g = (Sg, I d)#
(
fτ,g + τ

∑
hτ,gg′K (g, g′)e−W

)
, (5.7)

where the corresponding optimal transport map Sg satisfies

Sg(y)− y

τ
fτ (y, g) = ∇x fτ (y, g)+ fτ (y, g)∇x V (y, g), (5.8)

for almost every y in Rd .
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ii For each pair g, g′ with K (g, g′) > 0 and for almost every x in R
d , the optimal

exchange function hτ,gg′ satisfies

hτ,gg′(x) =
[
log fτ (x, g)+ V (x, g)− log fτ (x, g

′)− V (x, g′)
]
. (5.9)

Proof We begin by noting that thanks to Lemma 5.5 and Proposition 5.3, we have that
the support of fτ,g and π2#γg is Rd for any g in G, i.e., fτ > 0 and f̄τ > 0. We will
use this fact together with the variational inequalities from Proposition 5.2.

1. Let us begin by showing i.
Observe that due to (5.3) for any (x, y) in the support of γg we have

log fτ,g(z)+ V (z, g)− log fτ,g(y)− V (y, g)+ |x − z|2
2τ

≥ |x − y|2
2τ

,

for almost every z inRd . Expanding the squares and rearranging terms, we obtain that

log fτ,g(z)+ V (z, g)+ |z|
2

2
≥ log fτ,g(y)+ V (y, g)+ |y|

2

2
+ 〈 x

τ
, z − y〉

foralmost everyz inRd .

Such an inequality implies that, up to redefining fτ,g in a set up measure zero, the

function �g(z) = log fτ,g(z)+ V (z, g)+ |z|2
2 is convex and for almost every y in R

and every pair (x, y) in the support of the optimal transport plan γτ,g we have that x
τ

is contained in the subdifferential of �g at y. Following the notation from Ambrosio
et al. (2005), Section 3.1 , we shall denote such a subdifferential by ∂−�(y). Finally,
since convex function are almost everywhere differentiable, we have that for almost
every y the set ∂−�g(y) is a singleton and

∇z=y�g = x

τ
.

Moreover, using the almost everywhere differentiability of �g we get that z →
log fτ,g(z)+ V (z, g) is almost everywhere differentiable and

∇z=y

(
log fτ,g(z)+ V (z, g)+ |z|

2

2

)
= x

τ

which implies that

τ∇y(log fτ,g + Vg) = x − y.

Notice that combining the above equationwith Lemma5.4,we obtain that log fτ,g+Vg
has a uniformly bounded gradient. Consequently, i follows.

2. Let us now show ii. Using (5.2), we obtain

log fτ (x, g
′)+ V (x, g′)− [log fτ (x, g)+ V (x, g)] ≥ hg′g(x),
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for almost every x in R
d . Interchanging g and g′, we obtain the opposite inequality

and thus the desired identity. Here, once more we have used the fact that Proposition
5.3 and Lemma 5.4 imply that fτ > 0 and f̄τ > 0. ��

As a direct consequence of the above proposition, we obtain the following result:

Corollary 5.7 (Sobolev regularity) Let μ, μτ , λ, and � be as in Proposition 5.3, let
λ′,�′ be as in (2.24), and let τ0 > 0 be as in Lemma 5.5. Then, for every τ in
(0, τ0), fτ,g is contained in the weighted Sobolev space W 1,2(Rd , eW ) for every g in
G. Moreover,

∑

g∈G

∫

Rd
| fτ (x, g)|2eWdx ≤ C1

∑

g∈G

∫

Rd
e−W (x)dx, (5.10)

τ
∑

g∈G

∫

Rd
|∇x fτ (x, g)|2eWdx ≤ C2

[
E(μ)− E(μτ )+ τ

]
, (5.11)

for some constant C1 that only depends on λ,�, λ′,�′, and a constant C2 that only
depends on λ,�, λ′,�′ and the quantity

[∇x V ]e−V :=
∑

g

∫

Rd
|∇x V (y, g)|2e−V (y,g)dy.

Proof The fact that fτ,g belongs to L2(Rd , eW ) follows from (5.3), (2.24), and the
fact that e−W was assumed to be integrable.

Now, note that by optimality

E(μτ )+ Cτ (μ,μτ ) ≤ E(μ).

