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Abstract. We present passive attacks against CKKS, the homomorphic
encryption scheme for arithmetic on approximate numbers presented at
Asiacrypt 2017. The attack is both theoretically efficient (running in
expected polynomial time) and very practical, leading to complete key
recovery with high probability and very modest running times. We imple-
mented and tested the attack against major open source homomorphic
encryption libraries, including HEAAN, SEAL, HElib and PALISADE, and
when computing several functions that often arise in applications of the
CKKS scheme to machine learning on encrypted data, like mean and
variance computations, and approximation of logistic and exponential
functions using their Maclaurin series.

The attack shows that the traditional formulation of IND-CPA secu-
rity (or indistinguishability against chosen plaintext attacks) achieved by
CKKS does not adequately capture security against passive adversaries
when applied to approximate encryption schemes, and that a different,
stronger definition is required to evaluate the security of such schemes.

We provide a solid theoretical basis for the security evaluation
of homomorphic encryption on approximate numbers (against passive
attacks) by proposing new definitions, that naturally extend the tradi-
tional notion of IND-CPA security to the approximate computation set-
ting. We propose both indistinguishability-based and simulation-based
variants, as well as restricted versions of the definitions that limit the
order and number of adversarial queries (as may be enforced by some
applications). We prove implications and separations among different
definitional variants, and discuss possible modifications to CKKS that
may serve as a countermeasure to our attacks.

1 Introduction

Fully homomorphic encryption (FHE) schemes allow to perform arbitrary com-
putations on encrypted data (without knowing the decryption key), and, at least
in theory, can be a very powerful tool to address a wide range of security prob-
lems, especially in the area of distributed or outsourced computation. Since the
discovery of Gentry’s bootstrapping technique [23] and the construction of the
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first FHE schemes based on standard lattice assumptions [9–12], improving the
efficiency of these constructions has been one of the main challenges in the area,
both in theory and in practice.

The main source of inefficiency in FHE constructions is the fact that these
cryptosystems (or, more generally, encryption schemes based on lattice prob-
lems [38,45]) are inherently noisy: encrypting (say) an integer message m, and
then applying the raw decryption function produces a perturbed message m+e,
where e is a small error term added for security purposes during the encryption
process. This is not much of a problem when using only encryption and decryp-
tion operations: the error can be easily removed by scaling the message m by
an appropriate factor B > 2|e| (e.g., as already done in [45]), or applying some
other form of error correction to m before encryption. Then, if the raw decryp-
tion function outputs a perturbed value v = m·B+e, the original message m can
be easily recovered by rounding v to the closest multiple of B. However, when
computing on encrypted messages using a homomorphic encryption scheme, the
errors can grow very quickly, making the resulting ciphertext undecryptable, or
requiring such a large value of B (typically exponential or worse in the depth of
the computation) that the cost of encryption becomes prohibitive. The size of the
encryption noise e can be reduced using the bootstrapping technique introduced
by Gentry in [23], thereby allowing to perform arbitrary computations with a
fixed value of B. However, all known bootstrapping methods are very costly,
making them the main efficiency bottleneck for general purpose computation on
encrypted data. So, reducing the growth rate of the noise e during encrypted
computations is of primary importance to either use bootstrapping less often,
or avoid the use of bootstrapping altogether by employing a sufficiently large
(but not too big) scaling factor B. In fact, controlling the error growth during
homomorphic computations has been the main objective of much research work,
starting with [9–12].

Homomorphic encryption for arithmetic on approximate numbers. One of the
most recent and interesting contributions along these lines is the approach sug-
gested in [14,16–18,33] based on the idea that in many practical scenarios, com-
putations are performed on real-world data which is already approximate, and
the result of the computation inherently contains small errors even when carried
out in the clear (without any encryption), due to statistical noise or measure-
ment errors. If the goal of encryption is to secure these approximate real-world
computations, requiring the decryption function to produce exact results may
seem an overkill, and rightly so: if the decryption algorithm simply outputs
m+ e, the application can treat e just like the noise already present in the input
and output of the (unencrypted) computation. Interestingly, [18] shows that
the resulting “approximate encryption” scheme produces results that are almost
as accurate as floating point computations on plaintext data. But the practi-
cal impact on the concrete efficiency of the scheme is substantial: by avoiding
the large scaling factor B, the scheme achieves much slower error growth than
“exact” homomorphic encryption schemes. This allows to perform much deeper
computations before the need to invoke a costly bootstrapping procedure, and,
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in many settings, completely avoid the use of bootstrapping while still delivering
results that are sufficiently accurate for the application.

Not surprisingly, the scheme of [18] and its improved variants [14,16,17,33]
(generically called CKKS after the authors of [18]) have attracted much atten-
tion as a potentially more practical method to apply homomorphic computa-
tion on the encryption of real data. The CKKS paper [18] already provided an
open source implementation in the “Homomorphic Encryption for Arithmetic
on Approximate Numbers” (HEAAN) library [30]. Subsequently, other imple-
mentations of the scheme have been included in pretty much all mainstream
libraries for secure computation on encrypted data, like Microsoft’s “Simple
Encrypted Arithmetic Library” SEAL [15], IBM’s “Homomorphic Encryption”
library HElib [26–28], and NJIT’s lattice cryptography library PALISADE [41].
Some of these libraries are used as a backend for other tools, like Intel’s nGraph-
HE compiler [6,7] for secure machine learning applications, and a wide range
of other applications, including the encrypted computation of logistic regression
[29], security-preserving support vector machines [42], homomorphic training of
logistic regression models [5], homomorphic evaluation of neural networks and
tensor programs [20,21], compiling ngraph programs for deep learning [7], pri-
vate text classification [2], and clustering over encrypted data [19] just to name
a few.

Our contribution. While, as argued in much previous work, approximate compu-
tations have little impact on the correctness of many applications, we bring into
question their impact on security. In particular, we show that the traditional for-
mulation of indistinguishability under chosen plaintext attack (IND-CPA, [4,25],
see Definition 1) is inadequate to capture security against passive adversaries
when applied to approximate encryption schemes. In fact, as our work shows, an
approximate homomorphic encryption scheme can satisfy IND-CPA security and
still be completely insecure from both a theoretical and practical standpoint. In
order to put the study of approximate homomorphic encryption schemes on a
sound theoretical basis, we propose a new, more refined formulation of passive
security which properly captures the capabilities of a passive adversary when
applied to approximate (homomorphic) encryption schemes. We call this notion
IND-CPAD security, or “indistinguishability under chosen plaintext attacks with
decryption oracles”, for reasons that will soon be clear. Our new IND-CPAD

security definition is a conservative extension of IND-CPA, in the sense that (1)
it implies IND-CPA security, and (2) when applied to standard (exact, possibly
homomorphic) encryption schemes, it is perfectly equivalent to IND-CPA. How-
ever, when applied to approximate encryption, it is strictly stronger: there are
approximate encryption schemes that are IND-CPA secure, but not IND-CPAD.

This is not just a theoretical problem: we show (both by means of theoret-
ical analysis and practical experimentation) that the definitional shortcomings
highlighted by our investigation directly affect concrete homomorphic encryp-
tion schemes proposed and implemented in the literature. In particular, we show
that the CKKS FHE scheme for arithmetics on approximate numbers (both as
described in the original paper [18], and as implemented in all major FHE soft-
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ware libraries [30,31,41,47]) is subject to a devastating key recovery attack that
can be carried out by a passive adversary, accessing the encryption function only
through the public interfaces provided by the libraries. We remark that there
is no contradiction between our results and the formal security claims made in
[18]: the CKKS scheme satisfies IND-CPA security under standard assumptions
on the hardness of the (Ring) LWE problem. The problem is with the technical
definition of IND-CPA used in [18], which does not offer any reasonable level of
security against passive adversaries when applied to approximate schemes.

The ideas behind the new IND-CPAD definition and the attacks to CKKS are
easily explained. The traditional formulation of IND-CPA security lets the adver-
sary choose the messages being encrypted, in order to model a-priori knowledge
about the message distribution, or even the possibility of the adversary influenc-
ing the choice of the messages encrypted by honest parties. This is good, but not
enough. When using a homomorphic encryption scheme, a passive adversary may
also choose/know the homomorphic computation being performed1. Finally, a
passive adversary may observe the decrypted result of some homomorphic com-
putations. (See Fig. 1 for an illustration.) So, our IND-CPAD definition provides
the adversary with encryption, evaluation, and a severely restricted decryption
oracle2 that model the input/output interfaces of encryption and evaluation
algorithms and the output interface of the decryption algorithm. We chose the
name IND-CPAD to indicate its close relationship to IND-CPA, but with some
emphasis on the adversarial ability to observe the decryption results3. It is easy
to check (see Lemma 1) that as long as the definition is applied to a standard
(exact) encryption scheme, observing the decryption of the final result of the
homomorphic computation provides no additional power to the adversary: since
the adversary already knows the initial message m and the function f , it can
also compute the final result f(m) on its own. So, there is no need to explicitly
give to the adversary access to a decryption (or homomorphic evaluation) oracle.

