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Abstract
Based on the insight gained by many authors over the years on the struc-
ture of the Einstein–Hilbert, Gauss–Bonnet and Lovelock gravity Lagrangians,
we show how to derive-in an elementary fashion-their first-order, generalized
‘Arnowitt–Deser–Misner’ Lagrangian and associated Hamiltonian. To do so,
we start from the Lovelock Lagrangian supplemented with theMyers boundary
term, which guarantees a Dirichlet variational principle with a surface term of
the form πi jδhi j, where πi j is the canonical momentum conjugate to the bound-
ary metric hi j. Then, the first-order Lagrangian density is obtained either by
integration of πi j over the metric derivative ∂whi j normal to the boundary, or by
rewriting the Myers term as a bulk term.

Keywords: classical mechanics, modified theories of gravity, general relativity

Introduction

The general relativity (GR), Gauss–Bonnet (GB) and more generally Lovelock [1]
Lagrangians, being (quasi) linear in the second derivatives of the metric, yield second-order
field equations (see e.g. [2] for a review).

Theremust hence exist first-order Lagrangians, which do not depend on themetric’s second
derivativenormal to a foliation, andwhich differ fromLovelock’s by adding adequate boundary
terms, so that they produce the same dynamics but with Dirichlet boundary conditions.
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In GR, a boundary term to be added to the Einstein–Hilbert Lagrangian to yield a Dirich-
let variational principle was proposed by Gibbons, Hawking [3] and York [4] (GHY). Its
generalization to GB and Lovelock theories was obtained by Myers [5], see also [6–9].

In GR, a well-known first-order Lagrangian is that of Arnowitt–Deser–Misner (ADM),
which is written (as well as the corresponding Hamiltonian) in a 1 + 3 form in terms of the
extrinsic and intrinsic curvatures of a spacetime foliation [10, 11]. The GB and Lovelock
first-order Lagrangians (and corresponding Hamiltonian) generalizing ADM’s were found by
Teitelboim and Zanelli [12, 13].

In this paper, we will obtain the Teitelboim–Zanelli Lagrangian and Hamiltonian in two dif-
ferent straightforward manners. We shall first illustrate the methods on the (nowadays) simple
case of GR, and then generalize the procedure to all Lovelock Lagrangians.

1. The crux of the method

1.1. The example of point mechanics

Consider a particle with position q(t) described by the action

I =
∫ tf

ti

dtL with L(q, q̇, q̈) = �(q, q̇)+ q̈ f (q, q̇), (1.1)

where a dot denotes a derivative with respect to time t. The variation of I upon an infinitesimal
variation δq(t) of the path q(t) reads

δI =
∫ tf

ti

dt δq [B(q, q̇)− q̈A(q, q̇)]+

[
δq

(
∂�

∂q̇
− q̇

∂ f
∂q

)
+ δq̇ f

]tf
ti

. (1.2)

The issue with I is that its variation δI cannot be made to vanish for an arbitrary δq(t)
between ti and tf . Indeed, the vanishing of the boundary terms necessitates fixing 4 constants
(to wit the positions and velocities of the particle at ti and tf so that δq|ti = δq|tf = δq̇|ti =
δq̇tf = 0). These conditions are incompatible with the fact that the solutions of the equation
of motion (B− q̈A = 0), which is second order since L is (quasi) linear in the acceleration q̈,
depend on 2 integration constants only4.

Now, it must be possible to build an ordinary, first-order Lagrangian L1(q, q̇) and associated
action I1 which yield a second order equation of motion when imposing δI1 = 0 for Dirich-
let boundary conditions (that is, by fixing δq|ti = δq|tf = 0 only). In order to give the same
equation of motion as L, L1(q, q̇) is taken to differ from L by the substraction of a total time
derivative of some function F(q, q̇):

L1(q, q̇) = L− dF(q, q̇)
dt

, I1 =
∫ tf

ti

dt L1 = I − [F(q, q̇)]tfti . (1.3)

A simple route to obtain L1 is to compute the surface terms in the variation of the action.
We have, on-shell, that is when the equation of motion is satisfied,

δI1 =

[
δq

(
∂�

∂q̇
− q̇

∂ f
∂q

− ∂F
∂q

)
+ δq̇

(
f − ∂F

∂q̇

)]tf
ti

, (1.4)

where we have used (1.2). The vanishing of the coefficient of δq̇ in (1.4) gives the function F,

F =

∫
dq̇ f (q, q̇). (1.5)

4 For completeness: A(q, q̇) = ∂2�
∂q̇2

− q̇ ∂2 f
∂q∂q̇ − 2 ∂ f

∂q and B(q, q̇) = ∂
∂q

(
�− q̇ ∂�

∂q̇ + q̇2 ∂ f
∂q

)
.
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If we then identify the coefficient of δq to the canonical momentum (see e.g. [14])

p=
∂L1
∂q̇

, (1.6)

L1 is obtained by a simple integration with respect to the velocity q̇:

L1 = �(q, q̇)− q̇
∂F
∂q

, (1.7)

with F given by equation (1.5).
Another way, even simpler in this case, to obtain L1 is to lift F to the bulk (a procedure

which we shall refer to as bulkanization below), and write, using (1.3) and (1.1):

I1 ≡
∫ tf

ti

dt L1(q, q̇)

=

∫ tf

ti

dt

[
L− dF

dt

]

=

∫ tf

ti

dt

[
�(q, q̇)− q̇

∂F
∂q

+ q̈

(
f − ∂F

∂q̇

)]
, (1.8)

which yields back (1.7), using (1.5):5

1.2. Two routes to the first-order Lagrangian of GR

Let us first recall how the Gibbons–Hawking–York (GHY) boundary term is obtained.
Consider, in some coordinate system xμ labelling the points of a D-dimensional pseudo-
RiemannianmanifoldM (Greek indices run from 0 toD− 1; see appendixA for conventions),
the GR action

IGR =

∫
M

dDx
√
−gR . (1.9)

This action depends linearly on the second derivatives of the field variables gμν , and its variation
reads:

δIGR =

∫
M

dDx
√
−g

(
Gμνδg

μν +∇μV
μ
GR

)
, (1.10)

where Gμν is the Einstein tensor. The second term on the rhs of (1.10) is the covariant
divergence of the four-vector

Vμ
GR = gαβδΓμ

αβ − gμαδΓβ
αβ , (1.11)

which can be evaluated, using Gauss’ theorem, on the d = D− 1 dimensional boundary ∂M
ofM.

