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CrossMark
Abstract

Based on the insight gained by many authors over the years on the struc-
ture of the Einstein—Hilbert, Gauss—Bonnet and Lovelock gravity Lagrangians,
we show how to derive-in an elementary fashion-their first-order, generalized
‘Arnowitt—Deser—Misner’ Lagrangian and associated Hamiltonian. To do so,
we start from the Lovelock Lagrangian supplemented with the Myers boundary
term, which guarantees a Dirichlet variational principle with a surface term of
the form 7/6h;;, where 7/ is the canonical momentum conjugate to the bound-
ary metric h;;. Then, the first-order Lagrangian density is obtained either by
integration of 7'/ over the metric derivative d,,h;; normal to the boundary, or by
rewriting the Myers term as a bulk term.

Keywords: classical mechanics, modified theories of gravity, general relativity

Introduction

The general relativity (GR), Gauss—Bonnet (GB) and more generally Lovelock [1]
Lagrangians, being (quasi) linear in the second derivatives of the metric, yield second-order
field equations (see e.g. [2] for a review).

There must hence exist first-order Lagrangians, which do not depend on the metric’s second
derivative normal to a foliation, and which differ from Lovelock’s by adding adequate boundary
terms, so that they produce the same dynamics but with Dirichlet boundary conditions.

*Author to whom any correspondence should be addressed.
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In GR, a boundary term to be added to the Einstein—Hilbert Lagrangian to yield a Dirich-
let variational principle was proposed by Gibbons, Hawking [3] and York [4] (GHY). Its
generalization to GB and Lovelock theories was obtained by Myers [5], see also [6-9].

In GR, a well-known first-order Lagrangian is that of Arnowitt—Deser—Misner (ADM),
which is written (as well as the corresponding Hamiltonian) in a 1 + 3 form in terms of the
extrinsic and intrinsic curvatures of a spacetime foliation [10, 11]. The GB and Lovelock
first-order Lagrangians (and corresponding Hamiltonian) generalizing ADM’s were found by
Teitelboim and Zanelli [12, 13].

In this paper, we will obtain the Teitelboim—Zanelli Lagrangian and Hamiltonian in two dif-
ferent straightforward manners. We shall first illustrate the methods on the (nowadays) simple
case of GR, and then generalize the procedure to all Lovelock Lagrangians.

1. The crux of the method

1.1. The example of point mechanics
Consider a particle with position g(f) described by the action

I
1= [ wit L. = a.d)+ if @0 (1.1
li
where a dot denotes a derivative with respect to time ¢. The variation of / upon an infinitesimal
variation d¢(t) of the path ¢(¢) reads
" e ot of e
ol =/ dt6q(B(q,q) — GA(q, @)1 + {&] (—. - q—) + 5qf] : (1.2)
| 9 " 0q §

The issue with 7 is that its variation 6/ cannot be made to vanish for an arbitrary dg(r)
between #; and #;. Indeed, the vanishing of the boundary terms necessitates fixing 4 constants
(to wit the positions and velocities of the particle at #; and # so that dq|, = dq|, = q|, =
0g;; = 0). These conditions are incompatible with the fact that the solutions of the equation
of motion (B — gA = 0), which is second order since L is (quasi) linear in the acceleration ¢,
depend on 2 integration constants only*.

Now, it must be possible to build an ordinary, first-order Lagrangian L; (g, ¢) and associated
action /; which yield a second order equation of motion when imposing d/; = 0 for Dirich-
let boundary conditions (that is, by fixing dg|, = dg|,, = 0 only). In order to give the same
equation of motion as L, L;(g, g) is taken to differ from L by the substraction of a total time
derivative of some function F(g, g):

 dF(q,)
dr

i

Li(g.q) =L ; I =/ drLy =1 —[F(g, It - (1.3)

i

A simple route to obtain L, is to compute the surface terms in the variation of the action.
We have, on-shell, that is when the equation of motion is satisfied,

B o df OF\ , ., OF\1"
o = [‘” (a—q ~ 5~ a—q> o4 (f - a—qﬂ 14

where we have used (1.2). The vanishing of the coefficient of §¢ in (1.4) gives the function F,

F= /di] VACA)R (1.5)

. 2, L2 ar ) . Y haF
4 For completeness: A(g, §) = g—qf-y - q% - ‘;—{] and B(q,q) = d% (6 - qg—fl +q23—2).
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If we then identify the coefficient of dq to the canonical momentum (see e.g. [14])

0L,
pr— —’ 1.6
P= "5 (1.6)
L, is obtained by a simple integration with respect to the velocity g:
. .OF
Ly =Uq.q) — ey (1.7)
q

with F given by equation (1.5).
Another way, even simpler in this case, to obtain L, is to lift F to the bulk (a procedure
which we shall refer to as bulkanization below), and write, using (1.3) and (1.1):

If
I = / 1L, )
i

i

fr dF
= [ dt|L——
[l

it OF OF
= [ V‘f"”“’faq T (f - aqﬂ ’ 19

which yields back (1.7), using (1.5):°

1.2. Two routes to the first-order Lagrangian of GR

Let us first recall how the Gibbons—Hawking—York (GHY) boundary term is obtained.
Consider, in some coordinate system x* labelling the points of a D-dimensional pseudo-
Riemannian manifold M (Greek indices run from 0 to D — 1; see appendix A for conventions),
the GR action

Ior = / dPx/—gR . (1.9)
M

This action depends linearly on the second derivatives of the field variables g, and its variation
reads:

Slgr = /de\/—g (G/,,V(Sg"” + V,,VSR) , (1.10)
M

where G, is the Einstein tensor. The second term on the rhs of (1.10) is the covariant
divergence of the four-vector

Vig = g"7oT"  — ghoT! (1.11)

which can be evaluated, using Gauss’ theorem, on the d = D — 1 dimensional boundary .M
of M.

