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Abstract

In this paper, we introduce a theoretical framework for semi-discrete optimization
using ideas from optimal transport. Our primary motivation is in the field of deep
learning, and specifically in the task of neural architecture search. With this aim in
mind, we discuss the geometric and theoretical motivation for new techniques for
neural architecture search [in the companion work (Garcia-Trillos et al. in Traditional
and accelerated gradient descent for neural architecture search, 2021); we show that
algorithms inspired by our framework are competitive with contemporaneous meth-
ods]. We introduce a Riemannian like metric on the space of probability measures
over a semi-discrete space R x G where G is a finite weighted graph. With such
Riemannian structure in hand, we derive formal expressions for the gradient flow of a
relative entropy functional, as well as second-order dynamics for the optimization of
said energy. Then, with the aim of providing a rigorous motivation for the gradient flow
equations derived formally we also consider an iterative procedure known as mini-
mizing movement scheme (i.e., Implicit Euler scheme, or JKO scheme) and apply it to
the relative entropy with respect to a suitable cost function. For some specific choices
of metric and cost, we rigorously show that the minimizing movement scheme of the
relative entropy functional converges to the gradient flow process provided by the
formal Riemannian structure. This flow coincides with a system of reaction—diffusion
equations on R,
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1 Introduction

Let (G, K) be a weighted graph over the finite set G and consider the semi-discrete
space RYx G ; the function K : G x G — [0, 00) is assumed to be symmetric. In this
paper, we study, from geometric and variational perspectives, the system of reaction
diffusion PDEs:

O fi(x, 8) = Ax fi(x, &) + div (fi (x, ) ViV (x, 8))

+ ) [log fix. 8) + V(x, g) — (log fi(x, ") + V(x, g)]K(g. & )r.g.¢
g'eg
(fl(xv g)’ fl(xy g/)),
(1.1)
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for ¢ € G. In the above, V RIx G — Risa potential function defined on
the semi-discrete space RY x G. The function ft, i.e., the solution to the system
of PDEs, is a function from R? x G into R (alternatively, f; can be thought of as
a collection of real valued functions on R? indexed by G), and can be interpreted
as the density of a probability distribution on R? x G. Finally, the mobility function
O.0.¢" : [0,00)x[0, 00) — [0, 00) serves as “interpolator” for the masses at the points
(x,g) and (x, g’) and in general dictates the rate at which mass can be exchanged
between nodes in G.

In the first part of the paper, we provide a geometric interpretation of system (1.1)
by casting it as a formal gradient flow of a relative entropy functional defined on the
space P(R? x G) of probability measures on R? x G with respect to an appropriate
semi-discrete optimal transport metric; this optimal transport metric is reminiscent to
the Wasserstein metric in Euclidean space in its dynamic form. While the geometric
interpretation that we study here is largely formal, the framework that we introduce is
quite rich and allows us to give formal definitions of geodesic equations and second-
order dynamics in the space P(RY x G).

The second perspective that we take has a variational flavor. We introduce a static
optimal transport problem that serves as cost function in a minimizing movement
scheme (a.k.a. JKO scheme) for the relative entropy functional £. Then, we rigorously
show that for a mobility that is independent of the masses to be interpolated (i.e.,
0y ,¢,¢ does not depend on f;(x, g) and f;(x, g')), system (1.1) can be recovered as
the limit of the minimizing movement scheme as the time discretization converges to
zero; see Theorem 2.14 for a precise statement.

Regardless of the perspective taken, the main conceptual insight stemming from
our work is that the system of equations (1.1) can be interpreted as a gradient flow of
relative entropy in the space of probability measures P (R? x G). What interests us from
this interpretation is that it allows us to motivate new schemes for the optimization
of an objective function of the form V : R¢ x G — R, with applications in machine
learning such as neural architecture search in mind (see the discussion in Sect. 7). The
discussion in the next section in the familiar Euclidean setting will help us motivate
the prospects of using semi-discrete optimal transport for semi-discrete optimization;
we also motivate the theoretical results that we seek in this paper by providing a
brief historical background on gradient flows in the space of probability measures.
Our companion paper (Trillos et al. 2021) discusses more concretely how part of the
theoretical framework presented in this work can be used to define scalable neural
architecture search algorithms.

1.1 Motivation from Euclidean Space: Otto Calculus in P (R%)
Consider an optimization problem on R of the form

min V (x),
xeR4
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where for the sake of exposition V' is assumed to be a nice enough differentiable
function. Let us consider the following dynamics on the state space R?:

dx(t) = =V, V(x())dt, t>0 (12)
x(0) = xo,
dx(t) = =V, V(x()dt + %LdB,, >0
(1.3)
x(0) = xo,
The usual calculation in normal coordinates at x yields:
dm(x, y)
[ (E2) 0w = o000 avol)
M €
= Gm/ n(w)(e(Vp(x), w) + O?))(1 + O(e?)) dw
B(0,1)CTy M
= 0("™?),
for € <« 1 when the integration variable y is close to x € M.
dxi (1) = —C,V, V(xI (1))dt + V2CidB], t>0 j=1,....7] (14)
Cri= 5 X7 (I () = X(1) ® (x/ (1) — X(1)). '

All of the above dynamics can be interpreted as gradient-based continuous time algo-
rithms for the optimization of the function V. (1.2) is gradient descent. (1.3) is gradient
descent with Brownian noise; in principle useful to help gradient descent scape local
minima. (1.4)is apreconditioned gradient descent with noise. In (1.4) multiple interact-
ing particles are used to define the preconditioning matrix C; (in this case the running
covariance matrix associated to the particles). Besides being used for the optimization
of the objective V defined on R4, Eqgs. (1.2), (1.3) and (1.4) share acommon underlying
structure: they can be associated to certain gradient flows in the space of probability
measures P(RY) when endowed with an appropriate optimal transport cost. In what
follows we revisit this connection for (1.3) (notice that while degenerate, (1.2) can be
seen as a special case of (1.3)) and refer the interested reader to Garbuno-Inigo et al.
(2019) for details on how to interpret (1.4).

It is well known that the law of the process x(¢) in (1.3) denoted w; solves a
Fokker—Planck equation of the form:

e — dive (e Va V) = nAx () =0, >0, (1.5)

with initial datum o, where in the above div, is the divergence operator in R4, Vi
the gradient operator, and A the Laplacian operator A, := div, o V. In general, Eq.
(1.5) must be interpreted in weak form.

Mathematicians and physicists have studied Fokker—Planck equations for decades,
and more recently, the seminal work of Jordan et al. (1998) has provided a gradient

@ Springer



Journal of Nonlinear Science (2022) 32:27 Page50f67 27

flow interpretation for these equations. This interpretation uses the setting of gradient
flows in the space of probability measures endowed with the Wasserstein distance.
To be more precise let us first recall the definition of the Wasserstein distance with
quadratic cost for a pair of probability measures u, v € P>(R?) (i.e., probability
measures with finite second moments):

Wa(i, v)? ;= min f Ix — y[2dm(x, y), (1.6)
mel'(u,v) JRd xR

where I'(i, v) is the set of couplings between i and v. The above definition can be
thought of as describing a static optimal transport problem, where one seeks for an
optimal assignment of sources and targets of mass without specifying how said trans-
port is actually realized dynamically in time. An alternative dynamic reformulation
due to Benamou and Brenier (2000) states that

1
W, v)? = inf V.o |2dp,de,
2(p, v) [E[OJJH(MVM)/() /Rdl @ “d s

where the minimum is taken over all solutions (i, Vi ¢;) to the continuity equation
fy +div(u Veg) =0, (1.7)

with o = p and u; = v. The Benamou—Brenier reformulation highlights the oth-
erwise unclear dynamic nature of the optimal transport problem (1.6) and it reveals
a deeper geometric structure that we now discuss. First, solutions to the continuity
equation ¢ € [0, 1] — (1, Vig;) which represent the different ways in which one
can dynamically transport mass from o to @ can be mathematically interpreted as
curves in the space of probability measures. Here, i, specifies the location of a par-
ticle at time ¢ while the potential ¢, : R? — R is interpreted as “tangent vector"
characterizing an allowed infinitesimal change to the location . Second, the objec-
tive function in the Benamou—Brenier problem can be interpreted as the “length" of a
given curve (in this case a kinetic energy). A formal Riemannian metric tensor (-, -),
can be defined according to:

(@, 0" = /Rd Vep - Vi@ du

for any two potentials ¢, ¢’ : R? — R (i.e., any two tangent vectors at ;). From
the above discussion one can now see that the Wasserstein distance corresponds to
the geodesic distance associated to the above formal metric tensor, and reveals that
the metric space (P2 (R?), W) can be treated (at least formally) as a Riemannian
manifold.
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Now, seeing (P» (R%), W») as a formal Riemannian manifold allows one to give a
heuristic definition for the gradient flow of a functional £ defined on Po(RY):

{u(t) = -V, &(u()) (1.8)

n(0) = uo.

With the Fokker—Planck equation in (1.5) in mind, let us consider the functional

E(n) = / Vdu +nH (),
]Rd

where H is the negative Shannon entropy

o — {fR,, flog fdxif du = f(x)d,
+00 otherwise .
In the Riemannian formalism, Vy, € () must be interpreted as a tangent vector to
(i.e., apotential) which serves as Riesz representer to the map of directional derivatives
of the energy £. Namely, for an arbitrary curve t — u; € P> (R which at time 7 = 0
passes through u with tangent vector ¢ one must have

d
d_tg(ﬂt)h:o = (szg(lfv), ‘P)u-

The set of heuristic computations used to determine the gradient Vi, E (1) from the
above formula is nowadays widely known as Otto Calculus (see chapter 15 in Villani
2009), and in the case of the relative entropy it gives the formula:

V&) ==V —nlog f,

for every du = f(x)dx; a similar computation will be presented in more detail in
Sect. 2.3 for the semi-discrete setting explored here. Plugging the above potential
back in the continuity equation, we recover the Fokker—Planck equation (1.5). In
other words, through heuristic arguments from Riemannian geometry that rely on the
geometric structure of the optimal transport distance W», the dynamics (1.3) used for
optimization of V can be lifted to the space P»(R?) where one can give a gradient
flow interpretation.

There is a second way of motivating an interpretation of (1.8) which coincides with
the one coming from the Riemannian formalism. To discuss this alternative let us first
consider a more general setting and let us assume that M is an arbitrary topological
space, E : M — (—00, 00] is an objective function to optimize, C : M x M —
[0, o0) is a driving cost function, and T > 0 is a time step. One can then consider the
minimizing movement scheme (also known as JKO scheme)

1

57 Clu, )2, (1.9)
T

Mk+1 € argmin, ¢ nq E() +
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as a discrete time scheme for optimization.

Under suitable conditions, in the limit T — 0 iterates (1.9) define a function in
time describing what one can refer to as a “gradient flow of E” with respect to the
cost function C. Notice that when M = R and C is the Euclidean metric, the above
scheme is essentially the variational formulation of implicit Euler iterates (i.e., the
computation of a proximal operator for the function E).

When M = P>(R?), C is the Wasserstein distance W», and E = £ is the relative
entropy, the iterates o, i1, ..., ik, - . . (Where pg is assumed to satisfy £(ug) < 00)
defined recursively by the JKO scheme, i.e.,

. 1
Mkt € argmin, e p, gy £(10) + - W3 (1, o), (1.10)

can be shown to converge as T — 0, to a solution of the Fokker—Planck equation (1.5)
(see Jordan et al. 1998). Historically, the JKO scheme (1.10) was the first approach
used to give a “gradient flow" interpretation to the Fokker—Planck equation (1.5). In
more generality, evolution equations of the form

iy = divyg (Vxl/vt F ViV 4+ u (ViU % ,U«t)>,

are limits of the JKO scheme (1.9) for appropriate functionals defined on P, (R?)
using the Wasserstein distance as cost function. The gradient flow interpretation via the
minimizing movement scheme allows one to prove entropy estimates and functional
inequalities (see Villani 2009 for more details on this area, which is still very active
and in constant evolution).

The minimization problem can be stated in a Lagrangian form as the problem of
finding

Mit1 € argming, op, pay € (1) + A" (g, 1), (1.11)

where A" (1, ) denotes the action of the curve in the tangent bundle of (P, (RY), W»)
with minimal kinetic energy connecting 1 and px in 7 units of time.

In summary, the gradient-based dynamics (1.3) used for optimization of an objective
V defined on the state space R? are closely linked to a gradient flow on the space of
probability measures P(R?). This gradient flow can be motivated using either the
formal Riemannian structure that the dynamic formulation of optimal transport has,
or the minimizing movement scheme with driving cost taken to be the Wasserstein
distance (given that the two interpretations coincide).

1.2 Outline
We organize the rest of the paper as follows. In Sect. 2, we introduce the main objects
studied in the paper and state our main results precisely. We start in Sect. 2.1 introduc-

ing the basic analytical objects on graphs used throughout the paper. In Sect. 2.2, we
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introduce a family of distances on the space of probability measures over R¢ x G based
on a dynamic formulation of optimal transport. We highlight the formal Riemannian
structure of the metric introduced and explore the connections between our definition
and the literature on discrete optimal transport. In Sect. 2.3, we use the Riemannian
formalism from Sect. 2.2 in order to motivate a definition for the gradient flow of a
relative entropy energy closely related to the objective function in the semi-discrete
optimization problem of interest. In Sect. 2.4, we use the Riemannian formalism once
again and motivate a method for optimization of the relative entropy. In Sect. 2.5,
we provide concrete theoretical support for the formal definitions and computations
presented in the earlier sections. In particular, we state our main theoretical result,
which establishes a connection between the formal definitions from Sect. 2.3 and
the minimizing movement scheme discussed in the introduction. To realize the JKO
scheme, we introduce a new cost that can be interpreted as a static semi-discrete
optimal transport cost.

Section 3 explores metric and geometric properties of the transport distances
introduced in Sect. 2.2 (i.e., the dynamic semi-discrete transport problems). More
specifically, in Sect. 3.1 we prove that these “distances” are indeed metrics. Section
3.2 aims at providing concrete and rigorous support for the heuristic discussion in
Sect. 2.2. The discussion in this section motivates more concretely (and rigorously)
the characterization of tangent planes of the space of probability measures over RY x G.
Section 3.3 presents some heuristic computations justifying the definition of the accel-
erated method for optimization presented in Sect. 2.4.

Section 4 studies the static semi-discrete transport problem introduced in Sect. 2.5.
This section is used later on in the paper, but is also of independent interest. We estab-
lish a characterization for solutions to the static semi-discrete optimal transportation
problem that is analogous to the celebrated result by Brenier characterizing solutions
to the quadratic (Euclidean) optimal transport problem.

Section 5 studies properties of the variational problem used to define the JKO
scheme relative to the static semi-discrete cost. We provide a full characterization of
solutions to this variational problem. We also establish a maximum principle that is
characteristic of Fokker—Plank equations.

In Sect. 6, we put together the results proved in Sects. 4 and 5 and prove our main
theoretical result Theorem 2.14, i.e., we show the convergence of the JKO scheme
proposed in Sect. 2.5.

We wrap up the paper in Sect. 7 where we provide some conclusions, perspective
on future research directions, and discussion on some of the applications in machine
learning that have motivated this work.

Note Throughout the paper, some computations will be carried out at a formal level.
One of our aims is to stress the importance of the intuition emanating from the formal
Riemannian structure that the dynamic formulation of optimal transport has. After all,
it is this Riemannian formalism that motivates the algorithms that are implemented in
our companion paper (Trillos et al. 2021) for the purposes of neural architecture search
(including accelerated methods). The formal computations (or heuristic arguments)
that we present here are, for the most part, accompanied by rigorous counterparts.
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2 Semi-discrete Optimal Transport and Gradient Flows
2.1 Some Differential Operators on Graphs

In this section, we introduce the discrete differential operators that will later be used
to introduce a semi-discrete optimal transport problem on R x G.

Throughout the paper, we assume that (G, K) is connected, meaning that for every
g, g € G, thereexistsapath go, ..., gm € Gwithgy = g, gm = ¢ and K (g;, g1+1) >
Oforevery!/ =0,...,m—1.

Given a function ¢ : G — R, we define its discrete gradient as the function
Vep:GxG—R

Ve (g.8) == (g) — d(g).