However, for approximate encryption schemes, seeing the result of decryption
may provide additional information, which the adversary cannot easily compute
(or simulate) on its own. In particular, this additional data may provide useful
information about other ciphertexts, or even the secret key material. This pos-
sibility is quite real, as we demonstrate it can be used to attack all the major
libraries implementing the CKKS scheme. The attack is very simple. It involves
encrypting a collection of messages, optionally performing some homomorphic
computations on them, and finally observing the decryption of the result. Then,
using only the information available to a passive adversary (i.e., the input values,

1 This computation may or may not be secret, depending on whether the scheme is
“circuit-hiding”.

2 We remark that this use of decryption oracle is only a technical detail of our formu-
lation, and it is quite different from the decryption oracle used for defining active
(chosen ciphertext) attacks: Our decryption oracle only provides access to the plain-
text output interface of a decryption algorithm, and does not allow to apply the
decryption algorithm on adversarially chosen ciphertexts.

3 The name IND-CPA+ was used in earlier versions of this paper. An alternative nota-
tion could be IND-CPA-D.
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Fig. 1. A passive attacker against a homomorphic encryption scheme may choose/know
the plaintext m and the homomorphic computation f (thick blue interfaces), and it can
read from black interfaces to learn the ciphertexts ct, ct′ and the decryption results m′.
The adversary has only passive access to the communication and final output channels,
i.e., it can eavesdrop, but is not allowed to tamper with (or inject) ciphertexts or alter
the final result of the computation. (Color figure online)

encrypted ciphertexts, and final decrypted result of the computation), the attack
attempts to recover the secret key using standard linear algebra or lattice reduc-
tion techniques. We demonstrate the attack on a number of simple, but repre-
sentative computations: the computation of the mean or variance of a large data
set, and the approximate computation of the logistic and exponential functions
using their Maclaurin series. These are all common computations that arise in
the application of CKKS to secure machine learning, the primary target area for
approximate homomorphic encryption. We implemented and tested the attack
against all main open source libraries implementing approximate homomorphic
encryption (HEAAN, RNS-HEAAN, PALISADE, SEAL and HElib), showing that
they are all vulnerable. We stress that this is due not to an implementation
bug in the libraries (which faithfully implement CKKS encryption), but to the
shortcomings of the theoretical security definition originally used to evaluate
the CKKS scheme. Still, our key recovery attack works very well both in theory
and in practice, provably running in expected polynomial time and with success
probability 1, and recovering the key in practice, even for large values of the
security parameter, in just a few seconds. So, the attack may pose a real threat
to applications using the libraries. It immediately follows from the attack that
the CKKS scheme is not IND-CPAD secure. In practice, such an attack can be
carried out in systems where the decryption results are made publicly available,
or, more generally, they may be disclosed to selected parties. As an example,
consider privacy-preserving data sharing and aggregation services for medical
data [44]. In this setting, individual hospitals encrypt their own sensitive medi-
cal records using a public key approximate homomorphic encryption scheme and
upload the ciphertexts to a cloud computing service; the cloud service accepts
queries from an investigator, perhaps from one of the hospitals, and homomor-
phically computes the requested statistics. Finally, it decrypts or re-encrypts the
final computation result (possibly with the help of a third party that holds the
secret decryption key) and sends it to the investigator. We may assume that
the service checks that the query issued by the investigator is legitimate, and
does not reveal sensitive information about individual patient records. Still, our
attack shows that the result of the query may be enough to recover in full the
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secret decryption key, exposing the entire medical record database of all partic-
ipating hospitals. Similar attacks are also feasible in homomorphic encryption
based vehicular ad-hoc networks [48] where homomorphically evaluated data
analytics (both ciphertexts and decrypted results) can be accessed by a passive
attacker.

On the theoretical side, we consider several restricted versions of IND-CPAD,
showing implications and separations among them. For example, one may con-
sider adversaries that perform only a bounded number k of decryption queries,
as may be enforced by an application that chooses a new key every k homomor-
phic computations. (IND-CPA may be considered a special case where k = 0.)
Interestingly, we show that for every k there are approximate encryption schemes
that are secure up to k decryption queries, but completely insecure for k + 1.

Relations to other attacks to homomorphic encryption schemes. It is well known
that homomorphic encryption schemes cannot be secure under adaptive chosen
ciphertext attacks (CCA2). In [35], Li, Galbraith, and Ma presented adaptive
key recovery attacks against the GSW homomorphic encryption scheme as well
as modifications to GSW to prevent such attacks. We remark that both attacks
considered in [35] are active attacks that require calling a decryption oracle
on ciphertexts formed by the adversary. So these attacks are outside of the
IND-CPAD security model that we consider in this paper.

Organization. The rest of the paper is organized as follows. In Sect. 2 we pro-
vide some mathematical background about the LWE problem and lattice-based
(homomorphic) encryption. In Sect. 3 we present our IND-CPAD security def-
inition, and initiate its theoretical study, proving implication and separation
results between different variants of the definition. In Sect. 4 we give a detailed
description and rigorous analysis of our attack. Practical experiments using our
implementation of the attack are described in Sect. 5. Section 6 concludes with
some general remarks and a discussion of possible countermeasures to our attack.

2 Preliminaries

Notation. We use the notation a = (a0, . . . , an−1) for column vectors, and at =
[a0, . . . , an−1] for rows. Vector entries are indexed starting from 0, and denoted
by ai or a[i]. The dot product between two vectors (with entries in a ring) is
written 〈a,b〉 or at · b. Scalar functions f(a) = (f(a0), . . . , f(an−1)) are applied
to vectors componentwise.

For any finite set A, we write x ← A for the operation of selecting x uniformly
at random from A. More generally, if χ is a probability distribution, x ← χ selects
x according to χ.

Standard cryptographic definitions. In all our definitions, we denote the security
parameter by κ. A function f in κ is negligible if f(κ) = κ−ω(1). We use negl(κ)
to denote an arbitrary negligible function in κ.
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We recall the standard notions of public-key encryption scheme and homo-
morphic encryption scheme. A public-key encryption scheme with a message
space M is a tuple (KeyGen,Enc,Dec) consisting of three algorithms:

– a randomized key generation algorithm KeyGen that takes the security param-
eter 1κ and outputs a secret key sk and a public key pk,

– a randomized encryption algorithm Enc that takes pk and a message m ∈ M
and outputs a ciphertext ct, and

– a deterministic decryption algorithm Dec that takes sk and a ciphertext ct
and outputs a message m′ or a special symbol ⊥ indicating decryption failure.

We usually parameterize Enc with pk and write Encpk(·) to denote the function
Enc(pk, ·), and similarly we write Decsk(·) for the function Dec(sk, ·). A public-
key encryption scheme is correct if for all m ∈ M and keys (sk, pk) in the support
of KeyGen(1κ), Pr{Decsk(Encpk(m)) = m} = 1 − negl(κ), where the probability
is over the randomness of Enc.

A public-key homomorphic encryption scheme is a public-key encryption
scheme with an additional, possibly randomized, (homomorphic) evaluation
algorithm Eval, and such that KeyGen outputs an additional evaluation key ek
besides sk and pk. The algorithm Eval takes ek, a circuit g : Ml → M for
some l ≥ 1, and a sequence of l ciphertexts cti, and it outputs a ciphertext ct′.
The correctness of a homomorphic encryption scheme requires that, for all keys
(sk, pk, ek) in the support of KeyGen(1κ), for all circuits g : Ml → M and for all
mi ∈ M, 1 ≤ i ≤ l, it holds that

Pr
{
cti ← Encpk(mi) for 1 ≤ i ≤ l,
Decsk(Evalek(g, (cti)l

i=1)) = g((mi)l
i=1)

}
= 1 − negl(κ),

where the probability is over the randomness of Enc and Eval. We also require
that the complexity of Dec is independent (or a slow growing function) of the
size of the circuit g.

In terms of security, we recall the standard security notion of indistinguisha-
bility under chosen plaintext attack, or IND-CPA, for public-key (homomorphic)
encryption schemes.

Definition 1 (IND-CPA Security). Let (KeyGen,Enc,Dec,Eval) be a homo-
morphic encryption scheme. We define an experiment Exprcpab [A] parameterized
by a bit b ∈ {0, 1} and an efficient adversary A:

Exprcpab [A](1κ) : (sk, pk, ek) ← KeyGen(1κ)
(x0, x1) ← A(1κ, pk, ek)
ct ← Encpk(xb)
b′ ← A(ct)
return(b′)

We say that the scheme is IND-CPA secure if for any efficient adversary A,
it holds that

Advcpa[A](κ) = |Pr{Exprcpa0 [A](1κ) = 1} − Pr{Exprcpa1 [A](1κ) = 1}| = negl(κ).
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Lattices and rings. A lattice is a (typically full rank) discrete subgroup of Rn.
Lattices L ⊂ R

n can be represented by a basis, i.e., a matrix B ∈ R
n×k with

linearly independent columns such that L = BZ
k. The length of the shortest

nonzero vector in a lattice L is denoted by λ(L). The Shortest Vector Problem,
given a lattice L, asks to find a lattice vector of length λ(L). The Approximate
SVP relaxes this condition to finding a nonzero lattice vector of length at most
γ·λ(L), where the approximation factor γ ≥ 1 may be a function of the dimension
n or other lattice parameters.

We write Z,Q,R,C for the sets of integer, rational, real and complex num-
bers. For any positive q > 0, we write Rq = R/(qZ) for the set of reals modulo
q (as a quotient of additive groups), uniquely represented as values in the cen-
tered interval [−q/2, q/2). Similarly, for any positive integer q > 0, we write
Zq = Z/(qZ) for the ring of integers modulo q, uniquely represented as values in
[−q/2, q/2) ∩ Z =

{− ⌈
q−1
2

⌉
, . . . ,

⌊
q−1
2

⌋}
.

