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Abstract. In this paper we introduce two algorithms for neural archi-
tecture search (NASGD and NASAGD) following the theoretical work
by two of the authors [4] which used the geometric structure of optimal
transport to introduce the conceptual basis for new notions of tradi-
tional and accelerated gradient descent algorithms for the optimization
of a function on a semi-discrete space. Our algorithms, which use the net-
work morphism framework introduced in [1] as a baseline, can analyze
forty times as many architectures as the hill climbing methods [1,10]
while using the same computational resources and time and achieving
comparable levels of accuracy. For example, using NASGD on CIFAR-
10, our method designs and trains networks with an error rate of 4.06 in
only 12 h on a single GPU.

Keywords: Neural networks · Neural architecture search · Gradient
flows · Optimal transport · Second order dynamics · Semi-discrete
optimization

1 Introduction

Motivated by the success of neural networks in applications such as image recog-
nition and language processing, in recent years practitioners and researchers
have devoted great efforts in developing computational methodologies for the
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automatic design of neural architectures in order to use deep learning meth-
ods in further applications. There is an enormous literature on neural architec-
ture search methodologies and some of its applications (see [11] for an overview
on the subject), but roughly speaking, most approaches for neural architecture
search (NAS) found in the literature build on ideas from reinforcement learning
[12], evolutionary algorithms [8,9], and hill-climbing strategies based on network
morphisms [1,10]. All NAS approaches attempt to address a central difficulty:
the high computational burden of training multiple architecture models. Several
developments in the design of algorithms, implementation, and computational
power have resulted in methodologies that are able to produce neural networks
that outperform the best networks designed by humans. Despite all the recent
exciting computational developments in NAS, we believe that it is largely of
interest to propose sound mathematical frameworks for the design of new compu-
tational strategies that can better explore the architecture space and ultimately
achieve higher accuracy rates in learning while reducing computational costs.

In this paper we propose two new algorithms for NAS: neural architecture
search gradient descent (NASGD) and neural architecture search accelerated
gradient descent (NASAGD). These algorithms are based on: 1) the mathe-
matical framework for semi-discrete optimization (deeply rooted in the geomet-
ric structure of optimal transport) that two of the authors have introduced and
motivated in their theoretical work [4], and 2) the neural architecture search
methods originally proposed in [1,10]. We have chosen the network morphism
framework from [1] because it allows us to illustrate the impact that our mathe-
matical ideas can have on existing NAS algorithms without having to introduce
the amount of background that other frameworks like those based on reinforce-
ment learning would require. We emphasize that our high level ideas are not
circumscribed to the network morphism framework.

In the morphism framework from [1] an iterative process for NAS is con-
sidered. In a first step, the parameters/weights of a collection of architectures
are optimized for a fixed time, and in a second step the set of architectures are
updated by applying network morphisms to the best performing networks in
the previous stage; these two steps are repeated until some stopping criterion is
reached. In both NASGD and NASAGD we also use the concept of network mor-
phism, but now the time spent in training a given set of networks is dynamically
chosen by an evolving particle system. In our numerical experiments we observe
that our algorithms change architectures much earlier than the fixed amount of
time proposed in [1], while achieving error rates of 4.06% for the CIFAR-10 data
set trained over 12 h with a single GPU for NASGD, and of 3.96% on the same
training data set trained over 1 day with one GPU for NASAGD.

2 Our Algorithms

In this section we introduce our algorithms NASGD and NASAGD. In order to
motivate them, for pedagogical purposes we first consider an idealized setting
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where we imagine that NAS can be seen as a tensorized semi-discrete optimiza-
tion problem of the form:

min
(x,g)∈Rd×G

V (x, g). (1)

In the above, it will be useful to think of the g coordinate as an architecture and
the x coordinate as the parameters of that architecture. It will also be useful to
think of G = (G,K) as a finite similarity graph of architectures with K a matrix
of positive weights characterizing a small neighborhood of a given architecture
(later on G is defined in terms of network morphisms around a given architecture
–see Sect. 2.3), and V as a loss function (for concreteness cross-entropy loss)
which quantifies how well an architecture with given parameters performs in
classifying a given training data set. Working in this ideal setting, in the next
two subsections we introduce particle systems that aim at solving (1). These
particle systems are inspired by the gradient flow equations derived in [4] that
we now discuss.