STt is an exercise to check that the equation of motion derived from L, is the same as that derived from L: p — aﬁﬂ =
gA — B, with A and B given in footnote 1. As for the Hamiltonian H = pg — L,, it cannot, in general, be written
explicitly in terms of ¢ and p unless p = p(q, ¢) can be inverted explicitly to give ¢ = §(q, p). Hence it cannot be

shown explicitly that the Hamilton equations yield back the Euler—Lagrange equations derived from L;.

3
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Let us choose for simplicity a Gaussian coordinate system x* = {w, x'} (Latin indices run
from 1 to d = D — 1), such that w is constant on OM:

ds? = eN(w)? dw? + h;j(w, xF)dx’ dx/, (1.12)

with e = —1if 9 M is spacelike and € = +1 if it is timelike, where N(w) is a function of w only
and h;; are the d(d + 1)/2 components of the induced metric on O M, with extrinsic curvature

1
Kij = g 0uhi. (1.13)

From now on Latin indices are lowered and raised with #;; and its inverse h'/. For the gauge-
fixed metric (1.12) we have

w € ij
ViR =y (K6h;; + 20K) , (1.14)

where K = hK; j» making manifest that the surface term in (1.10) contains variations of the
normal derivative of &;; through dK (the latter originates from the components (A.5) of 6I").

Hence a Dirichlet action principle can be achieved if the GR action is supplemented with
the GHY boundary term [3, 4]

IDir[g]:/de\/—gR—FZe/ddx |h|K, (1.15)
M oM

since the variation of this action gives, on-shell (that is, when G, = 0 in vacuum),

Slpir = / dx 7 6hy;, (1.16)
oM
where
il — 6\/W(Khij _ Kij), (1.17)

and vanishes imposing Dirichlet boundary conditions: 6/;j|lgr = 0.
The action principle above can be associated to a first-order bulk functional,

I :/decl. (1.18)

M

Indeed, in a Gaussian frame (1.12) which foliates M with constant-w surfaces >, £; can
be obtained by identifying 7/ given by equation (1.17) as the canonical momentum density
conjugate to 4;;, i.e.,

0L,

— 1.1
0Ouhi) (1.19)

Integrating 7'/ with respect to 9,,h;; = 2NK;; gives

Ly = N/|n| (€ (K* — KYK;;) + r(hij, Ochij, OcOhi)) (1.20)

4



Class. Quantum Grav. 38 (2021) 105004 P Guilleminot et al

where the integration constant r(h;j, Ochij, OxOjhij) must identify to the part of the Hilbert
Lagrangian which only depends on the intrinsic geometry of the surfaces ¥, i.e. R, where
a bar stands for quantities built out of /;; only®

Ly =N+/|h| (R + ¢ (K> — KK;)) = Lapm- (1.21)

This is the celebrated ADM Lagrangian density [10, 11] written here in Gaussian coordinates.

Let us show now that the same first-order (in the normal derivative) Lagrangian density
can be obtained by the bulkanization of the GHY term. Define the closed boundary by the
union OM = ¥, U E“,f U C of the surfaces w = w; and w = wy and their complement C, and
rewrite the GHY contributions from ¥, and X, in (1.15) as the integral of 2¢0,, ( |h\K)

over the bulk. Using the Gauss—Codazzi—Mainardi relation (A.13), we then have
V=38R +2€0,, ( ] ) -/ [R . <K2 + K}K{)] +2¢0, (\/W) K. (1.22)
Since moreover ,,/|h| = NK+/|h], we obtain
VIR + 260, ( 14| ) = NI (R+ € (K> — KUK;})) = Lapy. (1.23)

The bulkanized GHY terms on X, and X, cancel out with the second normal derivative in

equation (1.22) that comes from R%, see (A.9), so that the resulting Lagrangian is of first

order. As for the GHY defined on the complement C, it can be discarded for our purposes (but
is essential to define the ADM mass [15]).

Finally, the dependence on the D = d + 1 extra components of the spacetime metric g,
can be reinstated using the ADM metric decomposition

ds® = eN? dw? + hyj(dx’ + N' dw)(dx’ + N’ dw), (1.24)

where N(w, x') is the lapse and N'(w, x/) is the shift. The extrinsic curvature is then redefined
as

1

Kij: ﬁ

(Bwhij — ViN; — V;N)), (1.25)

with V; the covariant derivative associated to ;.
Itcan be explicitly checked that variations with respect to N, N* and h;; of Lapwm yield respec-
tively the constraints G} = 0, G, = 0 and the dynamical component G', = 0 of the equations

w

of motion written in Gaussian coordinates.