Let N = 2k be a power of 2, ζ2N = eπı/N the principal (2N)th complex root
of unity. We write K(2N) = Q[X]/(XN +1) for the cyclotomic field of order 2N ,
and O(2N) = Z[X]/(XN +1) for its ring of integers. The primitive roots of unity
ζ2j+1
2N , for j = 0, . . . , N − 1, are precisely the roots of the cyclotomic polynomial

XN + 1. We omit the index 2N and simply write K,O and ζ when the value
of N is clear from the context. Elements of K (and O) are uniquely represented
as polynomials a(X) = a0 + a1 · X + . . . + aN−1 · XN−1 of degree less than N ,
and identified with their vectors of coefficients a = (a0, . . . , aN−1) ∈ Q

N (and
Z

N ). For any positive integer q > 0, we write Kq = K/(qK) ≡ Q
N
q for the set

of vectors/polynomials with entries/coefficients reduced modulo q. Similarly for
O ≡ Z

N and Oq ≡ Z
N
q .

LWE and homomorphic encryption. The (Ring) Learning With Errors (LWE)
distribution RLWEs(N, q, χ) with secret s ∈ O(2N) and error distribution χ (over
O(2N)), produces pairs (a, b) ∈ O(2N)

q where a ← O(2N)
q is chosen uniformly at

random, and b = s ·a+e for e ← χ. The (decisional) Ring LWE assumption over
O(2N) with error distribution χ and secret distribution χ′ and m samples, states
that when s ← χ′, the product distribution RLWEs(N, q, χ)m is pseudorandom,
i.e., it is computationally indistinguishable from the uniform distribution over
(Oq × Oq)m.

For appropriate choices of χ, χ′ and q, the Ring LWE problem is known to be
computationally hard, based on (by now) standard assumptions on the worst-
case complexity of computing approximately shortest vectors in ideal lattices.
Theoretical work supports setting the error distribution χ to a discrete Gaussian
of standard deviation O(

√
N), and setting the secret distribution χ′ to either

the uniform distribution over Oq, or the same distribution as the errors χ. For
the sake of efficiency, the Ring LWE problem is often employed by homomorphic
encryption schemes also for narrower secret and error distributions, that lack the
same theoretical justifications, but for which no efficient attack is known, e.g.,
distributions over vectors with binary {0, 1} or ternary {−1, 0, 1} coefficients.
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The raw (Ring) LWE encryption scheme works as follows:

– The key generation algorithm picks s ← χ′, e ← χ, a ← Oq, and outputs
secret key sk = (−s, 1) ∈ O2

q and public key pk = (a, b) ∈ O2
q where b = s·a+e

follows the LWE distribution.
– The encryption algorithm, Encpk(m) picks random u ← {0, 1}N and e =

(e0, e1) ← χ2, and outputs ct = u · pk + e + (0,m) ∈ O2
q

– The raw decryption algorithm Decsk(ct) outputs 〈sk, ct〉 mod q.

The secret and public keys satisfy the property that 〈sk, pk〉 = e equals the short
error vector chosen during key generation. We qualified this scheme and the
decryption algorithm as “raw” because applying the encryption algorithm, and
subsequently decrypting the result (with a matching pair of public and secret
keys) does not recover the original message, but only a value close to it. In fact,
for any (sk, pk) produced by the key generation algorithm, we have

Decsk(Encpk(m)) = u · 〈sk, pk〉 + 〈sk, e〉 + m = m + (ue − se0 + e1) (mod q)

where the perturbation ẽ = (ue − se0 + e1) is small because it is a combination
of short vectors u, e, s, e0, e1. (The size of these vectors is best quantified with
respect to the message encoding used by the application, and it is discussed
below.) In order to obtain a proper encryption scheme that meets the correct-
ness requirement, the message m must be preprocessed, by encoding it with
an appropriate error correcting code, which allows to recover from the error ẽ.
For example, if m has binary entries, one can multiply m by a scaling factor
�q/2�, and then round (each coefficient of) the output of the raw decryption
algorithm to the closest multiple of �q/2�. For the sake of improving the effi-
ciency of homomorphic computations, the CKKS encryption scheme [18] gets
away without applying error correction, and directly using the raw decryption
algorithm to produce “approximate” decryptions of the ciphertexts. So, in the
following we focus on the “raw” LWE scheme, and postpone the discussion of
error correction to later.

By linearity of Enc, LWE encryption directly supports (bounded) addition
of ciphertexts: if ct0 = (a0, b0) and ct1 = (a1, b1) are encryptions of m0 and m1

with noise e0 and e1 respectively, then the vector sum

ct0 + ct1 = (a0 + a1, b0 + b1) mod q

is an encryption of m0 + m1 with noise e0 + e1.
There are several ways to perform homomorphic multiplication on LWE

ciphertexts. As in [18], here we focus on the “tensoring” technique of [10] imple-
mented using the “raising the modulus” multiplication method of [24]. This
multiplication method uses an appropriate multiple pq of the ciphertext modu-
lus q, and requires an “evaluation key”, produced during key generation, which
is computed and used as follows:

– ek = (a, b) ∈ O2
pq where a ← Opq, e ← χe and b = as + e + ps2 (mod pq).

– Using ek, the product of two ciphertexts ct0 = (a0, b0), ct1 = (a1, b1) is com-
puted as

ct0 × ct1 = (a0b1 + a1b0, b0b1) + �(a0a1 mod q) · ek/p� .
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In order to approximately evaluate deep arithmetic circuits, the CKKS
scheme combines these addition and multiplication procedures with a rescaling
operation RS, implemented using the key switching technique of [10]. Rescaling
requires the use of a sequence of moduli ql, which for simplicity we assume to
be of the form ql = q0 · pl for some base p, e.g., p = 2. Ciphertexts may live at
different levels, with level l ciphertexts encrypted using modulus ql. The key gen-
eration algorithm takes as auxiliary input the highest number of desired levels L,
and produces public and evaluation keys with respect to the largest modulus qL.
CKKS directly supports addition and multiplication only between ciphertexts
at the same level. Rescaling is used to map ciphertexts ct ∈ O2

ql+l′ to a lower
level l with the operation

RSl′(ct) =
⌊
ct/pl′

⌉
∈ O2

ql

where the division and rounding are performed componentwise.

The CKKS message encoding. The CKKS scheme considers a vector of complex
numbers (or Gaussian integers) ã as the set of evaluation points ãj = a(xj) of a
real (in fact, integer) polynomial a(X) ∈ Z[X]. This allows to perform pointwise
addition and multiplication of vectors (SIMD style) by means of addition and
multiplication of polynomials as (a(X) ◦ b(X))(xj) = a(xj) ◦ b(xj) for any xj ,
where ◦ ∈ {+,×}. The evaluation points are chosen among the primitive (2N)th
roots of unity ζ2j+1, so that the cyclotomic polynomial XN +1 evaluates to zero
at all those points, and reduction modulo XN + 1 does not affect the value
of a(xj). This allows to operate on the polynomials modulo XN + 1, i.e., as
elements of the cyclotomic ring O. Since a(X) has real coefficients and primitive
roots come in complex conjugate pairs ζ2j+1, ζ2(N−j)−1, the value of a(X) can be
freely chosen only for half of the roots, with the value of a(ζ2(N−j)−1)) uniquely
determined as the complex conjugate of a(ζ2j+1). So, a(X) is used to represent a
vector ã of N/2 complex values. Setting the evaluation points to xj = ζ4j+1 (for
j = 0, . . . , N/2 − 1), and using the fact that these points are primitive roots of
unity, interpolation and evaluation can be efficiently computed (in O(N log N)
time) using the Fast Fourier Transform.

Let ϕ : O → C
N/2 be the transformation mapping a(X) ∈ O ≡ Z

N to
ϕ(a) = ã = (a(ζ4j+1))N/2−1

j=0 ∈ C
N/2, and its extension ϕ : S → C

N/2 to arbi-
trary real polynomials, where S = R[X]/(XN + 1) ≡ R

N . We can identify
any polynomial a ∈ S by its coefficient vector (a0, a1, . . . , aN−1), and we set
‖a‖2 = ‖(a0, a1, . . . , aN−1)‖2. Similarly we can define ‖a‖1 and ‖a‖∞ as the cor-
responding norms on the coefficient vector. So the transformation ϕ : S → C

N/2

is a scaled isometry, satisfying ‖ϕ(a)‖2 =
√

N‖a‖2 and ‖ϕ(a)‖∞ ≤ ‖a‖1.
In what follows, we assume, as a message space, the set of complex vectors
ã ∈ ϕ(O) ⊂ C

N/2 which are the evaluation of polynomials a(X) ∈ O with inte-
ger coefficients much smaller than the ciphertext modulus q. Arbitrary vectors
z ∈ C

N/2 can be encrypted (approximately) by taking the inverse transform ϕ−1

on a scaled vector Δ·z, for some scaling factor Δ ∈ R, such that ‖ϕ−1(Δ·z)‖ � q
and rounding ϕ−1(Δ · z) to a nearby point of the form ϕ(a) for some a(X) ∈ O.
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The complete message encoding and decoding functions in CKKS are defined
as

– Encode(z ∈ C
N/2;Δ) =

⌊
Δ · ϕ−1(z)

⌉ ∈ O.
– Decode(a ∈ O;Δ) = ϕ(Δ−1 · a) ∈ C

N/2.