2.1 First Order Algorithm

The starting point of our discussion is a modification of equation (2.13) in [4]
now reading:

∂tft(x, g) =
∑

g′∈G

[
log ft(g) + V (x, g) − (log ft(g′) + V (x, g′))

]

· K(g, g′)θx,g,g′(ft(x, g), ft(x, g′)) + divx(ft(x, g)∇xV (x, g)),
(2)

for all t > 0. In the above, ft(x, g) must be interpreted as a probability distri-
bution on R

d ×G and ft(g) as the corresponding marginal distribution on g. ∇x

denotes the gradient in R
d and divx the divergence operator acting on vector

fields on R
d. The first term on the right hand side of (2) is a divergence term on

the graph acting on graph vector fields (i.e. real valued functions defined on the
set of edges of the graph). The term θx,g,g′(ft(x, g), ft(x, g′)) plays the role of
interpolation between the masses located at the points (x, g) and (x, g′), and it
provides a simple way to define induced masses on the edges of the graph. With
induced masses on the set of edges one can in turn define fluxes along the graph
that are in close correspondence with the ones found in the dynamic formulation
of optimal transport in the Euclidean space setting (see [6]).

The relevance of the evolution of distributions (2) is that it can be interpreted
as a continuous time steepest descent equation for the minimization of the energy:

Ẽ(f) :=
∑

g∈G
log f(g)f(g) +

∑

g

∫

Rd

V (x, g)f(x, g) (3)

with respect to the geometric structure on the space of probability measures on
R

d × G that was discussed in section 2.3 in [4]. Naturally, the choice of different
interpolators θ endow the space of measures with a different geometry. In [4]
the emphasis was given to choices of θ that give rise to a Riemannian structure
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on the space of measures, but alternative choices of θ, like the one made in [2],
induce a general Finslerian structure instead. In this paper we work with an
interpolator inducing a Finslerian structure, and in particular define

θx,g,g′(s, s′) := s1U(x,g,g′)>0 + s′1U(x,g,g′)<0, s, s′ > 0, (4)

where U(x, g, g′) := log ft(g) + V (x, g) − (log ft(g′) + V (x, g′)). We notice that
with the entropic term used in (3) we only allow “wandering” in the g coordinate.
This term encourages exploration of the architecture space.

We now consider a collection of moving particles on R
d × G whose evolving

empirical distribution aims at mimicking the evolution described in (2). Initially
the particles have locations (xi, gi) i = 1, . . . , N where we assume that if gi = gj

then xi = xj (see Remark 1 below). For fixed time step τ > 0, particle locations
are updated by repeatedly applying the following steps:

– Step 1: Updating parameters (Training): For each particle i with posi-
tion (xi, gi) we update its parameters by setting:

xτ
i = xi − τ∇xV (xi, gi).

– Step 2: Moving in the architecture space (Mutation): First, for each
of the particles i with position (xi, gi) we decide to change its g coordinate
with probability:

τ
∑

j

(log f(gj) + V (xj , gj)) − (log f(gi) + V (xi, gi))−K(gi, gj),

or 1 if the above number is greater than 1. If we decide to move particle i,
we move it to the position of particle j, i.e. (xj , gj), with probability pj :

pj ∝ [
log f(gj) + V (xj , gj) − (log f(gi) + V (xi, gi))

]−
K(gi, gj).

In the above, f(g) denotes the ratio of particles that are located at g. Addi-
tionally, a− = max{0,−a} denotes the negative part of the quantity a.

Remark 1. Given the assumptions on the initial locations of the particles,
throughout all the iterations of Step 1 and Step 2 it is true that if gi = gj

then xi = xj . This is convenient from a computational perspective because in
this way the number of architectures that need to get trained is equal to the
number of nodes in the graph (which we recall should be interpreted as a small
local graph) and not to the number of particles in our scheme.