Consequently, using (5.8) and the definition of the transportation cost, we deduce that

τ

2

∑

g∈G

∫
|∇x log fτ (y, g)+∇x V (y, g)|2 f̄τ (y, g)dy ≤ E(μ)− E(μτ ).

Hence, using (5.5), (5.6) and (2.24) we obtain

τ
∑

g∈G

∫
|∇x fτ (y, g)|2e−Wdy ≤ C

(
E(μ)− E(μτ )+ τ

)
,

for some constant C that only depends on λ,�, λ′,�′ and the quantity [∇x V ]e−V . ��

6 Convergence of the JKO Scheme: Proof of Theorem 2.14

Let us start by defining precisely the notion of weak solution to Eq. (2.14).
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Definition 6.1 We say that a weakly continuous curve ofmeasures {μt }t≥0 inP2(R
d×

G) with associated probability density functions { f (t, ·, ·)}t≥0 is a weak solution with
initial condition f0 (2.14) if

f (0, x, g) = f0(x, g), ∀(x, g) ∈ R
d × G

and

∑

g

(∫

Rd
ζg fg(s, x)dx −

∫

Rd
ζg fg(r , x)dx

)

=
∫ s

r

(∑

g

∫

Rd

[
�xζg − 〈∇x Vg,∇xζg〉

]
fg(t, x)dx

+ 1

2

∑

g,g′

∫

Rd
[ζg′ − ζg][log fg′(t, x)+ Vg′

− log fg(t, x)− Vg]K (g, g′)e−W (x)dx

)
dt,

for every r , s, in [0,∞), and every test function ζ in C∞c (Rd × G).

With all the preliminary results from Sect. 5, we can now proceed to the proof of
Theorem 2.14.

Proof of Theorem 2.14 1. JKO scheme produces an approximate solution. Let f0
be an initial datum with finite energy E( f0) < ∞ satisfying (2.22). Let τ0 be as in
Lemma 5.5, Proposition 5.6, and Corollary 5.7. Let τ ∈ (0, τ0), and for every n ∈ N

let (γ τ
n , hτ

n) be the minimizing pair of transporting f τ
n into f τ

n+1, where the f τ
n are

the densities iteratively constructed as in (2.23). Let Sτ
n,g be the optimal transport map

associated to γ τ
n,g as in (5.7), and let f̄ τ

n be the density of the measure π2�γ
τ
n,g , i.e.,

the transported density. We recall that f̄ τ
n,g can be written as

f̄ τ
n,g = f τ

n+1,g + τ
∑

g′
hτ
n,gg′K (g, g′)e−W .

Notice that by iterating Proposition 5.3, we have

λe−Vg ≤ f τ
n,g ≤ �e−Vg ∀n ∈ N,

and by Lemma (5.5)

C

1− τ
<

f̄ τ
n,g

f τ
n+1,g

< C(1+ τ).
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Finally, recall that the discrete time sequence f τ
n can be extended to continuous time

by setting

f τ (t) := f τ
n+1 for t ∈ (

nτ, (n + 1)τ ],

We will now show that the curve t �→ f τ (t) can be interpreted as an approximate
solution to Eq. (2.14).

Let ζ ∈ C∞c (Rd × G) be an arbitrary test function. Then,

∫

Rd
ζg f τ

n+1,g(y)dy −
∫

Rd
ζg f

τ
n,g(x)dx =

∫
ζg(y)dγ

τ
n,g(x, y)−

∫
ζg(x)dγ

τ
n,g(x, y)

+ τ
∑

g′∈G

∫

Rd
ζgh

τ
n,gg′K (g′, g)e−W dy.

(6.1)

Using the fundamental theorem of calculus and (5.8), we deduce

∫

Rd×Rd
ζg(y)dγ

τ
n,g(x, y)−

∫

Rd×Rd
ζg(x)dγ

τ
n,g(x, y)

=
∫

Rd×Rd

(
ζg(y)− ζg(x)

)
dγ τ

n,g(x, y)

=
∫

Rd×Rd

(
ζg(y)− ζg(S

τ
n,g(y))

)
f̄ τ
n,g(y)dy

=
∫

Rd×Rd
(ζg(y)− ζg(S

τ
n,g(y)) f

τ
n+1,g(y)dy + R1(τ, n, g)