Once encoded, the scaling factor Δ is usually implicitly tied to a plaintext poly-
nomial, so we sometimes omit it when its value is clear from the context.

Since these encoding and decoding operations can be performed without any
knowledge of the secret or public keys, sometimes we assume they are performed
at the outset, at the application level, before invoking the encryption or decryp-
tion algorithms. More specifically, we may assume messages ϕ(Δ−1 · m) ∈ C

N/2

are provided to the encryption algorithm by specifying the integer polynomial
m ∈ O, and the decryption algorithm returns a message m̃′ = Decode(m′;Δ)
represented as the underlying polynomial m′ ∈ O that is an approximation of
m. All this is only for the sake of theoretical analysis, and all concrete imple-
mentations (of the scheme and our attacks to it) include encoding and decoding
procedures as part of the encryption and decryption algorithms. Message encod-
ing can be quite relevant to quantify the amount of noise in a ciphertext. We
say that a ciphertext ct approximately encrypts message m̃ with scaling factor
Δ and noise ẽ if Decode(Decsk(ct);Δ) = m̃ + ẽ.

3 Security Notions for Approximate Encryption

In this section we present general definitions in the public-key setting that accu-
rately capture passive attacks against a (possibly approximate, homomorphic)
encryption scheme. We recall that in a passive attack the adversary may control
which messages get encrypted, what homomorphic computations are performed
on them, and may observe all ciphertexts produced in the process, as well as the
decrypted result of the computations (as illustrated in Fig. 1).

We present an indistinguishability-based definition (similar in spirit to the
standard IND-CPA notion described in Definition 1). A simulation-based notion
is presented in the full version of this paper. Then, we explore restricted and
extended variants of these basic definitions.

3.1 Indistinguishability-Based Definition

Our first definition is indistinguishability-based: the adversary chooses a number
of pairs of plaintext messages, and its goal is to determine whether the cipher-
texts it receives are encryptions of the first or the second plaintext in the pairs.
In contrast to Definition 1, our new definition allows an adversary to make mul-
tiple challenge queries (m0,m1), rather than a single one. Our adversary can also
issue homomorphic evaluation and decryption queries. We now give the formal
definition. For simplicity, and as common in homomorphic encryption schemes,
we assume all messages belong to a fixed message space M. In particular, all
messages have (or can be padded to) the same length. We refer to our definition



On the Security of Homomorphic Encryption on Approximate Numbers 659

as IND-CPAD, as it includes IND-CPA (see Definition 1) as a special case, where
the adversary makes only one encryption query, and no homomorphic evaluation
or decryption queries, whereas our definition explicitly provides the adversary
with a restricted decryption oracle which allows to observe decryption results of
honestly generated ciphertexts.

Definition 2 (IND-CPAD Security). Let E = (KeyGen,Enc,Dec,Eval) be a
public-key homomorphic (possibly approximate) encryption scheme with plain-
text space M and ciphertext space C. We define an experiment Exprindcpa

D

b [A],
parameterized by a bit b ∈ {0, 1} and involving an efficient adversary A that is
given access to the following oracles, sharing a common state S ∈ (M×M×C)∗

consisting of a sequence of message-message-ciphertext triplets:

– An encryption oracle Epk(m0,m1) that, given a pair of plaintext messages
m0,m1, computes c ← Encpk(mb), extends the state

S := [S; (m0,m1, c)]

with one more triplet, and returns the ciphertext c to the adversary.
– An evaluation oracle Hek(g, J) that, given a function g : Mk → M and a

sequence of indices J = (j1, . . . , jk) ∈ {1, . . . , |S|}k, computes the ciphertext
c ← Evalpk(g, S[j1].c, . . . , S[jk].c), extends the state

S := [S; (g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c)]

with one more triplet, and returns the ciphertext c to the adversary. Here
and below |S| denotes the number of triplets in the sequence S, and S[j].m0,
S[j].m1 and S[j].c denote the three components of the jth element of S.

– A decryption oracle Dsk(j) that, given an index j ≤ |S|, checks whether
S[j].m0 = S[j].m1, and, if so, returns Decsk(S[j].c) to the adversary. (If the
check fails, a special error symbol ⊥ is returned.)

The experiment is defined as

Exprindcpa
D

b [A](1κ) : (sk, pk, ek) ← KeyGen(1κ)
S := [ ]

b′ ← AEpk,Hek,Dsk(1κ, pk, ek)
return(b′)

The advantage of adversary A against the IND-CPAD security of the scheme is

AdvindcpaD [A](κ) = |Pr{ExprindcpaD0 [A](1κ) = 1} − Pr{ExprindcpaD1 [A](1κ) = 1}|,

where the probability is over the randomness of A and the experiment. The
scheme E is IND-CPAD-secure if for any efficient (probabilistic polynomial time)
A, the advantage AdvindcpaD [A] is negligible in κ.



660 B. Li and D. Micciancio

As a standard convention, if at any point in an experiment the adversary
makes an invalid query (e.g., a circuit g not supported by the scheme, or indices
out of range), the oracle simply returns an error symbol ⊥.

We remark that, while the adversary in Definition 2 is given access to a
decryption oracle, this should not be confused with indistinguishability under
a chosen ciphertext attack (IND-CCA), which models active adversaries with
the capability of tampering with (or injecting) arbitrary ciphertexts. Defini-
tion 2 only allows for decryption queries on valid ciphertexts that have been
honestly computed using the correct encryption and homomorphic evaluation
algorithms (modeled by the oracles E and H). Furthermore, the requirement
that S[j].m0 = S[j].m1 is to eliminate trivial attacks where the adversary can
distinguish between two computations that lead to different results when com-
puted on exact values.

Exact encryption schemes can be seen as a special case of approximate
encryption, with the added correctness requirement. So, Definition 2 can be
applied to exact as well as approximate encryption schemes. As a sanity check,
we compare our new definition with the traditional formulation of IND-CPA secu-
rity (Definition 1) modeling passive attacks against exact encryption schemes.
Perhaps not surprisingly, for the case of exact encryption schemes, our new secu-
rity definition coincides with the standard notion of IND-CPA security.

Lemma 1. Any exact homomorphic encryption scheme E is IND-CPA secure if
and only if it is IND-CPAD secure.

Proof. It is easy to see that IND-CPAD security implies IND-CPA security, as
an adversary making only one E query but no other queries in the IND-CPAD

experiment is also an IND-CPA adversary. So we consider the reverse direction.
Assume E is IND-CPA secure. Let A be any adversary breaking the IND-CPAD

security of E , and assume A makes at most l queries in total to E and H. We
build adversaries B(i), for 0 ≤ i < l, to break the IND-CPA security of E .

B(i) takes input 1κ, pk, ek, and it then runs A(1κ, pk, ek). It maintains a state
S ∈ (M × M × C)∗ just like Exprindcpa

D
, and it answers oracle queries made by

A as follows:

– For each query (m0,m1) to E, if |S| < i, then let c ← Encpk(m1); if |S| > i,
then let c ← Encpk(m0); and if |S| = i, B(i) sends (m0,m1) to Exprcpab and
receives c. The state S is extended by one more triplet (m0,m1, c), and c is
returned to A.

– For each query (g, J) to H, where g : Mk → M and J = (j1, . . . , jk), let
c ← Evalek(g, S[j1].c, . . . , S[jk].c), extend S by one more triplet

(g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c),

and return c to A.
– For each query j to D, if j ≤ |S| and S[j].m0 = S[j].m1, then return S[j].m0

to A; otherwise return an error symbol ⊥.
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Finally, when A halts with a bit b′, B(i) outputs this bit.
Since B(i) does not depend on the secret key sk to answer the D queries, it is

a valid adversary in the IND-CPA experiment. Now, let H(i) = Exprcpa0 [B(i)] for
0 ≤ i < l, and let H(l) = Exprcpa1 [B(l−1)]. For 1 ≤ i < l, note that H(i) is exactly
the same distribution as Exprcpa1 [B(i−1)]. Furthermore, by the correctness of exact
homomorphic encryption schemes, the D responses from B(i) to A are indistin-
guishable from those in the IND-CPAD experiment; so H(0) and Exprindcpa

D

0 [A]
are indistinguishable, and the same holds true for H(l) and Exprindcpa

D

1 [A]. So
Advindcpa

D
[A] ≤ ∑

0≤i<l Adv
cpa[B(i)] + negl(κ), which is negligible since E is

IND-CPA secure. ��
Notice that the above lemma makes essential use of the correctness of exact

encryption schemes, and the proof does not extend to approximate encryption
schemes. In fact, for approximate encryption schemes, the result of decryption
is not a simple function of the encrypted messages (and the computations per-
formed on them), and may potentially depend (in an indirect, unspecified way)
on the scheme’s secret key and encryption randomness. So the information pro-
vided by decryption queries is not easily computed by the adversary on its own,
and, at least in principle, IND-CPAD may be a stronger security notion than
IND-CPA when applied to approximate encryption schemes. We will make this
intuition clear in the following sections, proving formal separation results, and
providing concrete attacks to actual approximate encryption schemes.

Also note that the above definition does not guarantee circuit privacy in the
homomorphically evaluated ciphertexts, as the circuit to be evaluated in a query
to oracle H does not depend on the bit b of the IND-CPAD experiment. In the full
version we extend our definitions with circuit privacy. Here we focus on the basic
definition (without circuit privacy) which is the most common in cryptography.