We use the subscript g in V, to distinguish the discrete gradient from the gradient of a
function defined on R? (where we use the notation V). This distinction will become
important later on when we consider functions ¢ : RY x G — R for which we can
compute its gradient V, as well as its discrete gradient V.

Given a function 1 : G x G — R (i.e., a discrete vector field), we define its discrete
divergence as the function divgh : G — R defined by

dive h(g) = (h(g,g)—h(g K (. g
g/

Discrete gradients and discrete divergences are related to each other via a discrete
integration by parts formula. Namely, a straightforward computation shows that for
everyh: G x G — Rand ¢ : G — Ritholds

D divg(h) ()¢ (g) = — Y h(g,8)Veh(g, 8K (g, &) @2.1)
8

8.8

In particular if 4 is of the form 4 = Vg - § (where - is interpreted as a coordinate
wise product) for some S : G x G — R, then

Y divg (Ve - S)(@)$(9) = — Y Ve - VeS8, 8)K (5. 8).  (2.2)

8 8.8

In the remainder, we use the following result establishing existence and uniqueness
of solutions to elliptic graph PDEs.

Proposition 2.1 Suppose that the graph (G, K) is connected. Let ¢ : G — R be such
that

D d(@) =0,
8
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andlet S : GxG — [0, 00) be a symmetric function which is strictly positive whenever
K(g,g') > 0. Then, there exists a unique solution n : G — R to the graph PDE

divg(Ven - ) = ¢ (2.3)

satisfying
> () =0.
4

Moreover,

1
Y 1Ven(g. HI7S(g. 8K (g, 8) < Py > le@P
8

8.8

where Lg represents the first nonzero eigenvalue of the graph Laplacian matrix Lg
with entries:

Ls(g.8") :i=Tg—y Y 25(s.8")K(g.8") —25(2. 8K (g. &)
g//

Proof The graph PDE can be written in matrix form as

Lsn=—¢,

where ¢ and 1 are interpreted as vectors whose coordinates are indexed by the elements
in G, and where the matrix Lg is the (unnormalized) graph Laplacian for a weighted
graph (G, w) with weights w, . := 25(g, g')K (g, g')—see Chung (1996) for the
definition of graph Laplacians. The assumptions on S guarantee that the graph (G, w)
is connected and thus its graph Laplacian Ly is a positive semi-definite matrix with
zero eigenvalue of multiplicity one. The assumption on ¢ guarantees that it belongs
to the orthogonal complement of the null space of Lg, and thus is an element of the
range of Lg. We conclude that the graph PDE indeed has a unique solution 1 with
average zero.
Finally, according to (2.2),

D IVen(g. gH1PS(s. 8VK(g.8) =D —divg(VenS)n(g) = — Y _ p()n(g)

8.8 8 g

=Y Lsn()n(g),
8

and thus from Cauchy—Schwarz inequality it follows that

12 12
D 1Ven(e, gH1PS(g, 8K (g, 8) < (Z I¢(g)|2> (Z In(g)lz) :
8 8

8.8

@ Springer



Journal of Nonlinear Science (2022) 32:27 Page 110of67 27

From the fact that the graph (G, ) is connected it follows that

1
2@ = =3 Lsn(@n().
8 $ 8

where A is the first nonzero eigenvalue of Lg. Combining the above two inequalities,
we obtain the desired result.
(]

2.2 A Riemannian Structure for Semi-discrete OT

Let us denote by P>(R? x G) the space of Borel probability measures on R? x G with
finite second moments. In this section we introduce a metric W on P> (R? x G) which
can be formally interpreted as the geodesic distance associated to a formal Riemannian
structure on P2 (R9 x G). Viewing P> (R4 x G) as a Riemannian manifold, in Sect. 2.3
we will be able to give a concrete heuristic interpretation for the gradient descent
equation:

{;l(t) = =V, E(u(1)) (2.4)

n(0) = o,

for a conveniently chosen function £ on P,(R? x G) that depends on the objective
function V in (7.1). Here, ¢ — u, describes a path in the space P> (R? x G).

2.2.1 A Dynamic Optimal Transport Problem in P2(R? x G)

Motivated by the (Euclidean) Otto Calculus discussed in Sect. 1.1, in order to define
an optimal transport problem in the semi-discrete setting, we first introduce an appro-
priate notion of continuity equation. As in the Euclidean case, semi-discrete continuity
equations are used to describe paths in the space P, (R? x G).

The definition of a semi-discrete continuity equation depends on the choice of a
mobility function 6 which in full generality is a function of the form

0:RIxGxGxRy xRy — Ry

In the remainder, we will often write 6, , ,/(s, ) and drop the subscripts when no
confusion may arise from doing so. The mobility function is used to quantify how
easy it is to move mass from a point (x, g) to a point (x, g’) when the amount of
mass at each of these points is s and ¢ respectively. Mobilities as described above are
motivated by the literature on discrete optimal transport. See Chow et al. (2012), Maas
(2011), Mielke (2011) and Mielke (2013)) where discrete optimal transport was first
introduced and Erbar and Maas (2012), Erbar et al. (2016) and Esposito et al. (2019)
for other references where the topic has been developed further. A rigorous passage
to the limit from discrete OT to OT in R, at least for certain classes of geometric
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graphs, has been explored in Gigli and Maas (2013), Garcia Trillos (2021), Gladbach
et al. (2020) and Gladbach et al. (2020).

Throughout the paper, we will make the following assumptions on 8. These assump-
tions are closely related to those in Erbar and Maas (2012) and Maas (2011) for discrete
OT.

Assumption 2.2 The mobility function 6 satisfies either:

(A0) 6 is nonzero, does not depend on s, ¢ and satisfies the symmetry condition:
Or.0.¢ is equal to Oy o, for all x € R?, g, ¢’ € G. In addition, 6, 4, is
uniformly bounded away from zero on compact sets of R? x G x G.

or all of the following
(A1) Symmetry: 0, ¢ o/(s,1) = Oy ¢ o (¢, s) forall s, z.
(A2) Differentiability: The function 6y , (-, -) is differentiable.
(A3) Monotonicity: 0y ¢ o/ (r, 1) < 0y ¢ o(s,t) forall r < s and all ¢.

(A4) Positive homogeneity: 0y o o/ (As, Af) = MOy ¢ (s, 1) forallA > Oandalls, ¢.
(AS) The quantity

! 1
Cy oo = —dr,
hes /0 v ex,g,g’(l —1,1)

is uniformly bounded above on compact subsets of R x G x G, and the
quantity 6, 4 o/(1, 1) is uniformly bounded away from zero on compact subsets
of RY x G x G.

Definition 2.3 In what follows, we consider v, : RYxG — Rd, hy RIxGxG — R

and p; € P2(RYxG). We say thats € [0, T] — (us, v, hy) satisfies the semi-discrete
continuity equation and write

fu + divy (v pg) + divg (hepur) =0, 2.5

if for all smooth test functions ¢ € C2° R? % G) (i.e., C(-, g) is C;?O(Rd) forall g € G)
we have

d
a‘éd g;(x,g)dliz = /Rd ;ng(xwg) v (x, @)duy

(2.6)
+ [1;[1 Z/ vgé‘(-xv 8 g/)hl(-x’ 8 g/)dﬁl(x3 8 g/)
8.8

In the above expression, for a given u € P> (Rd x G), we use L to denote the
measure on R x G x G given by

dii(x, g, 8") =0y ¢ odxdgdg’
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when 6 satisfies (A0) in Assumption 2.2 and

di(x, g, 8") = 0(1gix(8), tgx(g))dpy(x)dgdg’.

when 0 satisfies (A1)—(AS5) instead. Here, 14|, denotes the conditional distribution of
g given x. Also, here and in the remainder dg represents the measure on G that gives
mass one to every element of G.

Remark 2.4 We notice that when p has a density with respect to dxdg, i.e.,
du(x, g) = f(x, g)dxdg,

then

di(x, g, 8) =0(f(x,g), f(x,g"))dxdgdg".

Indeed, this is immediate if 6 satisfies (AO) and otherwise follows from the homo-
geneity of the mobility 6, i.e., condition (A4).

Remark 2.5 Lett € [0, T] — (us, vs, hy) be a solution to the semi-discrete continuity
equation and suppose that for every #, i, is absolutely continuous with respect to
dxdg and has density f;(x, g). Additionally, suppose that the mappings (¢, x, g)
f(t,x,g),(t, x,8)— v(x,g, ¢)and (t,x, g) — h:(x, g, g') are all smooth. In that
case we can see that for every test function ¢ € Ccoo(Rd X G) we have

0 d
/Rd ;ax, 95, filx, g)dx = E/Rd Xg:C(x,g)dm(x,g)

= [ X vt vt o
8

+f ngf(x,g,g/)hz(x,g,g/)K(g,g/)G(ﬁ(x,g),fz(x,g/))dx
R 8.8
- /H;{d ;gdivx(v,f,)dx — /Rd ;;divg(h, - fydx,

where f;(x, g, g) := 0(fi(x, g), f:(x, g")). The last equality follows using integra-
tion by parts in x for the first term and in g for the second term (i.e., identity (2.1)).
We conclude that

el . . 2
oS Hdive if) +dive (hif)(x. 8) =0, V.x.g.

which justifies the notation (2.5) used in Definition 2.3.

With the above notion of continuity equation in hand, we are now able to introduce
the following dynamic optimal transport problem.
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Definition 2.6 Let 1o and 1 be two elements in P>(R? x G). We define

1
Walho-gu)” = s /(f Vi (x, g)17dp (x, g)
Ko, 1 t€[0, 1] (ur, Vi dr, Vi) Jo Rdgezgl x O )l du; g

+ /R D (VUi g8 0K (8. 8)diu x. 8. g’))dr,

8.8

2.7)

where the infimum is taken among all solutions to the semi-discrete continuity equation
of the form ¢ € [0, 1] = (i, Vi@, Vi), where ¢; : RY x G — R and /70
RY x G — R.

In words, W (110, f¢1)? is obtained by minimizing the rotal kinetic energy associated
to paths connecting pg and w1 1. In Sect. 3, we rigorously show that W5 as defined above
is indeed a metric on the space P>(RY x G). The precise statement is the following.

Theorem 2.7 Let (G, K) be a connected weighted graph, where K is a symmetric
weight matrix with nonnegative entries. Suppose that the mobility function 6 : R? x
G xGxRxR — [0,00) satisfies Assumptions 2.2. Then, W, as introduced in
Definition 2.6 is a metric on the space P>(R¢ x G).

Remark 2.8 In the above definition, we have introduced the semi-discrete Wasserstein
distance as an optimization problem over a specific class of solutions to the continuity
equation, namely, solutions whose driving vector fields are gradients of potentials. It
is actually possible to show that removing the restriction to this smaller class of vector
fields does not change the definition given. We have introduced W» in this way for
convenience.

Later on we will show that the class of vector fields can actually be restricted even
further (at least for regular enough measures). In particular the potentials ¢ and ¢ may
be taken to be the same. This observation will be useful when interpreting P> (R4 x G)
as a formal Riemannian manifold with geodesic distance that coincides with W.

Remark 2.9 The definition given in (2.6) is a particular case of the formal definition
given in Mielke (2011). Here, we present some heuristic computations providing a
characterization of tangent planes (see the informal Theorem 2.10 and its rigorous
counterpart in Sect. 3.2), and a formal computation of the acceleration of curves which
in turn motivates: (1) geodesic equations, and (2) accelerated methods for optimization
(see Sects. 2.4 and 3.3).

2.2.2 A Formal Riemannian Structure for (P2 (R? x G), W>)

In differential geometry, when working in the setting of a smooth manifold M, a
tangent vector at a given point ¢ is interpreted as the velocity of a curve in M when
passing through ¢. The collection of tangent vectors at ¢, i.e., ¢’s tangent plane, is
typically denoted by 7, M. When M is endowed with a Riemannian structure, one
can compute inner products (p, p), between elements p, p € 7, M and introduce a
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notion of distance between points ¢, § € M according to

1
d(g,3)*:= inf 7(1), G (t dt,
g, 9) te[O,lll]lHq(t)/o (@), q())q

where the infimum ranges over all paths connecting g to g.

We now provide some heuristics that motivate how the space (P2(RY x G), Wa)
can actually be interpreted in light of this Riemannian formalism. The first step is an
informal statement that will justify some of the subsequent discussion. A precise (and
rigorous) version will be presented in Sect. 3.2.

Theorem 2.10 Characterization of potentials (informal) Let t — w,, be an arbitrary
curve in Py (Rd x G) with velocity fields generated by the potentials (¢;, Y). Then,
we can replace the potentials with a pair of the form (¢, ¢;) such that it acts as a
velocity field for the same curve t — [y, and has minimal total kinetic energy.

The above suggests that there is some redundancy when considering different poten-
tials ¢, ¥ and actually one may take both potentials to be the same. Indeed, such a
characterization allows us to formally identify the tangent plane at a measure u in
Pr(RY x G) as:

T, Pr(RY x G) := {90 : f IVeplPdu(x, g)
RIxG

+/ [p(x, &) — o(x, )1°K (g, Hdia(x, g, g)) < OO}.
RIxGxG
2.8)

endowed with the inner product:

(0, P)p 1=/Rd ;wa(x, g) - Vig(x, g)du(x, g)

(2.9

V.0 -V, 0K (g, 2)dii(x, g, g).

+/Rdz 00 V@K (g, g)di(x, g. 8
8,8

A rigorous definition of the tangent plane is out of the scope of this work. Putting aside
all technicalities, we can observe formally that the semi-discrete Wasserstein distance
W, from Definition (2.6) can be rewritten as

1
W3 (o, 141) =inf/ (@1, 1)y, dt,
0

where the inf ranges over solutions to the continuity equation t+ € [0,1] —
(s, Vx@r, Veor) connecting po with 111 (i.e., over paths in P, (Rd x G), according to
the informal Theorem 2.10): this formula and its interpretation reveal the Riemannian
structure of the metric W5. In the next subsection, we use this Riemannian formalism
to motivate a concrete interpretation for (2.4).
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2.3 Computation of Gradient Flows Using the Riemannian Formalism

In this section, we use the Riemannian formalism for (P2 (R¢ x G), W») discussed in
the previous section to motivate a definition for the gradient of a given energy function
E:Pr(RY x G) — R U {oo}, and ultimately give a concrete meaning to the gradient
flow ODE (2.4). Looking forward to our applications, here we will focus on energies
of the form

Jra 2y O(f(x,8),x,8) dx if du(x,g) = f(x,g) dxdg

2.10
+00 otherwise, ( )

E(n) = {

where ¥ : [0, 00) x R? x G — R s given by
V(r,x,g) :=rlogr+ V(x, gr.

We think of the function V : RY x G — R as the objective of the semi-discrete
optimization problem (7.1). Here, we assume for simplicity that V is differentiable in
the x coordinate. Notice that & is a relative entropy and can be written as the sum of
the two terms

E(u) = H(w) +/

Vix, g)du(x, g),
RexG
where H denotes the (negative) entropy of i when the base measure on R? x G is the
product measure dxdg. The entropy term H may be multiplied by a positive factor for
generality without that entailing any meaningful changes in the computations below.
This choice of energy is motivated by the discussion presented in Sect. 1.1.

Let us recall that in Riemannian geometry, the gradient of a differentiable function
E : M — R at a point ¢ is defined as a tangent vector V(E(q) at g characterized
by: for every smooth curve ¢ € (—¢, €) — ¢(t) € M with ¢(0) = ¢,

d
(VME(q),q(0))q = EE(QU))
=0

In words, the above means that the gradient of a given function E at a given point g
on the Riemannian manifold M serves as Riesz representer (with respect to the inner
product at that point) for the map of directional derivatives of the function E at the
point q.