= −
∫

Rd
〈∇xζg, S

τ
n,g − I d〉 f τ

n+1,g(y)dy + R2(τ, n, g)+ R1(τ, n, g)

= −τ

∫

Rd
〈∇xζg,∇x f

τ
n+1,g + f τ

n+1,g∇x Vg〉dy + R(τ, n, g),

where the error term is given by

R(τ, n, g) = R1(τ, n, g)+ R2(τ, n, g)

= τ

∫

Rd
(ζg − ζg ◦ Sτ

n,g)
∑

g′
hτ
n,gg′K (g, g′)e−Wdy

+
∫

Rd

∫ 1

0

(
〈∇xζg ◦ ((1− s)Sτ

n,g + s I d), I d − Sτ
n,g〉 − 〈∇xζg, I d − Sτ

n,g〉
)

f τ
n+1,g(y)dsdy.
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Plugging back in (6.1) and using (5.9), we deduce that

∑

g

∫

Rd
ζg f τ

n+1,g(y)dy −
∑

g

∫

Rd
ζg f τ

n,g(x)

dx = −τ
∑

g

∫

Rd
〈∇xζg,∇x f

τ
n+1,g + f τ

n+1,g∇x Vg〉dy

+ τ

2

∑

g,g′

∫

Rd
(ζg − ζg′)

[
log f τ

n+1(x, g)+ V (x, g)

− log f τ
n+1(x, g′)− V (x, g′)

]
K (g, g′)e−Wdy

+
∑

g

R(τ, n, g).

(6.2)

Let us now estimate the error terms. First, using (5.9) and the bounds on f τ
n+1,g we

can bound the transfer functions hτ
n,gg′ by a constant that only depends on λ and �,

and then use Lemma 5.4 to obtain

|R(τ, n, g)| ≤ C1‖∇xζg‖L∞(Rd )

(
τ

3
2 +

∫

Rd
|I d − Sτ

n,g|2 f τ
n+1,g(y)dy

)
, (6.3)

for some constant C1 := C1(λ,�). Now, from the fact that f τ
n+1,g and f̄ τ

n,g are

comparable, and from the definition of f τ
n+1,g and the transport costW

G,W ,τ
2 it follows

that

∑

g

∫
|I d − Sτ

g,n |2 f τ
n+1,gdy ≤ C2

∑

g

∫
|I d − Sτ

g,n |2 f̄ τ
n,gdy ≤ C2τ

(
E( f τ

n )− E( f τ
n+1)

)
.

where C2 := C2(λ,�, λ′,�′). Thus, combining the above inequalities with (6.3) we
deduce that

N−1∑

n=M

∑

g

∣∣R(τ, n, g)
∣∣ ≤ C3 max

g
‖∇x ζg‖L∞(Rd )

(
τ3/2(N − M)+ τ

[
E( f τ

M )− E( f τ
N )

])

≤ C3 max
g
‖∇x ζg‖L∞(Rd )

(
τ3/2(N − M)+ τE( f0)

)
,

(6.4)

for all M ≤ N − 1, where C3 := C3(λ,�, λ′,�′).
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Let us now fix 0 ≤ r < s. We add up (6.2) from M = #r\τ$ to N − 1 = #s\τ$− 1
(assuming that τ is small enough so that M ≤ N − 1) to get that

∑

g

∫

Rd
ζg f

τ
g (s, x) dx −

∑

g

∫

Rd
ζg f

τ
g (r , x) dx

=
∫ τ#s\τ$
τ#r\τ$

(
−
∑

g

∫

Rd
〈∇x ζg,∇x f

τ
g (t, x)+ f τ

g (t, x)∇x Vg〉dx

+ 1

2

∫

Rd

∑

g,g′
(ζg′ − ζg)

[
log f τ

g′(t, x)+ Vg′ − log f τ
g (t, x)− Vg

]
K (g, g′)e−W dx

)
dt

+
N−1∑

n=M

∑

g
R(τ, n, g)

=
∫ τ#s\τ$
τ#r\τ$

(∑

g

∫

Rd

[
�x ζg − 〈∇x ζg,∇x Vg〉

]
f τ
g (t, x) dx

+ 1

2

∫

Rd

∑

g,g′
(ζg′ − ζg)

[
log f τ

g′(t, x)+ Vg′ − log f τ
g (t, x)− Vg

]
K (g, g′)e−W dx

)
dt

+
N−1∑

n=M

∑

g
R(τ, n, g).