3.2 Restricted Security Notions and Separations Between Them

We have observed that, for exact encryption schemes, IND-CPAD security is
equivalent to the traditional IND-CPA security. (See Lemma 1.) We now show
that IND-CPAD is strictly stronger than IND-CPA, i.e., there are approximate
encryption schemes that are provably IND-CPA secure (under standard com-
plexity assumptions) but are not IND-CPAD secure. In order to get a more
refined understanding of the gap between these notions, we introduce a natu-
ral parameterization of IND-CPAD security, that smoothly interpolates between
IND-CPA and IND-CPAD. Then, we define a number of restricted notions of secu-
rity, and show separations between them, showing that there is an infinite chain
of (strictly) increasingly stronger definitions, ranging from IND-CPA all the way
to IND-CPAD.

Restricting the numbers of queries. We parameterize the definition by imposing
a bound on the number of queries that may be asked by the adversary.
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Definition 3 ((q, 	)-IND-CPAD Security). For any two functions q(κ) and
	(κ) of the security parameter κ, we say that a homomorphic encryption scheme
is (q, 	)-IND-CPAD secure if it satisfies Definition 2 for all adversaries A that
make at most 	(κ) queries to oracles E,H, and at most q(κ) queries to oracle D.

We combined the encryption (E) and evaluation (H) queries into a single
bound 	(κ) for simplicity, and because both types of queries produce ciphertexts.
The bound 	 could be significant for approximate encryption schemes as security
with respect 	 queries to E and H does not appear to imply security with respect
to 	+1 such queries. This is in contrast to proper (exact) encryption schemes in
the public-key setting where one-message security implies multi-message security.
It remains an interesting open question to find out the relationship between
(q, 	)-IND-CPAD and (q, 	 + 1)-IND-CPAD securities.

The definition is easily extended to more general formulations, but we will
be primarily interested in the bound q on the number of decryption queries,
which are the distinguishing feature of approximate encryption schemes. When
	 is an arbitrary polynomial, and only the number of decryption queries q(κ) is
restricted, we say that a scheme is q-IND-CPAD secure.

Now, we can think of IND-CPA security as a special case of (q, 	)-IND-CPAD,
for q = 0 and 	 = 1, as the only query to E/H must be an encryption query.
(Oracle E must be called at least once before one can use H to homomorphi-
cally evaluate a function on a ciphertext.) So, bounding the number of queries
allows to smoothly transition from the traditional IND-CPA definition (i.e., (0, 1)-
IND-CPAD security), to our IND-CPAD (i.e., (poly, poly)-IND-CPAD security).

Naturally, for proper (exact) encryption schemes, all these definitions are
equivalent, and it is only in the approximate encryption setting that the defini-
tions can be separated.

In the following proposition we show that there exists some scheme that is
secure for up to some fixed number q of decryption queries but insecure for just
q+1 decryption queries. We remark that the encryption scheme described in the
proof is presented for the sole purpose of separating the two definitions. More
natural examples that separate IND-CPA and IND-CPAD will be described in
Sect. 4, where we present attacks to approximate encryption schemes from the
literature.

Proposition 1. Assume there exist a pseudorandom function and an IND-CPA-
secure exact homomorphic encryption scheme. Then, for any fixed q ≥ 2, there
exists a homomorphic approximate encryption scheme that is (q, 	)-IND-CPAD-
secure but not (q + 1, 	)-IND-CPAD-secure.

Proof (sketch). Let E = (KeyGen,Enc,Dec,Eval) be an exact, IND-CPA-secure,
HE scheme. The main idea is to construct a new scheme E ′ that consists of
the same encryption and evaluation algorithms, but with new key generation
KeyGen′ and decryption algorithms Dec′. KeyGen′(1κ) samples keys (sk, pk, ek) ←
KeyGen(1κ) as in E , and then it samples a PRF key K to form the new secret key
sk′ = (sk,K), while keeping the public key pk and the evaluation key ek the same.
Given a ciphertext c, Dec′

sk′ first runs Decsk(c) to obtain the exact plaintext m,
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and then it adds to m a secret share (encoded as a small number) of sk produced
by the PRF on m. Specifically, if m (mod q +1) ≡ 0, then the share is sk⊕ r for
r = ⊕q

i=1PRFK(i); otherwise, the share is PRFK(m mod (q + 1)). Here a PRF is
used to keep Dec′ deterministic. Since E is IND-CPA secure, and since any q or
less shares of sk are pseudorandom, our new approximate encryption scheme is
(q, 	)-IND-CPAD-secure. However, an adversary can fully recover sk using q + 1
decryption queries, breaking (q + 1, 	)-IND-CPAD security of the new scheme. ��
Restricting the query ordering. In the definition of IND-CPAD security, we did not
state any restriction on the relative order of queries made by the adversary. In
particular, queries can be made in many rounds, and a later query can depend on
the responses from earlier queries. Such notion is called security with adaptively
chosen queries, or simply adaptive security.

There are several other natural query orderings that can be imposed on the
adversary, and enforced by an application. For example, it is often the case
that inputs are encrypted and collected in advance, before any homomorphic
evaluation or decryption operation takes place. As an extreme situation, one
can consider a fully non-adaptive setting, where the adversary specifies all its
queries in advance after seeing the public/evaluation key. We call this the (fully)
non-adaptive model. Non-adaptive security is much easier to formulate, and we
fully spell out its definition now.

Definition 4 (Non-Adaptive (q, 	)-IND-CPAD Security). Let E be a homo-
morphic (possibly approximate) encryption scheme E = (KeyGen,Enc,Dec,Eval).
Let q and 	 be two polynomial bounds in κ. We say that E is non-adaptively (q, 	)-
IND-CPAD-secure if for all efficient adversary A = (A0,A1) consisting of two
steps such that

({m
(i)
0 }k

i=1, {m
(i)
1 }k

i=1, {(gi, Ji)}�
i=k+1, {ji}q

i=1, st) ← A0(1κ, pk, ek),

where (sk, pk, ek) ← KeyGen(1κ), m
(i)
0 = gi(m

(Ji)
0 ), m

(i)
1 = gi(m

(Ji)
1 ) for i =

k+1, . . . , 	, and all gi are valid circuits with indices Ji ∈ {1, . . . , 	}∗, the following
two distributions are indistinguishable to A1(1κ, st):

{ {ci ← Encpk(m
(i)
0 )}k

i=1, {ci ← Evalek(gi, c(Ji))}�
i=k+1, {Decsk(ci) | mji

0 = mji
1 }q

i=1 },

and

{ {ci ← Encpk(m
(i)
1 )}k

i=1, {ci ← Evalek(gi, c(Ji))}�
i=k+1, {Decsk(ci) | mji

0 = mji
1 }q

i=1 },

where the probability is over the randomness of A and in Enc and Eval.

Typically the same security notion is weaker in the non-adaptive model than
in the adaptive model, as some attacks are only feasible in the latter model.
We show that this is also the case for homomorphic approximate encryption
schemes. As before, the encryption scheme described in the following proof is
not intended to be used. It is just a theoretical construction, provided simply
for the purpose of showing that a scheme may satisfy one definition but not the
other.
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Proposition 2. Assume there exist an IND-CPA-secure exact homomorphic
encryption scheme and a secure pseudorandom permutation. Then there exists a
homomorphic approximate encryption scheme that is non-adaptively IND-CPAD-
secure, but it is not adaptively (2, 2)-IND-CPAD-secure.

Proof (sketch). Let E be an IND-CPA-secure exact HE scheme, and let H :
{0, 1}κ × {0, 1}κ → {0, 1}κ be a pseudorandom permutation. We can define
another pseudorandom permutation F :

∀x ∈ {0, 1}κ. FK(x) = H−1
K (HK(x) ⊕ 1).

Notice that FK(FK(x)) = x for all x ∈ {0, 1}κ.
We now modify E to obtain a homomorphic approximate encryption scheme

E ′ with the same encryption and evaluation algorithms but modified key gener-
ation and decryption algorithms:

– KeyGen′(1κ): Sample (sk, pk, ek) ← E .KeyGen(1κ) and K ← {0, 1}κ (for the
pseudorandom permutation F ). Return (sk′, pk, ek), where sk′ = (sk,K).

– Dec′
sk′(c) = m + π(r), where m = E .Decsk(c), r = FK(sk) if m = 0, and

r = FK(m) otherwise, and (π, π−1) is an encoding scheme from {0, 1}κ to
small numbers.