5 It is an exercise to check that the equation of motion derived from L1 is the same as that derived from L: ṗ− ∂L1
∂q =

q̈A− B, with A and B given in footnote 1. As for the Hamiltonian H = pq̇− L1, it cannot, in general, be written
explicitly in terms of q and p unless p= p(q, q̇) can be inverted explicitly to give q̇ = q̇(q, p). Hence it cannot be
shown explicitly that the Hamilton equations yield back the Euler–Lagrange equations derived from L1.

3
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Let us choose for simplicity a Gaussian coordinate system xμ = {w, xi} (Latin indices run
from 1 to d = D− 1), such that w is constant on ∂M:

ds2 = εN(w)2 dw2 + hi j(w, xk)dxi dx j, (1.12)

with ε = −1 if ∂M is spacelike and ε = +1 if it is timelike, whereN(w) is a function ofw only
and hi j are the d(d + 1)/2 components of the induced metric on ∂M, with extrinsic curvature

Ki j =
1
2N

∂whi j. (1.13)

From now on Latin indices are lowered and raised with hi j and its inverse hi j. For the gauge-
fixed metric (1.12) we have

Vw
GR = − ε

N

(
Ki jδhi j + 2δK

)
, (1.14)

where K = hi jKi j, making manifest that the surface term in (1.10) contains variations of the
normal derivative of hi j through δK (the latter originates from the components (A.5) of δΓ).

Hence a Dirichlet action principle can be achieved if the GR action is supplemented with
the GHY boundary term [3, 4]

IDir[g] =
∫
M

dDx
√
−gR+ 2ε

∫
∂M

ddx
√
|h|K, (1.15)

since the variation of this action gives, on-shell (that is, when Gμν = 0 in vacuum),

δIDir =
∫
∂M

ddx πi jδhi j, (1.16)

where

πi j = ε
√

|h|(Khi j − Ki j), (1.17)

and vanishes imposing Dirichlet boundary conditions: δhi j|∂M = 0.
The action principle above can be associated to a first-order bulk functional,

I1 =
∫
M

dDxL1. (1.18)

Indeed, in a Gaussian frame (1.12) which foliates M with constant-w surfaces Σw, L1 can
be obtained by identifying πi j given by equation (1.17) as the canonical momentum density
conjugate to hi j, i.e.,

∂L1

∂(∂whi j)
= πi j. (1.19)

Integrating πi j with respect to ∂whi j = 2NKi j gives

L1 = N
√
|h|

(
ε
(
K2 − Ki jKi j

)
+ r(hi j, ∂khi j, ∂k∂lhi j)

)
, (1.20)

4
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where the integration constant r(hi j, ∂khi j, ∂k∂lhi j) must identify to the part of the Hilbert
Lagrangian which only depends on the intrinsic geometry of the surfaces Σw, i.e. R̄, where
a bar stands for quantities built out of hi j only6

L1 = N
√
|h|

(
R̄+ ε

(
K2 − Ki jKi j

))
= LADM. (1.21)

This is the celebrated ADM Lagrangian density [10, 11] written here in Gaussian coordinates.
Let us show now that the same first-order (in the normal derivative) Lagrangian density

can be obtained by the bulkanization of the GHY term. Define the closed boundary by the
union ∂M = Σwi ∪ Σw f ∪ C of the surfacesw = wi andw = wf and their complement C, and
rewrite the GHY contributions from Σwi and Σwf in (1.15) as the integral of 2ε∂w

(√
|h|K

)
over the bulk. Using the Gauss–Codazzi–Mainardi relation (A.13), we then have

√
−gR+ 2ε∂w

(√
|h|K

)
=

√
−g

[
R̄− ε

(
K2 + Ki

jK
j
i

)]
+ 2ε∂w

(√
|h|

)
K. (1.22)

Since moreover ∂w
√
|h| = NK

√
|h|, we obtain

√
|h|R+ 2ε∂w

(√
|h|K

)
= N

√
|h|

(
R̄+ ε

(
K2 − Ki jKi j

))
= LADM. (1.23)

The bulkanized GHY terms on Σwi and Σwf cancel out with the second normal derivative in
equation (1.22) that comes from Rwi

w j, see (A.9), so that the resulting Lagrangian is of first
order. As for the GHY defined on the complement C, it can be discarded for our purposes (but
is essential to define the ADM mass [15]).

Finally, the dependence on the D = d + 1 extra components of the spacetime metric gμν
can be reinstated using the ADM metric decomposition

ds2 = εN2 dw2 + hi j(dxi + Ni dw)(dx j + N j dw), (1.24)

where N(w, xi) is the lapse and Ni(w, x j) is the shift. The extrinsic curvature is then redefined
as

Ki j =
1
2N

(∂whi j − ∇̄iN j − ∇̄ jNi), (1.25)

with ∇̄i the covariant derivative associated to hi j.
It can be explicitly checked that variationswith respect toN,Ni and hi j ofLADM yield respec-

tively the constraints Gw
w = 0, Gi

w = 0 and the dynamical componentGi
j = 0 of the equations

of motion written in Gaussian coordinates.

2. The first-order Lagrangian of Lovelock gravity

2.1. Dirichlet principle for Lovelock gravity

As shown by Myers [5], the Dirichlet action for a generic Lovelock theory is given by

IDir =

[
D−1
2

]
∑
p=0

αp

⎛
⎝∫

M

dDxL(p) −
∫
∂M

ddxβ(p)

⎞
⎠ , (2.1)

6 By intrinsic geometry, we refer to quantities built out of hi j and its tangential derivatives ∂khi j and ∂k∂lhi j only.

5
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where [(D− 1)/2] is the integer part of (D− 1)/2, where7

L(p) =
1
2p

√
−gδ[μ1...μ2p][ν1...ν2p]

Rν1ν2
μ1μ2

. . .R
ν2p−1ν2p
μ2p−1μ2p, (2.2)

is of degree p in the curvature, and where

δ
[ν1...ν2p]
[μ1...μ2p] ≡

∣∣∣∣∣∣∣∣∣

δν1μ1 δν2μ1 . . . δ
ν2p
μ1

δν1μ2 δν2μ2 δ
ν2p
μ2

...
. . .