Remark 2. By modifying the energy Ẽ(f) replacing the entropic term with an
energy of the form 1

β+1

∑
g(f(g))β+1 for some parameter β > 0, one can motivate

a new particle system where in Step 2 every appearance of log f is replaced with
fβ . The effect of this change is that the resulting particle system moves at a
slower rate than the version of the particle system as described in Step 2.
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2.2 Second Order Algorithm

Our second order algorithm is inspired by the system of equations (2.17) in [4]
which now reads:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tft(x, g) +
∑

g′(ϕt(x, g′) − ϕt(x, g))K(g, g′)θx,g,g′(ft(x, g), ft(x, g))

+divx(ft(x, g)∇xϕt) = 0

∂tϕt + 1
2
|∇xϕt|2 +

∑
g′

(
ϕt(x, g) − ϕt(x, g′)

)2
K(g, g′)∂sθx,g,g′(ft(x, g), ft(x, g′))

= −[γϕt(x, g) + log ft(g) + V (x, g)],

(5)

for t > 0. We use θ as in (4) except that now we set U(x, g, g′) := ϕt(x, g′) −
ϕt(x, g). System (5) describes a second order algorithm for the optimization of
Ẽ – see sections 2.4 and 3.3 in [4] for a detailed discussion. Here, the function
ϕt is a real valued function over R

d × G that can be interpreted as momentum
variable. γ ≥ 0 is a friction parameter.

System (5) motivates the following particle system, where now we think that
the position of a particle is characterized by the tuple (xi, gi, vi) where xi, vi ∈
R

d, gi ∈ G, and in addition we have a potential function ϕ : G → R that also
gets updated. Initially, we assume that if gi = gj then xi = xj and vi = vj . We
also assume that initially ϕ is identically equal to zero.

We summarize the second order gradient flow dynamics as the iterative appli-
cation of three steps:

– Step 1: Updating parameters (Training): For each particle i located at
(xi, gi, vi) we update its parameters xi, vi by setting

xτ
i = xi + τvi, vτ

i = vi − τ(γvi + ∇xV (xi, gi)).

– Step 2: Moving in the architecture space (Mutation): First, for each of
the particles i with position (xi, gi, vi) we decide to move it with probability

τ
∑

j

(ϕ(gi) − ϕ(gj))−K(gi, gj),

or 1 if the above quantity is greater than 1. Then, if we decided to move the
particle i we move it to location of particle j, (xj , gj , vj) with probability pj

pj ∝ (ϕ(gi) − ϕ(gj))−K(gi, gj).

– Step 3: Updating momentum on the g coordinate: We update ϕ accord-
ing to:

ϕτ (gi) = ϕ(gi) − τ

2
|vi|2 − τ

( ∑

j

([
ϕ(gi) − ϕ(gj)

]−)2
K(gi, gj)

)

− τ(γϕ(gi) + log f(gi) + V (xi, gi)),

for every particle i. Here, f(g) represents the ratio of particles located at g.

Remark 3. Notice that given the assumption on the initial locations of the par-
ticles, throughout all the iterations of Step 1 and Step 2 and Step 3 we make
sure that if gi = gj then xi = xj and vi = vj .
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2.3 NASGD and NASAGD

We are now ready to describe our algorithm NASGD:

1. Load an initial architecture g0 with initial parameters x0 and set r = 0.
2. Construct a graph Gr around gr using the notion of network morphism intro-

duced in [1]. More precisely, we produce nneigh new architectures with associ-
ated parameters, each new architecture is constructed by modifying gr using
a single network morphism from [1]. Then define Gr as the set consisting of
the loaded nneigh architectures and the architecture gr. Set the graph weights
K(g, g′) (for example, setting all weights to one).

3. Put N particles on (xr, gr) and put 1 “ghost” particle on each of the remain-
ing architectures in Gr. The architectures for these ghost particles are never
updated (to make sure we always have at least one particle in each of the
architectures in Gr), but certainly their parameters will.
Then, run the dynamics discussed in Sect. 2.1 on the graph Gr (or the modified
dynamics see Remark 2, and Appendix of the ArXiv version of this paper [3])
until the node in Gr \ {gr} with the most particles gmax has twice as many
particles as gr.
Set r = r + 1. Set gr = gmax and xr = xmax, where xmax are the parameters
of architecture gmax at the moment of stopping the particle dynamics.

4. If size of gr exceeds a prespecified threshold (in terms of number of convolu-
tional layers for example) go to 5. If not go back to 2.

