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Abstract
In this study, the three-compartment controller fatigue model is integrated with an inverse
dynamics optimization routine to predict the optimal posture, joint fatigue, and endurance
time for a box carrying task. The two-dimensional human model employed has 10 degrees
of freedom. For the box carrying task, the feet are fixed on the ground, and the hand loca-
tion and box weight are given. In the joint fatigue-based posture prediction formulation, the
design variables are joint angles, three-compartment control values, and total box carrying
duration (endurance time). The objective is to maximize the total time subject to task and fa-
tigue constraints, including compartment unity constraint, residual capacity constraint, and
a novel coupled failure constraint. The optimization successfully predicts the optimal pos-
ture, joint torque, endurance time, joint fatigue progression, and joint failure conditions. The
proposed novel joint fatigue-based formulation predicts the optimal posture for maximizing
the endurance time with a given box weight for a box-carrying task. Finally, the simulation
is computationally efficient, and the optimal results are achieved in about 5 seconds CPU
time on a regular computer.

Keywords Fatigue prediction · Endurance time prediction · Posture prediction · Box
carrying · Three-compartment controller fatigue model

1 Introduction

Joint fatigue associated with weight-carrying during manual material handling (MMH) tasks
can prove to be a significant contributor to the loss of muscle force capacity. Since fatigue is
the cumulative result of various physiological and neurological processes occurring simul-
taneously, it is very hard to single out the contribution of any one phenomenon making the
task of computing fatigue-related force loss quite challenging [1, 3, 8]. Due to the variety of
weights and carrying situations in the workplace in manufacturing, construction [5, 20], and
healthcare industries [7], it is imperative to have a risk assessment tool that can routinely be
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used to determine factors, such as best posture, maximum weight capacity, and endurance
time for the carrying task to minimize work-related injuries. Although physical prototypes
are needed to develop new equipment or create new workspaces, predictive biomechanical
human simulations can provide an efficient way to interact with the new environment. The
optimization-based dynamic modeling and simulation method [28] coupled with muscle fa-
tigue and recovery model [27] is a promising approach for predicting fatigue in box carrying
tasks.

Kinematics- and physics-based posture prediction has previously been studied [14, 23,
26, 33, 34]. However, these studies only considered the final posture without considering
holding the posture for a certain time, i.e., for a box-carrying task. In addition, they did not
consider fatigue in the formulation. Optimization-based dynamic modeling is another well-
established technique that helps determine the joint torques and forces required to complete
a specific task [25, 31]. Inverse dynamics-based posture/motion predictions can provide the
optimal posture/motion for any task, given a mathematically rigorous objective function and
a set of constraints that mimic the actual working conditions and human limitations. To
achieve this, a choice of formulations for the equations of motion (EOM) are available. The
Lagrangian formulation uses 4×4 transformation matrices [28, 29], while the Newton-Euler
method uses 3×3 rotation matrices for the dynamics calculation [2]. To find out the optimal
results, a sequential quadratic programming (SQP) based non-linear optimizer can be used
[19]. Though such an approach is indeed useful in posture and motion predictions, the effect
of muscle fatigue on the task has not been integrated with this so far. This can lead to errors
in prediction, thereby reducing the efficiency of the risk assessment tool being developed.

Fatigue models are mostly based upon analytical or experimental methods. While the
experiment-based models have advanced [18, 22] since the pioneering work by Rohmert
[24], those are typically applicable for simpler tasks. For more complex tasks, the inclu-
sion of one or more decay terms [11, 13] into the existing analytical models can be useful
at the single muscle level. However, these models cannot handle task-related factors like
joint angles, which is imperative for optimal posture prediction. To solve this issue, a three-
compartment controller (3CC) fatigue model, including resting, active and fatigued com-
partments, was proposed [27]. The relationship between these compartments are governed
by three first-order differential equations. This model is consistent with muscle physiology
and joint biomechanical properties and can handle complex biomechanical tasks.