δν1μ2p δν2μ2p δ
ν2p
μ2p

∣∣∣∣∣∣∣∣∣
, (2.3)

is the generalized Kronecker delta of rank 2p, which is antisymmetric under exchange of
its upper (and lower) indices. In our conventions (see appendix A), the dimension of αp is
[length]2p−2. The corresponding Myers boundary terms are given by [5, 7]

β(p) = −2εp
√
|h|

∫ 1

0
ds δ

[i1...i2p−1]
[ j1... j2p−1]

K j1
i1

(
1
2
R̄ j2 j3
i2i3

− s2εK j2
i2
K j3
i3

)
× · · ·

. . .×
(
1
2
R̄
j2p−2 j2p−1
i2p−2i2p−1

− s2εK
j2p−2
i2p−2

K
j2p−1
i2p−1

)
. (2.4)

For its rewriting as the covariant derivative of a D-vector, see also [16] or [17] which involve,
respectively, the introduction of a background metric or an extra vector field which identifies
to the normal n on ∂M. In our conventions we have α0 = −2Λ and α1 = 1.

The variation of equation (2.1) reads

δIDir =
∫
M

dDx
√
−gEμνδgμν +

∫
∂M

ddx πi jδhi j, (2.5)

with

πi j =

[
D−1
2

]
∑
p=0

αpπ
i j
(p), (2.6)

where, from each pth Lovelock density, one obtains

πi j(p) = pε
√

|h|
∫ 1

0
ds δ

[ii1...i2p−1]
[k j1... j2p−1]

hk jK j1
i1

(
1
2
R̄ j2 j3
i2i3

− s2εK j2
i2
K j3
i3

)
× · · ·

. . .×
(
1
2
R̄
j2p−2 j2p−1
i2p−2i2p−1

− s2εK
j2p−2
i2p−2

K
j2p−1
i2p−1

)
. (2.7)

As for the Lovelock tensor Eμ
ν , it reads

Eμ
ν =

[
D−1
2

]
∑
p=0

αpEμ
(p)ν , (2.8)

7 In even dimensions, the term p= D/2 is topological, and it does not contribute to the field equations.

6
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with

Eμ
(p)ν = − 1

2p+1
δ
[μμ1...μ2p]
[νν1...ν2p]

Rν1ν2
μ1μ2

. . .R
ν2p−1ν2p
μ2p−1μ2p. (2.9)

Note that in the boundary term of (2.5) we omitted the divergence of a d-vector ∇̄iWi since
its integration on the closed boundary ∂M vanishes (see, e.g., [2]; see also [18] for its explicit
expression).

The addition of a topological term in even dimensions cannot induce an associated canonical
momentum πi j(D/2). This can be seen from the anti-symmetric structure of the indices in the
canonical momentum in equation (2.7). In the critical space-time dimension, the canonical
momentum is constructed with a Kronecker delta of rank D at the boundary, a fact that makes
it identically zero8.

The action (2.1) yields a Dirichlet variational principle. In other words, theMyers boundary
terms are the analogues of the functionF, given by (1.5), in the mechanical problemwe treated
in section 1.1.

2.2. Two routes to the first-order Lagrangian for Lovelock gravity

Integration of πi j. As explicitly worked out above on the example of GR, we can now con-
struct the first-order Lagrangian density by identifying the tensor density (2.7) as the associated
canonical momentum:

∂L(p)
ADM

∂(∂whi j)
= πi j(p). (2.10)

Substituting ∂whi j = 2NKi j above and integrating the canonicalmomentum as a polynomial
of the extrinsic curvature yields the generalization of the ADMLagrangian density to Lovelock
theories, after proper inclusion of the lapse and shift:

L(p)
ADM = Nr(hi j, ∂khi j, ∂k∂lhi j)+ 2pεN

√
|h|

∫ 1

0
ds(1− s)δ

[i1...i2p]
[ j1... j2p]

K j1
i1
×

× K j2
i2

(
1
2
R̄ j3 j4
i3i4

− s2εK j3
i3
K j4
i4

)
× · · ·

×
(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− s2εK
j2p−1
i2p−1

K
j2p
i2p

)
. (2.11)

where r(hi j, ∂khi j, ∂k∂lhi j) is a function that does not depend on normal derivatives of the
induced metric. In view of the Gauss–Codazzi relations, the only intrinsic quantity coming
from a (d + 1) decomposition of the Riemann tensor is R̄i jkl. In other words, r can only be the
pth Lovelock density (2.2) but computed using the induced metric, i.e. r = L̄(p) with

L̄(p) =
1
2p

√
|h|δ[i1...i2p][ j1... j2p]

R̄ j1 j2
i1i2

. . . R̄
j2p−1 j2p
i2p−1i2p

. (2.12)

Bulkanization of the Myers term. When the bulk Lagrangian density L(p) is re-expressed
in the coordinate frame (1.12), a term linear in the acceleration (that is, the normal derivatives

8 In gravity theories with AdS asymptotics, topological terms do play an essential role in the renormalization of the
action and its variation (see, e.g., [19]). The corresponding coupling, however, is not arbitrary, but fixed by the boundary
dynamics.

7
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of the extrinsic curvature) arises from Rwi
w j. On the other hand, lifting β

(p) to the bulk produces
two types of contributions: (i) normal derivatives of the extrinsic curvature, that eliminate the
acceleration-dependentpart coming fromL(p), (ii) first-order normal derivatives of the induced
metric, i.e. powers of the velocity. The latter contain, in particular, a termwith an antisymmetric
Kronecker delta with an additional pair of indices.

This task is explicitly carried out in appendix B. In doing so, it is useful to employ
equation (B.11) to derive the equivalent form of the Dirichlet action (in Gaussian coordinates)

∫
M

dDx

(
L(p) − d

dw

(
β(p)

))
= −

∫
M

dDxQ(p) + 2pεN
∫
M

dDx
√
|h|

∫ 1

0
ds δ

[i1...i2p]
[ j1... j2p]

K j1
i1
K j2
i2
×

×
(
1
2
R̄ j3 j4
i3i4

− s2εK j3
i3
K j4
i4

)

× · · · ×
(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− s2εK
j2p−1
i2p−1

K
j2p
i2p

)
, (2.13)

where

Q(p) = − 1
2p
N
√
|h|δ[i1...i2p][ j1... j2p]

Rj1 j2
i1i2

× · · · × R
j2p−1 j2p
i2p−1i2p

, (2.14)

is−L(p) saturated with intrinsic indices, where Rijkl is understood as a function of R̄ijkl and Ki j,
see (A.6) (for a different decomposition see [20]). We note thatQ(p) is also proportional to the
w-w component of the pth Lovelock tensor Eμ