2. The first-order Lagrangian of Lovelock gravity

2.1. Dirichlet principle for Lovelock gravity
As shown by Myers [5], the Dirichlet action for a generic Lovelock theory is given by
2
I = > / dPxL® — / d?xpP | | Q2.1

p=0 M M

6By intrinsic geometry, we refer to quantities built out of /; ; and its tangential derivatives Oyh;; and 0y 0,h;; only.

5
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where [(D — 1)/2] is the integer part of (D — 1)/2, where’

Lo — %\/—_gélm'"#z”]Rylyz R 21720 (2.2)

[v1vppl Trpapn c H2p—1H2p>

is of degree p in the curvature, and where

21 12 V2p
AR R
14 ) 2p
[v1vp] 5#2 5/12 5/“2 (2 3)
[r1m2p] — ) ’ ’
V] 1%] V2p
H2p 5N2p 6'“’21’

is the generalized Kronecker delta of rank 2p, which is antisymmetric under exchange of
its upper (and lower) indices. In our conventions (see appendix A), the dimension of «, is
[length]?»~2. The corresponding Myers boundary terms are given by [5, 7]

1
lirizp 1) oy (Lo 2eK2K!
5(1)) _ —2ep\/W/0 dS(s[jl,,.jzl,,,l]Khl <§le221/33 — 5 EKiJZZKij;> N

1 7j2 . . .
p—2J2p—1 2 J2p—=2 y-J)2p—1
. X <§Ri2p2i2p1 — s 6Ki2[172 Kin—l . 2.4)
For its rewriting as the covariant derivative of a D-vector, see also [16] or [17] which involve,
respectively, the introduction of a background metric or an extra vector field which identifies
to the normal n on 9 M. In our conventions we have oy = —2A and oy = 1.

The variation of equation (2.1) reads

Sl = / dPx\/=gEM 5gyu + / d’x 7sh;;, (2.5)
M oM
with
2]
' = Qs (2.6)
p=0

where, from each pth Lovelock density, one obtains
- U i 1 o
ijo_ / L2p=1d pkjprdt | 2 pl2l3 _ 2 g l2g)3 L.
T(p = P€ |h‘/0 ds 6[kj1»~j2,;71]h Kil (2 i3 S 6Kiz Ki3 ) X
2 i2p72i2p71 2p-2 i2p*1

% <1Rj2p2j2pl _ s2€K.j2P2Kj2pl> . (27)

As for the Lovelock tensor £, it reads

&

g =3 28)

71In even dimensions, the term p = D/2 is topological, and it does not contribute to the field equations.

6
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with

1 Vp—1V
Eow = ~opri SO V#z?]JR/Vqufz . 29)
Note that in the boundary term of (2.5) we omitted the divergence of a d-vector VWi since
its integration on the closed boundary 9.M vanishes (see, e.g., [2]; see also [18] for its explicit
expression).

The addition of a topological term in even dimensions cannot induce an associated canonical
momentum 7T(D /2)" This can be seen from the anti-symmetric structure of the indices in the
canonical momentum in equation (2.7). In the critical space-time dimension, the canonical
momentum is constructed with a Kronecker delta of rank D at the boundary, a fact that makes
it identically zero®.

The action (2.1) yields a Dirichlet variational principle. In other words, the Myers boundary
terms are the analogues of the function F, given by (1.5), in the mechanical problem we treated

in section 1.1.

2.2. Two routes to the first-order Lagrangian for Lovelock gravity

Integration of /. As explicitly worked out above on the example of GR, we can now con-
struct the first-order Lagrangian density by identifying the tensor density (2.7) as the associated
canonical momentum:

OLYM _ i

DB i) =T (2.10)

Substituting 9,,h;; = 2NK;; above and integrating the canonical momentum as a polynomial
of the extrinsic curvature yields the generalization of the ADM Lagrangian density to Lovelock
theories, after proper inclusion of the lapse and shift:

[j1---J2p]

1
LY = Nr(hij, Ochij, 0cDihij) + 2peN+/h /0 ds(1 — )0/ Kl

el o
x K} <2Rf”4 szeK,.f;K,!;) X

i3iy
% 1Rj2p—lj2]1 2 KjZF—IKjZP 2 11
5 "2p71’.2p S€ "21771 i2p : ( : )

where r(h;j, Ochij, OxOih;j) is a function that does not depend on normal derivatives of the
induced metric. In view of the Gauss—Codazzi relations, the only intrinsic quantity coming
from a (d + 1) decomposition of the Riemann tensor is R}). In other words, r can only be the
pth Lovelock density (2.2) but computed using the induced metric, i.e. r = L with

F(p) / [i1.-i2p] 3 ]112 52p—1J2p
L 5[11 sz] ipip *° .Ri2pfli2p : (2.12)
Bulkanization of the Myers term. When the bulk Lagrangian density £ is re-expressed

in the coordinate frame (1.12), a term linear in the acceleration (that is, the normal derivatives

81n gravity theories with AdS asymptotics, topological terms do play an essential role in the renormalization of the
action and its variation (see, e.g., [19]). The corresponding coupling, however, is not arbitrary, but fixed by the boundary
dynamics.
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of the extrinsic curvature) arises from Rﬁf,’j On the other hand, lifting 5 to the bulk produces
two types of contributions: (i) normal derivatives of the extrinsic curvature, that eliminate the
acceleration-dependent part coming from £, (ii) first-order normal derivatives of the induced
metric, i.e. powers of the velocity. The latter contain, in particular, a term with an antisymmetric
Kronecker delta with an additional pair of indices.