Pereira et al. [21] did a pioneering work by applying a physics-based fatigue model to
a single elbow joint. Since then, little advance has been made to analyze the task-specific
fatigue results for complex biomechanical models. In this article, the three-compartment
controller fatigue model will be integrated with a two-dimensional (2D) 10 degrees of free-
dom (DOFs) human model. The inverse dynamics optimization-based prediction method
considering fatigue will be implemented to find the endurance time for a weight-carrying
task. The joint torques are evaluated using recursive Lagrangian equations. In addition to
determining the maximum endurance time when the task fails, the joints that cause the fail-
ure will also be identified using a novel coupled joint failure condition. It makes this research
a benchmark study for further investigations of more complex tasks such as the repetitive
lifting motion prediction considering fatigue. The contents of the article are organized as fol-
lows: Section 2 discusses the 2D human model and Denavit-Hartenberg (DH) parameters.
Section 3 discusses the EOM and the 3CC fatigue model. Section 4 presents the optimiza-
tion formulation. Section 5 presents the results obtained from the simulations and gives a
detailed discussion, and Section 6 concludes this study with some closing remarks.
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Fig. 1 A 2D human model setup
for the carrying endurance time
and fatigue status predictions

2 Humanmodel

For the box carrying-fatigue simulation, a human model is defined in joint space with 10
DOFs. The first two DOFs (q1,q2) are global translation in the forward (z) and the upward
(y) directions, and the third (q3) is global clockwise rotation (β). The global translations q1,
q2 and the rotation q3 refer to the movements of the whole body at hip joint in the global
reference frame. This can be better understood from the DH table in Table 1. The remaining
seven DOFs correspond to the rotation movements-spine flexion (q4), shoulder flexion (q5),
elbow extension (q6), hip extension (q7), knee flexion (q8), ankle plantar flexion (q9), and
metatarsophalangeal extension (q10), respectively. The anthropometric data used to design
the human model is generated from GEBOD, an anthropometric data regression software
[6]. The third (q3), fourth (q4), and seventh (q7) DOFs coincide, which means these three
joints are located in the same place. The DOFs are presented in the local z-direction, and the
local coordinates are set up at the end of each joint according to the DH method [10]. The
global coordinates are considered as the parent branch in this 2Dmodel, and it is divided into
two child branches–the spine-arm branch and the leg branch. The two arms are combined
into one since this is a 2D approximation, and the same combination is done for the two legs.
Figure 1 illustrates the complete schematic of a 2D human model setup with DH coordinates.
The model is based on a subject who is 1.763 meters tall and weighs 83.737 kilograms. The
detailed anthropometric information about the biomechanical model is provided in Table 2.

The DH method is used to derive the kinematic equations for the 2D model. This method
is especially useful for transferring the local coordinates to global coordinates through trans-
formation matrices. The four DH parameters are θ , d, a, and α-where θ represents rotation
angle along the previous z axis, d represents the offset distance along the previous z axis, a
represents the offset distance along the current x axis, and α represents rotation along the
current x axis. Equation (1) gives the DH transformation matrix. Table 1 shows the DH table
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Table 1 DH table for 2D human model

DOF θ d a α Segment

(+ dir) (length of) (length of) (branch)

q1 (global forward translation) π 0 0 π
2 Global

q2 (global upward translation) π
2 Leg 0 −π

2 Global

q3 (global clockwise rotation) 0 0 0 0 Global

q4 (spine flexion) −π
2 0 Spine 0 Spine arm

q5 (shoulder flexion) π 0 Upper arm 0 Spine arm

q6 (elbow extension) 0 0 Lower arm 0 Spine arm

q7 (hip extension) π
2 0 Thigh 0 Leg

q8 (knee flexion) 0 0 Tibia 0 Leg

q9 (ankle plantar flexion) −π
2 0 Hind foot 0 Leg

q10 (metatarsophalangeal extension) 0 0 Fore foot 0 Leg

Table 2 Anthropometric data for 2D human model

Link index (i) Length (m) Mass (kg) COMd (m) Inertiac (kgm2)

1 (Virtual link) 0 0 0 Ixx = 0, Iyy = 0, Izz = 0

2 (Virtual link) 0 0 0 Ixx = 0, Iyy = 0, Izz = 0

3 (Virtual link) 0 0 0 Ixx = 0, Iyy = 0, Izz = 0

4 (Spinea) Li = 0.57 45.447 (−0.183,0,0) Ixx = 0, Iyy = 4.073, Izz = 4.073

5 (Humerus) L2 = 0.339 4.072 (−0.189,0,0) Ixx = 0, Iyy = 0.176, Izz = 0.176

6 (Radius and Ulna) L3 = 0.311 3.877 (−0.173,0,0) Ixx = 0, Iyy = 0.135, Izz = 0.135