One can check that FK is a pseudorandom permutation in the non-adaptive
model. So Dec′

sk′ can be simulated without knowing the secret key (sk,K) in the
non-adaptive model, and hence our new scheme is non-adaptively IND-CPAD-
secure. However, an adaptive adversary A can first ask to encrypt 0 and then
ask to decrypt the corresponding ciphertext to get e = π(FK(sk)). Next, A asks
to encrypt π−1(e) = FK(sk) and then asks to decrypt its ciphertext. At this
point A can fully recover sk using the decryption result π−1(e) + π(sk). So E ′ is
not adaptively (2, 2)-IND-CPAD-secure. ��

4 Attacks to Homomorphic Encryption for Arithmetics
on Approximate Numbers

In this section we describe a key recovery attack against the CKKS scheme,
including both theoretical and practical analysis. Based on such attack, we can
conclude that the CKKS scheme is not IND-CPAD secure. Note that our attack
is much stronger than a simple indistinguishability attack: we show how to
efficiently recover the secret (decryption) key of the scheme! Clearly, once the
secret key has been recovered, it is easy to break the formal IND-CPAD secu-
rity definition. While recovering the secret key makes our attacks stronger, any
security analysis of improved variants of CKKS or other approximate encryption
schemes should still target IND-CPAD as a security goal, and not simply protect
the scheme against full key recovery.
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4.1 Theoretical Outline

The technical idea behind the attack is easily explained by exemplifying it on a
symmetric key version of LWE encryption. (Breaking the CKKS scheme involves
additional complications due to the details of the encoding/decoding functions
discussed below.) We recall that in a passive attack (against a symmetric key
encryption scheme Es(m)), the adversary can observe the encryption Es(m) of
any message m of its choice. In LWE encryption, the key is a random vector
s ∈ Z

n
q , and a (possibly encoded) message m ∈ Zq is encrypted as Es(m) =

(a, b) where a ∈ Z
n
q is chosen at random, and b = 〈s,a〉 + m + e (mod q) for

a small random integer perturbation e ∈ Z. If the encryption scheme works on
“approximate numbers”, (m + e) is treated as an approximation of m, and the
decryption algorithm outputs Ds(a, b) = b − 〈s,a〉 = m + e.

Our most basic attack involves an adversary that asks for an encryption of
m = 0, so to obtain a ciphertext ct = (a, b) where b = 〈s,a〉 + e (mod q). The
adversary then asks to compute the identity function id(x) = x on it. (This is the
same as performing no computation at all.) Finally, it asks for an approximate
decryption of the result, and computes

c = b − Decs(ct) = (〈s,a〉 + e) − (m + e) = 〈s,a〉 (mod q). (1)

This provides a linear equation 〈s,a〉 = c (mod q) in the secret key. Collect-
ing n such linear equations and solving the resulting system (e.g., by Gaussian
elimination) recovers the secret key s with high probability.

It is easy to see that there is nothing special about the message 0, or the fact
that no computation is performed: as long as the adversary knows the cipher-
text ct (possibly the result of a homomorphic computation) and gets to see
the approximate decryption of ct, the same attack goes through. However, the
actual scheme described in [18] and subsequent papers, and their open source
implementations include several modifications of the above scheme, introduced
to make the scheme more useful in practice, but which also make the attack
less straightforward. We briefly describe each of these modifications, and how
the attack is adapted. In the most general case, our attack requires not just the
solution of a linear system of equations, but the use of lattice reduction for the
(polynomial time) solution of a lattice approximation problem.

Public key. First, CKKS is a public key encryption scheme, where, as standard in
lattice based encryption, the public key can be seen as a collection of encryptions
of 0 values. This makes no difference in the attack, as the ciphertexts still have the
same structure with respect to the secret key, and the (approximate) decryption
algorithm is unmodified. Switching to a public key system has the only effect of
producing larger noise vectors e in ciphertexts.

Ring lattices. In order to achieve practical performance, all instantiations of
the CKKS scheme make use of cyclic/ideal lattices [40] and the Ring LWE
problem [38,39]. Specifically, the vectors a, s are interpreted as (coefficients of)
polynomials a, s in the power-of-two cyclotomic rings O(2N) popularized by the
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SWIFFT hash function [36,37,43] and widely used in the implementation of
lattice cryptography since then. In a sense, switching to ideal lattices makes
the attack only more efficient: the linear equation 〈s,a〉 = c (mod q) becomes
an equation a · s = c ∈ O(2N)

q in the cyclotomic ring modulo q, which can be
solved (even using a single ciphertext) by computing the (ring) inverse of a, and
recovering s as

s′ = a−1 · c ∈ Oq. (2)

A little difficulty arises due to the choice of q. The first implementation of
CKKS, the HEAAN library [30] sets q to a power of 2 to simplify the treatment
of floating point numbers. Subsequent instantiations of CKKS use a prime (or
square-free) q of the form h·2n+1 together with the Number Theoretic Transform
for very fast ring operations[37]. For a (sufficiently large) prime q, the probability
of a random element a being invertible is very close to 1, but this is not the case
when q is a power of two. If a is not invertible, we can still recover partial
information about the secret key s, and completely recover s by using multiple
ciphertexts.

Euclidean embedding. In order to conveniently apply the CKKS scheme on prac-
tical problems, the input message space is set to C

N/2 for some N that is a power
of 2, the set of vectors with complex entries, or, more precisely, their floating
point approximations. A message z ∈ C

k, for some integer 1 ≤ k ≤ N/2, can
be considered as a vector in C

N/2 (by padding it with 0 entries), and it is then
encoded to

m = Encode(z;Δ) =
⌊
Δ · ϕ−1(z)

⌉ ∈ Z
N ≡ O,

where Δ is some precision factor. The “decode” operation Decode : O → C
k

sends an integer polynomial m to

Decode(m;Δ) = ϕ(Δ−1 · m) ∈ C
k,

where the entries corresponding to the 0-paddings are dropped. Decode is an
approximate inverse of Encode as z′ = Decode(Encode(z;Δ);Δ) is close (but not
exactly equal) to z.

This is slightly more problematic for our attack, because a passive adversary
only gets to see the result of final decryption z′ ∈ C

k, rather than the ring element
m′ = a·s+b ∈ O that is required by our attack, in addition to the ciphertext ct =
(a, b). Moreover, given the approximate nature of the encoding/decoding process,
Decode(m′) is not even the exact (mathematical) transformation ϕ(Δ−1·m′), but
only the result of an approximate floating point computation. We address this
by setting k = N/2 (so, at least the vector Decode(m′) has the right dimension
over C), and re-encoding the message output by the decryption algorithm to
obtain Encode(Decode(m′)).

At this point, depending on the concrete choice of parameters of the scheme,
we may have Encode(Decode(m′)) = m′, in which case we can carry out the
above attack by setting up a system of linear equations or computing inverses
in the cyclotomic ring. We summarize this case in the following theorem.
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Theorem 1 (Linear Key-Recovery Attack against CKKS). Fix a par-
ticular instantiation of the CKKS scheme under the Ring-LWE assumption of
dimension N and modulus q, and fix a key tuple (sk, pk, ek) ← KeyGen(1κ).
Given k = O(N) ciphertext cti for 1 ≤ i ≤ k, that are either encryp-
tions under pk or homomorphic evaluations under ek, and given their approx-
imate decryption results z′

i = Decode(Decsk(cti);Δ) with a scaling factor Δ, if
Encode(z′

i;Δ) = Decsk(cti) for all 1 ≤ i ≤ k, then we can efficiently recover the
secret key sk with high probability.

Moreover, if the ciphertext modulus q is a prime or a product of distinct
primes, then the above holds for all k ≥ 1.

4.2 Analysis of Encoding/Decoding Errors

To see for what concrete parameters the linear attack can be applied, we take a
closer look at the error introduced by the encoding and decoding computation.
In practice, since N is a power of 2, the classical Cooley-Tukey FFT algorithm
is used to implement the transformation ϕ and its inverse ϕ−1, and the compu-
tation is done using floating-point arithmetic that could cause round-off errors.

Fix a ciphertext ct, and let m′ = Decsk(ct) ∈ O be its approximate decryp-
tion (before decoding) with a scaling factor Δ. Let ẑ′ = Decode(m′;Δ) be the
computed value of z′ = ϕ(Δ−1 · m′). To carry out the attack, we compute the
encoding of ẑ′ with the scaling factor Δ: first we apply inverse FFT to compute
u = Δ ·ϕ−1(ẑ′), and then we round its computed value û to m′′ = �û� ∈ O. Let
ε = û − m′ be the encoding error, where m′ is the coefficient vector of m′. We
see that Encode(Decode(m′;Δ);Δ) = m′ if and only if ‖ε‖∞ = ‖û − m′‖∞ < 1

2 .
Assume the relative error in computing the Cooley-Tukey FFT in dimension

N is at most μ in l2 norm. Then ‖ẑ′ − z′‖2 ≤ μ ·
√

N
Δ ‖m′‖2, ‖û − u‖2 ≤ μ(1 +

μ) · ‖m′‖2, and ‖u − m′‖2 ≤ μ · ‖m′‖2. It follows that

‖ε‖∞ = ‖û − m′‖∞ ≤ ‖û − m′‖2 ≤ (2μ + μ2)‖m′‖2.
In [13], Brisebarre et al. presented tight bounds on the relative error μ in

applying the Cooley-Tukey FFT algorithm on IEEE-754 floating-point numbers.
According to their estimate, μ ≈ 53 · 2−53 for N = 216 and double-precision
floating-point numbers. So, we expect to see Encode(Decode(m′;Δ);Δ) �= m′ in
such setting, i.e., ‖ε‖∞ > 1

2 , when ‖m′‖2 > 245. (As we will see in the next
section, our experimental results using existing CKKS implementations suggest
this is a very conservative estimation.) The rescaling operation can be used
to reduce the size of the approximate plaintext m′, which is already used to
maximize the capacity of homomorphic computation in CKKS.

Lattice attack. In case Encode(Decode(m′)) ≈ m′ is only an approximation of
what we want for the linear key recovery attack, it is still possible to recover sk
by solving a (polynomial time) lattice approximation problem.