(p)ν , see (2.9).
Using equation (2.13) and the Gauss–Codazzi relations to express Q(p) in terms of the

intrinsic curvature with the identity

(x + y)p = xp + 2py
∫ 1

0
ds s(x + s2y)p−1, (2.15)

we can rewrite the Dirichlet action (2.1) purely as a functional of hi j, Ki j and Rijkl (or R̄ijkl) to
obtain

IADM[h,K, R̄] =
∫
M

dDxLADM =

∫
M

dDx

[
D−1
2

]
∑
p=0

αpL(p)
ADM, (2.16)

where the pth first-order Lagrangian density L(p)
ADM can be expressed, once the lapse and shift

are reintroduced, as

L(p)
ADM = −Q(p) + 2pεN

√
|h|

∫ 1

0
ds δ

[i1 ...i2p]
[ j1... j2p]

K j1
i1
K j2
i2

(
1
2
Rj3 j4
i3i4

+
(
1− s2

)
εK j3

i3
K j4
i4

)

× · · · ×
(
1
2
R
j2p−1 j2p
i2p−1i2p

+
(
1− s2

)
εK

j2p−1
i2p−1

K
j2p
i2p

)
, (2.17)

= NL̄(p) + 2pεN
√
|h|

∫ 1

0
ds(1− s)δ

[i1...i2p]
[ j1... j2p]

K j1
i1
K j2
i2

×
(
1
2
R̄ j3 j4
i3i4

− s2εK j3
i3
K j4
i4

)
× . . .×

(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− s2εK
j2p−1
i2p−1

K
j2p
i2p

)
, (2.18)

8
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which explicitly eliminates second-order normal derivatives of hi j and where the second
equality coincides with (2.11), thus confirming that the intrinsic function r entering it is L̄(p).

This shows that, just as in the GR case, the Dirichlet action is equivalent to the first-order
action when we express all quantities in terms of hi j, Ki j and R̄ijkl. Thus, LADM =

∑
αpL(p)

ADM
represents the first-order Lagrangian density for a generic Lovelock gravity theory.

In reference [13] the authors obtain the expression

£(p) = N
√
|h|

p∑
i=0

C̃i(p)δ
[i1...i2p]
[ j1... j2p]

Rj1 j2
i1i2

. . .Rj2i−1 j2i
i2i−1i2i

K
j2i+1
j2i+1

. . .K
j2p
j2p
, (2.19)

with coefficients

C̃i(p) =
(−4)p−i

2i![2(p− i)− 1]!!
. (2.20)

In order to compare (2.19) to our result L(p)
ADM, we schematically represent x = Ri jkl and

y = Ki
j in equation (2.17) to obtain

L(p)
ADM =

xp

2p
+ 2pε

∫ 1

0
dsy2

(
1
2
x +

(
1− s2

)
εy2

)p−1

=

p∑
i=0

Ci(p)x
iy2p−2i, (2.21)

or, equivalently,

L(p)
ADM = N

√
|h|

p∑
i=0

Ci(p)δ
[i1...i2p]
[ j1... j2p]

Rj1 j2
i1i2

. . .Rj2i−1 j2i
i2i−1i2i

K
j2i+1
j2i+1

. . .K
j2p
j2p
, (2.22)

where

Ci(p) =
p!2p−2iεp−i

i!(2(p− i)− 1)!!
. (2.23)

Comparison between £(p) and L(p)
ADM exhibits agreement up to an overall factor p!/2p−1 due to

different conventions.
Obtaining the Lovelock first-order Lagrangian densities L(p)

ADM through two straightforward
routes, together with their explicit expressions in terms of Ki j and R̄ijkl, see (2.18), are the core
results of the paper.

The GB action. As an example, consider the GB action supplemented with the Myers
boundary term [5–7],

IDir[g] =
∫
M

dDxL(2) −
∫
∂M

ddx β(2), (2.24)

setting α2 = 1 for simplicity, where

L(2) =
√
−g

(
RμνρσRμνρσ − 4RμνRμν + R2

)
=

√
−gRμνρσPμνρσ, (2.25)

is the GB scalar density, and where

Pμν
ρσ =

1
4
δ[μνα1α2]
[ρσβ1β2]

Rβ1β2
α1α2

= Rμν
ρσ − 2δμ[ρR

ν
σ] + 2δν[ρR

μ
σ] + δμ[ρδ

ν
σ]R, (2.26)

9



Class. Quantum Grav. 38 (2021) 105004 P Guilleminot et al

has the symmetries of the Riemann tensor and is divergenceless (∇μPμ
νρσ = 0) due to the

Bianchi identities. Here brackets denote antisymmetrization, as in Aμ
[ρB

ν
σ] =

1
2 (A

μ
ρB

ν
σ − Aμ

σB
ν
ρ).

Finally,

β(2) = −2ε
√
|h|δ[i1i2i3][ j1 j2 j3]

K j1
i1

(
R̄ j2 j3
i2i3

− 2ε
3
K j2
i2
K j3
i3

)
= −4ε

(
J − 2Ḡi

jK
j
i

)
,

with εJij =
1
3
Ki
j

(
Kk
l K

l
k − K2

)
+

2
3
KKi

kK
k
j −

2
3
Ki
kK

k
l K

l
j and J = Jkk . (2.27)

This case has been studied in, e.g, references [2, 9, 16] and generalized to Einstein-scalar-GB
theories in [21]. In Gaussian coordinates, the variation of (2.24) adopts the form

δIDir =
∫
M

dDx
√
−gHμνδgμν +

∫
∂M

ddx
√
|h|πi j(2)δhi j, (2.28)

where

Hμ
ν = −1

8
δ
[μμ1μ2μ3μ4]
[νν1ν2ν3ν4]

Rν1ν2
μ1μ2

Rν3ν4
μ3μ4

, (2.29)

is the Lanczos tensor and where

πi j(2) = ε
√

|h|hikδ[ j j1 j2 j3][ki1 i2i3]
Ki1
j1

(
R̄i2i3j2 j3

− 2ε
3
Ki2
j2
Ki3
j3

)

= 2ε
√
|h|

(
2hm jP̄ikmlK

l
k − 3Ji j + hi jJ

))
. (2.30)

The tensor density (2.30) is the canonical momentum associated to the first-order action.
Hence, solving