7 (Femurb) L4 = 0.465 20.350 (−0.239,0,0) Ixx = 0, Iyy = 1.530, Izz = 1.530

8 (Tibia and Fibula) L5 = 0.433 7.988 (−0.212,0,0) Ixx = 0, Iyy = 0.494, Izz = 0.494

9 (Metatarsals) L6 = 0.20 1.794 (−0.145,0,0) Ixx = 0, Iyy = 0.081, Izz = 0.081

10 (Phalanges) L7 = 0.05 0.199 (−0.025,0,0) Ixx = 0, Iyy = 0.009, Izz = 0.009

aNote that Mass, COM, and inertia of spine include neck and head.

bMass, COM, and inertia of femur include the pelvis.
cExcept for spine link, other links combine the right and left limbs in sagittal plane. In addition, the inertia
terms Ixy = Ixz = Iyz = 0.
dCOM and inertia are measured in DH local coordinates from the end of each link

for the 2D human model.

i−1Ti =

⎡
⎢⎢⎣
cos θi − cos αi sin θi sin αi sin θi ai cos θi
sin θi cos αi cos θi − sin αi cos θi ai sin θi
0 sin θi cos αi di
0 0 0 1

⎤
⎥⎥⎦ (1)

where the top-left 3 × 3 submatrix represents the rotation matrix, and the top-right 3 × 1
represents the translation vector.
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3 Equations of motion and fatigue formulation

The recursive approach is used to calculate the kinematics and dynamics of the human model
for this box-carrying task. Then, a simple three-compartment controller fatigue model is
used to predict the maximum endurance time and progression of fatigue.

3.1 Equations of motion

The EOM are expressed in Eqs. (2)-(6), where the first term in the torque expression of
Eq. (2) is the torque due to inertia and Coriolis force, the second term is the torque due to
gravity force, the third term is the torque due to external force, and the fourth term represents
the torque due to the external moment.

τi = tr(
∂Ai

∂qi
Di) − gT

∂Ai

∂qi
Ei − fTk

∂Ai

∂qi
Fi −GT

kAi−1z0 (2)

Di = IiCT
i +Ti+1Di+1 (3)

Ei = miri +Ti+1Ei+1 (4)

Fi = rkδki +Ti+1Fi+1 (5)

Gi = hkδki +Gi+1 (6)

where tr(·) is the trace of a matrix, Ai and Ci are the recursive kinematics position and
acceleration matrices, respectively, qi is the i-th joint angle, Ii is the inertia matrix for link i
as defined in Eq. (7a), Di is the recursive inertia and Coriolis matrix, g is the gravity vector,
mi is the mass of link i, ri is the center of mass of link i, fk = [

0 fky fkz 0
]T

is the
external force applied on link k, rk is the position of the external force in the local frame k,
hk = [

hx 0 0 0
]T

is the external moment applied on link k, Ti is the link transformation

matrix, z0 = [
0 0 1 0

]T
for a revolute joint, z0 = [

0 0 0 0
]T

for a prismatic joint,
and δki is the Kronecker delta defined in Eq. (7b). For a detailed derivation of the EOM and
their sensitivities with respect to state variables, refer to Xiang et al. [29]. A force balance
foot-ground interaction model is used to calculate ground reaction forces (GRF), which
equals to the active forces acting on the body, including inertia and Coriolis force, gravity,
and external box weight. This active-passive (GRF) balance model was presented in Xiang
et al. [30] and Xiang et al. [31]. By applying this contact model, the global forces/torque
will become zero if the balance condition is satisfied in optimization.