This task is explicitly carried out in appendix B. In doing so, it is useful to employ

equation (B.11) to derive the equivalent form of the Dirichlet action (in Gaussian coordinates)

d I]...l
/ d"x (z:@) ~dw (5@))) =— / d”x Q¥ + 2peN / d”x\/|h| / dso” j;J]KﬂKfz
M M M

1 J3J 2 )3y
<2R13144 seKi3Kif

L Sjpiin 2 prh2p—1 2
S, (5&;1,-2;’ — 5Ky, Ky ) (2.13)
where
1 i
»_ _ N/ i-iapl pj1jo Jap—1J2p
Q B 2pN |h 5[]1 JZpJRIIIZ Xoeee X Rlzp 1!21, (2.14)

is — £ saturated with intrinsic indices, where Riji is understood as a function of Rijkl and K;;,
see (A.6) (for a different decomposition see [20]). We note that Q” is also proportional to the
w-w component of the pth Lovelock tensor 5(’;)y, see (2.9).

Using equation (2.13) and the Gauss—Codazzi relations to express Q7 in terms of the
intrinsic curvature with the identity

1
(x+y)P=x"+ 2py/ ds s(x + s7y)P !, (2.15)
0

we can rewrite the Dirichlet action (2.1) purely as a functional of £;;, K;; and Rjjq (or Rijkl) to
obtain

bt
Inpmlh, K, R] = / dPx Lapy = / d®x Y a, Ly (2.16)
" -

where the pth first-order Lagrangian density L%M can be expressed, once the lapse and shift

are reintroduced, as
L = —Q¥ + 2peN/Ih| / ds oy KK (;R{;{:‘ +(1- ﬁKﬁKﬁ)
X% (;RZ’: P (11— %) ekl ‘K,’j:), (2.17)
= NLP + 2peN\/Jh| / ds(1 — )81 ’j;lf] K

i3i4 i2p—112p i2p—1 "i2p

(;RB"‘ szngK,{f> X ... X GR@”‘.’” _ ek ‘K””), (2.18)

8
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which explicitly eliminates second-order normal derivatives of h;; and where the second
equality coincides with (2.11), thus confirming that the intrinsic function r entering it is £®.
This shows that, just as in the GR case, the Dirichlet action is equivalent to the first-order
action when we express all quantities in terms of £;;, K;; and Rijkl. Thus, Lapm = Y, a,,EX’I)DM
represents the first-order Lagrangian density for a generic Lovelock gravity theory.
In reference [13] the authors obtain the expression

iy Di—102i i1 Jop?

LO = NIy Cigpdp TRAE L RERREE K (2.19)
i=0

with coefficients

- (—4y

S = S —h =11 (2.20)

In order to compare (2.19) to our result £7%,, we schematically represent x = R}} and
y = K in equation (2.17) to obtain

D

1 p—1 p
) x! 1 i 2p—2i
LI = bY + 2176/0 dsy? (EX + (1 — s2) ey2> = igo Cipx VP (2.21)

or, equivalently,
P / § ) te-2pl pjija J2i—1)2i g 2i+1 J2p
['ADM =N ‘h| C’(P)(S[jlezp]Rilb o 'Ri2i—li2i Kj2i+1 o 'Kj2p’ (2.22)
i=0

where

p!2p—2i€p—i

Ciip = Rp—H - (2.23)

Comparison between £7 and L), exhibits agreement up to an overall factor p!/27~" due to
different conventions.

Obtaining the Lovelock first-order Lagrangian densities EX?DM through two straightforward
routes, together with their explicit expressions in terms of K;; and Rijk[, see (2.18), are the core
results of the paper.

The GB action. As an example, consider the GB action supplemented with the Myers
boundary term [5-7],

Inielgl = / dPx L@ — / dx p@, (2.24)
M oM
setting a; = 1 for simplicity, where
£(2) = \/__g (RIIV/WR/IV/W - 4R/”’le + Rz) = \/__gR/lWWP/lV/W’ (2.25)

is the GB scalar density, and where

1 [pragon] pB 3 7 7 7
PL = Ol R = RYY — 200,R0y + 201 ,R0y + 0, 04R, (2.26)

ajon po
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has the symmetries of the Riemann tensor and is divergenceless (V,,Pfj/m = 0) due to the

Bianchi identities. Here brackets denote antisymmetrization, as in A By, = S(ALBY — AIBY).
Finally,

Q¢ .. .
5(2) — ¢ /‘h 5[111213] KJI (Rjzh o 6[(42]{5) — —4¢ (] _ 2GleiJ) ,

L1231 iri3 3

. A 2 . 2,
with er:ng(K,"K,i—KZ)+§KKkK§—§KkK{<K§ and J =J;. (2.27)