Using the above discussion as motivation, we notice that for arbitrary u € Pa(R9 x
G) such that £(u) < oo, the gradient of £ (with respect to W») at the point ; must be
interpreted as a potential ¢,,. Our goal is to identify ¢,,. In order to achieve this, we
consider t € (—¢, &) > (i, Vi ¥y, Vo) an arbitrary curve in P, (R? x G) which
at time ¢t = 0 passes through the point u (i.e., o = ). We assume du; = f;dxdg
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and write f = fo. We want ¢,, to satisfy

@2.11)

d
(QO#, 1/f0>u = ag(ﬂt) .
(=

A formal computation shows that

d
ag(ﬂt)

d
3 t_Ov/Rd Xg: <1ogf, + V)ﬁdx
= /Rd > (logfo +1+ V>a,f0(x,g)dx.
8

Using the semi-discrete continuity equation, the last line can be rewritten as

/Rd S Vilog £ + V) - Vitrodpa(x, )
8

+/ > Ve(og f+ V) VoK (g, g)dii(x. g, g).
R4 ’
8,8

which in turn can be rewritten as (log f 4+ V, ¥) . It follows that ¢, can be taken to
be

Vi, E() == @, =log f + V. (2.12)

Having found the gradient of £ through the above heuristic computations, we can
now give a concrete interpretation to (2.4) by plugging in the potential —(log f + V)
in the semi-discrete continuity equation. In particular, ¢t € [0, 00) — u; in (2.4) is
interpreted as

dus(x, 8) = fi(x, g)dxdg,

where f; follows (1.1). Equation (1.1) can be described as a coupled system of
reaction—diffusion equations indexed by ¢ € G. The presence of the last term in
(1.1) is responsible for the coupling of the dynamics. From the transport point of view,
this coupling term induces mass to be exchanged between different nodes (and thus
the total mass at a single g € G changes in time). From the optimization point of view,
a coupled system implies that information on the optimization over parameters x for
a given node g is used for the optimization of parameters x for nearby nodes g’ and
vice versa.

We finish this section with two examples of mobility functions 6 and their corre-
sponding gradient flows.
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Example 2.11 Let W : RY — R be a function in the Sobolev space W2 (R?) satisfy-
ing

/|x|2e_de < oo. (2.13)

We define a mass independent mobility 6 according to

Or g0/ (s, 1) 1= e W,

This mobility function satisfies (A0) in Assumptions 2.2. We notice that in the corre-
sponding optimal transport problem from definition (2.6) the transfer of mass between
points (x, g) and (x, g’) is cheap precisely when W (x) is large. We also notice that
the cost of transporting mass along the graph G does not depend on the actual amount
of mass that is initially located at the nodes of G, a situation that contrasts with the
one presented in the next example.

Finally, for this choice of mobility the system of Eq. (1.1) becomes the system of
nonlinear reaction diffusion equations:

0 f (¥, 8) = A fr(x, ) + diva (fi(x, Vi V(x, ) + ) [log f(x, 8) + V(x, 8)
g'eg
— (log f(x. 8"+ V(x. g"]K (g. ghe ™.
(2.14)

Example 2.12 Suppose that the mobility 6 takes the form

Or,g,6/(5, 1) = Blog (s exp(V (x, 8)). texp(V (x, g))

where 0o, is the logarithmic interpolation function:

blog (@, b) a=b /1 7bi-rg
a,b) = —— = a r.
o log(a) —log(®) ~ Jo

For this choice of mobility, the dynamic cost of transporting mass from (x, g) into
(x, g’) depends on the value of the potential V at these points, as well as on the value
of the mass that is currently located at them. In particular, it is more expensive to
move mass between these points when the amount of mass at one of them is close to
zero. This mobility function satisfies (A1)—(AS) in Assumptions (2.2). In this case,
Eq. (1.1) take the form

atfl(xﬂ g) ZA)Cfl(xﬂ g) + divx(ft(x’ g)vxv(x’ g))

+ ) [fix, @ exp(V(x, ) — filx, &) exp(V(x, g)]K (g, &)
g'eg

which is a linear system of reaction diffusion equations.
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2.4 Hamiltonian Dynamics: Formal Computation of Geodesic Equations and
Accelerated Methods for Optimization

In this section, we discuss how a formal Riemannian structure can be used to introduce
accelerated methods for optimization of energies on P>(R? x G). We first provide a
characterization of the geodesic equations in the space P> (R? x G), and then introduce
asystem of accelerated dynamics for the minimization of the energy £ in (2.10). These
two sets of equations are related to certain Hamiltonian systems in P, (R? x G) which
can be formally defined using a notion of acceleration of curves. Throughout this
section, we continue to work at a formal level.

2.4.1 Geodesics

To motivate the characterization of geodesics in P> (R x G), let us recall that when
working on a smooth Riemannian manifold M, the local equation satisfied by a
geodesic f — ¢(t) € M can be written as

q(t) = p(1)
p) =0,

where t — p(¢) is understood as a vector field along the curve ¢ +— ¢(¢), and its
derivative as the covariant derivative of p along the curve ¢ (using the Levi-Civita
connection) written V; p. The second equation states that geodesics have zero accel-
eration, i.e., vq-q = 0. This system can be understood as a Hamiltonian system on the
tangent bundle 7 M with Hamiltonian H(g, p) := %|p|$.

Following the above intuition, in Sect. 3.3 we will formally derive for the formal
Riemannian manifold (P> (Rd X G), W) the system of equations:

Ly 4 divy (Ve ar) 4 divg (Vegr i) =0

2 /
b r + LIVl + Xy (V) K (8. 80165 0. (fi(x. 8. fi(x. 8)) =0,
(2.15)

characterizing geodesics in the space (Po(RY x G), W»); in the above du(x, g) =
f(x, g)dxdg, and we interpret 916, , o/(s, ?) as the derivative in s of the mobility
function. The first of the two equations, i.e., the continuity equation, simply states that
the curve ¢ — 1, moves with velocity (V,¢;, V,¢;). On the other hand, the left hand
side of the second equation can be understood as the derivative of the velocity along
the curve (i.e., the acceleration), and so by setting it to zero one matches the intuition
coming from Riemannian geometry that was discussed earlier.

2.4.2 Second-Order Dynamics

In order to introduce a system of second-order dynamics for the optimization of an
energy & like that in (2.10), we once again return to the setting of a smooth Riemannian
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manifold M and consider the optimization of an objective function ¢ € M +— E(gq).
The system

q(t) = p()
pt) =—yplt) — VME(@(1)),

can be interpreted as a continuous time accelerated method for the optimization of
the objective E. Here we abuse the use of the term accelerated method slightly given
the motivation coming from the Euclidean setting. Indeed, in the case M = R¢ and
when the parameter y is allowed to depend on time according to y = y; = 3/t, the
above dynamics correspond to the continuous time analogue of the celebrated Nesterov
accelerated method for optimization (Su et al. 2016). For general M, the above system
may be interpreted again as a dynamical system on the tangent bundle 7 M, and can
be understood as the flow map induced by a vector field that is the addition of a
Hamiltonian vector field on 7 M with Hamiltonian H(g, p) = %I plé + E(g) and a
dissipative term that corresponds to the gradient of an energy (g, p) — %| p|(§ for a
positive parameter y > 0.

Following the above intuition, we can introduce an accelerated method for the
optimization of an objective on P> (R? x G) such as the relative entropy £. For this
purpose we use the formal computation of the gradient of the relative entropy (2.12)
from Sect. 2.3 as well as the expression for the acceleration of curves in the formal
Riemannian structure (which actually was already used when introducing the geodesic
equation (2.15) and will be formally computed in Sect. 3.3). We obtain the system:

e+ divy (Vi@ ) + dng(Vg<ﬂzl7«t) =0
2
0pr + 3IVe0u* + Xy (Veor) K (g, 810100 0.0 (fi(x, 0), filx,8))  (2.16)
= _[ygot(xv g) + Ingl(xa g) + V(-xv g)]a

in the above, we interpret du(x, g) = f(x, g)dxdg.

Remark 2.13 Notice that when the interpolation map 6 is like the one in Example 2.11
the expression for the acceleration of a curve with velocity induced by the potentials
¢ reads

1 2
oo + §|Vx(pt| .

2.5 Main Theoretical Result

In the previous sections, we have taken a formal Riemannian approach to make sense
of the gradient descent ODE (2.4) when the energy £ is the relative entropy defined in
(2.10). In this section, we provide a more solid theoretical ground motivating equations
(1.1). For that purpose, we will define the gradient flow of £ using the minimizing
movement scheme approach that we mentioned at the end of Sect. 1.1. To achieve
this, we first introduce a family of static transport costs that are used to define the
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iterations (1.9) (thinking of M = P, (R4 x G)). Our main theoretical result, Theorem
2.14, states that for a suitable static cost (see (2.20) below), and for a suitable choice
of mobility 6 (the one in Example 2.11), the resulting minimizing movement scheme
converges, as the time discretization parameter T goes to zero, toward a solution of
the equation formally derived in (2.14).

It is worth highlighting that the minimizing movement scheme that we consider
here has the advantage of being defined in terms of a (static) transport cost that is
closer to the Kantorovich formulation of the classical optimal transport problem (i.e.,
(1.6)), rather that in terms of the dynamic problem (2.6). First, the static formulation is
computationally cheaper (e.g., using the entropic regularization methods from Peyré
and Cuturi (2019) which can be used in our context). Additionally, for the static
formulation we will be able to use techniques similar to those developed in Figalli and
Gigli (2010) to show that the resulting minimizing movement scheme satisfies a type
of maximum principle characteristic of Fokker—Planck equations.

To define our static transportation costs, we first introduce some notation. Given a
measure i € P>(R? x G) we will consider the unique collection {u ¢Jgeg Of positive
measures over Rd, such that

H= g ®8,. (2.17)
g€y

In the remainder, we will often deal with absolutely continuous measures du(x, g) =
f(x, g)dxdg in P>(R? x G), and by abuse of notation, in that case we will simply use
the density f to denote the measure p. For example in the above decomposition, we
will use the functions f, : RY - R, (i.e., fg(x) = f(x, g)) to denote the measures
Ig. We now introduce our static transportation problem which we remark is of interest
in its own right.

Static semi-discrete transportation problem Let t > 0 be a positive time step
and let W be as in Example 2.11. For arbitrary measures wu, o in P (RY x G), we
define ADM (1, o) to be the set of pairs (y, h) (the admissible pairs) that satisfy:

i) ¥ = {yg}eeg where each y, is a Borel positive measure on R? x R? and whose
first marginal 71y, is equal to g .

i) h: RYxGxG— Ris antisymmetric in G x G (i.e., forall g, g’ € G, x € R4
we have h(x, g, g') = —h(x, g/, g)), and it belongs to

L%V,K(Rdxgxg):z{heRdxgxg—HR

Z/hég/e_wl((g,g’)dx < oo}. (2.18)
8.8
iii) Forevery g € G
O =Touyg —T ) g (XK (g, g)e ™. (2.19)
gl
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The last term on the right hand side of the identity (2.19) must be interpreted as the
positive measure on R¢ whose density (with respect to the Lebesgue measure) is given
by

T Z ey (VK (g, g)e V™.
g/

In the remainder, we refer to the measures y, as transport plans and to the functions
h as mass exchange maps.
A static transportation cost between i, o is defined by

AW (4 o) = inf cVEy, ), (2.20)
(y,h)eADM (u,0)

where

1 T —
CXV’K()/, h) = Z (E A‘{id Agd |x —x/\zdyg + Z/Rd hgg,K(g,g/)e de). (2.21)

g.8'€g

Since the set ADM (i1, o) may very well be the empty set, we follow the convention
that the infimum of a quantity over an empty set is equal to +00. We use Opt(u, o)
to denote the set of minimizers of (2.20) when AGW.t (u, o) is finite.

The static semi-discrete optimal transport problem introduced above can be inter-
preted as an optimal two stage mass transport process from one distribution over R? x G
to another. In the first stage, mass is transported along each fiber of R? (i.e., a set of the
form R? x {g}). In the second stage, mass gets exchanged along every fiber of G (i.e.,
a set of the form {x} x G). The optimal transport plans and optimal exchange maps
(and implicitly the optimal intermediate mass distribution after stage 1) are chosen
so as to minimize the sum of two terms: one that corresponds to aggregate quadratic
cost in stage one, and the other that corresponds to an average of discrete H ' norms
of the mass exchanged during stage two. In Sect. 4, we study the above semi-discrete
(static) transport problem mathematically. In particular, we study properties of the set
ADM (u, o) and characterize Opt(u, o) in a way that resembles Brenier’s theorem
for optimal transport in Euclidean space. Part of the motivation for the definition of
this static problem comes from the theoretical desire of recovering the system (1.1) as
limit of a JKO scheme relative to some meaningful cost function. While this transport
problem is not the same as the dynamic one from Definition 2.6, we believe that they
are actually closely related. This is a topic that we may explore in future work.

Let us now return to our aim of defining the gradient descent of the relative entropy
energy £ using the minimizing movement scheme. We use the cost function 2t AG-W.T
introduced above to produce the series of iterates in (1.9) for M = P,(R? x G) and
E = £. We will assume that the initial datum p¢ € P>(R¢ x G) satisfies £ (i) < 0.
Moreover, we will impose a further technical condition and assume that o has a
probability density fj such that

re ™V < fo<AeV, (2.22)
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for some positive constants A and A. Setting u( := 0, we will then let ] 41 bea
minimizer of

cePy(RY x G) — E@) + AT (i, o), (2.23)

where we set & = ), . In Sect. 5 we study properties of the minimization prob-
lem (2.23), and in particular provide conditions under which minimizers exist (see
Proposition 5.6). It will then be straightforward to see that the resulting iterates must
be absolutely continuous with respect to the measure dxdg, and thus can be written
asdu;(x, g) = fi(x, g)dxdg. A continuous-time extension of the above iterates is
defined via piecewise constant interpolation in time. Namely,

fr@® = f,. temr,(m+Drl

Comparing the minimization problems (1.11) and (2.23), we see our semi-discrete
transportation cost plays the role of the kinetic energy in the Lagrangian formulation
of the JKO scheme.

Our main theoretical result is the following:

Theorem 2.14 Suppose that fy satisfies (2.22), W satisfies the conditions from Exam-
ple (2.11) and in addition for some constants A, A’

Ve W@ < e VX9 <A e W) (2.24)

where V : R? x G — R is a differentiable function in x that also satisfies
Z/ IV V(x, g))Pe” "V *®dx < .
g IR

Then, for any sequence i | 0 there exists a subsequence, not relabeled, for which
f converges to f in L*(0; tr, L? (RY x G))) for any tr > 0, where the map

loc
t € [0,00) — f(t) belongs to leoc([O, 00), WEE(R? x G))) and is a weak solution
of (2.14) (see Definition 6.1).
Moreover, for everyt > 0

re V8 < £t x,g) < Ae” V), (2.25)
for almost every (x, g) in RY x G, where A, A are the constants in (2.22).
We prove Theorem 2.14 in Sect. 6.
Remark 2.15 The function

foolx, ) = ce V8,
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with ¢ chosen so that

> [ etutrg) =1,

8€g
is an equilibrium point and solves Eq. (2.14). Consequently, the property described

in (2.25) coincides with a well-known maximum principle for the Fokker—Planck
equation.

3 Metric and Geometric Properties of W/,
3.1 Proof of Theorem 2.7
1. Let g, i1 be two elements in P> (R4 x G). First, we prove that the infimum in the
definition of sz(uo, 1) is finite by exhibiting one solution to the continuity equation
connecting o and p; with finite kinetic energy. One such solution is described as
follows.

Let us first assume that o and w| are supported on the set B(0, R) x G for some

R > 0. Foreach g € G, let my := no(R? x {g}) be the total mass assigned to the
fiber R? x {g} by o and let Mog» M1g be the positive measures over R? defined by

1tog(A) 1= 1o(A x {g]), Hi1g(A) == p1(A x {g}) VA SR, Borel.
Also, let 1] be the first marginal of the measure i1, i.e.,
fit(A) = 11(A x G), VA SR, Borel.

Since the measures 1o, and mg [t have the same amount of total mass, we can find a
solution ¢ € [0, 1] = (v; ¢, V¢, (-, g)) to the continuity equation on R4

Vig + dive (Vi (-, @)vig) =0,

satisfying v, = Hog, V1,4 = mgfi1, and

1
/ / Ve (x, g)Pdvy.g (0)d1 < oc.
0 R4

On the other hand, notice that for every g € G the measure 11, is absolutely
continuous with respect to i1, and for ft1-a.e. x we have

dﬂlg
—(x) = L.
2 4

8
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For each such x, we can find a solution to the discrete continuity equationt € [0, 1] —
(yl’)ﬁ vgl/fl (xv ))

Vex + dng(Vglﬂz(x, DK );t,x) =0

dﬂlg

satisfying yo, x(g) = mg and y1 +(g) = i (x) for all g € G, and satisfying

1
| S Vet PR e ¢)dP1n . ¢ < €,
8.8

for some constant C that only depends on R. Such solution exists due to assumptions
(AO) or (AS) on 6 and the fact that discrete optimal transport is well defined in that
case (see Maas 2011; Erbar and Maas 2012).