Ii =

⎡
⎢⎢⎣

−Ixx+Iyy+Izz

2 Ixy Ixz mixiCOM

Ixy
Ixx−Iyy+Izz

2 Iyz miyiCOM

Ixz Iyz
Ixx+Iyy−Izz

2 miziCOM

mixiCOM
miyiCOM

miziCOM
mi

⎤
⎥⎥⎦ (7a)

δki =
{
1 when k = i

0 otherwise
(7b)
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Fig. 2 Three-compartment
fatigue model with workflow [27]

3.2 Fatigue formulation

The three-compartment controller fatigue model has three basic elements – resting, active,
and fatigued compartments. Figure 2 shows the schematic of this system and the flow be-
tween the compartments, which is governed mathematically by the three first-order differ-
ential equations as in Eqs. (8)-(10). A relative unit-less measure of joint torque in percent of
maximum torque (%strength) is used in these equations.

dMRi(t)

dt
= −Ci(t) + Ri ×MFi(t) (8)

dMAi(t)

dt
= Ci(t) − Fi ×MAi(t) (9)

dMFi(t)

dt
= Fi ×MAi(t) − Ri ×MFi(t) (10)

whereMAi(t) is the active joint torque for the i-th joint at time instant t,MFi(t) is the fatigued
joint torque for the i-th joint at time instant t,MRi(t) is the resting joint torque for the i-th joint
at time instant t, Ri is the recovery coefficient for the i-th joint, Fi is fatigue coefficient for
the i-th joint, and Ci(t) is a bidirectional, time-varying torque activation–deactivation drive
for the i-th joint at time instant t, which relates MAi(t) and MRi(t). The fatigue and recovery
coefficient values [9] for all five physical joints are reported in Table 3. The hip joint is
excluded from the study as the respective coefficients are not available in the aforementioned
article. The values of Ci(t) satisfy the conditions given by Eqs. (11)-(13).

If MAi(t) < TLi(t) and MRi(t) > TLi(t) −MAi(t), Ci(t) = LDi × [TLi(t) −MAi(t)] (11)

IfMAi(t) < TLi(t) andMRi(t) < TLi(t) −MAi(t), Ci(t) = LDi ×MRi(t) (12)

If MAi(t) ≥ TLi(t), Ci(t) = LRi × [TLi(t) −MAi(t)] (13)

where LDi denotes the force development factor, and LRi denotes the relaxation factor. Vary-
ing the values of LDi and LRi by 2500% alters endurance time by only 10%, so arbitrary
values consistent with literature [9] are assigned for these parameters, i.e., LDi = 10 and
LRi = 10. TLi(t) represents the target load for each joint at time instant t, which is calculated
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Table 3 Fatigue and Recovery
Coefficients [9] DOF F R

Spine (q4) 0.00755 0.00075

Shoulder (q5) 0.01820 0.00168

Elbow (q6) 0.00912 0.00094

Knee (q8) 0.01500 0.00149

Ankle (q9) 0.00589 0.00058

using Eq. (14).

TLi(t) =
⎧⎨
⎩

τi(t)
τUi

for + ve torque direction

τi(t)
τLi

for − ve torque direction
(14)

4 Optimization formulation

In this section, the elements of the constrained optimization formulation, i.e., the objective
function, the design variables and their initial guess, and the constraints are discussed.

4.1 Objective function

The endurance time for the box carrying-fatigue problem could be stated as the maximum
time (Eq. (15)) the carrying task can be sustained before muscle fatigue contributes to its
failure.

Maximize: T (15)

where T is the endurance time.

4.2 Design variables

Design variables are the entities that can change their values within a specified range during
the optimization process. Since the optimization is carried out in joint space, the joint angles
q (Eq. (16)) are considered a part of the design variables set.

q = [
q1 q2 q3 . . . qndof

]T
(16)

From the three-compartment controller fatigue model [27], the resting compartment
MRi(t), the active compartment MAi(t), and the fatigued compartment MFi(t) are considered
design variables. These time-dependent parameters are transformed from a continuous-time
domain to a discrete-time domain. Spline interpolation is used to get an interpolation for-
mula that is continuous in both the first and second derivatives within the intervals and at
the interpolating nodes. This is a necessary condition for the optimization task. The design
variables are parameterized using cubic B-splines as given by Eqs. (17)-(19).

MRi(t) =
m∑
j=1

Bj(t)PMRij (17)
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MAi(t) =
m∑
j=1

Bj(t)PMAij (18)

MFi(t) =
m∑
j=1

Bj(t)PMFij (19)

where the subscript i ε 4, 5, 6, 8, 9 denotes the corresponding DOF.
PMRij , PMAij , and PMFij denote the control points of the resting, active, and fatigued com-

partments, respectively. Equations (20)-(22) denote the control point vectors for the three
compartments. With this representation, the control points become the design variables
for the parameterized optimization problem. The design variables associated with the three
compartments can then be represented by these control point vectors.