(6.5)

From (6.4), it is clear that as τ → 0 the error term in the above expression vanishes.
Therefore, if we can show that as τ → 0 (along a sequence) the curve t �→ f τ (t)
converges to a limiting curve t �→ f (t) which is weakly continuous, and that this
convergence is strong enough so that in particular we can pass to the limit in all the
terms in the above expression, then we will have shown that the curve t �→ f (t) is
indeed a weak solution to (2.14).

2. Compactness. Let us consider a sequence {τk}k of positive numbers converging
to zero.Without the loss of generality, we can assume that τk ≤ τ0 for all k. Our goal is
to show that we can pass to the limit in (6.5). For this purpose, we use the Aubin–Lions
theorem (see Theorem 5 in Simon 1986). We introduce some notation first.

Let us fix tF > 0. For h > 0, we define the translates

Th f
τk (t) := f τk (t + h).

Also, for R > 0 we let UR := BR × G, where BR is the open ball in R
d with radius

R centered at the origin. Let p be a positive number such that p > d + 1. Consider
the Sobolev spaces W 1,2(BR) and W 2,p(BR), and denote by W−2,p(UR) the dual of
W 2,p(BR). Notice that

W 1,2(BR) ↪→ L2(BR) ↪→ W−2,p(BR),

where the first embedding is compact and the second one is continuous; notice also
that W 2,p(BR) embeds continuously into C1(BR).
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We show the following:

a) For every g ∈ G, { f τk
g }k is bounded in L2(0, tF ;W 1,2(BR)).

b) For every g ∈ G, ‖Th f τk
g − f τk

g ‖L2(0,tF−h;W−2,p(BR)) → 0 as h → 0, uniformly
for all k.

Theorem 5 in Simon (1986) will then imply that for every g ∈ G, { f τk
g }k is precompact

in L2(0, tF ; L2(BR)).
2a. Observe that by iterating the bounds from Corollary 5.7 along f τk

n we deduce
that

∫

BR

| f τk
g (t, x)|2 dx ≤ C4, ∀t ≥ 0,∀k ∈ N (6.6)

as well as

∫ tF

0

(∫

BR

|∇x f
τk
g (t, x)|2 dx

)
dt ≤ C4(E( f0)+ tF ), ∀k ∈ N, (6.7)

where the constant C4 depends only on λ,�, λ′,�′, R,W , |G|. From the above
inequalities it follows that for every g ∈ G, the sequence { f τk

g }k∈N is bounded in
L2(0, tF ;W 1,2(BR)) (and also in L2(0, tF ; L2(BR))). Moreover, for every t ≥ 0 the
sequence { f τk

g (t)}k∈N is bounded in L2(BR).
2b.Let h be smaller than tF . For t ∈ [0, tF−h) set Nk = # t+hτk

$−1 andMk = # t
τk
$.

Notice that if Nk < Mk then Th f
τk
g (t) = f τk

g (t), and sowemay assume thatMk ≤ Nk .
For any given ζg ∈ W 2,p(BR), we have

∫

BR

ζg(x)(Th f τk
g (t, x)− f τk

g (t, x)) dx

=
Nk∑

n=Mk

∫

BR

ζg f τk
n+1,g(x)dx −

∫

BR

ζg f τk
n,g(x)dx

=
Nk∑

n=Mk

∫

BR×BR

(ζg(y)− ζg(x)) dγ τk
n,g(x, y)− τk

∑

g′

∫

BR

ζgh
τk
n,gg′e

−W dx

=
Nk∑

n=Mk

∫

BR×BR

∫ 1

0
〈∇ζg(x + s(y − x)), y − x〉 ds dγ τk

n,g

− τk
∑

g′

∫

BR

ζgh
τk
n,gg′e

−W dx

≤ C6

Nk∑

n=Mk

‖ζg‖C1(BR)

(∫

Rd×Rd
|y − x |2 dγ τk

n,g

) 1
2 + C5τk ||ζg ||W 2,p(BR)

≤ C7||ζ ||W 2,p(BR)