We define

i e | EeegMedva g () @8, 1 €10.1/2]
Y geg Var-1x(@dit1(x) ® 8y, 1 €[1/2,1]

and

_[eute 0, ret0,1/21 = |0 rel0.1/2]
drlx. 8) = {0, tell/2,1] Vit g) = Yo-1(g), 1€ [1/2,1]

It is straightforward to verify that r € [0, 1] = (us, Vi@, Vgy) solves the semi-
discrete continuity equation, connects /o and (1, and has finite kinetic energy.

If 1o, ;1 are not compactly supported as assumed above, then pick any fig, i1
compactly supported satisfying

ro(R? x {g}) = fto(RY x {g)), u1(R? x {gh) = (R x {g})), Vgeg.

One can then dynamically transport mass from g to fig restricting the transport to
each fiber R x {g} using a continuity equation with finite kinetic energy on each fiber
(this is simply OT in R?). Then, one can transport dynamically from fig to fi; (as
done above) and finally transport dynamically from /i to w| restricting the transport
to each fiber R? x {g} (again doing OT just on R¥).

2. Let us now show that W (uo, ;1) = 0 if and only if 9 = p1. First notice that if
o = (1 we may take ¢ =0, Y, = 0and u; = uo forall ¢ € [0, 1]. Then, it is clear
thatt € [0, 1] — (u¢, @) solves the continuity equation, has zero kinetic energy, and
connects io and w1, from where it follows that sz (o, u1) = 0.

Now let us suppose that W22(,u0, w1) = 0. We want to show that uo = u. Fix
an arbitrary test function ¢ : R? x G — R where ¢ (-, g) is smooth and compactly
supported for all g € G. From the condition W) (g, 1) = 0, we see that for every
& > 0 there is a solution to the continuity equation ¢ — (u;, Vx¢;, V4;) connecting
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o and 1 with kinetic energy less than ¢, i.e.,

1
/C:=f </ D Ve (x, @) Pdpui (g, x)
0 Rd g
+/ D Vetn(x, g, 8K (g, ¢)dfii(x, 8, 8) | dt <e.
R4 ,
8,8

Using (2.6) (after integration over ¢ € [0, 1]) for the above test function ¢, we conclude
that

Zf C(x, g)dui(x, g) — Z/ ¢(x, g)duo(x, g)| < ng/fs Cev/e
geg R? geg R

where C; is a constant that only depends on the test function ¢. Given that & was
arbitrary we can conclude that

> [ epameg =3 [ et oauotr.
g€g R g€g R

Finally, since ¢ was an arbitrary smooth compactly supported test function we deduce
that g = ug.

3. Next, we show that Wa (o, 1) = Wa(uey, o). To see this, simply notice that
any solution t € [0, 1] = (i, Vx¢;, Vi) to the continuity equation starting at (o
and ending at 1, can be reverted in time ¢ € [0, 1] — (u1—;, —Vid1—, —Veh1-4)
producing in this way a solution to the continuity equation that starts at ;1 and ends
at 10, and has the exact same kinetic energy as the original curve.

4. Lastly, we prove the triangle inequality. First, we observe that after a standard
reparametrization (of time) by arc-length it follows that for every p, i1 € Ps (R x G)
andevery T > 0,

T
Wa (i, i) = inf / (/ > Ve (x. @) Pdpi(x. g)
1€[0.T 1> (e Ve Vo) Jo Rt 2 P (x, 8 (x, g

s 3.1
+ /Rd Z(Vglﬂz(X, g &))7K (g, ¢dfi(x, g, g/)) dr,
8.8

where the inf ranges over all solutions ¢ € [0, T] = (u;, Vx¢r, Vg9;) to the semi-
discrete continuity equation with o = w and ur = o

Let now po, 1, 2 be arbitrary elements in P (R? x G). From (3.1), for any ¢ > 0
we may consider 7 € [0, 1]+ (s, Vi, Voby) and 1 € [0, 1] — (ii;, an,, Vg%)
solutions to the semi-discrete continuity equation satisfying po = o, 41 = 1 = io,
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= po and

L
[ (G2 [, wentr oPaur.
0o \25" Jre

172

+f z ngt(x, g’ g’)zK(g,g/)d,lAL,(x, g’ g/) dt
R4 ,
8.8

< Wa(uo, 1) + &,

1 1 -
/ —Z/ Vg (x, @) Pdfii (x, g)
0 \25Jre

1/2

+/ Y Veti(x, 8.8 K (g, ¢Ndli (x, 8. 8" | dt
R4 )

8.8
< Wa(ur, u2) +e.

We then consider

e Mt te[ov 1]
T\ e rel

and the potentials

¢T(~x’ g)9 te[ov 1]

s ‘ﬁt(X,g), t €[0,1]
¢i—1(x,8), tell,2]

ot,(x, g) = { IBI(x’ g) = {

Vi-1(x,8), te[l,2]

It follows that t € [0,2] = (¥, Vxay, Vg B;) solves the semi-discrete continuity

equation, connects (o and o, and satisfies

2 1 ~
/ ‘Z/ Vi (x, )PdiL (x, )
0o \275Jre

1/2

+/ > VeUi(x.g. 8K (g. ghdii, (x. 8. 8") | dr
R4 )

8,8
=< Wa(no, 1) + Wilur, po) + 2e.

From (3.1), it follows that W (1o, w2) < Wa(uo, 1)+ Wa (g, 2)+2¢. Sincee > 0

was arbitrary the result now follows.
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3.2 Tangent Plane Characterization

In this section, we provide concrete conditions under which the statement of Theorem
2.10 can be made rigorous. The bottom line is that the arguments presented in this
section motivate the formal characterization for the tangent plane 7,7, (Rd x G),i.e.,
infinitesimal curves on P, (G x RY) passing through s. The main result of this section
can be interpreted as a minimal selection principle for the potentials (¢, ) driving
a given solution to the continuity equation. Some of the results proved below will be
used again later on when we get to analyze the static semi-discrete transport problem
from Sect. 2.5.

Throughout this section, we work with measures of the form du(x,g) =
f(x, g)dxdg for a density function f satisfying basic boundedness conditions. We
also use the following spaces of potentials:

b = {e € Lg(]Rd x G) s.t. / e(x,g)dx =0 Vg, Zs(x, g)=0ae.x € Rd}, (3.2)
Rrd 2

where Lg(]Rd x G) stands for the space of L%(R? x G) functions with compact support
(i.e., almost everywhere equal to zero outside a set of the form B(0, R) x G), and also

ol = {go €L} (R?xG)sit. f D o(x.g)e(x, g)dx =0, Ve e <1>}.
Rd P

Lemma3.1 Let f : R? x G — R be a probability density such that in every compact
subset of R? x g is bounded and bounded away from zero. Let ¢, be two potentials
belonging to L? (R x G) for which

loc

[, S wsot o s i+ [ 59w 08K @87 <
8 8.8

Consider the minimization problem:

__ inf / Ve (x, @) £ (x, g)dx+/ Vet (x, 8, 8P K (2, &)
$.el}, (RIxQ) Rdz Rdgg; ‘

f(x g 8)dx (3.3)
subject to
dive (f Vi) + divg (V) = diva(f Vi) + divg (F V1)),
where the equality must be interpreted in the sense of distributions.

Then, there exists a minimizing pair ¢ 1& for the above problem. In addition, any
minimizing pair must satisfy ¢ w € o,
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Proof 1. Let us start by proving the existence of minimizers. First, we consider the
slightly modified problem

int /R ngij«zS(x,g)Ff(x,g)dH /R dg%|hggf(x>I2K(g,g’>f(x,g,g@dx (34

subject to
divy (fVe) + diveg(f - h) = diva (f Vi) + dive (f Vo),

where the minimization is now over pairs ((13, h) for ¢~> as in problem (3.3) and h €

leuc(Rd x G x G) an antisymmetric function on G x G (i.e., hge (x) = —hg4(x) for

every x, g, g'). Existence of solutions to (3.4) follows immediately from the direct
method of the calculus of variations. From a solution ((5, h) to problem (3.4) we now
construct a solution to (3.3). Fix x € R?. Thanks to Proposition 2.1, there exists a
solution ¥ (x, ) = ¥/, to the graph PDE

divg (Ve fr) = divg (hy fo),

which satisfies ) e V. (g) = 0. Following the proof of Proposition 2.1 and using the

fact that Zg V(g) = 0, we can conclude that there exists a constant Cy > 0 for
which

Do 9 < Co ) IV (x, g, )PK (g, 8) f(x. g, ). (3.5)
8

8.8

The constant C, can be assumed to be uniform on compact subsets of R? thanks to
the assumptions on € and the fact that in each compact subset of R¢ x G the function
f is assumed to be bounded and bounded away from zero. Using (2.1), we obtain

D VeV PK (g, ) filg, &) = =Y divg (Ve fo)dhe = — Y divg (e )V
8 8

8¢’

=Y Vel - heK(g.8) fi(s. ),

8¢’

and thus, from Cauchy—Schwarz inequality

D VeV (g 8K (2. 8) fe(g. 8) < Y Ihe(g. 8)IPK (2. 8) fi(g. &)

14 14

The above implies that (qB, Vg&) is also a solution to (3.4). Given that 1} is in leo .
thanks to (3.5), we deduce that (</~>, 1}) is a minimizing pair for (3.3).
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2. Let (¢, ¥) be an arbitrary minimizing pair. Let & be an arbitrary element in &
and pick a specific measurable representative for it (which we also denote by ¢). For
each fixed g consider the PDE (in x)

(-, g) = divy (f (. )Van(-, ). (3.6)

Existence of a solution 7(-, g) in leoc(]Rd ) follows from standard arguments in the

theory of elliptic PDEs, given that ¢ has compact support and that in each compact
subset of RY x G f is bounded and bounded away from zero. Also, let x be a Lebesgue
point for all the functions &(-, g), and consider the graph PDE

—e(x, ) = divg(fr - VoB(x, ). (3.7)

This equation has a unique solution (that we denote by S(x, -)) that averages to zero
according to Lemma 2.1 (given that €(x, -) has average zero). Moreover, the function

B can be seen to be in leoc using the inequalities from Proposition 2.1.

Now, for each s € R consider the perturbed potentials:

bs(x, g) = (x, g) +sn(x, &),
Ys(x, 8) ==V (x, g) +sB(x, g),

and notice that

divy (f Vigs) = divy (f Vi) + sdive (fVen) = dive(f Vi) + se
dive(f - Votrs) = dive(f - Vo) + sdivg (f - Vg B) = divg(f - Vo) — se,

so that in particular, for every s € R,
The pair (¢s, ) is admissible in the minimization of (3.3). Let L : R — R be the
function

K@= 3 [ 19+ 3 [ o) = v, &P K o )70,
8 8.8

which is minimized at s = 0 by definition of (¢, v). Computing % KC(s) and evaluating
at s = 0, we deduce that

0= Xg:/R Van(x, g) - Vad(x, g) f(x, g)dx
* / D (Blx.g) — Bl gNW(x. ) — (x. g NK(g. 8") f(x. g. g")dx
R 8.8

=Y [ et oder ot - [ 3 e it g
8 R R 8

=Y [ etr )@ — x g
8 R
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where the second equality follows from the fact that n(-, g) solves (3.6) and B(x, -)
solves (3.7). Since ¢ € ® was arbitrary, it follows that ¢ — v belongs to ®+ as we
wanted to show.

O

Lemma 3.2 Forany ¢ in &L, there exists 1 : R — Rin leoc(Rd) and ¢y : G — R
such that

o(x,8) = o1(x) + ¢2(g), VgeG, aexeR’
Conversely, if ¢ admits the above decomposition then ¢ € ®=.
Proof Let ¢ € ®' and fix a Lebesgue point x¢ for all the functions ¢(-, g). Let
2(8) ==¢(x0,8), g€G.

Observe that from Fubini’s theorem any function that is independent of x belongs to
&<, and thus, @2 must be contained in &~ Define now the function

P1(x, 8) == (X, 8) — ¢2(8).
To complete our proof, we must show that ¢; does not depend on g. For this purpose,

let x be an arbitrary Lebesgue point for all the functions ¢(-, g). Fix g, g’ € G. Let
r > 0 and consider the test function

er =8, — & o —Expg TEx g (3.8)

where &y , R? x G — R s given by

Er X 8) 1= Lpr) ()1 3=g).

_r
|BCx, )

Notice that by construction ¢, is contained in ®. Also, since ¢ and ¢; are contained
in &1, @1 is contained in @1 t00. Hence,

0=3 [ et e pas
8

1 1
== p1(x, 9dx — ——— @1(x, g)dx
|B(x, )| JBx,r) |B(x, )| JBx,r)
1 1
- p1(X, g)dx + —— @1(x, gHdx.
| B(x0, )| JB(xo,r) |B(x0, )| JB(xo.r)

We may now take r — 0 and use the fact that x¢ and x were assumed to be Lebesgue
points for the functions ¢(-, g) and (-, g’) (thus also for ¢1) to conclude that

0=09i1(x,8) —@i1(x, 8") — @1 (x0, &) + ¢1(x0, 8.
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By construction, ¢1 (xg, g) = ¢1(x0, g') = 0. Consequently, we deduce that

p1(x,8) = ¢i1(x, g).

Since x, g and g’ were arbitrary, we conclude that ¢ can be written as the sum of a
function of x only and a function of g only.
The converse statement is a direct consequence of Fubini’s theorem.
]

Remark 3.3 Notice that from the proof of Lemma 3.2, it actually follows that if ¢ €
ZOC(Rd x G) is such that Z fRd o(x, g)e(x, g)dx for all ¢ of the form (3.8) then ¢
can be written as ¢(x, g) = ¢1(x) + ¢2(g) (and in particular it follows that ¢ € o).

We will use this observation in Proposition 4.5.

We may now combine the previous two lemmas to deduce the following minimum
selection principle providing concrete support to Theorem 2.10.

Proposition 3.4 Under the same assumptions on f from Lemma 3.1, there exists a
minimizing pair for problem (3.3) of the form (¢, ¢).

Proof Consider an arbitrary minimizing pair for problem (3.3). By Lemma 3.1 we
know that this pair must satisfy ¢ — ¢ € ®L, and by Lemma 3.2 we can conclude
that

¢ —v =9+,

for some ¢; : R - Rin L? (R? x G) and ¢, : G — R. Consider now the function

loc

o(x, 8) == P(x, ) — p2(2)
and notice that we can also write it as

o, 8) = ¥ (x,8) +¢1(x).
It follows that

Vip = Vid, Ve = Vel

Due to the above relationship, it follows that (¢, ¢) is admissible for the optimi§ati~on
problem (3.3) and that it achieves the same value as that of the minimizing pair (¢, V).
Therefore, (¢, ) solves (3.3).

O
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3.3 A Formal Computation of the Acceleration of a Curve in P, (R? x G): Geodesic
Equations and Accelerated Methods for Optimization

In this section, we present a heuristic argument that motivates the discussion in
Sect. 2.4. The heuristics are based on the formal computation of the acceleration
of a given curve in P, (R? x G).

Let us recall that the covariant derivative V() along a smooth curve ¢t +— ¢g(t)
on a smooth Riemannian manifold M is a mapping taking vector fields into vector
fields along the curve g. This mapping makes sense of the idea of differentiation
of a vector field + — p(¢) along the curve in a way that is compatible with the
Riemannian structure of M. We will now recall a formula from Riemannian geometry
that characterizes V;¢q (the covariant derivative of the velocity of the curve, i.e., the
acceleration of the curve) in terms of variations of the kinetic energy. For that purpose,
we lett € [0, T] — ¢(¢t) be a fixed smooth curve in M. We recall that a (smooth)
propervariation of the curve g is a smooth function« : (s, t) € (—e, ) %[0, T] > M
satisfying «(0,¢) = ¢(¢) for all t € [0, T] and (s, 0) = q(0), a(s, T) = q(T) for
all s € (—e¢, ¢). In particular, the maps t € [0, T] — «(s, t) can be understood as
describing nearby curves to the original curve ¢, and in that light, the vector field v(¢) =
%a(o, t) known as the variational field of o (which is a vector field along the curve ¢)
describes an infinitesimal deformation of the curve maintaining its endpoints anchored.
A well-known result in Riemannian geometry (e.g., Proposition 2.4 in Chapter 9 in
do Carmo 1992) states that:

1 T
s=0 5 /(‘)

Since in the above one can take arbitrary variations of g, the previous expression indeed
characterizes V,; g completely: regardless of the smooth proper variation taken, the first
variation of the kinetic energy (the left hand side) must match the right hand side which
is expressed in terms of the corresponding variational field and the acceleration of the
curve V4q.