Theorem 2 (Lattice Attack against CKKS). Fix a particular instantiation
of the CKKS scheme under the Ring-LWE assumption of dimension N and
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modulus q, and fix a key tuple (sk, pk, ek) ← KeyGen(1κ). Given a ciphertext
ct ∈ O2

q with a scaling factor Δ, and given an approximate decryption z′ =
Decode(Decsk(ct);Δ) of ct, if the encoding error ε = Δ · ϕ−1(z′) − Decsk(ct)
satisfies ‖ε‖2 ≤ 2−N

2 ·(q√N −h), where h = HW(s) ≤ N is the Hamming weight
of s, then the secret key sk can be efficiently recovered.

Proof (sketch). Let ct = (a, b) for some a, b ∈ Oq. We consider the following
approximate CVP instance. Let A = φ(a) ∈ Z

N×N be the negacyclic matrix
representation of a. Consider the following matrix

B =
(

A qIN

1t 0t

)
∈ Z

(N+1)×(2N),

where 1t = [1, . . . , 1] is a N -dimensional row vector of all 1 entries. Let L =
L(B) be the integer lattice generated by B, let u = Δ · ϕ−1(z′) ∈ R

N , and let
t = (u−b, 0)t ∈ R

N+1, where b is the coefficient vector of b. Our CVP instance
asks to find v ∈ L such that ‖v − t‖2 ≤ δ for some δ > 0.

To set the parameter δ, notice that v0 = (m′ −b, 〈1, s〉) is a lattice point, and
‖v0−t‖22 = ‖ε‖22+〈1, s〉2. On the other hand, if m′′−b = Ar+qw for some r,w ∈
Z

N , then v1 = (m′′ − b, 〈1, r〉) ∈ L is also a lattice point. We have ‖v1 − t‖22 =
‖ε−�ε� ‖22+〈1, r〉2. Note that r = A−1(m′ −b)+A−1 �ε� (mod q) = s+A−1 �ε�
(mod q). In CKKS, s is chosen from a uniform distribution on ternary coefficients
{±1, 0} with Hamming weight h ≤ N , so | 〈1, r〉 | ≥ | 〈1, A−1ε

〉 − h|. We can
assume that �ε� is independent of m′−b, so A−1 �ε� (mod q) is close to uniform,
and so it holds with high probability that | 〈1, A−1ε

〉 | ≤ 2
√

3 · q
√

N . When
‖ε‖2 ≤ 2−N

2 · (q
√

N − h), we can set δ = 2
√

3 · q
√

N and obtain m′ − b with
high probability by solving such CVP instance in polynomial time. Then, we can
mount the linear attack as in Theorem 1. ��

5 Experiments

The basic idea of our linear attack is so simple that it requires no validation.
However, as described in the previous section, a concrete instantiation of the
CKKS scheme may include a number of details that make the attack more
difficult in practice. Given the simplicity of our attack, we also considered the
possibility that the implementations of CKKS may not correspond too closely
to the theoretical scheme described in the papers, and included some additional
countermeasures to defend against the attack.

To put our linear attack to a definitive test, we implemented it against pub-
licly available libraries HEAAN [30], PALISADE [41], SEAL [47], and HElib [31]
that implement the CKKS scheme, and we ran our attack over some homo-
morphic computations that are commonly used in real world privacy-preserving
machine-learning applications. Our experimental results against the libraries are
summarized in Tables 1 and 2. For most of the parameter settings, our attack
can successfully and quite efficiently recover the secret key, showing it is widely
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Algorithm 1: The pseudocode outlining our key recovery attack experi-
ments.
Input: Lattice parameters (N, log q), initial scaling factor Δ0, plaintext bound

B, and circuit g.
1 Sample (sk, pk, ek) ← KeyGen(N, log q, Δ0), where (1, s) = sk

2 Sample z ← C
N/2 such that |zi| ≤ B for all 1 ≤ i ≤ N/2

3 Encrypt ctin ← Encpk(Encode(z; Δ0))
4 Evaluate ctout ← Evalek(g, ctin)
5 Decrypt z′ ← Decode(Decsk(ctout); Δ), where Δ is the scaling factor in ctout
6 Encode m′′ ← Encode(z′; Δ)
7 Compute s′ ← a−1 · (m′′ − b) ∈ Oq, where (b, a) = ctout
8 return s′ = s

applicable to these CKKS implementations. In the following, we discuss our
experiment and the relevant implementation details of these libraries, and we
briefly analyze the results. We also consider RNS-HEAAN [46], an alternative
implementation similar to HEAAN that includes RNS (residue number system)
optimizations, obtaining similar results.

We did not implement the lattice based attack. The main difficulty in run-
ning the lattice attack in our experiment is that it requires lattice reduction in
very large dimension, beyond what is currently supported by state of the art
lattice reduction libraries. However, the theoretical running time of the attack is
polynomial, and the corresponding parameter settings should still be considered
insecure. In the following, we refer to our linear attack as the attack.

5.1 Implementation of Our Attack and Experiments

A pseudocode outline of our experiment programs is presented in Algorithm 1.
Such programs model the situations where an attacker can influence an honest
user to perform certain homomorphic computations and can obtain both the final
ciphertexts and the decrypted approximate numbers. A successful run indicates
that the target CKKS implementation is not IND-CPAD-secure.

For concrete homomorphic computations, we choose to compute the variance
of a wide range of input data to exemplify how our attack may be affected by
large underlying plaintexts in extreme cases. Specifically, our program encrypts
the input data to a single ciphertext ctin in the full packing mode, and then
it performs one homomorphic squaring, followed by several homomorphic rota-
tions and summations to homomorphically compute the sum of squares, and
finally it does a homomorphic multiplication by a constant 2/N to obtain ctout
that encrypts the variance. We also compute the logistic function (1 + e−x)−1

and exponential functions ex using their Maclaurin series up to a degree d, to
check whether our attack may be affected by the bigger noises and the possibly
adjusted scaling factors due to multi-level homomorphic computations. Once the
homomorphic computation is done, our program decrypts ctout to approximate
numbers z′, and mounts our linear attack as in Steps 6 and 7 of Algorithm 1.
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Table 1. The results of applying our attack on homomorphically computed variance
of N/2 = 215 random complex numbers of magnitude 1 ≤ B ≤ 29. We carried out
the attack against all main open source implementations of CKKS, obtaining similar
results. Numbers are packed into all slots, and are encoded using various initial scaling
factors Δ0. For each parameter combination (Δ0, B), we ran our programs 100 times
against each library. A “�” indicates that, for all these libraries with the particular
parameters, the attack always succeeded to recover sk. A few cells where a number
is shown, correspond to extreme parameters where some runs failed to recover sk,
and the number is the maximum (over all libraries) of the average l∞ norms of the
encoding error ε. These settings are still subject to attacks based on lattice reduction,
see Sects. 4.2 and 5.3 for details.

Attack applied to HEAAN, PALISADE, SEAL, HElib

B 1 2 22 23 24 25 26 27 28 29

Variance log Δ0 = 30 � � � � � � � � � �
log Δ0 = 40 � � � � � � � � � �
log Δ0 = 50 � � � � � � 1.21 5.41 20.65 80.19

We remark that all these homomorphic computations are very common in appli-
cations of the CKKS scheme.

In our programs, we use the data structures and public APIs provided by
each library to carry out the key recovery computation4. Note that an attacker
is free to use any method, not necessarily these public interfaces, to carry out
the attack.

5.2 Details on Different Implementations of CKKS

We considered the latest versions of all these libraries: HEAAN version 2.1 [30],
PALISADE version 1.10.4 [41], SEAL version 3.5 [47], and HElib version 1.1.0 [31]
and RNS-HEAAN [46]. All these libraries implement the transformation ϕ and
its inverse using the classical Cooley-Tukey FFT algorithm on double-precision
floating-point numbers. Still, they contain several distinct implementation details
relevant to our attack.

Multi-precision integers vs. double-CRT representation. All versions of HEAAN
(version 1.0 as in [18], version 1.1 as in [16], and the most recent version 2.1)
use multi-precision integers to represent key materials and ciphertexts. Conse-
quently, HEAAN achieves very good accuracy in approximate decryption, but
at the same time it rarely introduces any encoding error, resulting in a great
success rate in our key recovery experiment.

To improve efficiency, the residual number system, as known as double-CRT
representation, is adopted to the CKKS scheme in [17], and it is implemented

4 The source code of our attack implementations are available at https://github.com/
ucsd-crypto/CKKSKeyRecovery.

https://github.com/ucsd-crypto/CKKSKeyRecovery
https://github.com/ucsd-crypto/CKKSKeyRecovery
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Table 2. The results of applying our attack to homomorphically computed logistic and
exponential functions on random real numbers of magnitude B ∈ {1, 2, 8} packed into
full N/2 = 215 slots, evaluated using their Maclaurin series of degree d ∈ {5, 10}. For
each parameter setting, we ran our experimental program 100 times for each library,
and here “�” indicates sk was recovered in all these runs against a particular library.
A few cells where a number is shown, correspond to extreme parameters when some
runs failed to recover sk, and the number is the average l∞ norm of the encoding error
ε in these runs. For HElib, “n/a” indicates the parameters are not supported by the
library.