Nk∑

n=Mk

[(∫

Rd×Rd
|y − x |2 dγ τk

n,g

) 1
2 + τk

]
.
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In the above, the constant C5 depends only on λ,� and W , C6 depends only on R,
and C7 := C5 + C6. We have used the fact that W 2,p(BR) embeds continuously into
C1(UR), and we have also used the bounds on the exchange function hτk

n from (5.9)
together with the lower and upper bounds for the density f τk

n,g . Consequently,

||Th f τk
g (t)− f τk

g (t)||W−2,p(BR )

= sup
||ζg ||W2,p (BR )

=1

∫

BR

ζg
(
Th f

τk
g (t, y)− f τk

g (t, y)
)

dy

≤ C7

(
τk(Nk − Mk)+

(
τk(Nk − Mk)

) 1
2

( Nk∑

n=Mk

[(∫

Rd×Rd

|y − x |2
τk

dγ τk
n,g

)) 1
2

≤ C7

(
h +√h

[ Nk∑

n=Mk

E( f τk
n )− E( f τk

n+1)
] 1

2
)

≤ C7

(
h +√h

[
E( f τk

Mk
)− E( f τk

Nk+1)
]1/2)

≤ C8

(
h +√h

[
E( f0)

]1/2)

(6.8)

Here, we used Jensen’s inequality, and the definition of f τk
n,g . This shows

||Th f τk
g − f τk

g ||L2
(0,tF−h;W−2,p(BR))

→ 0, as h → 0,

uniformly in k.
From 2a) and 2b), it now follows that for every g ∈ G, the sequence { f τk

g }k∈N
is precompact in L2(0, tF ; L2(BR)) (Theorem 5 in Simon (1986)). In particu-
lar, there exist a subsequence of {τk}k (which we do not relabel) and an element
fg ∈ L2(0, tF ; L2(BR)) such that f τk

g → fg as k → ∞ in L2(0, tF ; L2(BR)). On
the other hand, from (6.6) and (6.7) it follows that for almost every t ∈ [0, tF ] the
sequence { f τ k

g (t)}k is bounded in W 1,2(BR) and thus precompact in L2(BR) and
in W−2,p(BR). We can then use this fact and (6.8) to conclude from Arzela–Ascoli
theorem that { f τk

g }k converges in C(0, tF ;W−2,p(BR)) (in fact in C1/2−ε for any ε)
to fg . Moreover, a standard diagonal argument sending R → ∞ along a sequence
allows us to assume without the loss of generality, that for every g ∈ G, f τk

g → fg in

L2(0, tF ; L2
loc(R

d)), as well as f τk
g → fg in C(0, tF ;W−2,p

loc (Rd)), as k →∞.
3. Properties of t ∈ [0, tF ) �→ f (t). We claim that for every t ∈ [0, tF ) we have

λe−Vg ≤ fg(t) ≤ �e−Vg .

Indeed, notice that from (6.6) it follows that for every t ∈ [0, tF ), the sequence
{ f τk

g (t)}k∈N is bounded in L2(BR) (for every R) and thus it must have a weakly con-

verging subsequence in L2(BR).Due to the fact that f τk
g → fg inC(0, tF ;W−2,p

loc (Rd)),
said subsequence must converge weakly to fg(t) in L2(BR). Since each of the f τk

g (t)
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satisfies the desired lower and upper bounds in BR , it follows that fg(t) satisfies the
same bounds in BR . Since R was arbitrary we conclude that fg(t) satisfies the desired
bounds in the whole Rd .

Now we claim that for every t ∈ [0, tF )

∑

g

∫

Rd
fg(t, x)dx = 1.

Indeed, this is a direct consequence of the lower and upper bounds obtained above
and the fact that for every t ∈ [0, tF ) f τk

g (t) converges in W−2,p
loc (Rd) toward fg(t).

In particular, we conclude that the curve t ∈ [0, tF ) �→ f (t, ·, ·) is indeed a curve of
probability measures on R

d × G. Moreover, the fact that fg ∈ C(0, tF ;W−2,p
loc (Rd))

and the upper and lower bounds on the densities fg(t) imply that the curve t ∈
[0, tF ) �→ f (t) (seen as a curve of probability measures) is weakly continuous (here
interpreted as weak convergence of probability measures).

It remains to show that the curve is a weak solution to (2.14).
4. Weak solution of (2.14). Let ζ ∈ C∞c (Rd × G), and let 0 ≤ r < s < tF .