PMRi =
[
PMRi1 PMRi2 PMRi3 . . . PMRim

]T
(20)

PMAi =
[
PMAi1 PMAi2 PMAi3 . . . PMAim

]T
(21)

PMFi =
[
PMFi1 PMFi2 PMFi3 . . . PMFim

]T
(22)

where m is the total number of control points.
Bj(t) is the basis function at time instant t. The B-spline basis functions are uniquely

determined by a knot vector t, which is evenly spaced on the time interval
[
0 T

]T
with the

time step 
t, as shown in Eqs. (23)-(24).

t= [
t0 t1 t2 . . . ts−1

]T
(23)

tk+1 = tk + 
t, 
t= T

s
, k = 0, . . . , s− 1 (24)

where s is the number of discretized grids.
The number of knots depends on the number of control points and B-spline degree

(nknot=nctrl+deg-1). More control points will generate more flexible curve but will in-
crease the computational cost since they are design variables. To get the appropriate number
of control points, some numerical tests are required. In this study, we used 13 control points
for each cubic B-spline so that the number of knots is 13(nctrl) + 3(cubic deg) − 1 = 15.
The total time T is also considered as a design variable and discretized into 11 uniform grid
points with a time step of T/10. This led to a total number of 206 (ndof+3*5*nctrl+1) de-
sign variables. All parts of the design variable set can now be accumulated and represented
by Eq. (25).

x= [
qT PT

MRi
PT
MAi

PT
MFi

T
]T

(25)

The initial guess of the joint angles and fatigued compartments are set to zero, but the
active compartment value is set to 0.6 and the resting compartment value is set to 0.4,
showing the fact that the optimization process starts when joints have active torques. The
endurance time is estimated as 10 seconds initially. The optimization problem is solved
using the SNOPT program, which uses a SQP algorithm algorithm [12]. The constraints
imposed upon the optimization formulation are discussed in the next section.
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Table 4 Joint Angle Limits
DOF Lower limit Upper limit

q1 (m) −5.0 5.0

q2 (m) −5.0 5.0

q3 (deg) −10.0 10.0

q4 (deg) 0.0 120.0

q5 (deg) −180.0 90.0

q6 (deg) −150.0 0.0

q7 (deg) −150.0 90.0

q8 (deg) 0.0 140.0

q9 (deg) −20.0 60.0

q10 (deg) −60.0 0.0

4.3 Constraints

Both time-dependent and time-independent constraints are considered in the box carrying-
fatigue optimization formulation. For the entire time interval, time-dependent constraints
such as joint angle limits, joint torque limits, foot contacting position, zero-moment point
(ZMP) location, wrist location for the box weight, resting compartment equation, active
compartment equation, and fatigued compartment are considered. In addition, the three
compartments must satisfy the unit summation condition [MAi(t) + MRi(t) + MFi(t) = 1]
and residual capacity condition [MAi(t) + MRi(t) ≥ TLi(t)]. For the time-independent con-
straints, the lower body (hip, knee, and ankle joints) is in a straight posture. Finally, the
failure condition for a joint is defined as the sum of active and resting joint torques dropping
below the target load value. Therefore, the task is considered to fail when one joint fails or
multiple joints fail simultaneously. This is described by a coupled failure constraint, which
is the multiplication of the five joint failure conditions – spine, shoulder, elbow, knee, and
ankle at the final time point. By specifying a small tolerance for the task failure constraint,
it is forced to be active at the final time instant. After the optimal solution is found, this
coupled failure constraint can be used to check which joint fails first.

Time dependent constraints

4.3.1 Joint limits

An upper and lower limit was set for all the joint angles to ensure the optimizer varies these
design variables within a physical range.

qLi ≤ qi(x) ≤ qUi (26)

where qLi is the lower limit and qUi is the upper limit. These values are reported in Table 4.

4.3.2 Torque limits

Normalized torque limits were set to ensure the physical torque achieved from the EOM
does not exceed the strength limit during the box carrying-fatigue optimization process.