∂L(2)
ADM

∂(∂whi j)
= πi j(2), (2.31)

we find (after inclusion of the lapse and shift)

L(2)
ADM = NL̄(2) + N

√
|h|δ[i1i2i3i4][ j1 j2 j3 j4]

[
εK j1

i1
K j2
i2

(
R̄ j3 j4
i3i4

− ε

3
K j3
i3
K j4
i4

)]

= NL̄(2) + N
√
|h|

[
4εP̄i jklK

k
i K

l
j + KJ − 3Ki

jJ
j
i

]
, (2.32)

where the first term is obtained by identifying it to the restriction of the GB Lagrangian density
to the surface w = cst, that is building it with the intrinsic curvature only:

L̄(2) =
1
4

√
|h|δ[i1i2i3i4][ j1 j2 j3 j4]

R̄ j1 j2
i1i2

R̄ j3 j4
i3i4

. (2.33)

WhenD = 4 (i.e. d = 3), the Lanczos tensor, the momentum and the generalizedADMLagan-
gian vanish, as evident from their expression in terms of rank-five and rank-four Kronecker
deltas, respectively.

On the other hand, in appendixB, the decomposition ofL(2) shows that the same Lagrangian
density can be obtained by bulkanization. Using equation (B.9), the Lagrangian density in
equation (2.24) can be shown to yield the same result, that is (2.32).

10
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3. Hamiltonian dynamics

In order to define an ordinary Hamiltonian, a first-order Lagrangian density LADM is required.
If the induced metric hi j is chosen as the dynamical variable, the Hamiltonian is given by the
Legendre transformation

H =

∫
ddx

(
πi j∂whi j − LADM

)
, (3.1)

where the canonical momentum πi j is defined as

πi j ≡ ∂LADM

∂(∂whi j)
. (3.2)

This functional must be written in terms of hi j and πi j. This is the path chosen by ADM to
construct their celebrated Hamiltonian.

The same path can be taken to construct a Hamiltonian from the first-order Lagrangian den-
sity of Lovelock gravity found in the previous section. For each pth contribution, the associated
Hamiltonian is computed as

H(p) =

∫
ddx

(
πi j(p)∂whi j − L(p)

ADM

)
. (3.3)

From the canonical momentum (2.6), and in Gaussian coordinates, we have

πi j(p)∂whi j = 2NKi
jπ

j
(p)i

= 2pεN
√
|h|

∫ 1

0
ds δ

[i1...i2p]
[ j1... j2p]

K j1
i1
K j2
i2

(
1
2
R̄ j3 j4
i3i4

− s2εK j3
i3
K j4
i4

)

× · · · ×
(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− s2εK
j2p−1
i2p−1

K
j2p
i2p

)
, (3.4)

which identifies to the last term of the second member of equation (2.13). Therefore the pth
Hamiltonian density H (p) identifies, in the Gaussian gauge (1.12), to the functional Q(p)

(which is proportional to Ew
(p)w, as mentioned below (2.14)). The lapse and shift Ni can then be

restored using equation (1.25) to find the full Hamiltonian:

H =

∫
ddx

(
NH + NiH i

)
, (3.5)

where the Hamiltonian constraints take the form

H =

[
D−1
2

]
∑
p=0

αpH
(p),

H i = −2∇̄ jπ
j
i , (3.6)

where H (p) = Q(p)/N and πij are given respectively in equations (2.14) and (2.6).
Due to the non linear relation between πi j andKi j, it is not possible in general to write Ki j in

terms of πi j. Thus, the Hamiltonian above is only given implicitly in terms of the momenta. On
the other hand, it is an exercise to check that the components of the Lovelock tensor Eμ

ν defined

11
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in (2.8) verify Ew
w = H /2

√
|h| and Ew

i = H i/2N
√
|h| in Gaussian coordinates, while E i(p) j

reads

E i(p) j = −pε
∫ 1

0
ds δ

[ii1...i2p]
[ j j1... j2p]

K j1
i1
K j2
i2

(
1
2
R̄ j3 j4
i3i4

− εs2K j3
i3
K j4
i4

)

× · · · ×
(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− εs2K
j2p−1
i2p−1

K
j2p
i2p

)
− pε

∫ 1

0
ds δ

[ii2...i2p]
[ j1... j2p]

K j1
j K

j2
i2

×
(
1
2
R̄ j3 j4
i3i4

− εs2K j3
i3
K j4
j4

)
× · · · ×

(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− εs2K
j2p−1
i2p−1

K
j2p
i2p

)

− 1
2p+1

δ
[ii1...i2p]
[ j j1... j2p]

Rj1 j2
i1i2

× · · · × R
j2p−1 j2p
i2p−1i2p

− 1
2
δ
[ii1...i2p−1]
[ j j1... j2p−1]

∇̄i1

×
(
K j2
i2
∇̄ j1K j3

i3
Rj4 j5
i4i5

× · · · × R
j2p−2 j2p−1
i2p−2i2p−1

)
+

∂w
(
πij
)

N
√
|h|

(3.7)

where Ri jkl is understood as an implicit function of R̄ijkl and Ki j; see equation (B.14) for com-
pleteness. Here we gathered terms which are equal to the normal derivative of πij using the
tools presented in appendix B (for its explicit expansion in the scalar-GB case, see [21]).

The Lagrangian and Hamiltonian dynamics are equivalent and the correspondence between
the field equations is given by

δH
δN

= 0 ⇔ Ew
w = 0,

δH
δNi

= 0 ⇔ Ew
i = 0. (3.8)

In addition, by definition of H we have that

δH
δhi j

∣∣∣∣
πi j

= − δL
δhi j

∣∣∣∣
∂whi j

where L =

∫
ddxLADM. (3.9)

Hence, it can be checked explicitly using the equation above and (2.18) that

δH
δhi j

∣∣∣∣
πi j

= −∂wπ
i j ⇔ E i j = 0. (3.10)

In the case of GR, we also have that δH
δπi j

= ∂whi j ⇔ Ki j = 1
2N∂whi j. This relation cannot be

proven in the general Lovelock case, as it requires the invertibility of πi j. However, it does not
provide provide extra dynamical information.