From the convergence f τk
g → fg in C(0, tF ;W−2,p

loc (Rd)), it follows

∫

Rd
ζg f

τk
g (s, x) dx −

∫
ζg f

τk
g (r , x) dx →

∫
ζg fg(s, x) dx −

∫
ζg fg(r , x) dx . (6.9)

Now, using the fact that f τk
g (t) → fg(t) in L2

loc(R
d) for almost every t ∈ [0, tF ),

and using the upper and lower bounds for f τk
g (t) and fg(t) we conclude that

∫

Rd

∑

g′∈G
(ζg − ζg′ )(log f

τk
g (t, x)+ Vg − [log f

τk
g′ (t, x)+ Vg′ ]e−W dx

→
∫

Rd

∑

g′∈G
(ζg − ζg′ )(log fg(t, x)+ Vg − [log fg′ (t, x)+ Vg′ ])e−W dx,

(6.10)

for almost every t ∈ [0, tF ), and

∫

Rd

[
�x ζg − 〈∇x ζg,∇x Vg〉

]
f
τk
g (t, x) dx →

∫

Rd

[
�x ζg − 〈∇x ζg,∇x Vg〉

]
fg(t, x) dx,

(6.11)

for almost every t ∈ [0, tF ).
Now, from the upper and lower bounds on f τk

g , it follows that for every t ∈ [0, tF )

∫
|
∑

g′∈G
(ζg − ζg′ )(log f τk

g (t, x)+ Vg − [log f τk
g′ (t, x)+ Vg′ ])|e−W dx ≤ C10||ζ ||L∞(Rd ),
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for a constant C10 that only depends on λ,�, |G|, W , and also

∫

Rd
|[�xζg − 〈∇xζg,∇x Vg〉

]| f τk
g (t, x) dx ≤ ||�xζg||L∞(Rd )

+ C11||∇xζg||L∞(Rd×G)([∇x V ]e−V )1/2,

for a constant C11 that depends only on λ,�, λ′,�′. We recall that [∇x V ]e−V is the
quantity defined in Corollary 5.7.

Using the above two inequalities and (6.10), (6.11), we can invoke the dominated
convergence theorem twice, and then combine with (6.9) in order to conclude that we
can pass to the limit in (6.5). From this it follows that t �→ f (t) is a weak solution to
(2.14).

��

7 Summary and Discussion on Applications

In this paper, we introduce two types of optimal transport problems in the semi-discrete
setting and then study gradient flows of relative entropy functionals with respect to
these semi-discrete transport costs. The first problem uses a dynamic formulation a
la Benamou–Brenier, and a formal Riemannian structure can be associated to it. The
Riemannian formalism is used tomotivate systems of equations representing a gradient
descent scheme for the minimization of a relative entropy functional; the Riemannian
formalism can also be used to motivate accelerated methods for optimization. With
the second optimal transport problem (the static one), we seek to more rigorously
introduce the notion of gradient flow of the relative entropy functional by considering
a minimizing movement scheme of the relative entropy with respect to this cost.
Theorem 2.14 establishes an equivalence between the gradient flow equation formally
derived through the Riemannian formalism of the first transport cost and the rigorous
definition of gradient flow using the minimizing movement scheme with respect to
the second transport cost.

There are several theoretical research directions that emanate from our work. First,
we believe that it is worth establishing a closer relationship between the two semi-
discrete optimal transport problems introduced in the paper (the static and dynamic
formulations). Secondly, it is worth emphasizing that our main result on the conver-
gence of the minimizing movement scheme from Sect. 2.5 toward the gradient flow
heuristically motivated using the Riemannian formalism was only proved for mobili-
ties that are independent of the mass exchanged among nodes in the graph. We believe
that it is worth obtaining a more general result that justifies the connection between
these two gradient flows even further.

In the remainder of the paper, we discuss some thoughts on the main application
motivating this work.
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7.1 From Semi-discrete Optimal Transport to Neural Architecture Search

In machine learning, a neural network is a graph g (the architecture) whose nodes are
arranged into layers with edges connecting nodes at different layers. A collection of
free parameters (or weights) x is associated with the nodes and edges in the graph. The
network architecture g, together with the numerical values of its associated parameters
x , determines a series of transformations that, when composed, define a mapping of
input vectors (input data) into output vectors (labels). Training a given neural net-
work g essentially means tuning the corresponding parameters x so as to achieve a
small mismatch between predicted and observed outputs associated with given train-
ing inputs. In other words, the training of a neural network g is the optimization of an
objective function (a loss function) over the free parameters x .