This case has been studied in, e.g, references [2, 9, 16] and generalized to Einstein-scalar-GB
theories in [21]. In Gaussian coordinates, the variation of (2.24) adopts the form

Slpis = / dPxy/—gH" 68, + / d’x/|h[3 0, (2.28)
M oM
where
L [ppey popapal privs prav.
H;’ 5[””111/22%;4? Rull u22Ru;lj4’ (2.29)

is the Lanczos tensor and where
ij _ ik sLjj1j2J3] g zz ir 1
= VTSGR (R - S K3K)
=2¢\/|n| (20" P} K} — 3T + ) . (2.30)
The tensor density (2.30) is the canonical momentum associated to the first-order action.
Hence, solving
8£5§2]))M ij
— i 2.31
0(Owhij) @ ( )

we find (after inclusion of the lapse and shift)

‘cf'\z]))M £(2) N /‘h 6llll2l3l4J |: szlleJzz (RJ3J4 _ EKlJ:KlJ:)}

[j1/2J3J4] i3ig 3
— NLO + N/JH] [4615;3,‘1(,#1(; LK — 3K§J{} , (2.32)

where the first term is obtained by identifying it to the restriction of the GB Lagrangian density
to the surface w = cst, that is building it with the intrinsic curvature only:

] 1 1112131,
LY = Z\/Wébllfzjzﬁ]lelll]zlejfl{?' (2.33)
When D = 4 (i.e. d = 3), the Lanczos tensor, the momentum and the generalized ADM Lagan-
gian vanish, as evident from their expression in terms of rank-five and rank-four Kronecker
deltas, respectively.
On the other hand, in appendix B, the decomposition of £ shows that the same Lagrangian
density can be obtained by bulkanization. Using equation (B.9), the Lagrangian density in
equation (2.24) can be shown to yield the same result, that is (2.32).

10



Class. Quantum Grav. 38 (2021) 105004 P Guilleminot et al

3. Hamiltonian dynamics

In order to define an ordinary Hamiltonian, a first-order Lagrangian density Lapwm is required.
If the induced metric A;; is chosen as the dynamical variable, the Hamiltonian is given by the
Legendre transformation

H = /ddx (Wijaru,hij — £ADM) N (31)
where the canonical momentum 7'/ is defined as
OLAbMm
V= 7 3.2
" O(Oyhij) ©-2)

This functional must be written in terms of A; and 7. This is the path chosen by ADM to
construct their celebrated Hamiltonian.

The same path can be taken to construct a Hamiltonian from the first-order Lagrangian den-
sity of Lovelock gravity found in the previous section. For each pth contribution, the associated
Hamiltonian is computed as

HO — / gy (W&) Dy — L) M) . (3.3)
From the canonical momentum (2.6), and in Gaussian coordinates, we have

ij = il
i Ouhij = 2NKm(,,

1
lif.iay] i . 1_. . . .
= ZpeN\/\h|/o ds 5[;1”,;2‘;]1(,.1111({; <2R{;,{j - szeK,.133K{;>

XX <1Rj2”‘j2" - szeK-jz”lKjZ”> , (3.4)

2 ip—102p Dp—1""12p

which identifies to the last term of the second member of equation (2.13). Therefore the pth
Hamiltonian density 2P identifies, in the Gaussian gauge (1.12), to the functional Qw

(which is proportional to £, as mentioned below (2.14)). The lapse and shift N' can then be

restored using equation (1.25) to find the full Hamiltonian:
H= / d’x (NS + N o#;), (3.5)

where the Hamiltonian constraints take the form

e

_ (p)
I = a7,
p=0

%,‘ = —Zﬁjﬂ'ij, (36)

where 77 = Q) /N and ' are given respectively in equations (2.14) and (2.6).

Due to the non linear relation between 7'/ and K, it is not possible in general to write K in
terms of 7'/, Thus, the Hamiltonian above is only given implicitly in terms of the momenta. On
the other hand, it is an exercise to check that the components of the Lovelock tensor £/ defined

1
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in (2.8) verify £y = € /2+/|h| and £ = 5¢;/2N/|h| in Gaussian coordinates, while £
reads

P)J

i liy-izpl rji i 1 J3J4 2y )3 s
5(17)1‘ - / ds 5[1/1 JZpJKll Ktz 2R1314 €s Ki3 Ki4
1 jopt ' ‘ li...inp]
L - p—1J2p _ 2 - 2p—1 1-)2p iip.. ’2p J1 -2
x X <2Rizp1i2p €s K"prl Kizp d 5[11 szJK K

1 . . 1_; .
J3ja 23 s . L plp-1i2p es? sz 1 pJ2p
<2Rm4 es KK ) e ( RO — e’K K

1 iiy..iny] 1 fiiy.iny_ 1] =
1---12p j]jz N RJZp 1/2p - 1---2p—1 \vé

2p+1 Liji-opl™tinia ip—102p 2 Lijtj2p-1l
Op (7t
K’ZV“K”R{“S N RD” 2J2p-1 + w ( j) (3.7)
415 i2p—202p—1 ‘h|

where R; j; is understood as an implicit function of R,-jkl and K;;; see equation (B.14) for com-
pleteness. Here we gathered terms which are equal to the normal derivative of 7rj» using the
tools presented in appendix B (for its explicit expansion in the scalar-GB case, see [21]).