Using the above discussion as motivation, let us now consideracurve ¢t € [0, T]
fr €Po (R x G) and let us provide a formal definition for its acceleration; here and
in what follows we identify a measure du(x, g) = f(x, g)dxdg with its density,
and let (V,¢;, Vy¢;) be the velocity of the curve at time 7. Let (s, 1) € (—¢,8) X
[0, T1— (fs.r, Vx@s,, Ve@s 1) be a proper variation of t — f;. Namely, we assume
(fo.t» p0.0) = (fi, @) forall ¢, and fs0 = fo, fo,r = frforalls € (—¢,¢). We
use V¥ ; to denote a potential associated to the curve s € (—¢, ¢) — f; ;. The map
t € [0,T] — vy, := Yo, can then be interpreted as the corresponding variational
field of the variation (s, t) — f; ;. We assume all functions are smooth, and smooth
in s and ¢ so that we can take derivatives in x, s, ¢ at will.

d 2

ds

i (s, 1)
—a(s,
at

T
dt) = —fo (v(®). V4d),,, dr. (3.9)
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Relative to the proper variation introduced above, we define

1 T
F(s) =5 /0 (§ fR ) V@1 for (x, g)dx

T
+/ > /dIVg%,zlzfs,t(x,g,g’)dx dr,
0 , JR
8,8

for s € (—¢, €), which according to (2.9) can also be written as

1 T
—/ (‘ﬂs,tv%,l)f,c,zdt'
2 Jo

We show that

iF()
ds s

T 1 )
= —/ <1/ft,3t¢t+§|vx(ﬂt|
0

s=0
+ 3 Ve (o PO ). Sl g’>)> dr, (3.10)
g fi
which when compared to (3.9) motivates the definition of the acceleration of the curve
t €10, T]+ (fi, Vxor, Veo,) at time ¢ as the potential:
d 1 2
(x,8) €eRY xG > g (x, 8) + EIszo(x, 8l

+ D Ve (x. g 8)P00(filx. ). fi(x. g)).
g/

Notice that in turn, the above definition motivates the geodesic equations given in
(2.15), as well as the (continuous time) accelerated scheme in (2.16) for the optimiza-
tion of the relative entropy defined in (2.10) (using the expression for its gradient that
we found in Sect. (2.3)) in light of the discussion in Sect. 2.4.

We now formally obtain (3.10). First,

d T
L F® = [ > f (Vads@s.i - Vags,) fii(x, @)
A 0 2 R4

T
[ e Vepe K (@) ftr .80t
0 VR
8,8

Lt 2. e 2
+5/0 Zg:fR Ve e asfs,,<x,g>dz+§/0 g[R Vewe]

T
K(g, g/)asfs,t(xs 8 g/)dl :/ } /d(vxas@s.t . Vx(ﬂs,t)fs,t(x5 g)dr
0 R
14
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T
+/ E fd(vgas'¢s',t . vg‘ﬂs,t)K(g» g/)fs,t(xs 8 g/)dt
0 , J R
8.8

1 T
+§/0 Xg:fRd ‘V"%J‘zasfs,r(xag)dt

T
+ /0 > /R Ve PR (g, 81010 (fr(x. 9). fur(x. g0 for(x. 9)dr.

8.8
(3.11)

On the other hand, integration by parts and the fact that d;¢(0,s) = 0 and
Z)sga(s]7 T) = 0 for all s (because the VariaTtion is proper) lead to

05,1 (x, 8)0s f5,1(x, g)dt = —/ ©s.1(x, 8)0s0; fs.1 (x, g)dt
0

d ([T !
=% (/ (ﬂs,talfs,rdt) +/ O5s,10; fs,dt.
s \Jo 0

After integration over x, g and using the continuity equation, the above implies

T
/ y / 011 (X, ) fo.r (2, g)dlxdr
0 g R4

d T ) -
=-< /0 Z/Rd Vs, fv,tdx+2,/Rd|vg¢s,,| fradx | de
4 &8
T
+/ Z/ 55,19y fs 1 dxdr
0 g R4

d
=-2—F
ds )

0

T
+A Z/Rd(vxas(ps,t : Vx%,z)fs,,(x,g)dt
8

T
[ [ Vit Ve Fuatro g
0 a2 R
(.12)

Combining (3.11) and (3.12), we deduce that %F (s) can be written as:

g 1
_'/0 ‘/];gd Z (3t(ﬂs,t + E|Vx§0s,t|2 + Z |Vg(/’s,t|2K(g, g/)31¢9(fs’;(x, 2), fs.r(x, g’))
8 g
Oy fs,1(x, g)dxdr.

Finally, at s = 0 we have 0 f; ; = —div (V¥ f7) — divg(Vgl/ftﬁ), and thus (3.10)
follows combining the above with the semi-discrete continuity equation.
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4 Properties of Minimizing Pairs of the Static Semi-discrete Optimal
Transport Problem

In this section, we study the minimizers of the static semi-discrete transportation
problem that we introduced in Sect. 2.5. Some of the results presented in this section
will be used in the sequel while others are of interest on their own. We seek to reproduce
the result of Brenier Ambrosio and Gigli (2013), Theorem 1.26 that characterizes
optimal transport maps in the Euclidean setting in terms of convex functions. Our
characterization is presented in Proposition 4.5. We begin by studying the existence
of optimal pairs.

Lemma 4.1 (Existence of Optimal pairs) Let 1,0 € Po(R? x G) and suppose that
Wzg’W’T(u, o) < 00. Then, the set Opt(i, o) (i.e., the set of solutions to (2.20)) is
non-empty.

Proof Let us consider a minimizing sequence of admissible pairs {(y;, h,)},2; and
note that since A9W-7 (i1, ') < 0o we have that, passing to a subsequence if necessary,
we can assume that the second moments of {y,}°°,, and the norm of {/,}>, in
the weighted space L%V(Rd X G x G) are equibounded (see (2.18)). Consequently,
since L%,V(Rd x G x G) is a Hilbert space, the existence of a minimizer follows by
a standard lower compactness/lower semicontinuity and weak convergence argument
(see Ambrosio and Gigli (2013), Theorem 1.2). Indeed, since the constraint (2.19) is
linear, we can pass it to the limit by weak convergence of y, and &, in duality with
smooth functions with compact support. O

Notice that if & = o then = 0 < oo. The following lemma will not be
used in the sequel, but provides other examples of u and o for which one can prove
that Wzg’W’T(,u, o) < 00.

WZQ,W,I

Lemma4.2 Let i, o € Po(RY x G) be absolutely continuous w.r.t. dxdg and assume
that o’s density belongs to the space:

L%V(]Rd x G) = {f:Rd xG—R st Z/|fg|zewdx < oo} “4.1)

g€g

Then, Wzg’w’r(u, o) < Q.

Proof We begin by showing that the cost A% W7 (i1, o) is finite. Let f and f be the
densities for i and o respectively, and define

mg ¢=f fe(x)dx, geg,
R4

f) =) fex), xeR:
8
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Notice that for every g € G the positive measures f, and mg f have the same total
mass, and thus there exists a coupling y, between them. In particular, 71y = f,,
oy = mg f and also

[x — )ledy < 00.
R4 xRd ¢

Now, notice that for every x € R? we have

D (mg f(x) = fo(x)) =0.
8

Therefore, we may use Proposition 2.1 in order to find n(x, ) satisfying

mef(x) = fox) =) ((x, ) —n(x, g NK(g,8), Yee§G,  (42)

8

as well as

D Intx.g) —n(x.g)IPK(g.8) < C Y Img f(x) — fe(0)?V ™. (43)

8.8 g
for some constant C that only depends on the weighted graph (G, K). We let

W(x)

hgg (x) = (n(x,8) —n(x,g)), xeR g¢¢€g

T
and notice that from (4.2) it follows that
0 = TaxVg = T ) hgy (0K (8.8 ).
g/

We observe that £ is clearly antisymmetric in G x G, and thanks to (4.3) and the fact
that f € L%V(Rd x G) also satisfies

Z-[Rd hig,e*WK(g, gHdx < 0.
g8’

The bottom line is that (y, h) € ADM(u, o) and CYV-X(y, h) < oo. It follows that

Wzg'W’T(/L,U) < Q. O

Remark 4.3 To provide an example where the cost is infinite suppose that G consists
of two elements g1, g2 and K (g1, g2) > 0. Let i be the measure with representation
g, = Oy for some x; € R4 and Mg, = 0 (i.e,, all mass is in g1), and let o be the
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measure with o, = 0 and o4, = 8y, for some x, € R?. We show that ADM (i, o) =
(. Indeed, if there existed an admissible pair, from (2.19) we would have that

8x, = 0 = T2V — Theyey (MK (g1, 82V dx = —thgyg (DK (g1, g2)e™ "V Pdlx.

In other words, we would conclude that §,, admits a density w.r.t. Lebesgue measure.

The main ingredient necessary to prove the main result of this section, i.e., Propo-
sition 4.5, is a set of variational inequalities satisfied by optimal pairs. We obtain such
inequalities by computing the first variation of minimizing pairs under suitable pertur-
bations. We do this in the next lemma. Before stating this result let us first introduce
some notation that will be used in the remainder of the section. We let i, o be as in
Lemma 4.1 and assume that o has a density. To a given minimizing pair (y, k), we
associate the density

fo) = 0g()+ 1Y ey K(g. g)e ", (4.4)
7

which corresponds to the density of the measure 724y,. An immediate observation is
that each y, is an optimal plan for the OT problem between g and 7oy y, for the cost

p— 2 . . . .
c(x,y) = ‘xz - . Given that T4y, has a density, we know that there exists a unique

map S, : R? — R? such that (S,, Id)4 fz = ¥, (see Ambrosio and Gigli 2013[The-
orem 6.2.4 and Remark 6.2.11], for example). We will use the maps {S;},c¢ to state
the variational inequalities satisfied by minimizers of the static semi-discrete trans-
portation problem. This set of inequalities serves as analogue to the notion of cyclical
monotonicity that appears in the classical (Euclidean) optimal transport setting.

Lemma 4.4 (Variational inequalities) Let i and o satisfy the hypothesis of Lemma
4.1 and suppose that in addition o has a density w.r.t. dxdg. Let (y, h) be an element
in Opt (i, o). Then, the following properties hold:

e Forany g in G and any y in RY, suppose we have two sequences {g; }zﬂio and
{g;}f,’lz/o in G, that satisfy both:
a) The two sequences describe paths in the graph with the same initial and final
endpoints, i.e, we have that g0 = g, gm = gyy» K(g1. 81+1) > 0, and
K (g, gl’H) > 0.
b) The point y is a Lebesgue point for all the functions hg,_, ¢, and hgl/—l’gl/'

Then,

M/
D g =D kg (). (4.5)
=1 I'=1

o Fix g and g’ satisfying K (g, g') > 0 and assume that y is a Lebesgue point for
Sg which also belongs to the support of wasY,, and that y' is a Lebesgue point for
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Sg' which also belongs to the support of wasyy. Then,

) Iy = SeI* 1y — S
(hggmy)—hggf(y)w[ 2j — zjj }

— S, (vI2 9 (v)2
n y =S¢ QI Y =800 _
2t 2t -

(4.6)

Proof Let us start with a small outline describing the main ideas behind the proof.

Heuristic Proof We begin analyzing (4.6). The idea is to perturb y, by transporting
a small amount of mass from (S, (y), g) into (y’, g) instead of transporting it to (y, g).
On the other hand, y, is perturbed by transporting a small amount of mass from
(S(y), g') into (y, g’) instead of transporting it to (', g’). By modifying the plans y,
and y,/, we create a transport cost differential

[|y’ —SgWIF Iy - Sg<y)|2] N [|y =Sy Y =Sy OO

, (47
27 27 27 2t i| @7

per unit of mass transported. To balance the above perturbation in the transportation
and remain with an admissible pair, we must also perturb %,/ (gg") and &y (g'g) so
that the extra amount of mass created by the transportation perturbation gets removed
from (', g) and put into (y’, g’). We must also perturb 4,(g'g) and h,(gg’) so that
the extra amount of mass created by the transportation perturbation gets removed from
(v, &) and putinto (y, g). Modifying the mass exchange function 4 in this way creates
a mass exchange cost differential of

hggr O - hgg (¥),

per unit of mass transported. The resulting modified pair is still admissible, and by
optimality of the original pair (y, k), it must be the case that

r_g 2 _g )
(hgg (¥) = hggr () + |:|y s _ 1y = SO :|

2T 2T
_ (v 2 /_ (v 12
n |y = SgrII7 [y = S (I > 0.
2T 2T -

which is precisely (4.6).

To deduce (4.5), we consider two sequences {g;} | and {g/}| satisfying the given
conditions a) and b) for some y in R?. We send some extra mass from the point (y, go)
to the point (y, g1) by increasing &, (gog1). Then, we take the extra mass at (y, g1)
and send it to (y, g2) by increasing /(g1 g2). We can continue in this fashion until we
reach the point (y, gar) = (), g},/)- At this stage, we will have a deficit of mass at the
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point (y, g1) and an excess of mass at the point (y, g},,) and we will pay an excess
exchange cost given by:

M

Zhgmgz(y)s

=1

per unit of mass transported. We can balance the previous perturbation by reversing the
mass exchange along the sequence {g; }lﬁi |- Namely, for each pair g/, g; 41 we reduce
the mass sent from (y, g;) to (y, gl/+1) by decreasing hgl/gl/+1 (y). Doing this we save

Zhgl ey

in terms of the cost. By optimality, we must have

Z a1a (V) = Zhg, lgl(}’)
=1

We can then switch the roles of the sequences and obtain the opposite inequality and
from this deduce (4.5).

Let us now make the previous ideas rigorous.

Rigorous proof: 1. We begin with the proof of (4.5). Let us fix two positive real
numbers r, & > 0 . We perturb our minimizer (y, ) by considering a new mass
exchange function:

WS (§) = he 1/ (3) if § e Bf(y)
81181 hg,71g1 (5\7) + m if )A/ € B (y),
G g,’ 153 if 3 € Bi(y)
\y) = oA
818 gl 8 ()’) —fK(ng;;)e*W(i‘) if ye B-(y),
hgg- = —hgg_, and h;;,zl,il = —hg,  to maintain the asymmetry, and finally

h;;, = hge Whenever (g, g') is not one of the consecutive pairs in the sequences. In
the above, we use B, (y) to denote the Euclidean ball of radius r centered at y.

It is straightforward to see that the pair (y, h"*¢) is admissible, and thus by the
optimality of (y, h) we have C;(y, h) < C;(y, h"?), which simplifies to
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M

2
! E &
0 < — ]’l _ h )
2 P /I;r(y) (( S8 T TR (g gl)e—W(y)) - (hg1g) )

K(gi-1, gne Va5

M/

2
T e
+ = h. ;) — _ —(h. , 2
2 Z/l;r()r) ( Si-181 TK(g_y, gl’)e—W(y)) (g g

=1

K(g_, gpe " Dd5.

Dividing by ¢ and letting ¢ — 0 yields

/B( S g ) — Zhgl LG | 5.
()

=1

Dividing by the volume of B, (y), letting r — 0, and recalling that y was assumed to

be a Lebesgue point for all the functions /g, and i, - we conclude that

M
Z a1a () = Zhg, lgl(y)
=1

Switching the roles of the sequences we obtain the reverse inequality. (4.5) follows.

2. Let us now consider (y1, g1) and (y2, g2) such that K(g1, g2) > 0, y; is a
Lebesgue point of S,, and belongs to the support of 7724y, , y2 is a Lebesgue point of
S,, and belongs to the support of 2¢y,,, and y; # y2. Fix & > 0, and let r be a small
enough positive number so that B.(y1) N B:(y2) = ¥. We now construct measures
Yer s es' and a function Ay, which we use to formalize the perturbation argument
provided in the heuristic proof. To define these measures and function, we first need
to introduce some objects.