0≤ τi(x) − τL
i

τU
i − τL

i

≤ 1 (27)
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Table 5 Joint Torque Limits
[4, 15, 16, 32]

Note that the strengths of
q5 − q10 are doubled because of
the combination of the right and
left limbs’ strengths in 2D model.
In addition, the global
forces/torque are becoming zero
after applying the foot-GRF
balance interaction model
although large bounds are used
for global forces/torque

DOF Lower limit Upper limit

q1 (N) −500.0 500.0

q2 (N) −500.0 500.0

q3 (Nm) −500.0 500.0

q4 (Nm) −400.0 400.0

q5 (Nm) −184.0 126.0

q6 (Nm) −117.4 120.6

q7 (Nm) −334.0 408.0

q8 (Nm) −518.2 206.4

q9 (Nm) −75.4 170.6

q10 (Nm) −140.0 140.0

where τL
i is the lower limit and τU

i is the upper limit of the i-th joint torque. This constraint
is applied to all the joints. These values are reported in Table 5.

4.3.3 Foot contact position

The position where the feet contact the ground is also specified in order to prevent feet of
the human model from leaving the ground. The specific position depends on the length of
the foot, which varies for each subject. The heel (z = −0.05 m), ankle (z = 0.0 m) and the
toe (z = 0.20 m) are given and the feet length 0.25 m.

Pfeet(x) = Pspecified
feet (28)

where Pspecified
feet is the specified foot contact position on level ground.

4.3.4 Zero-moment point

The zero-moment point should always stay inside the foot support polygon (FSP). For the
2D model, the FSP becomes a line segment that only has z coordinates in the sagittal plane
in global Cartesian coordinates. The z-coordinate of ZMP is between the heel and toe, which
are fixed on the ground.

PZMP(x) ε FSP (29)

4.3.5 Wrist location

The wrist location corresponding to the box position is specified as (0,1.05,0.4) m.

Pwrist(x) = Pspecified
wrist (30)

4.3.6 Governing equations for three motor unit compartments

The three compartments must satisfy the governing Eqs. (31)-(33):

dMRi(t)

dt
+Ci(t) − Ri ×MFi(t) = 0 (31)
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dMAi(t)

dt
−Ci(t) + Fi ×MAi(t) = 0 (32)

dMFi(t)

dt
− Fi ×MAi(t) + Ri ×MFi(t) = 0 (33)

These three constraints are applied to the five physical joints (spine, shoulder, elbow, knee,
and ankle) only.

4.3.7 Unit summation

The sum of the values of three compartments at each instant must equal to one.

MRi(t) +MAi(t) +MFi(t) = 1 (34)

This constraint is also applied to the five physical joints.

4.3.8 Residual capacity (RC)

The joint residual capacity should meet or exceed the target load for all five physical joints
at all times.

MRi(t) +MAi(t) ≥ TLi(t) (35)

Time independent constraints

4.3.9 Lower body posture

The lower body (hip, knee, and ankle joints) posture was restricted to a narrow range of
motion (qspecified7 = −0.974 deg, qspecified8 = 4.183 deg, and qspecified9 = −3.209 deg) corre-
sponding to mostly upright postures.

Hip: − 15◦ < q7 − qspecified7 < 15◦ (36)

Knee: − 15◦ < q8 − qspecified8 < 15◦ (37)

Ankle: − 15◦ < q9 − qspecified9 < 15◦ (38)

4.3.10 Coupled failure condition

The five physical joints (spine, shoulder, elbow, knee, and ankle) were coupled together
to determine which joints fatigue the earliest. This is achieved by multiplying the residual
capacities of these joints.

−ε <

9∏
i=4,i�=7

[
MRi(T) +MAi(T) − TLi(T)

]
< +ε (39)

where ε denotes the tolerance limit, and its value is given by 10−5.
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Table 6 Optimized joint angles
and torques DOF Angle Torque

(+ dir) (radians) (Nm)

Spine (q4) 0.587 −288.7

Shoulder (q5) −0.733 −133.0

Elbow (q6) −0.982 −95.0

Knee (q8) 0.273 149.1

Ankle (q9) 0.057 123.1

Fig. 3 Predicted posture for
carrying-fatigue optimization
problem (The fatigue models are
considered for the joints circled
in red). (Color figure online)

4.3.11 Initial conditions for the three compartments

The five physical joints are fully activated at the initial time.