The particular case of GB gives

H(2) = −
∫

ddx NL̄(2) + ε

∫
ddx N

√
|h|δ[i1i2i3i4][ j1 j2 j3 j4]

K j1
i1
K j2
i2

(
R̄ j3 j4
i3i4

− εK j3
i3
K j4
i4

)

= −
∫

ddx NL̄(2) +

∫
ddx N

√
|h|

(
2εP̄ijklKikK jl − 1

2
K4 + 3K2Ki

jK
j
i

− 4KKi
jK

j
kK

k
i −

3
2
Ki
jK

j
i K

k
l K

l
k + 3Ki

jK
j
kK

k
l K

l
i

)
, (3.11)

where in the second line we have just expanded the generalized Kronecker delta.
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4. Conclusions

In this paper we investigated the links between the Dirichlet variational principle, and the
first-order Lagrangian density and Hamiltonian of Lovelock gravity. Starting from the sim-
ple example of a Lagrangian linear in the acceleration in point mechanics, we have identified
two methods to compute the associated first-order Lagrangian: integration of the momentum
and bulkanization of boundary terms. We then worked out the case of GR to recover the ADM
Lagrangian density from the Dirichlet action.

More powerful, however, is the use of the momentum integration and bulkanization meth-
ods to obtain the first-order Lagrangian density of Lovelock gravity. Bulkanizing the Myers
term explicitly eliminates all second-order normal derivatives in the bulk. In Gaussian coordi-
nates, the resulting Lagrangian density has the form L(p)

ADM = πi j∂whi j − 2N
√
|h|Ew

w , making
manifest the connection with the Hamiltonian formalism. Indeed, a Legendre transformation
of the first-order Lagrangian density, directly gives the Hamiltonian density of the system
NH (p) = 2N

√
|h|Ew

w . In addition, we have that the Lagrangian and Hamiltonian formalisms
are equivalent at the level of the dynamics and surface terms. Indeed, the variation of the
Hamiltonian action

IH =

∫
M

dDx
(
πi j∂whi j− LADM

)
, (3.12)

produces-on-shell-

δIH =

∫
∂M

ddx πi jδhi j. (3.13)

This matches the surface term obtained in equation (2.5) from the variation of the first-order
Lagrangian. This fact will be employed in future work to define junction conditions for thin
shells à la Hamilton for Lovelock gravity.

Our methods should also be useful to generalize the ADMmass formula to Lovelock grav-
ities. In fact, the canonical momentum readily defines a conserved current when contracted
with a boundary Killing vector.

For an arbitrary set of couplings in the Lovelock action, some of the components of the
metric solution may not be fully determined by the field equations [23]. For instance, the
componentgtt of any static spherically symmetric ansatz remains arbitrary if the action has non-
unique degenerate vacuum. This problem can be avoided by a given choice of the coefficients
(e.g., the cases of GR, Chern–Simons, Born–Infeld and pure Lovelock [28–30]). However, the
higher curvature terms in the action make the symplectic matrix change the rank for certain
backgrounds, generating extra local symmetries and decreasing degrees of freedom in some
sectors of the space of solutions [24–27]. This kind of degeneracy in Lovelock gravity also
occurs in cosmological solutions [22], where the field equations cannot predict the evolution
of the scale factor a(t) because the coefficient of ä(t) goes through zero during the evolution.
This also renders the Hamiltonian quantization of the system problematic [13].
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Appendix A. Conventions

In this paper we set 16πG = c = 1. Throughout the text g is the determinant of the metric gμν
(with inverse gμν), Rμ

νρσ ≡ ∂ρΓ
μ
νσ − · · · is the Riemann tensor where Γμ

νσ ≡ 1
2g

μλ(∂νgσλ +
· · · ) are the Christoffel symbols, Rμν ≡ Rλ

μλν is the Ricci tensor and R ≡ gμνRμν is the scalar
curvature.

In Gaussian coordinates

ds2 = εN2(w)dw2 + hi j
(
w, xi

)
dxi dx j, (A.1)

the non-vanishing components of the Christoffel symbols are Γijk = Γ̄ijk(h) and

Γw
i j = − ε

2N2
∂whi j, Γiw j =

1
2
hik∂wh jk Γw

ww =
∂wN
N

. (A.2)

The normal to a surface Σw of constant w is defined as

nμ = εNδwμ , (A.3)

so that nμnμ = ε. On the other hand, the extrinsic curvature is defined as

Ki j = Vμ
i V

ν
j∇μnν ,

where Vμ
i are the projectors on the corresponding surface. In Gaussian coordinates Vμ

i = δμi
and as a consequence of the normal vector definition (A.3), the extrinsic curvature is given in
terms of hi j by

Ki j = ∇in j = −εNΓw
i j =

1
2N

∂whi j. (A.4)

Consequently, the Christoffel symbols satisfy

Γiw j = NKi
j, Γw

i j = − ε

N
Ki j, (A.5)

and the curvature tensors have the form

Ri jkl = R̄i jkl − ε
(
Ki
kK

j
l − Ki

lK
j
k

)
, (A.6)

Rwi
jk = − ε

N

(
∇̄ jK

i
k − ∇̄kK

i
j

)
, (A.7)

14
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Ri jwk = −N
(
∇̄iK j

k − ∇̄ jKi
k

)
, (A.8)

Rwi
w j = − ε

N
∂wK

i
j − εKi

kK
k
j , (A.9)

Rij = R̄ij − εKKi
j −

ε

N
∂wK

i
j, (A.10)

Rw
i = − ε

N
∇̄ j

(
Kδ ji − K j

i

)
, (A.11)

Rw
w = − ε

N
∂wK − εKi

jK
j
i , (A.12)

R = R̄− ε
(
K2 + Ki

jK
j
i

)
− 2ε
N
∂wK. (A.13)

The equations above are the Gauss–Codazzi–Mainardi relations in tensorial language and in
Gaussian coordinates.