The Lagrangian and Hamiltonian dynamics are equivalent and the correspondence between
the field equations is given by

SH
5N <&,
6H
=0 w _— (), 3.8
v =09 é (3.8)

In addition, by definition of H we have that

SH SL / d
= — where L= d X l:ADM- (39)
Ohij Ohij{o,n,

i
Hence, it can be checked explicitly using the equation above and (2.18) that

o0H

— gy e £ — (). 3.10
Shi Oy & & ( )

i

In the case of GR, we also have that (gr—H,j = Ophij & Kij = ﬁ@whi ;- This relation cannot be
proven in the general Lovelock case, as it requires the invertibility of 7w'/. However, it does not
provide provide extra dynamical information.

The particular case of GB gives

(2) d r(2) d [i 1 3 .
H® = - / dxNLO + € / dx N Tl e KA K (R — eI K
B _ | o

- / dx NLP + / dx N+/|h| (26Pijk1K'kK’l — EK“ +3K’K'K]

o 3 . . o
— 4KK'K{K} — EK}K{KII‘K,ﬁ + 3K}K,{K}<K{) , (3.11)

where in the second line we have just expanded the generalized Kronecker delta.

12
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4. Conclusions

In this paper we investigated the links between the Dirichlet variational principle, and the
first-order Lagrangian density and Hamiltonian of Lovelock gravity. Starting from the sim-
ple example of a Lagrangian linear in the acceleration in point mechanics, we have identified
two methods to compute the associated first-order Lagrangian: integration of the momentum
and bulkanization of boundary terms. We then worked out the case of GR to recover the ADM
Lagrangian density from the Dirichlet action.

More powerful, however, is the use of the momentum integration and bulkanization meth-
ods to obtain the first-order Lagrangian density of Lovelock gravity. Bulkanizing the Myers
term explicitly eliminates all second-order normal derivatives in the bulk. In Gaussian coordi-
nates, the resulting Lagrangian density has the form £, = 779,,h;; — 2N+/|h[EY, making
manifest the connection with the Hamiltonian formalism. Indeed, a Legendre transformation
of the first-order Lagrangian density, directly gives the Hamiltonian density of the system
NP = 2N/|h|EL. In addition, we have that the Lagrangian and Hamiltonian formalisms
are equivalent at the level of the dynamics and surface terms. Indeed, the variation of the
Hamiltonian action

Iy = / d”x (70,hij — Lapm) , (3.12)
M

produces-on-shell-

8y = /ddx 7iSh;;. (3.13)
oM
This matches the surface term obtained in equation (2.5) from the variation of the first-order
Lagrangian. This fact will be employed in future work to define junction conditions for thin
shells a la Hamilton for Lovelock gravity.

Our methods should also be useful to generalize the ADM mass formula to Lovelock grav-
ities. In fact, the canonical momentum readily defines a conserved current when contracted
with a boundary Killing vector.

For an arbitrary set of couplings in the Lovelock action, some of the components of the
metric solution may not be fully determined by the field equations [23]. For instance, the
component g, of any static spherically symmetric ansatz remains arbitrary if the action has non-
unique degenerate vacuum. This problem can be avoided by a given choice of the coefficients
(e.g., the cases of GR, Chern—Simons, Born—Infeld and pure Lovelock [28—30]). However, the
higher curvature terms in the action make the symplectic matrix change the rank for certain
backgrounds, generating extra local symmetries and decreasing degrees of freedom in some
sectors of the space of solutions [24—27]. This kind of degeneracy in Lovelock gravity also
occurs in cosmological solutions [22], where the field equations cannot predict the evolution
of the scale factor a(f) because the coefficient of a(f) goes through zero during the evolution.
This also renders the Hamiltonian quantization of the system problematic [13].
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Appendix A. Conventions

In this paper we set 167G = ¢ = 1. Throughout the text g is the determinant of the metric g,,,,
(with inverse g"), R, = 9,I',, — - - - is the Riemann tensor where I}, = ;¢"*(9,8q) +
- - -) are the Christoffel symbols, R, = RAM ) 1s the Ricci tensor and R = g""R,,,, is the scalar
curvature.

In Gaussian coordinates
ds* = e N> (w)dw?* + hi; (w, xi) dx’ dx/, (A.1)
the non-vanishing components of the Christoffel symbols are F;k = f;k(h) and

€ OwN

w i 1 ik w
i =~ o Ouhip Ty =5h 0wy Ty = = (4.2)
The normal to a surface X, of constant w is defined as
ny = eN(Sff, (A.3)

so that n,n* = €. On the other hand, the extrinsic curvature is defined as
K,‘j = V;LV;VIIHV,

where V! are the projectors on the corresponding surface. In Gaussian coordinates V' = ¢!
and as a consequence of the normal vector definition (A.3), the extrinsic curvature is given in

terms of /;; by

w 1
Kij=Vinj = —eNI%j = 5 0uhij. (A.4)
Consequently, the Christoffel symbols satisfy

€

Ll =NKj,  Tjj=—Ki, (A.5)
and the curvature tensors have the form

RY) = R — e (Kik] — KIK]) (A.6)

Ryl =~ (VK| = ViK]) (A7)

14
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R = =N (VK] = VK}). (A.8)
wi € i i
Ry = =5 0ukK] — eKiK], (A.9)
i i i € i
R =R} — eKK' — Naij, (A.10)
w € i ]
RY = —N&UK — eK'K7, (A.12)
5 2 i) 2e
R=R—¢ (K i KjKi) — 0K, (A.13)

The equations above are the Gauss—Codazzi—Mainardi relations in tensorial language and in
Gaussian coordinates.