Let us start by defining

mi =y R? X B:(y), ma =y, (RY x By (32)).
Notice that both numbers are nonzero given that y; belongs to the support of 725y,

and y; belongs to the support of 3¢ y,,. To ease the notation, we use jig, and fig, to
denote the positive measures

Mg = TogVe = fodx, [l = T2sYg = fedx,
and consider also the positive measures g, |B, (y;) and g, |, (y,) defined by

gy 1B, (1) (A) i= fig (AN Br(y1)), g, |B,(32)(A) 1= g, (AN Br(y2)),

for all Borel subsets A of RY.
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Let us consider the maps 73> (y) := (y — y1 + y2) and 73,/ () == (y — y2 + »1).
Also, let T} : B-(y1) — B,(y1) be an optimal transport map (for the quadratic cost)
between the measures 7)) jj(m2 g, | B.(y,)) and the measure fig, |, (y,) (measures that
can be checked to have the same total mass), and let 7> : B,(y2) — B:(y2) be
an optimal transport map between the measures Tyfzﬁ(ﬁgl |B,(y;)) and the measure

mp -
iy g2 1B (32)-
We can now define the measures y,,° and yg,° by

VgIF(A x C) =y (AXC)—eyg (A x(CNB (1))
+ 6(Sgy» T2 0 T3 )eflg, 1 B.(y1) (A X C),

and

ygzg(A x C):i=yg(AxC) — 8—yg2(A x (C N Br(y2)))

+&(Sg,, T1 0Ty )n( Mgle o) (A x C),

for all A, C Borel subsets of R?. For g that is neither g nor g» we set yg ® = V-
Notice that w15y, = g, and masye" = ig,.
Finally, we define

Kl () 1= hg g () + (%7& DB, () (V) = fog, (y)llB,(yl)(y)>

£
TK (g1, 82)e" WO

and set hg)y, = —hy,,, and hrg, = hgg/ for pairs g, g’ different from gy go. It is

straightforward to check that /"¢ € L2 K@®I x G x G) and that for every g € G

O =Tyt =T ) gy K (g, gNe"
g/

That is, (y"¢, h"¥) € ADM (i, o) and thus by optimality of (y, h) we deduce that
C;(y,h) < C:(y"%, h"?). This inequality simplifies to

e/ [1d = g, [> |T2oTy; = Sgi Py
Br(yl) 2t 2t 8
T1oT3s — Sg,|>  |1d — Sg,|?
58@ IT10Ty, — Sep|” | 2| Fody
B, (y2) 2t 2t

+ / [(hglgz - ) hﬁlgz]ml,gz)e—wdy
2 JB.(&y) TK(81,82)e”

£ N2 -w
(h U L fen) }K(gugz)e dy.
fB,(yz)[ 81827 1K (g1, g2)e W my " ¥ Mg

+
[NSREC
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If we divide by ¢ and let ¢ — 0, we obtain

Id — S, |2 |ThoT2? -8, %7 -
/ |:| g1| . | 20 yi g1| ]fgldy
B, (1) T

2T 2
_m |T10T3) = Se,|*  11d = S, |? d
= my 2t 2t 520y
Br(yZ)
- ml —
- hg g, ferdy + — hg g, fe,dy.
By (y1) m2 JB.(y2)

Consequently, dividing by m; and expanding we obtain

I 1~ S, P |3 = S, P .
— - R d
[ 27 27 + Z(y) fgl Yy

_ [lfy’;‘ —Spl> |1 = S,

m1 JB(y)

- S R |ty @9

— m2 Jp, ()

1 - 1 -
- — hoor fo,dy + — ho oy for,dy
8182 J 81 8182/ 82 ’
mi B (y1) m3 By (y2)

where

|Ty)1}2 - Sg1|2 _ |T2°T;% - Sg1|2
2t 2t

1 - 1 _
- |R2(y)|fg1dy:_ fgldy

mi JB.(y) mi JB.(y)
1 _

= 5o | TR = TeTR TR 4 1T — 25y
2tmy Jp, )

r1 , =
< —-— |7ﬁ2 + T2°T¥ — 281 fg1dy,
T mi JB,(y)

and by a similar computation

1 - r1 -
— IRi | fgdy < —— |73, + T10T 3y — 28, | fo,dy.
my B, (y2) Tm3 B (y2)

We now use the above estimates and let r | 0 in (4.8) to deduce (4.6) (with (y, g) =
(y1, &) and (', &) = (¥2, g2))- o

Before proceeding with our characterization of optimal pairs, let us first recall some
useful definitions from the classical optimal transport theory. First, given a symmetric

c : RYxR?Y— R, wesaythatafunctiong : RY — Ris c-concave, if it can
be written as

p(y) = inf c(x,y) — ¥ (x), VyeR%,
xeRd
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for some ¥ : R? — R. The c-transform of a given ¢ is the function ¢° defined
by

@“(x) == inf c(x,y) — (), 4.9
yeRd

and its c-superdifferential is the set

g = {(x, yeRI xR 1 ¢f(x) +o(y) = clx, y)}. (4.10)

To characterize minimizers of Problem 2.4, in the proposition below we will use the
quadratic cost

1 2
c(x,y) = Elx —y|*.

We will also use the spaces ® and &+ defined in (3.2).

Proposition 4.5 (Characterization of Optimal pairs) Let v, o be absolutely continuous

with respect to dxdg and assume that Wzg’w’r(,u,_o) < 00. Also, let (v, h) be in
ADM (., o) and assume that ug’s density and fq as defined in (4.4) are strictly
positive for every g in G. Then, the following are equivalent

i. C¢(y,h) is minimal among all pairs in ADM (i, o).
ii. There exist functions ¢,V : RY x G — R satisfying the following properties:

a) ForeveryginG, the plan yg is supported on 95 ¢, for some c-concave function
() =0(, 8).
b) For Lebesgue almost every pointy € R, the function Yy () = ¥ (y, -) satisfies

Uy(8) — Uy (8) = heg(y), Vg.g withK(g,g')>0.  (4.11)

¢) The difference ¢ — r belongs to O+ as defined in (3.2).

iii. We can find a single potential ¢ = R? x G — R satisfying properties a), b),
and c) from item ii.

Proof 1. Optimality of (y, k) implies that y, is an optimal coupling between j1o and
morY, for every g, and thus the proof that i. = ii.a) follows directly from the
classical (Euclidean) optimal transport theory (see Ambrosio and Gigli 2013, Theorem
1.13). To prove that i. = ii.b), let us fix yg in R4 and go in G and define

M
V(30 8) =Y g 1 (00),

=1

for some sequence {gl}lﬁio starting at g, with K (g7, g1+1) > 0, and for which g; = g.
Such sequence exists given that (G, K) was assumed to be connected. On the other
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hand, observe that by (4.5) the potential i is well defined (i.e., does not depend on
the actual sequence connecting gg and g). In particular, we also have

M
V(0. 8) =Y hg 15 (30) + hgg (30)-
=1

ii.b) now follows.
We proceed to show that i. = ii.c). According to Remark 3.3, it suffices to
show that the difference ¥ — ¢ is orthogonal to any ¢ of the form (3.8)

— r _ r _ r r
€= gy’,g sy’,g’ sy,g + éy,g”

for arbitrary y, y’, g, g’ and r > 0. To show this, we proceed as follows.
Fix g, ¢’ with K (g, g’) > 0. We first claim that the function

Ugg (V) =Yg (¥) — Yo (V) + ¢ () — g (¥).
is a.e. constant, where v is as in item ii.b). To see this, notice that from Brenier’s

theorem for the classical optimal transport problem with the (rescaled) quadratic cost
the following holds: the functions ¢, ¢,/ can be written as

¢()——ﬂ()+ﬁ ¢’()——,3’()+M
g V) = =Py 27 g’ (¥) = —Pg'(y P

for convex functions B, and B/, and the maps S, and S, are a.e. equal to TV, 8, and
TVy B, respectively. In particular, we can write

gy (V) = Vg () — Yo (0) — Be(¥) + B (), ¥y € RY.

Now, for a given pair y, y’ € R, we have ugy (y) > g (y') OF g (V) > tge ().
Suppose for the moment that the first inequality holds. In that case,

Be() = By (1) = Be () + By ) < W (9) — Vg0 + ¥g (b)) — Y (). (4.12)

After simplification, item ii.a) and (4.6) imply

Vg (1) =Yg + ¥ (V) =Yg () < = =3, VyBe() — (v = ¥, VyBgr v)),  (4.13)

for a.e. y, y’. Combining (4.12) and (4.13), and recalling the definition of u g, we
obtain

lige' (¥) — ttger (Y| < Be (V) — (Be(¥) + (¥ — ¥, VyBe (1))

, , , (4.14)
+ By (¥) — (B (V) +{y =y, VyBer(¥)).
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Notice that if instead 4,/ (y") > ugy (y) we would have obtained the same inequality
as the one above changing the roles of g and g’ on the right hand side, so we do not
lose generality in assuming the former inequality. Given that along every straight line
£ the functions B, B, are convex, their distributional second derivatives (along ¢£) are
characterized in terms of Radon positive measures, implying that along almost every
line £ in R the right hand side in (4.14) is O (|y —y’[), and in particular u 4’ is alocally
Lipschitz function along ¢. Furthermore, along almost every line in £ and for almost
every y, y’ on that line, the right hand side of (4.14) is o(]y — y’|) (given that Radon
measures can only have at most a countable number of point masses). This implies
that the locally Lipschitz function ug, (restricted to £) has derivative a.e. equal to
zero, thus implying that the function is constant along almost every line £. From this
it follows that u 4, is almost everywhere constant in R¢. The bottom line is that for
almost every y, y € R? we have

(Ve ) = e (y) = Vg (V) + ¥ (1)) — (9 ()) — g (V) — dor(3) + ¢4 () = 0.

From the above it now follows that

[, X000 - 00,0600 dy=0.
g

for ¢ as in (3.8). This concludes the proof.
2. We now show that ii. implies iii. By Lemma (3.2) we can find ¢; : RY - R
inL? (R%and¢, : G — R such that

loc

e (¥) — ¥y (8) = 01(y) + ¢2(8).
Let us define
P(y. 8) = ¢g(¥) — 92(8) = ¥y (8) + ¢1(y).
Clearly, we have that
(v, 8) =9y, 8) = ¥y(g") — ¥y (g).

Thus ii.b), follows. On the other hand, since ¢ is c-concave, ¢, (-) — ¢2(g) is c-
concave too. Also, it is straightforward to verify that the superdifferential of ¢, (y)
and ¢, (y) — ¢2(g) agree. In particular, ii.a) holds for the potential ¢.
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3. To prove that iii. = i., let (y, h) be any element of ADM (u, o). Then,
using item ii.a), (2.19), (4.9), and (4.10), we have that

Cely, )= I:/;&ded c(x, y)dyg +£ > </h§g/(y)K(g’,g)e_Wdy>}

geg g'eg
(/hﬁg/(y)K(g/,g)e_Wdy)}

c T
- gzg [/RR (W) + g Ndyg + 3 D
> [/R Pt + /R oedog +7 ) f (wg(yxhgg/(y))lc(gc g)ew>dy
g€g

g'eg
g'eg

+ 2 > ( / oy MK (g, g)e‘Wdyﬂ

g'eg

=> [/Rd P+ 0 (007 + 7 >
g€g x

g'eg

(/‘pg(y)(hgg/(y) _ﬁgg’(y))

K(g, g)e‘Wdy>

+£ > (fhﬁg/(y)K(g/,g)e_Wdyﬂ

g'eg

: Z I:-/]Rd Re €wx, y)dve + Z %(/ (2 (9) = g ) (g (¥) = I ()]
8€G x

g'eg

K. g)e‘Wdy)

+ 2 > ( / ey MK (&', g)ery)]

g'eg

where in the last line we have used the antisymmetry of 4 and /. Now, from item ii.b)
and the above inequality we obtain

Com= [ ;Y ( [, g)ery>
g 8.8

+ 2 ( / (hey () — ey (DK (S, g)e—Wdy)

+ Z %(/ (hgg/(y))(,:lgg/(y) - hgg’(y))K(g/t g)ewdy)

O
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5 Properties of JKO Minimizers and Maximum Principle

In this section, we prove a series of preliminary results characterizing solutions to
the optimization problem (2.23). In Proposition 5.3, we show that the iterates of the
minimizing movement scheme satisfy a maximum principle that is characteristic of the
Fokker—Plank equation. In Proposition 5.6, we show that the corresponding potential
¢ generating the associated optimal transport map and optimal exchange function
from Proposition 4.5 agrees with (2.12), i.e., with the formula for the gradient of £
suggested by the formal computation from Sect. 2.2.
We begin by showing that minimizers of (2.23) exist.

Lemma 5.1 (Existence of minimizers to (2.23)) Let u be a measure in P(R? x G)
with the property that £(u) < 0o. Then, there exists a minimizer 1y € P» (R? x G)

of
o — E0)+ AV 9T (u, o). 5.1

Moreover, such a minimizer is absolutely continuous with respect to the measure dxdg.

Proof Since the entropy of w is finite, by considering the competitor o = p we deduce
that the infimum in (5.1) if finite as well. Now, consider a minimizing sequence of
measures {o"}>° |, with corresponding optimal pairs {(y", h")}>2 , in ADM (e, o).
Then, by construction, the second moments of {y"}7° | and the norm of {A"}°° | in the
weighted space L%V(Rd x G x G) are equibounded. Thus, following the argument of
Lemma 4.1 we can guarantee the existence of a pair (y, /) such that up to subsequence

not relabeled, " converges weakly to y, A" converges weakly (in L%,V) to i and
liminf C¢(y", h") > C:(y, h).
n—oQ

From

of =muyy —T ) My K (g ghe™ ",
g/

o0

ne1» we deduce that

and the weak convergence of the sequences {(y", h")}
. 1; n n A4
fr 1= Hm moyyy — T Zhgg/(X)K(g, g)e
g/

=muve =T Y, ey (K (g ghe V.
K(g'.8)>0

Consequently, the pair (y, k) belongs to AMD(u, ;). Finally, the inequality

liminf £(c") > E(uy),
n—oo
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is a consequence of the weak convergence of o” toward . and the weak lower semi
continuity of the relative entropy. The desired result follows. O

In the next lemma, we prove a set of variational inequalities satisfied by minimizers
of (2.23). These inequalities are the main ingredient necessary to attain the main results
of this section, i.e., Propositions 5.3 and 5.6. We obtain these inequalities by computing
the first variation of minimizing pairs under suitable perturbations.

Proposition 5.2 (Variational inequalities of JKO minimizers) Let w and ., be as in
Lemma 5.1, and let f; be ;s density. Let {y,}¢ and h be the optimal transport plans
and optimal exchange functions for the static semi-discrete optimal transport between
wand o = . The following inequalities hold:

e Let y € R? be a Lebesgue point for the function hg g, where K(g1, g2) > 0, and
suppose that (y, g2) is an element in the support of fr. Then,

log fr (v, 1) + V(y,81) — [log fr(y,82) + V(. 82)] = hgg,(y). (5.2)

o Let y1 be a Lebesgue point for S, and suppose that (y1, g), (y2, g) belong to the
support of fr. Then,

1Sg(y1) — y2I?

log f: (y2, &) + V(y2,8) — llog fz(y1,8) + V(y1, &) + >

. 1Sg(y1) —y1|2'

e (5.3)

o Let (x,y) be an element in the support of yg for some g in G, and suppose that x
and y belong to the support of f . Then,

_ 2
log f2 (x, ) + V(x. §) — [log fi (v §) + V(v, )] = % (5.4)

Proof Let us start with a small outline describing the main ideas behind the proof.