Appendix B. Bulkanization of Myers terms

As a warmup exercise, let us consider the integral of β(2), see (2.27), on the boundary
∂M = Σwi ∪ Σwf ∪ C, which is the union of the surfaces w = wi and w = wf and of their
complement C. Its bulkanization yields:∫

∂M

ddx β(2) = −2ε
∫
M

dDx ∂w

[√
|h|δ[ j1 j2 j3][i1i2i3]

Ki1
j1

(
R̄i2i3j2 j3

− 2ε
3
Ki2
j2
Ki3
j3

)]
, (B.1)

modulo a contribution on C which can be discarded for our purposes, see below (1.23).
In order to compute the normal derivatives involved and construct the desired structures, it

is useful to rewrite ∂wK
i1
j1
using (A.9) as

∂wK
i1
j1
= −εN

(
Rwi1
w j1

+ εKi1
l K

l
j1

)
, (B.2)

and

∂w
√
|h| = 1

2

√
|h|hi j∂whi j = NK

√
|h|, (B.3)

where K is the trace of the extrinsic curvature. Since moreover ∂wR̄ijkl = ∇̄k(∂wΓ̄ijl)−
∇̄l(∂wΓ̄ijk) with ∂wΓ̄

k
i j = N

(
∇̄iKk

j + ∇̄ jKk
i − ∇̄kKi j

)
(which exhibits ∂wΓ̄

k
i j as an intrinsic

tensor), a short calculation yields

δ
[ j1 j2 j3]
[i1i2i3]

Ki1
j1
∂wR̄

i2i3
j2 j3

= −2Nδ[ j1 j2 j3][i1i2i3]
Ki1
j1

[
Ki3
k R

i2k
j2 j3

+ 2εKi3
k K

i2
j2
Kk
j3
+ 2∇̄ j2∇̄i2Ki3

j3

]
. (B.4)

Combining the results above, (B.1) can be rewritten as∫
∂M

ddx β(2) = −2ε
∫
M

dDx N
√
|h|δ[ j1 j2 j3][i1i2i3]

(
−2 Ki1

j1
Ki2
k R

ki3
j2 j3

− 4εKi1
j1
Ki2
j2
Ki3
k K

k
j3
− 4 Ki1

j1
∇̄ j2∇̄i2Ki3

j3

− ε
(
Rwi1
w j1

+ εKi1
l K

l
j1

)
Ri2i3j2 j3

+ Ki1
j1

(
Ri2i3j2 j3

+
4ε
3
Ki2
j2
Ki3
j3

)
K

)
. (B.5)
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At this point, we can use the identities (C.1) and (C.2) to find

∫
∂M

ddx β(2) = 2
∫
M

dDx N
√
|h|δ[ j1 j2 j3][i1i2i3]

(
Rwi1
w j1
Ri2i3j2 j3

+ 4εKi1
j1
∇̄ j2∇̄i2Ki3

j3

)

− 2ε
∫
M

dDx N
√

|h|δ[ j1 j2 j3 j4][i1i2i3i4]
Ki1
j1
Ki2
j2

(
R̄i3i4j3 j4

− 2ε
3
Ki3
j3
Ki4
j4

)
. (B.6)

We notice that Rwi1
w j1

in the first term contains normal derivatives of the extrinsic curvature,
see (A.9), that will cancel out with those coming from the expanded GB Lagrangian density,

L(2) = 2N
√
|h|δ[i1 i2i3][ j1 j2 j3]

(
Rw j1
wi1
Rj2 j3
i2i3

+ Rw j1
i1i2
Rj2 j3
wi3

)

+
1
4
N
√

|h|δ[i1...i4][ j1... j4]
Rj1 j2
i1i2

Rj3 j4
i3i4

. (B.7)

Using δ[ j1 j2 j3][i1i2i3]
Rwi1
j1 j2
Ri2i3w j3

= −4εδ[ j1 j2 j3][i1i2i3]
∇̄ j2K

i1
j1
∇̄i2Ki3

j3
and integrating by parts we get

∫
M

dDxL(2) = 2
∫
M

dDx N
√
|h|δ[ j1 j2 j3][i1i2i3]

(
Rwi1
w j1
Ri2i3j2 j3

+ 4ε∇̄i2Ki1
j1
∇̄ j2K

i3
j3

)
+

+
1
4

∫
M

dDx N
√

|h|δ[i1...i4][ j1... j4]
Rj1 j2
i1i2

Rj3 j4
i3i4

, (B.8)

where we discarded terms that are total ∇̄i derivatives, i.e. terms living on C.
Subtracting (B.8) and (B.6) we finally get

∫
M

dDx

(
L(2) − d

dw

(
β(2)

))
= −

∫
M

dDxQ(2) + 2ε
∫
M

dDx N
√
|h|δ[i1...i4][ j1... j4]

K j1
i1
K j2
i2
×

×
(
R̄ j3 j4
i3i4

− 2ε
3
K j3
i3
K j4
i4

)
. (B.9)

whereQ(2) is obtained by setting p= 2 in equation (2.14).
The same bulkanization procedure can be performed for any Lovelock density with its cor-

responding Myers term. The use of equations (B.2)–(B.4), (C.3) and similar steps to those
described above yield

d
dw

(
β(p)

)
= −2pεN

√
|h|

∫ 1

0
ds δ

[i1...i2p]
[ j1... j2p]

Ki1
j1
Ki2
j2

(
1
2
R̄i3i4j3 j4

− εs2Ki3
j3
Ki4
j4

)
×

×
(
1
2
R̄
i2p−1i2p
j2p−1 j2p

− εs2K
i2p−1
j2p−1

K
i2p
j2p

)
+

p
2p−2

δ
[i1...i2p−1]
[ j1... j2p−1]

×
(
Rw j1
wi2
Rj2 j3
i2i3

+ (p− 1)Rw j1
i1i2
Rj2 j3
wi3

)
Rj4 j5
i4i5

× · · · × R
j2p−2 j2p−1
i2p−2i2p−1

.
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Since the expanded Lagrangian density L(p) takes the form

L(p) =
p

2p−2

√
|h|δ[i1...i2p−1]

[ j1... j2p−1]

(
Rw j1
wi1
Rj2 j3
i2i3

+ (p− 1)Rw j1
i1i2
Rj2 j3
wi3

)
Rj4 j5
i4i5

× · · ·

× R
j2p−2 j2p−1
i2p−2i2p−1

+
1
2p
N
√

|h|δ[i1...i2p][ j1... j2p]
Rj1 j2
i1i2

× · · · × R
j2p−1 j2p
i2p−1i2p

, (B.10)

we get

∫
M

dDx

(
L(p) − d

dw

(
β(p)

))
= −

∫
M

dDxQ(p) + 2pε
∫
M

dDx N
√
|h|

×
∫ 1

0
ds δ

[i1 ...i2p]
[ j1... j2p]

K j1
i1
K j2
i2
×

×
(
1
2
R̄ j3 j4
i3i4

− εs2K j3
i3
K j4
i4

)
× · · ·

×
(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− εs2K
j2p−1
i2p−1

K
j2p
i2p

)
. (B.11)