Appendix B. Bulkanization of Myers terms

As a warmup exercise, let us consider the integral of 5(2), see (2.27), on the boundary
OM =¥, UX,, UC, which is the union of the surfaces w = w; and w = wy and of their
complement C. Its bulkanization yields:

o Q¢ ..
[ 3] i i1 i 1
/ddx BY = —Ze/de Ow {‘/hwlffi]fiﬁ K} (R]?z}3 — 3Kj§K]§>] ., (B.D)
oM M

modulo a contribution on C which can be discarded for our purposes, see below (1.23).
In order to compute the normal derivatives involved and construct the desired structures, it
is useful to rewrite 8“,,1(51 using (A.9) as

wj

0,K'! = —eN (R“""1 + eKj‘Kjl) , (B.2)
and
1 ..
Our/TH] = 5v/THINI9, hi; = NKA/TH, (B.3)

where K is the trace of the extrinsic curvature. Since moreover d,R’, = Vi(,T%) —
v,(awf;k) with Bwffj =N (?,-Kf +V jK,k — V*K; j) (which exhibits 8w1:‘f-‘j as an intrinsic
tensor), a short calculation yields

SRR g, 2 — _oNsiRlgh [KER"#‘ +2eK K2 K" +2vjﬁi21(jj . (B4

[iyi2i3] 23 [iviziz] “* 23 R

Combining the results above, (B.1) can be rewritten as

liyizis] 23

/ddxlg(Z) _ _Ze/deN (st 2 (_2 K K2R
J1
oM M
i o 13 1k i . i pri3
— 4K K2KKE — 4 KV, VK7
4e

iy -1 ini i ini i 13
+ eK}'K} ) R3S + K, (R;z; + ?Kj;Kj;> K) : (B.5)

w

wi
—¢ (R !
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At this point, we can use the identities (C.1) and (C.2) to find

d 2 D [j172.73] wi| pial i1~ i i
[ =2 [an T (R R + 4eK 9, 97K
oM M
Lo . . .. 26 . .
D / [j1J2J3Ja] gri1 i i3i i3 i
- 26/d xN |h‘5[i11i22ia?4? Kjll Kji (RJ%;‘: - ?Kj;Kji> - (B.O)
M

wiy

We notice that R, in the first term contains normal derivatives of the extrinsic curvature,
see (A.9), that will cancel out with those coming from the expanded GB Lagrangian density,

2) _ / [i1ipi3] Wl pJ2J W1 pJ2J3
L: _2N |h‘5 1213 (R IRA2A3 +R IR'u%i;)

Lj1273] wiy “ipi3 irip

+ ZN\/W(S‘[HWM] R{1]2R1314 (B7)

[ jal™inin “izig

Using §/128IRWI R — _geslinidlg ki ?"21(2 and integrating by parts we get

liyizis] “Hj12" w3 [iyipiz] ¥ 270y

liyizis] 1

D r(2) _ D L1231 [ pwit pizi i T | R
/d XL —2/d *NA/THIS) (RUARES, + 462K VK7 ) +
M M
1 i1--ia] pil i plai
+3 / dPx N/Jhls{ R RES, (B.8)
M

where we discarded terms that are total V; derivatives, i.e. terms living on C.
Subtracting (B.8) and (B.6) we finally get

d iy i1 2J
/dux (5(2) -4 (5<2>)> — _/de Q@ +ze/deN \h|6b‘lm;f]l({lll(i’;><
M M M

L Qe .
x <R43.f4 - 61(,!;1<g) : (B.9)

1314 3
where Q@ is obtained by setting p = 2 in equation (2.14).
The same bulkanization procedure can be performed for any Lovelock density with its cor-

responding Myers term. The use of equations (B.2)—(B.4), (C.3) and similar steps to those
described above yield

d Vo il i (1 ai i

- »\ — _ / L2pl gy g 7 piaty 213 prlg

dw (ﬁ ) = —2peN |h‘/0 ds 6[jl"'j2pJKjl sz 2Rj3j4 €s Kjaszt X
2 h2p-1d2p 2p—2 " Ljt-jop-1l

1*i2 . . . . .
p-1p 2 piap-1 g2y P liriop ]
X ( R €s szpilszp )

X (Rwilkfz»” +(p— 1)R?°‘f1Rf2?3) RIS o s R 21

wiy “ipl3 iy “twiy i4ls i2p—2i2p—1
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Since the expanded Lagrangian density £7 takes the form