Attack applied to HEAAN, PALISADE, SEAL, HElib

HEAAN PALISADE SEAL HElib

Δ0 B d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10

Logistic 230 1 � � � � � � � �
240 1 � � � � � � 3.1 6.7

250 1 � � � � � � 8.2 8.2

Exponential 230 1 � � � � � � � �
2 � � � � � � n/a n/a

8 � � � � � � n/a n/a

240 1 � � � � � � 1.9 8.2

2 � � � � � � n/a n/a

8 � � � � � � n/a n/a

250 1 � � � � � � 8.1 8.2

2 � � � � � � n/a n/a

8 7.6 15.2 8.1 18.2 2.2 4.3 n/a n/a

in RNS-HEAAN. Other libraries also implement the RNS variant of CKKS, with
some different details:

– During decryption, RNS-HEAAN uses only the first RNS tower of ciphertexts;
so it expects the scaled plaintext to be much smaller than the 60-bit prime
modulus in the first tower. Other libraries convert the double-CRT format
to multi-precision integers before applying the canonical embedding; so they
support a larger plaintext space and are more accurate.

– During rescaling, RNS-HEAAN uses a power-of-2 rescaling factor, while the
other libraries’ rescaling factors are the primes or close to primes in the moduli
chain. In particular, PALISADE optimizes the rescaling factors to reduce the
errors and precision loss in many homomorphic operations [32].

As observed in our experiment, among the RNS implementations of CKKS, our
attack was more successful against the libraries using more accurate element
representations and scaling factors.

PALISADE . In addition, PALISADE uses extended precision floating-point arith-
metic in Decode, which has 64-bit precision on X86 CPUs. This further improves



672 B. Li and D. Micciancio

the accuracy of approximate decryption, but perhaps unintentionally making our
attack more successful by a tiny margin (comparing to other libraries).

HElib. Unlike other libraries, HElib adjusts the scaling factor used in Encode and
many homomorphic operations according to the estimated noise size and the
magnitude of the plaintext. It expects the input numbers to have magnitude
at most 1 for optimal precisions. So our experiment with HElib chooses random
input only within the unit circle.

RNS-HEAAN. Looking back to RNS-HEAAN, its implementation of Decode intro-
duces a small round-off error in a conversion from uint64_t to double. As a
result, such (seemingly unexpected) implementation choice may lead to reduced
precision (by only a few bits), but it also results in more failed runs in our exper-
iment. Still, when our attack fails, the encoding errors are quite small, and so
RNS-HEAAN is still subject to the lattice reduction attack. We tried to “fix” this
by more carefully converting between number systems, and we immediately see
a much better success rate for our attack.

5.3 Experiment Results

We set up all libraries with the highest supported lattice dimension N = 216,
which also corresponds to the highest security level. By the analysis in Sect. 4.2
(and also observed in our experiment), the larger the dimension is, the higher
the chance an encoding error may show up (leading to failed attack runs). On
the other hand, since the claimed security decreases with larger values of the
modulus q, we set it to around 350 bit, which is a secure, yet realistic value for
FHE schemes. According to common evaluation methodologies [1], the associated
LWE problem provides a level of security well above 256 bits. (Specifically, in
dimension N = 216, it is estimated that 256-bits of security are achieved even
for moduli q with over 700 bits.)

In all our experiments, we use the full packing mode with N/2 slots. For
the variance computation, we generate random input numbers with magnitude
B ≤ 29. For the experiment on the logistic and the exponential functions, we
set the maximal degree of their Maclaurin series to d ≤ 10, which provides good
approximation for inputs smaller than 1.

Our experiments are executed in a 64-bit Linux environment running on an
Intel i7-4790 CPU. The attack is very efficient, especially for the RNS-CKKS
implementations, as the key recovery computation can benefit from using NTT
and parallelization. Each individual run in our experiment finishes within sev-
eral seconds to just one minute, with most of the running time taken by the
key generation and encryption/homomorphic evaluation operations, rather than
the attack itself. For each homomorphic computation task, for each parameter
setting, and for each library, we run our attack 100 times to record the suc-
cess rate and the encoding error ε. The results of the experiments with HEAAN,
PALISADE, SEAL, and HElib are presented in Tables 1 and 2. As shown in these
tables, our attack always succeeded to recover the secret key in most parameter
settings against all the libraries, especially for typical input sizes and scaling
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factors. The failed cases in both tables correspond to the extreme parameters
where the l2 norm of the underlying plaintext exceeds 252, showing better practi-
cal performance than the worst case analysis in Sect. 4.2. (There are more failed
cases with HElib because its adjusted scaling factors are typically larger and so
are the plaintexts.) Comparing the results on the logistic and the exponential
functions, we conclude that a deeper level of homomorphic computation has no
significant effect on our attack, and the runs in the last row of Table 2 failed due
to larger plaintext sizes. In particular, the encoding error ε with SEAL is smaller
than other libraries because its implementation of Decode incurs less round-off
errors in scaling by Δ−1.

We did a limited number of experiments with RNS-HEAAN because it has a
small plaintext space. Nonetheless, we see a consistent but small encoding error
of size ‖ε‖∞ ≤ 27 in our RNS-HEAAN experiments when B2Δ0 ≈ 250.

6 Conclusion

We proposed new security definitions, extending the traditional IND-CPA secu-
rity notion, that properly capture the passive security requirement for (homo-
morphic) approximate encryption schemes. The necessity of adequate security
notions for approximate encryption reminds us that correctness and security are
two essential issues for cryptographic systems that must be considered at the
same time. From a theoretical perspective, we initiated the study of IND-CPAD

security for approximate computation, by presenting implication and separation
results between variants of the definition. There are still many very interesting
research directions and open questions regarding IND-CPAD security as well as
simulation-based security. We leave further study of these new security notions
to future work.

For our attack against the CKKS scheme, as it essentially recovers the encryp-
tion noise ẽ of the ciphertext, a natural countermeasure to harden the CKKS
scheme is to modify the decryption algorithm, so that it does not output m + ẽ,
but only an approximation that does not depend on the secret key and encryp-
tion randomness. Below we discuss some specific ways to do that. We remark
that our suggestions are just simple countermeasures to mitigate the effect of the
attacks described in our work. Finding a more solid solution, provably achiev-
ing the notion of IND-CPAD security proposed in this paper, is left as an open
problem.

Gaussian noise. Perhaps the most natural way to do that (from an LWE perspec-
tive) is to add Gaussian noise to the result of the decryption function, similar to
the noise introduced by the encryption algorithm. While this makes the schemes
perhaps more robust, it does not seem an adequate countermeasure. The reason
is that an attacker may repeatedly request decryptions of the same ciphertext. If
the noise is unbiased, it can be easily reduced by taking several decryptions, and
computing their average. The result will not be exact, but the noise can be made
arbitrarily small by using a sufficiently large (still polynomial) number of calls,
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so that it can be eliminated either using rounding and Gaussian elimination, or
applying the theoretical lattice-based attacks described in Sect. 4.2.

Deterministic noise or rounding. To avoid the above weakness, one can effec-
tively limit the number of decryption calls to 1 per ciphertext by adding a
deterministic noise in the decryption algorithm, e.g., as a pseudorandom func-
tion applied to the ciphertext (and key derived from the decryption key.) This is
similar to the noise flooding techniques used in many lattice cryptographic con-
texts such as bootstrapping and circuit privacy of homomorphic encryption. It is
perhaps not practical to apply noise flooding generically to achieve unbounded
IND-CPAD security, as it requires a superpolynomial modulus, but it might be
feasible to achieve a bounded q-IND-CPAD security for any a-priori fixed q, using
techniques similar to [3,8,22]. A rigorous analysis is required not only for security
but also for practical efficiency and tradeoffs in the accuracy of the approximate
computation, and we leave this to future work.

Exact decryption. One can set up parameters in such a way that �(m + ẽ)/Δ� =
�m/Δ�, at least with high probability, where the rounding operation is taken to
certain precision. This effectively replaces the idea of approximate decryption
with an exact decryption algorithm, but for a modified message. This could be a
more promising direction to enhance the CKKS scheme, and it requires a careful
analysis of encryption noises together with rounding errors. Intuitively, instead
of interpreting a ciphertext as encoding an approximate number m+ẽ, we regard
them as encryptions of an approximate value �(m + ẽ)/Δ�. We can then define
the operations supported by the homomorphic encryption scheme in such a way
to ensure exact, deterministic behavior, both for homomorphic computations
and final decryption.

Since the resulting scheme satisfies the standard notion of correctness for
encryption (even if, perhaps, for a less standard set of operations than simple
addition and multiplication), it can be easily analyzed using the traditional def-
inition of security, and it is immediate to show that the scheme is secure under
passive attacks based on a standard (Ring) LWE assumption.

Responsible Disclosure

We disclosed details of our attack to the developers of HEAAN, SEAL, HElib,
and PALISADE at the beginning of October 2020 (and also to Lattigo [34] at a
later time, after porting our attack to the GO programming language used by
that library), before making our paper public. All teams were very responsive,
and they quickly acknowledged that our attack works and it represents a serious
threat that needs to be addressed. They have taken various actions, addressing
the vulnerability to different degrees, ranging from warning the users that any
use of the decryption function (except in very controlled environments where the
result of decryption is kept private,) to implementing some mitigation strategy
along the lines discussed in the previous section. In particular, we have tested
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the latest development versions of HElib and PALISADE, and we can confirm
our attack is no longer effective against them. Developing and implementing a
variant of CKKS which provably achieves IND-CPAD with only a modest decrease
in performance is left to future work.
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