Finally, the same game can be played when projecting the equations of motion E ij: we can
see that

E i(p) j = − 1
2p+1

δ
[iμ1...μ2p]
[ jν1...ν2p]

Rν1ν2
μ1μ2

. . .R
μ2p−1μ2p
ν2p−1ν2p (B.12)

exhibits the same structure as L(p) except for the extra pair of indices. According to
equation (C.4), we will need an extra term when packing the terms in a one-rank-higher delta
and get, restoring the lapse and shift,

E i(p) j = −pε
∫ 1

0
ds δ

[ii1...i2p]
[ j j1... j2p]

K j1
i1
K j2
i2

(
1
2
R̄ j3 j4
i3i4

− εs2K j3
i3
K j4
i4

)
× · · ·

×
(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− εs2K
j2p−1
i2p−1

K
j2p
i2p

)
− pε

∫ 1

0
ds δ

[ii2...i2p]
[ j1... j2p]

K j1
j K

j2
i2

(
1
2
R̄ j3 j4
i3i4

− εs2K j3
i3
K j4
j4

)
× · · · . . .×

(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− εs2K
j2p−1
i2p−1

K
j2p
i2p

)

− 1
2
δ
[ii1...i2p−1]
[ j j1... j2p−1]

∇̄i1

(
K j2
i2
∇̄ j1K j3

i3
Rj4 j5
i4i5

× · · · . . .× R
j2p−2 j2p−1
i2p−2i2p−1

)

− 1
2p+1

δ
[ii1...i2p]
[ j j1... j2p]

Rj1 j2
i1i2

× · · · × R
j2p−1 j2p
i2p−1i2p

+
∂wπ

i
j

N
√
|h|

, (B.13)

or as a functional of intrinsic quantities as

E i(p) j =
∂wπ

i
j

N
√
|h|

− pε
∫ 1

0
ds(1− s)δ

[ii1...i2p]
[ j j1... j2p]

K j1
i1
K j2
i2

(
1
2
R̄ j3 j4
i3i4

− εs2K j3
i3
K j4
i4

)
× · · ·

. . .×
(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− εs2K
j2p−1
i2p−1

K
j2p
i2p

)
− pε

∫ 1

0
dsδ

[ii2...i2p]
[ j1... j2p]

K j1
j K

j2
i2
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×
(
1
2
R̄ j3 j4
i3i4

− εs2K j3
i3
K j4
i4

)
× · · · ×

(
1
2
R̄
j2p−1 j2p
i2p−1i2p

− εs2K
j2p−1
i2p−1

K
j2p
i2p

)

+ Ē i(p) j −
1
2
δ
[ii1...i2p−1]
[ j j1... j2p−1]

∇̄i1

(
K j2
i2
∇̄ j1K j3

i3

(
R̄ j4 j5
i4i5

− 2K j4
i4
K j5
i5

)
× · · ·

. . . ×
(
R̄
j2p−2 j2p−1
i2p−2i2p−1

− 2K
j2p−2
i2p−2

K
j2p−1
i2p−1

))
. (B.14)

Appendix C. Additional identities

We need to relate Kronecker deltas that differ in rank. For a rank-four Kronecker delta, useful
identities are

δ[ j1... j4][i1...i4]
Ki1
j1
Ki2
j2
Ki3
j3
Ki4
j4
= δ[ j1 j2 j3][i1i2i3]

(
KKi1

j1
Ki2
j2
Ki3
j3
− 3Ki1

j1
Ki2
j2
Ki3
l K

l
j3

)
, (C.1)

and

δ[ j1... j4][i1...i4]
Ki1
j1
Ki2
j2
R̄i3i4j3 j4

= δ[ j1 j2 j3][i1i2i3]

(
KKi1

j1
R̄i2i3j2i3

− Ki1
l K

l
j1
R̄i2i3j2 j3

− 2Ki1
j1
Ki2
l R̄

li3
j2 j3

)
. (C.2)

Notice that the identity holds for any pair of tensors that share the same symmetries as the
extrinsic and intrinsic curvature. The generalization of the relations (C.1) and (C.2) for 2m
extrinsic curvatures and n− m Riemann tensors is

δ[i1...i2n][ j1... j2n]
K j1
i1
. . .K j2m

i2m
R̄
j2m+1 j2m+2
i2m+1i2m+2

. . . R̄ j2n−1 j2n
i2n−1i2n

= δ
[i1...i2n−1]
[ j1... j2n−1]

K j1
i1
. . .K j2m−2

i2m−2
R̄ j2m−1 j2m
i2m−1i2m

. . . R̄
j2n−5 j2n−4
i2n−5i2n−4

(
KK j2n−3

i2n−3
R̄ j2n−2 j2n−1
i2n−2i2n−1

− (2m− 1)K j2n−3
l Kl

i2n−3
R̄ j2n−2 j2n−1
i2n−2i2n−1

− (2m− 2 j)K j2n−3
i2n−3

K j2n−2
l R̄l j2n−1

i2n−2i2n−1

)
(C.3)

where we factored out 2m− 2 extrinsic curvatures and n− m− 1 Riemann tensors.
In presence of a pair of free indices, we have

δ
[ii1...i2n]
[ j j1... j2n]

K j1
i1
. . .K j2m

i2m
R̄
j2m+1 j2m+2
i2m+1i2m+2

. . . R̄ j2n−1 j2n
i2n−1i2n

= δ
[ii1...i2n−1]
[ j j1... j2n−1]

K j1
i1
. . .K j2m−2

i2m−2
R̄ j2m−1 j2m
i2m−1i2m

. . . R̄
j2n−5 j2n−4
i2n−5i2n−4

(
KK j2n−3

i2n−3
R̄ j2n−2 j2n−1
i2n−2i2n−1

− (2m− 1)K j2n−3
l Kl

i2n−3
R̄ j2n−2 j2n−1
i2n−2i2n−1

− (2m− 2 j)K j2n−3
i2n−3

K j2n−2
l R̄l j2n−1

i2n−2i2n−1

)

− δ
[ii2...i2n]
[ j1 j2... j2n]

K j1
j K

j2
i2
. . .K j2m

i2m
R̄
j2m+1 j2m+2
i2m+1i2m+2

. . . R̄ j2n−1 j2n
i2n−1i2n

,

(C.4)

that has one extra term-the last one-in comparison to equation (C.3). Notice that we fixed i1
when taking the trace to lower the degree of the generalized Kronecker symbol.
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