Heuristic Proof We begin by proving (5.2). For this purpose, we consider the
following perturbation of the optimal pair (y, h). The idea is to stop exchanging a
small amount of mass between (y, g1) and (y, g2). By doing this we save

hglgz(y) +log fr(y,82) + 1+ V(y, g2),
in terms of the mass exchange cost and the entropy, and we pay an extra

log fz(y, g1) + 1+ V(y,g1),

in terms of the entropy of the excess mass we now have in (y, g1). Thus, (5.2) follows
by optimality.
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We proceed to the proof of (5.3). We perturb y, as follows. Instead of transporting
a small amount of the mass from (S, (y1), g) into (y1, g), we transport it to (y2, g).
By doing this, we create a transport cost differential

2 = SgDIP Iy = SeGoI?
21 2t '

The resulting excess mass in (y2, g) and deficit of mass in (y;, g) create an entropy
differential of

log fr(y2,8) + V(y2,8) — llog f-(y1, &) + V(y1. &)1
Thus, (5.3) follows by optimality.

Finally, to prove (5.4) we take a pair (x, y) in the support of y, where both x, y are
assumed to belong to the support of f; .. Now, by setting y = y; and x = S(y1) = y2
in inequality (5.3) we have
ly —x?

log fr(x,8) + V(x,g) —[log fr (y,8) + V(y, 8] = >

Rigorous proof We only prove (5.2). The proof of (5.3) follows exactly as in
Proposition 3.7 from Figalli and Gigli (2010) and the proof of (5.4) follows the same
lines as Lemma 4.4.

Let y € R? be a Lebesgue point for the function & ¢1¢> and suppose that (y, g2) is an
element in the support of f;. Let r and ¢ be positive numbers. We perturb the minimiz-

ing pair (y, i) by considering the new mass exchange function Ay, : R? — R
defined by
re oa hgig: (D) if e Bi(y)
hgig, (V) = A ) o
hgg (V) — TKGer.e0)e 70 if ye B.(y),

Rgte, := —hygy,, and h;;, = hge Whenever (g, g') is not (g1, g2) or (g2, g1). Observe
that this produces a competitor 7*® whose densities are given by

fr,s ()A]) — ff,gl(j})a lf )A) e Br(y)c
7,81 fr,gl(j’) + Eft,gz(j}) if )’\7 € B, (y) ’
ff‘gz(}A’)» if )A) € B, ()¢

Jre (V) = {(1 — &) fren(P) if § € B(y),

and fr , = f7® whenever g is not g; or g>. From the minimality of u. we get that

Z/ ﬁ(f‘[’ }A}’ g)dj\) +C‘L’(y9 h) E Z/ﬁ(f;’a’ 5)’ g)dj\) ‘|‘Cr()/’ hr,s)’
8 R4 8
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which simplifies to
9 $). 5. 81) + $). 5. 82) + —h . ($)K(g1. g2)e VD |dF
- (fr.e1 (). 9. 81 (frea(3). 3. &2) S (MK (81, 82)e b
ry

< /B o [ﬂ(ft,gl(ﬁ) +&fre (). 9. 81) + (1 — &) fr.0,(P). 9, 82)
ry

n 2
T ~ €fr,g2(y) > —W(7)i| ~
+—1h — = K (g1, e Y dy.

2( @)= e gne v ) K818 g

Reordering terms, we obtain
/B o [ﬁ(fr,gl (3).9.81) = H(fr.e1 D) + € fr.e (D), I, gl)}dﬁ
(Y

= /B o) [19((1 — &) for(3). 5. 82) = ¥(fr.en (D). 9. 82)
ry

r A efre® ) A Wi ]
+5[(hg1g2<y>— . K(glfg”’;ew@)) — e, (9) | K (g1, 820 1d.

Dividing by ¢ and letting ¢ — 0 yields
f [_logft,gl(&)_l_v(i’a gl)i|fr,g2(y)dy
B (y)
= /I; o) |:_ lngr,gz(j}) —1- V(j}, g2) - hglgz(y)}fr,gz(ﬁ)dj\h
ry

Dividing by [ B(y) fr.g,(3)d¥, and letting r — 0 we obtain the desired inequality. O

In the next proposition, we prove that minimizers of (2.23) satisfy a maximum
principle that is characteristic of Fokker—Planck equations.

Proposition 5.3 (Consistent barriers) Suppose that u and |1, are as in Lemma 5.1.
Suppose in addition that |4’s density satisfies:

re”Vx8) < f(x,9) < Ae*V(%g)’
for every (x, g). Then, f satisfies
re™V O < fr(x, ) < AeTVE), (5.5)

as well.

Proof We only prove the lower bound in (5.5) since the argument for the upper bound
is completely analogous. Let us define the set

A={(x,g) : re VO > f(x, 9)),
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and consider the auxiliary positive measure
dp;, = re V™ 8®dxdg.
Suppose for the sake of contradiction that
wi(A) > 0.
Then,

w(A) = 3 (A) > pe(A),
and thus the set A has to lose mass during the transportation. Consequently, at least
one of the following facts should hold:

i. There exist g € G and y a Lebesgue point of S, such that (S¢(y), g) € A and

(v.8) ¢ A.
ii. There exist a pair of nodes g, g’ with K (g, ¢’) > 0 and x a density point of A4

for which (x, g) and (x, g’) belong to the support of f;, hger(x) > 0, (x, g) € A
and (x, g') ¢ A.

Let us show that in both cases we reach a contradiction.
Case i: In this case, we apply (5.3) with y; = y and y, = S,(y) to obtain that

1
log fz(y,8) +V(y. g + Eng(y) — yI? <log fr(Sg(3), 8) + V(Sg (), 8)-

Now, observe that the assumption that (y, g) ¢ A implies that the left-hand side of
the above inequality is bigger than log A, whereas the assumption that (S, (y), g) € A
implies the right-hand side is strictly smaller than log . Thus, we reach a contradiction.

Case ii: In this case we apply (5.2) with g» = ¢’, g1 = g and y = x, to obtain that

0 < hge(x) <log fr(x,g)+ V(x,g) —log fr(x,g) — V(x,g).

Moreover, our assumption that (x, g’) ¢ A and (x, g) € A implies that the right hand
side is negative. Thus, we reach a contradiction. O

As a by-product of the above proposition, we obtain a uniform control on the
distance traveled by the transported mass.

Lemma 5.4 (Transportation bound) Let wu, y, A, and A be as in Proposition 5.3.
Then, there exists C > 0 such that for all g € G

ly — x| < C/T Y(x,y) € supp(vy).

where we recall y = {yy}geg is the set of optimal plans between p and .. The
constant C can be taken to be C = ﬁ(log(A) — log(a)).
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Proof The estimate follows by combining (5.4) with Proposition 5.3. O

In the next lemma, we show that the target density f; and the transported density

ft(x, g = frlx,g)+rt Zhgg’(x)K(g, g/)e—W(x)7
g/

are comparable. Recall that f, 7,¢ 1s nothing but the density of the positive measure
24 V-

Lemma 5.5 (Positivity of the transported mass) Let i, i, A, and A be as in Proposi-
tion 5.3, and let ', A be as in (2.24). Finally, let f; be defined as above. Then, there
exists a positive constant Ty := to(A, A, A, A") < 1/2 such that for any t in (0, 7o)
we have that f; > 0, i.e., the support of wouy, is all of R? for all g € G. Moreover,
we have that

C _Jfue

=7~ fo <C(+71), (5.6)

for any T in (0, 19) for some constant C that only depends on A, A, A, A’

Proof To prove (5.6), we note that thanks to (5.2) and (5.5), we have that the mass
exchange function % is uniformly bounded in terms of A and A. Additionally, (5.5)
and the assumption (2.24) imply that the quotient of e =" and f; is uniformly bounded
as well. Hence, the desired result follows. O

In the next proposition, we show that the potential ¢ that generates the optimal
transport map and exchange function between u and ¢, for p satisfying the conditions
from Proposition 5.3 (see item iii. in Proposition 4.5) agrees with the negative of (2.12)
which is the gradient of the relative entropy suggested by the formal Riemannian
structure from Sect. 2.2.

Proposition 5.6 (The gradient of the relative entropy and JKO minimizers) Let i, i,

A, and A be as in Proposition 5.3, let )/, A’ be as in (2.24), and let 19 > 0 be as in
Lemma 5.5. Then, for every T in (0, 19) we have:

i. Foreach g in G the optimal transport plan y q is given by

Veg = (Sg. Id)s(frg +T ) _ hrggK(g.8)e™"), (5.7)
where the corresponding optimal transport map Sy satisfies

S (v) —
g(y_i yfr(y,g)=for(%g)-i-fr(y,g)VxV(y,g), (5.8)

for almost every y in R%.
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ii For each pair g, g’ with K (g, g') > 0 and for almost every x in RY, the optimal
exchange function h. 4o satisfies

hege(x) = [log fo(x, &) + V(x,g) —log fr(x,8) = V(x,gh].  (5.9)

Proof We begin by noting that thanks to Lemma 5.5 and Proposition 5.3, we have that
the support of f; o and o4y, is R for any g in G, i.e., f; > O and f, > 0. We will
use this fact together with the variational inequalities from Proposition 5.2.

1. Let us begin by showing i.

Observe that due to (5.3) for any (x, y) in the support of y, we have

o2 )
lx —z| . lx — ¥l
2T 2T

log fr.¢(z) +V(z,8) —log frs(y) = V(y,8) +

s

for almost every z in R?. Expanding the squares and rearranging terms, we obtain that

|z|? Iy? o x
log fr¢(z) +V(z,8) + - Z log fre(M) +V(y, 8 + -5t (;, =)

foralmost everyz inR?.

Such an inequality implies that, up to redefining f; , in a set up measure zero, the

function ®4(z) = log fr ¢(z) + V(z, &) + % is convex and for almost every y in R
and every pair (x, y) in the support of the optimal transport plan y; , we have that <
is contained in the subdifferential of ®, at y. Following the notation from Ambrosio
et al. (2005), Section 3.1 , we shall denote such a subdifferential by 9~ ®(y). Finally,
since convex function are almost everywhere differentiable, we have that for almost
every y the set 3~ @, (y) is a singleton and
Vooy @y = =
=y e = o

Moreover, using the almost everywhere differentiability of ®, we get that z —
log f7,¢(2) + V(z, g) is almost everywhere differentiable and

|z|?

VZ=y<10g Srg(@)+Vi(z, g+ T) = %

which implies that
tVy(og frg + Vg) =x — y.
Notice that combining the above equation with Lemma 5.4, we obtain thatlog f7 ¢+ V,
has a uniformly bounded gradient. Consequently, i follows.
2. Let us now show ii. Using (5.2), we obtain

log fr(x,8") + V(x,8') — [log fr(x,8) + V(x,8)] = hyg(x),
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for almost every x in R?. Interchanging g and g’, we obtain the opposite inequality
and thus the desired identity. Here, once more we have used the fact that Proposition
5.3 and Lemma 5.4 imply that f; > O and f; > 0. O

As a direct consequence of the above proposition, we obtain the following result:

Corollary 5.7 (Sobolev regularity) Let u, iy, A, and A be as in Proposition 5.3, let
A, A be as in (2.24), and let Ty > 0 be as in Lemma 5.5. Then, for every T in
(0, 70), fr,g is contained in the weighted Sobolev space WL2(RE, W) for every g in
G. Moreover,

Z/ | fz(x, )¢V dx < C Z/ eV Wy, (5.10)
g€y R g€G R
Ty /Rd Ve fe(x, @) e dx < Co[E() — E(ur) + 7)., (5.11)

geg

for some constant C| that only depends on A, A, ), N, and a constant C; that only
depends on ), A, )/, A" and the quantity

[VyV],-v = E /d IVXV(y,g)|2e_V(y*g)dy_
R
8

Proof The fact that f; , belongs to L2(R¢, e") follows from (5.3), (2.24), and the
fact that =" was assumed to be integrable.
Now, note that by optimality

E(e) + Co(, pue) < E().

Consequently, using (5.8) and the definition of the transportation cost, we deduce that

% Z/ Ve log fo(y, &) + ViV (v, @) fr (v, @)dy < E(u) — Euo).
geg

Hence, using (5.5), (5.6) and (2.24) we obtain

T Z/ Ve fo (v, )17 Vdy < c(ew) — E(po) + r>,

g€g

for some constant C that only depends on A, A, A, A" and the quantity [V, V],-v. O

6 Convergence of the JKO Scheme: Proof of Theorem 2.14

Let us start by defining precisely the notion of weak solution to Eq. (2.14).
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Definition 6.1 We say that a weakly continuous curve of measures {14, };>0 in P2 (R¥ x
G) with associated probability density functions { f (¢, -, -)};>0 is a weak solution with
initial condition fj (2.14) if

F0,x,8) = folx,g), V(x,g) eR!xg

and

Z(/ §gfg(S,X)dx—/ Cgfg(r,x)dx>

g Rd Rd

:f (Z[I;d [Axg-g - <vag7 ngg)]fg(t,x)dx
g

1
+ 5 Z/Adkgr — Celllog fg,(t’ X) + Vg
8.8

~log fo(t. x) — VK (g, g’>e—W<x>dx)dt,

for every r, 5, in [0, 00), and every test function ¢ in C®°(R? x G).

With all the preliminary results from Sect. 5, we can now proceed to the proof of
Theorem 2.14.

Proof of Theorem 2.14 1. JKO scheme produces an approximate solution. Let fj
be an initial datum with finite energy £(fp) < oo satisfying (2.22). Let 7o be as in
Lemma 5.5, Proposition 5.6, and Corollary 5.7. Let T € (0, 79), and for every n € N

let (¥, hy) be the minimizing pair of transporting f, into f,,,, where the f,[ are

the densities iteratively constructed as in (2.23). Let S ¢ be the optimal transport map
associated to y,, , as in (5.7), and let f_n’ be the density of the measure 72:y,, ., i.e.,
the transported density. We recall that fn’ ¢ can be written as

r -w
fnT,g = fnr+l,g +T Zh:t»gg’K(g’ ghe .
g/

Notice that by iterating Proposition 5.3, we have
re Ve < fr < Ae”® VneN,

and by Lemma (5.5)
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Finally, recall that the discrete time sequence f,; can be extended to continuous time
by setting

fr@ = f for re (nr, (n+ D],

We will now show that the curve t — fT(¢) can be interpreted as an approximate

solution to Eq. (2.14).
Let; € C° (Rd X G) be an arbitrary test function. Then,

/R g g0y - /R G (dx = f Lo (AL o (. y) — / Lo (YL o (x, )

+7 Z /]Rd gghfl’gg/K(g/, g)e_Wdy.

g'eg
6.1)

Using the fundamental theorem of calculus and (5.8), we deduce

/Rdxmfg(y Y, 3) = AR £ Oy, (x. )
= /R i (Le() — ¢ ())dy,! ,(x, )
- A;,,Xw (Ce) = Lo (S5 o (M) fir o)y
- /Rdxw (G () = ¢g(Sp g ) frup1 (Y + Ri(z, 1, 8)
Vilg. Sp o — 1d) 11 o()dy + Ra(t.n. 8) + Ri (T, 1, )

n

y
R4
=T /H;d (Vxé‘gv VanT+l,g + f,f+1,ngVg)dy + R(t,n, g),

where the error term is given by
R(t,n,g) = Ri(t,n,8) + Ra(7,n, 8)

- /Rd(;g —Lgo i) Z By e K (8 ghe Vdy
g/

1
+ /d/ <(Vx§g o((1—- s)S,f’g +sld), Id — S,Tl’g) — V&g, Id — S,;’g))
R4 JO

fi1o()dsdy.
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Plugging back in (6.1) and using (5.9), we deduce that

;/Rd fg f;+1,g(Y)dy—§/ﬂed é‘g fnt,g(x)

R /R Vel Vot g + St ViVl
8

T (6.2)
+ E Z;/Rd@g - é‘g’)[log fnT+1(xa g) + V()C, g)
8:8
—log fii11(x. 8) = V(x. g ]K (3. ghe™ " dy
+ Z R(t,n, g).
g
Let us now estimate the error terms. First, using (5.9) and the bounds on £ , o Ve

can bound the transfer functions /; g’ by a constant that only depends on A and A,
and then use Lemma 5.4 to obtain

3
IR(x, 1, @) < C1IVaLgll o (ra (rz + /R ld — S;,g|2f,f+1,g(y>dy>, 6.3)

for some constant C; := Ci(A, A). Now, from the fact that fan p and f;rg are

., and the transport cost W2g WoT it follows

comparable, and from the definition of f g

that
Z/ [1d = S 41> £ ody < C Z/ 1d — S§ .12 f gdy < Cot(ECfT) = (£ )))-
8 8

where C; := C2(A, A, )/, A). Thus, combining the above inequalities with (6.3) we
deduce that

N-1

> 2R )] = Camax| Vgl oo ) (r”(N — M)+ r[s(fxp - 5(;35)])
n=M &

< C3max||Valll oo o) (r”(N - M)+ rc‘?(fo)),
(6.4)

forall M < N — 1, where C3 := C3(A, A, A, A').
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Letusnow fix0 < r < s. Weaddup (6.2) from M = [r\t]toN —1 = [s\7] — 1
(assuming that 7 is small enough so that M < N — 1) to get that

Xg:/Rdfgfgr(S,x) dx_Xg:A{ngng(r,x) dx

/Trs\ﬂ< Zf (Vile, Va fg (1, %) + fg (1, x)Vx Ve)d
= - x8g> Vx t,x)+ t,x)Vx X
T[r\t] g R4 § § § ¢

1 .
+5 fw Z(;g, — o) log fo(t,x) + Vg —log fg (t,x) — Ve]K (g, 8)e de)dt
8.8

N—1
+ Z ZR(r,n, g)

n=M &

T[s\t] .
[ (;/ﬂ;{d [Axts — (Velg. VeV £5 @) d

1 .
+3 /Rd > gy — tg)[ log [ t,x) + Vg —log f§ (1.x) = Vg]K (5. 8)e de>dt
8¢

N—-1
+ Z ZR(‘L’, n,g).

n=M 8§
(6.5)

From (6.4), it is clear that as T — 0 the error term in the above expression vanishes.
Therefore, if we can show that as ¢ — 0 (along a sequence) the curve t — f7(¢)
converges to a limiting curve ¢ — f(¢) which is weakly continuous, and that this
convergence is strong enough so that in particular we can pass to the limit in all the
terms in the above expression, then we will have shown that the curve ¢t — f () is
indeed a weak solution to (2.14).