5. Train gr until convergence.

The algorithm NASAGD is defined similarly with the natural adjustments
to account for the momentum variables. Details can be found in sections 2 and 4
from the ArXiv version of this paper [3].

3 Experiments

We used NASGD and NASAGD on the CIFAR-10 data set to obtain two archi-
tecture models NASGD1 and NASAGD1 respectively (see Appendix in the
ArXiv version of this paper [3]). In the next table we compare the performance
of NASGD1 and NASAGD1 against our benchmark architectures NASH2 and
NasGraph produced by the methodologies proposed in [1,10].

Numerical experiments

CIFAR 10 Model Resources # params ×106 Error

NASH2 1 GPU, 1 day 19.7 5.2

NASGraph 1 GPU, 20 h ? 4.96

NASGD1 1 GPU, 12 h 25.4 4.06

NASAGD1 1 GPU, 1 day 22.9 3.96
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Besides producing better accuracy rates, it is worth highlighting that our
algorithms can explore many more architectures (about 40 times more) than
in [1] with the same computational resources. We took advantage of this faster
exploration and considered positive as well as negative architecture mutations,
i.e., mutations that can increase or decrease the number of filters, layers, skip,
and dimension of convolutional kernels.

Here are some extra details on the implementation of our algorithms. For
further details we refer the reader to the ArXiv version of this work [3]. In a
similar way to [1] and [10], we pre-train an initial network g0 with the struc-
ture Conv-MaxPool-Conv-MaxPool-Conv-Softmax for 20 epochs using cosine
aliasing that interpolates between 0.5 and 10−7; here Conv is interpreted as
Conv+batchnorm+Relu. We use g0 with parameters x0 as the initial data
for our gradient flow dynamics introduced in Sect. 2.1 for the first-order algo-
rithm NASGD and Sect. 5 for the second-order algorithm NASAGD. During
the NASGD and NASAGD algorithms, we use cosine aliasing interpolating the
learning rate from λstart to λfinal with a restart period of epochsneigh. In con-
trast to the NASH approach from [1], since we initialize new architectures, we do
not reset the time step along with the interpolation for the epochsneighs epochs.
Our particle system dynamically determines the number of initialization. We
continue this overall dynamics, resetting the learning rate from λstart to λfinal

every epochsneigh at most nsteps times. We perform several experiments letting
the first and second-order gradient flow dynamics run for different lengths of
time. Finally, we train the found architectures until convergence.

In the table below, we display the rest of the parameters used to find these
models.

Variable NASH2 NASGraph NASGD1 NASAGD1

nsteps 8 10 0.89 2.54

nNM 5 5 dynamic dynamic

nneigh 8 8 8 8

epochneigh 17 16 18 18

λstart 0.05 0.1 0.05 0.05

λfinal 0 0 10−7 10−7

Gradient stopping No Yes No No

Here, nsteps denotes the number of restart cycles for the cosine aliasing; nNM

is the number of morphism operations applied on a given restart cycle; nneigh

is the number of children architectures generated every time the current best
model changes; epochneigh is the number of epochs that go by before the cosine
aliasing is restarted; λfinal and λstart are the parameters required for SGDR.

4 Conclusions and Discussion

In this work we have proposed novel first and second order gradient descent algo-
rithms for neural architecture search: NASGD and NASAGD. The theoretical
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gradient flow structures in the space of probability measures over a semi-discrete
space introduced in [4] serve as the primary motivation for our algorithms. Our
numerical experiments illustrate the positive effect that our mathematical per-
spective has on the performance of NAS algorithms.

The methodologies introduced in this paper are part of a first step in a
broader program where we envision the use of well defined mathematical struc-
tures to motivate new learning algorithms that use neural networks. Although
here we have achieved competitive results, we believe that there are still several
possible directions for improvement that are worth exploring in the future. Some
of these directions include: a further analysis of the choice of hyperparameters
for NASGD and NASAGD, the investigation of the synergy that our dynamic
perspective may have with reinforcement learning approaches (given that more
architectures can be explored with our dynamic approach), the adaptation of
our geometric and analytic insights to other NAS paradigms such as parameter
sharing [7] and differential architecture search [5].
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