MAi(0) = 1.0 (40)

MRi(0) = 0.0 (41)

MFi(0) = 0.0 (42)

5 Results and discussion

The inverse dynamics optimization method is utilized to predict the optimal box carrying
posture, maximum endurance time, and joint fatigue progression for the subject who holds
a 25.5 kg box. The optimal carrying posture is depicted in Fig. 3. Note that the feet are
fixed to the ground, and the global location of the box is specified. The fatigue models
are considered only for the joints circled in red. The optimized joint angles and torques
are reported in Table 6. The maximum endurance time is 15.71 seconds. The optimization
process takes 64 major iterations and 5.04 seconds of CPU time to converge. The simulation
is run on a laptop with an 11th Gen Intel Core i9-11900H processor clocked at 2.50 GHz
base speed, which features 8 cores, 16 logical processors and 32 GB RAM. The joint limits,
foot contacting position, wrist position, and unit summation constraints are active during the
optimization process.

From Figs. 4, 5, 6, 7 and 8 the differences between the target load and residual capacity
values (failure conditions) at the maximum endurance time instant can be used to find out
which joint fails first. The failure condition values are given in Table 7, which indicates that
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Table 7 Joint failure conditions
DOF Failure condition

(+ dir) [RC(T) − TL(T)]

Elbow (q6) 0.000000

Knee (q8) 0.002203

Shoulder (q5) 0.004255

Spine (q4) 0.010907

Ankle (q9) 0.030947

Fig. 4 Predicted compartment
values for elbow joint. (Color
figure online)

Fig. 5 Predicted compartment
values for knee joint. (Color
figure online)

the elbow joint fails first and the ankle joint fails last during the endurance test. The table
also reveals that elbow and knee joints contribute to the bulk of the task, correctly predicting
the nature of a typical carrying posture. The three-compartment values for the elbow, knee,
shoulder, spine and ankle joints are also shown in Figs. 4-8. All five physical joints show a
common trend of diminishing joint residual capacity and increasing fatigue over the entirety
of the endurance test. The joint active torque, MAi(t) quickly falls to a certain value (40%
of its maximum value for shoulder, knee, spine and ankle joints, 60% of its maximum value
for elbow joint) at 0.6 seconds, but partially recovers (to about 80% of the maximum value
for the shoulder, knee, spine, and ankle joints, and to about 85% of the maximum value for
the elbow joint) at 2.2 seconds and maintains a stable value around the target load value
till fatigue is reached. The joint resting torques, MRi(t) undergo a surge (to about 60% of
its maximum value for the shoulder, knee, spine and ankle joints, and about 45% of its
maximum value for the elbow joint) at 0.8 seconds before they fall to a certain value (about
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Fig. 6 Predicted compartment
values for shoulder joint. (Color
figure online)

Fig. 7 Predicted compartment
values for spine joint. (Color
figure online)

Fig. 8 Predicted compartment
values for ankle joint. (Color
figure online)

15% for the shoulder, knee, spine, and ankle joints, about 10% for the elbow joint) at 2.4
seconds, after which they have a slight rise before continuing to gradually decrease till task
failed. This decrease is wavelike for all five physical joints. Fatigued joint torques,MFi(t) for
all five physical joints gradually increase over time as expected. This increase is wavelike
for shoulder, elbow, and knee joints but smooth for the other two (spine and ankle) physical
joints. The target load stays about 72% of joint activation over the endurance time period
for all five physical joints. The residual capacities decrease over the course of the endurance
test for all five physical joints.

The exclusion of hip joint fatigue may change the results obtained in this study. One way
to fix this would be to use the fatigue parameters for general joints as the parameters for hip
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joint instead of specific hip fatigue parameters as suggested in Frey-Law et al. [9]. However,
in general, for fatigue-based box carrying posture prediction, the upper body joints normally
reach fatigue faster than the lower body joints. Therefore, we assume in this study that
exclusion of hip joint fatigue will not significantly change the endurance time in standing
up box carrying task. In addition, the proposed optimization formulation is generic, and the
hip joint fatigue can be easily considered as long as its fatigue parameters are available. The
experimental measurements of hip joint fatigue parameters are ongoing, and hip fatigue will
be included in the future study.