In neural architecture search, the goal is to find an architecture g that, once trained,
gives the best performance possible when predicting data outputs. From a simplistic
perspective, this problem can be stated as solving:

min(x,g)∈Rd×G V (x, g). (7.1)

where V is thought of as a loss function that typically depends on observed data
as well as on additional regularization terms. The variable x (the parameters of a
network) can be interpreted as a Rd -valued vector (for d large enough but fixed for
simplicity),whereas g canbe interpreted as an element in afinite family of architectures
G (which in principle may be quite large). In short, in neural architecture search
the optimization is over both the architecture space G and over the parameters. The
tensorized representation of the problem is certainly an oversimplification because,
in reality, the parameters x associated to an architecture g do not have an obvious
correspondence with the parameters of a different architecture g′ (and in fact their
dimensions do not even have to match). We will not elaborate much further on this
simplification and here we just limit ourselves to saying that while unreasonable when
G is interpreted as the whole space of architectures, the tensorized representation
of problem 7.1 is useful when one restricts to a local graph of architectures where
one has access to morphisms or correspondences between the parameters of different
architectures (just like restricting the optimization of a function defined on a curved
manifold to a local chart).

There is an enormous literature on neural architecture search methodologies and
some of its applications (see Yu and Zhu 2020 for a brief overview on the subject),
but essentially most methods found in the literature fall into two main groups. The
first group builds on ideas from reinforcement learning as in Zoph and Le (2016)
which uses optimization tools like those described in Williams (1992). The second
major group is based on evolutionary algorithms (Stanley and Miikkulainen 2002;
Real et al. 2018), where one specifies rules for merging and mutation of different
architectures in search of “stronger" architectures. A third type of methodology is the
morphism-based hill-climbing strategy from Elsken et al. (2017). There, the authors
propose an iterative scheme that alternates between training for a fixed time a group of
architectures that are determined by amorphism family and thenmoving in the space of
architectures according to the relative performance improvement in such training time.
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In all the methodologies listed above, the main objective is to avoid the full training
of multiple neural networks (something that would be computationally forbidding),
either by building surrogate objective functions that are easier to evaluate, by training
networks for a fixed amount of time, or by learning to predict which architectures are
more likely to give better results. Many techniques in the literature are based on the
above strategies. To name a few: Pham et al. (2018), Liu et al. (2018), Zoph et al.
(2017), Liu et al. (2018), Bergstra et al. (2011) and Yu and Zhu (2020).

In this sprawling landscape of methods and techniques for neural architecture
search, mathematicians can bring to the table principled ideas and structures for the
development of new algorithms or the improvement of existing ones. Take, for exam-
ple, the hill-climbing algorithm from Elsken et al. (2017) where it is key to tune the
amount of time that neural networks have to be trained for. It is intuitively clear that
setting a fixed time for training is not ideal as in that way one forces all models to
be treated the same regardless of their sizes or architectures. In our paper (Trillos et
al. 2021), we elaborate on this issue and propose a method where the training time
of architectures is dynamically chosen as dictated by an evolving particle system that
is inspired by the gradient flow perspective developed in this paper. All along, our
intention was to give meaning to the notion of gradient descent for the optimization
of an objective in the space R

d × G, i.e., how to propose a gradient-based method
for semi-discrete optimization (with neural architecture search as main application
in mind). As discussed in Sect. 1.1, in the Euclidean setting there is a well-known
connection between gradient flows in the space of measures and dynamics in the base
space. In the semi-discrete setting, this connection is sought through particle methods.
Particle methods are one way to project to the space Rd × G the dynamics that were
lifted to the space of probability measures P(Rd × G) to make sense of a gradient-
based scheme. In Trillos et al. 2021, all the nuances that have to be resolved to make
this conceptual idea feasible for neural architecture search are discussed.

We hope that the theoretical, methodological and implementation questions briefly
described here are able to motivate further research in the mathematics and computer
science communities.
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