2. Compactness. Let us consider a sequence {7y} of positive numbers converging
to zero. Without the loss of generality, we can assume that 7 < tq for all k. Our goal is
to show that we can pass to the limit in (6.5). For this purpose, we use the Aubin—Lions
theorem (see Theorem 5 in Simon 1986). We introduce some notation first.

Let us fix tg > 0. For i > 0, we define the translates

Ty f™(t) := f™(t + h).
Also, for R > 0 we let Ug := Br x G, where By is the open ball in RY with radius
R centered at the origin. Let p be a positive number such that p > d + 1. Consider
the Sobolev spaces W!-2(Bg) and W>?(Bp), and denote by W27 (Ug) the dual of
W?2P(Bg). Notice that
W'2(Bg) < L*(Bg) < W7 (Bg),

where the first embedding is compact and the second one is continuous; notice also
that W2P(Bg) embeds continuously into Ccl(Bp).
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We show the following:

a) Forevery g € G, { fg"}x is bounded in L2(0, tp; W'2(Bg)).
b) Forevery ¢ € G, [ Th fs* — fo Il 12(0.0p—n:w-20(Bgyy — 0 as h — 0, uniformly
for all k.

Theorem 5 in Simon (1986) will then imply that for every g € G, { f3* } is precompact
in L*(0, 173 L*(Bg)).

2a. Observe that by iterating the bounds from Corollary 5.7 along f,/* we deduce
that

/ | f3 x)|?> dx <Cs, Vi>0,VkeN (6.6)
Bpr
as well as
93
/ (/ Ve £, ) dx)dt < C4(&(fo) +1tr), Vk €N, ©.7)
0 Bpr

where the constant C4 depends only on A, A, A’, A’, R, W, |G|. From the above
inequalities it follows that for every g € G, the sequence { fgtk }ken is bounded in
L2(0, tr; WI’Z(BR)) (and also in L2(0, tr; L?(BR))). Moreover, for every t > 0 the
sequence {fgrk (1)}ken is bounded in L2(Bg).

2b. Let 4 be smaller than . Fort € [0, tr —h) set Ny = f%] —1land My = frt—kl
Notice thatif Ny < My then Ty, f¢* (1) = f4*(t), and so we may assume that My < N.
For any given ¢, € W2P(Bg), we have

/B g (O (T f (1, %) — fg* (1, ) dx
R

Ni
_Z [B G Fuhy g ()dx — /B G kg (0)dx
H—Mk

Yl

n=M, RXBR

>

(&g (¥) — &g (x)) d)/rf,"g(x,y) —WZ_/BR Cghfl’fgg/e’wdx
g/

1
/()(vcg<x+s(y—x)),y—x> ds dy;%

n=M, BgrxBpg
—u X [ g e o
/ BR
8
Nk %
<Cs Y. ||;g||c1<BR>(/Rd y ly — x|? dy,ffg) + CstllCgl w2 gy
n=Mjy x
Ny %
§C7||§||W2.])(BR) Z |:(/d d|y—x|2 dyrffg) +Tk].
n=M, R4 xR
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In the above, the constant C5 depends only on A, A and W, Cg depends only on R,
and C7 := Cs + Cg. We have used the fact that W27 (BR) embeds continuously into
Cl(Up), and we have also used the bounds on the exchange function Ak from (5.9)
together with the lower and upper bounds for the density f,,’ *s. Consequently,

||Thfgrk (" - grk Dllw-20(Bg)

= sup / Ce(TnfiE(t, y) = fiE(t, ) dy

ellw2.p (g =1 Br

Nk 2 1
! ly — x| - ))2
Cr( Nk = M) + (s Nk — M) 2 (Y dy,™
= 7(Tk( ¢ k) (tk( ¢ k)) (n—Mk |:<v[Rzl><Rl/ Tk Vn,g
A !
Cr(h+h| D S(f,,’k)—g(f,fjl)} )

- n=My

<o

- 12
<o (n Vil - eian] )
<as(

- 12
Cglh+vh S(fo)] )
i (6.8)

Here, we used Jensen’s inequality, and the definition of f,f f‘g. This shows

Tk _ £Tk
WThfg* = F N 20, 0p —pew—20 By = O a8h =0,

uniformly in k.

From 2a) and 2b), it now follows that for every g € G, the sequence { fgr"}keN
is precompact in L%(0, tp; L2(Bg)) (Theorem 5 in Simon (1986)). In particu-
lar, there exist a subsequence of {tx}; (which we do not relabel) and an element
fe € L?(0, tp; L?(Bg)) such that fg* — f, ask — oo in L%(0, tp; L*(Bg)). On
the other hand, from (6.6) and (6.7) it follows that for almost every ¢ € [0, tr] the
sequence {fg’k (1)}« is bounded in W"Z(BR) and thus precompact in L2(BR) and
in W=2:7(Bg). We can then use this fact and (6.8) to conclude from Arzela—Ascoli
theorem that {fgtk }k converges in C(0, tr; W‘Z"’(BR)) (in fact in C1/2=¢ for any ¢)
to fg. Moreover, a standard diagonal argument sending R — oo along a sequence

allows us to assume without the loss of generality, that for every g € G, fgf ks fein
L2(0, tp; L2 (RY)), as well as f* — f, in C(0, t7; W, 2P (RY)), as k — oo.

3. Properties of 7 € [0, 1r) — f(t). We claim that for every ¢ € [0, fr) we have
re Ve < fo(t) < Ae Vs,

Indeed, notice that from (6.6) it follows that for every ¢t € [0, fr), the sequence
{fg”' () }ken is bounded in L%(Bpg) (for every R) and thus it must have a weakly con-

verging subsequence in L>(Bp). Due to the fact that fgrk — feinC(0, tF; Wlaf’P (R%Y),
said subsequence must converge weakly to f,(¢) in L2(Bpg). Since each of the fgr" (1)
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satisfies the desired lower and upper bounds in Bg, it follows that f,(¢) satisfies the
same bounds in Bg. Since R was arbitrary we conclude that f, (¢) satisfies the desired
bounds in the whole R¢.

Now we claim that for every ¢ € [0, tr)

Z/ fe(t, x)dx = 1.
8 R4

Indeed, this is a direct consequence of the lower and upper bounds obtained above
and the fact that for every ¢ € [0, 1) f*(t) converges in Wl;Z’p (R?) toward f ().
In particular, we conclude that the curve ¢ € [0, tp) — f (¢, -, -) is indeed a curve of

probability measures on R? x G. Moreover, the fact that fe € CO,tp; W, 03‘1) (Rd )
and the upper and lower bounds on the densities f,(z) imply that the curve 1 €
[0, tF) — f(t) (seen as a curve of probability measures) is weakly continuous (here
interpreted as weak convergence of probability measures).

It remains to show that the curve is a weak solution to (2.14).

4. Weak solution of (2.14). Let ¢ € Cfo(Rd x G),andlet0 <r <s < tp.

From the convergence fgr" — foin C(0, tF; lecz,p (Rd)), it follows
/Rd Cgfgk (s, x) dx—/ggf;k(r,x) dx — /ggfg(s,x) dx—/§gfg(r,x) dx. (6.9)

Now, using the fact that fgrk () = fq(t)in LIZOC(R") for almost every ¢ € [0, tF),

and using the upper and lower bounds for fgr" (¢) and fg () we conclude that

/]Rd D (&g — &g log f¥ (1) + Ve —llog fof (1) + Vgrle ™™ dx
g'eg

»/}Rd D Gy — 5o og fg(t, %) + Vg — [log for (1, 5) + Ve dx,

g'eg
(6.10)

for almost every ¢ € [0, tr), and

./]Rd [Axé—g — (Vx&g, vag>]ngk (t,x) dx — /I.Qd [Axgg — (Vxi&g, vag)]fg(tyx) dx,
6.11)

for almost every t € [0, tF).
Now, from the upper and lower bounds on f,*, it follows that for every ¢ € [0, tf)

/ | Z (8g — ¢g)(log f;k(f»x) + Vg — [log f;/k (t,x) + Vg’])|3_w dx < C10||§||LOC(]Rd),
Y
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for a constant C1g that only depends on A, A, |G|, W, and also

fRd [Act — (Vele, VeV I 250 1) dx < 1ALl
+ Citl| VLl oo i gy (Ve V1),

for a constant Cy; that depends only on A, A, 1/, A’. We recall that [ViV],-v is the
quantity defined in Corollary 5.7.

Using the above two inequalities and (6.10), (6.11), we can invoke the dominated
convergence theorem twice, and then combine with (6.9) in order to conclude that we
can pass to the limit in (6.5). From this it follows that # + f(¢) is a weak solution to
(2.14).

O

7 Summary and Discussion on Applications

In this paper, we introduce two types of optimal transport problems in the semi-discrete
setting and then study gradient flows of relative entropy functionals with respect to
these semi-discrete transport costs. The first problem uses a dynamic formulation a
la Benamou—Brenier, and a formal Riemannian structure can be associated to it. The
Riemannian formalism is used to motivate systems of equations representing a gradient
descent scheme for the minimization of a relative entropy functional; the Riemannian
formalism can also be used to motivate accelerated methods for optimization. With
the second optimal transport problem (the static one), we seek to more rigorously
introduce the notion of gradient flow of the relative entropy functional by considering
a minimizing movement scheme of the relative entropy with respect to this cost.
Theorem 2.14 establishes an equivalence between the gradient flow equation formally
derived through the Riemannian formalism of the first transport cost and the rigorous
definition of gradient flow using the minimizing movement scheme with respect to
the second transport cost.

There are several theoretical research directions that emanate from our work. First,
we believe that it is worth establishing a closer relationship between the two semi-
discrete optimal transport problems introduced in the paper (the static and dynamic
formulations). Secondly, it is worth emphasizing that our main result on the conver-
gence of the minimizing movement scheme from Sect. 2.5 toward the gradient flow
heuristically motivated using the Riemannian formalism was only proved for mobili-
ties that are independent of the mass exchanged among nodes in the graph. We believe
that it is worth obtaining a more general result that justifies the connection between
these two gradient flows even further.

In the remainder of the paper, we discuss some thoughts on the main application
motivating this work.
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7.1 From Semi-discrete Optimal Transport to Neural Architecture Search

In machine learning, a neural network is a graph g (the architecture) whose nodes are
arranged into layers with edges connecting nodes at different layers. A collection of
free parameters (or weights) x is associated with the nodes and edges in the graph. The
network architecture g, together with the numerical values of its associated parameters
x, determines a series of transformations that, when composed, define a mapping of
input vectors (input data) into output vectors (labels). Training a given neural net-
work g essentially means tuning the corresponding parameters x so as to achieve a
small mismatch between predicted and observed outputs associated with given train-
ing inputs. In other words, the training of a neural network g is the optimization of an
objective function (a loss function) over the free parameters x.

In neural architecture search, the goal is to find an architecture g that, once trained,
gives the best performance possible when predicting data outputs. From a simplistic
perspective, this problem can be stated as solving:

min(x’g)eRng Vix, g). (7.1)

where V is thought of as a loss function that typically depends on observed data
as well as on additional regularization terms. The variable x (the parameters of a
network) can be interpreted as a R?-valued vector (for d large enough but fixed for
simplicity), whereas g can be interpreted as an element in a finite family of architectures
G (which in principle may be quite large). In short, in neural architecture search
the optimization is over both the architecture space G and over the parameters. The
tensorized representation of the problem is certainly an oversimplification because,
in reality, the parameters x associated to an architecture g do not have an obvious
correspondence with the parameters of a different architecture g’ (and in fact their
dimensions do not even have to match). We will not elaborate much further on this
simplification and here we just limit ourselves to saying that while unreasonable when
G is interpreted as the whole space of architectures, the tensorized representation
of problem 7.1 is useful when one restricts to a local graph of architectures where
one has access to morphisms or correspondences between the parameters of different
architectures (just like restricting the optimization of a function defined on a curved
manifold to a local chart).

There is an enormous literature on neural architecture search methodologies and
some of its applications (see Yu and Zhu 2020 for a brief overview on the subject),
but essentially most methods found in the literature fall into two main groups. The
first group builds on ideas from reinforcement learning as in Zoph and Le (2016)
which uses optimization tools like those described in Williams (1992). The second
major group is based on evolutionary algorithms (Stanley and Miikkulainen 2002;
Real et al. 2018), where one specifies rules for merging and mutation of different
architectures in search of “stronger" architectures. A third type of methodology is the
morphism-based hill-climbing strategy from Elsken et al. (2017). There, the authors
propose an iterative scheme that alternates between training for a fixed time a group of
architectures that are determined by a morphism family and then moving in the space of
architectures according to the relative performance improvement in such training time.
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In all the methodologies listed above, the main objective is to avoid the full training
of multiple neural networks (something that would be computationally forbidding),
either by building surrogate objective functions that are easier to evaluate, by training
networks for a fixed amount of time, or by learning to predict which architectures are
more likely to give better results. Many techniques in the literature are based on the
above strategies. To name a few: Pham et al. (2018), Liu et al. (2018), Zoph et al.
(2017), Liu et al. (2018), Bergstra et al. (2011) and Yu and Zhu (2020).

In this sprawling landscape of methods and techniques for neural architecture
search, mathematicians can bring to the table principled ideas and structures for the
development of new algorithms or the improvement of existing ones. Take, for exam-
ple, the hill-climbing algorithm from Elsken et al. (2017) where it is key to tune the
amount of time that neural networks have to be trained for. It is intuitively clear that
setting a fixed time for training is not ideal as in that way one forces all models to
be treated the same regardless of their sizes or architectures. In our paper (Trillos et
al. 2021), we elaborate on this issue and propose a method where the training time
of architectures is dynamically chosen as dictated by an evolving particle system that
is inspired by the gradient flow perspective developed in this paper. All along, our
intention was to give meaning to the notion of gradient descent for the optimization
of an objective in the space R? x G, i.e., how to propose a gradient-based method
for semi-discrete optimization (with neural architecture search as main application
in mind). As discussed in Sect. 1.1, in the Euclidean setting there is a well-known
connection between gradient flows in the space of measures and dynamics in the base
space. In the semi-discrete setting, this connection is sought through particle methods.
Particle methods are one way to project to the space R? x G the dynamics that were
lifted to the space of probability measures P(R? x G) to make sense of a gradient-
based scheme. In Trillos et al. 2021, all the nuances that have to be resolved to make
this conceptual idea feasible for neural architecture search are discussed.

We hope that the theoretical, methodological and implementation questions briefly
described here are able to motivate further research in the mathematics and computer
science communities.
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