For the box carrying task, we assume a straight standing lower body posture in constraint
Eqs. (36)-(38). However, we did not specify the lower body joints to be the exact standing
neutral angles that are close to zero [17]. Instead, a small range of motion (30◦) is used
for hip, knee, and ankle joints to allow the subject to adjust the lower body posture while
keeping a relatively straight standing posture. This small lower body range of motion may
improve the predicted endurance time. However, if the range of motion of the lower body is
too large, optimization may predict an unnatural box carrying posture, such as knee bending
posture. In addition, by using a gradient-based optimizer, it is possible to fall into a local
optimum. In this study, we tried different starting points for design variables and took the
maximum value of the predicted endurance time as the optimal solution to try to avoid a
local optimum.

As MAi(t) and MRi(t) are both considered as part of design variables, they can vary
throughout the optimization process if the governing equations of the three-compartment
fatigue model are satisfied. For all joints, MAi(t) is specified as 1(100%), and MRi(t) and
MFi(t) are specified as 0(0%) at the initial time as in Eqs. (40)-(42). Based on Eq. (13),
the bidirectional torque activation-deactivation drive Ci(t) is negative at the beginning time
because TLi(t) − MAi(t) < 0, which means the extra MAi(t) will flow into MRi(t) as shown
in Fig. 2. This will make MAi(t) decrease and MRi(t) increase as demonstrated in Figs. 4-8
for joint fatigue. When MAi(t) keeps decreasing until it is below TLi(t), Eq. (11) is acti-
vated because MAi(t) < TLi(t) and MRi(t) > [TLi(t) − MAi(t)], and Ci(t) is positive at this
moment. Based on fatigue governing Eq. (9), although Ci(t) is positive, −Fi ∗MAi(t) is neg-
ative. Therefore, the derivative of MAi(t) is still negative, i.e., MAi(t) is still decreasing even
MAi(t) < TLi(t) and Ci(t) > 0. The derivative of MAi(t) is becoming positive until Ci(t) is
larger than Fi ∗MAi(t). After that MAi(t) starts to increase until it is greater than TLi(t) and
sustains the TLi(t) together with MRi(t). The minimum value of MAi(t) and the maximum
value of MRi(t) occur at around 0.7 seconds.

In addition, in this study, we assume that five physical joints are fully activated at initial
time. This may not match with human physiology. For heavy box carrying task, the human
central nervous system (CNS) may activate some joints immediately but other joints later.
However, this is an instinctive process for human, and learning and training can even change
initial joint activation extent and sequence, such as athlete weight lifting training. However,
for simulation, it is generally difficult to tell the activation status for all joints at the ini-
tial time. The simulation does not converge with inappropriate combination of initial joint
activations. Global optimization method, such as genetic algorithm, can be used to study
the effect of different combinations of initial joint activation conditions on the predicted
endurance time to better understand human CNS and physiology. The developed method
provides a tool to study this topic which is our future research.

In summary, the dynamic process ofMAi(t),MRi(t) andMFi(t) is governed by the fatigue
governing differential Eqs. (8)-(10) and bidirectional control Eqs. (11)-(13) for Ci(t). These
equations are further controlled by the parameters Ri, Fi, LRi, and LDi. Especially at the
beginning stage (less than 0.7 seconds), MAi(t) decreases below TLi(t), this is related to
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the parameters LRi in Eq. (11) for Ci(t) and Fi in Eq. (9) for the derivative of MAi(t). Ri

and Fi parameters are obtained from experiments. LRi and LDi do not significantly affect
the predicted endurance time based on Frey-Law et al. [9], but they do affect the dynamic
behaviors of MAi(t) and MRi(t) at the beginning stage of the task as demonstrated in this
study. This indicates LRi and LDi are related to muscle physiology and are required further
investigation.

6 Conclusion

The addition of the 3CC fatigue model with the existing inverse dynamics prediction tech-
nique enabled the determination of endurance time during box carrying-fatigue simulation.
Not only can the optimized joint angles, joint torques, and ground reaction forces be ob-
tained, the joint failure conditions can also be predicted along with the maximum endurance
time. At the beginning of the task, active torque is high; then, as time progresses, the fatigue
starts to occur until endurance time is reached, at which time muscle capacities fall below a
threshold, and the task can no longer be continued. In the future, the static fatigue model will
be extended to a dynamic fatigue model and integrated with motion prediction routines for
analyzing fatigue effect and endurance time for repetitive lifting motion thus significantly
improving the risk assessment tools for injury prevention during manual material handling
processes.
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