(» _ glivizp=1] - pwir poJjs wji pias\ pias
L 2p -2 |h‘ [j1-J2p—1] (R11111R1213 +(P 1)R1112Rmz3 ) Rz415 X
J2p—2J2p—1 / [ivi2pl pj1jn Jop—1J2p
X Rlz;; 200p—1 + N ‘h 5[11 jszRlllz X Rlzp 102p (B.10)

we get

/de (ﬁ(p) _ % (5(17))) —_ _/de Q(p) +2p6/deN \h|

M M M

/d 5[’1 ’ZPJKlejz
0

Lj1--J2pl
1 R’”“ 2 Kj3 Kj4 %
D i3ia €s i3 Trig

v <%Rj2p1j2p - 2K12p 1K_j2p) ) (B.11)

D2p-112p Dp-1""12p

Finally, the same game can be played when projecting the equations of motion £ } we can
see that
1

_ lip1-12p] vy 1y Hop—112p
Epi =~ 5pr 1 Ot ang) Ry - - - Ry (B.12)

exhibits the same structure as L% except for the extra pair of indices. According to
equation (C.4), we will need an extra term when packing the terms in a one-rank-higher delta
and get, restoring the lapse and shift,

i liirin] o grin (L ins 2 3 g
6@)] - / ds 5[111 sz]K K 2Rl3l4 €s Ki3 Ki4 X
L Sipti liiz...igp]
- p—1J2p 2 ]2[1 1 ]2[1 uy.. 1217 J1 -2
X <2Ri2p1i2p Klzp 1K d 5[11 sz]K K
1RJ3]4 esPKBK™) « ... « ERijflij o szzp 1szp
2 i3y i3 Mg e 2 i2[1—1i2p Dp-1""12p
_Leliieizp ] 2T i 13 pJals J2p—2J2p—1
5[1]1 J2p— 1]v (K v K Rl4ls X - X Ri2p72i2p71
1 [iiy...i0p] j j 0 '7Ti‘
pl pilia J2p—1J2p wr
—_— X XK . .
op+1 L sz]Rlllz R12[17112p N |h‘ > (B.13)

or as a functional of intrinsic quantities as

. Oyt ! i} ...ia] 1 o
i OwT; iiy...0p, J1 1) J3.J4 2 g3 gl
€ = iy P Jy ST i Ki Ky <2R’3’4 K Kif) )

ip—1i2p [j1---J2p]

% <;R.12p 1]2,; o Sszzp IK.1217> . / dS(S[Hz lzp]Klejz
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1314 Dp—112p Dp—1""12p

% <;RJ”“ esngK,{:‘> N <;Rj2p1j2p _ 2K12p 1Kj2p>

+E— —5[”‘ oV (KEVIKD (REF - 2KEKE)

[jj1-j2p—1] igls
x (lej" SR cud 1‘)) . (B.14)
p—212p p p

Appendix C. Additional identities

We need to relate Kronecker deltas that differ in rank. For a rank-four Kronecker delta, useful
identities are

5[11 J4]K11 KlzKlsKu 5[1112]3] KK” KlzKlz _ 3K11 KlzKlzKl (C.1)
[iy...ia] [i1i2i3] ’ :
and
[J1---Jal i1 1-i2 i3l [j1/23] i pial i -l piai i) i pli
St KA KGR = O] (KK AR — K'KG RE = 2K5, K 2R/§ﬂ) : (€2

Notice that the identity holds for any pair of tensors that share the same symmetries as the
extrinsic and intrinsic curvature. The generalization of the relations (C.1) and (C.2) for 2m
extrinsic curvatures and n — m Riemann tensors is

[i1-i20] g1 Jom pl2mA-1J2m42 pJan—1J2n
5[11 Jzn]K : Kl2m R12m+1l2m+2 Cr o 1in
[iyin—1] z-j1 J2m—2 pJam—1J2m Jan—5Jon— Jon—3 pJan—2J2n-1
5[11 Jan— IJK ! Kl2m 2Rl2m 1iom -~ R’Zn 5i2n—4 KK’Zn 3R’2n 20p-1 (C3)

— (2m _ l)KIJZn 3K1 R]2n 2J2n-1 (2m _ 2])K12n '5K]2n ZRIJZn 1 )

ip—3" “iap—2i2n—1 iop—20i2n—1

where we factored out 2m — 2 extrinsic curvatures and n — m — 1 Riemann tensors.
In presence of a pair of free indices, we have

[iiy-izp] g1 Jom pl2m—+1J2m-+2 J2n—1J2n
5[1]1 -J2n] K o 'Kizm Dm+10m42 " Rlzn 1i2n

Ljji-Joan—1] iym—2 " lom—1i2m ion—5i2n—4 ion—3 "iap—2i2n—1

5[”1 dop—1] K]l . K]Zm ZRJZm 1]2m RJZn 5J2n—4 (KKJZn 3R]2n 2J2n-1
(C4)
_ (2m _ 1)K12n 3Kl RJZn 2J2n-1 (2m _ 2])K]2n 3K12n 2Rl]2n 1 )
1

ip—3" Viop—2i2p—1 i2n—212n—1

liia..iog] i1 g2 Jom JamA4-1J2m+2 pJ2n—1J2n
5[11/2 JszK K ) K’Zm R12m+1l2m+2 '.'Ri2nfli2n’

that has one extra term-the last one-in comparison to equation (C.3). Notice that we fixed 7;
when taking the trace to lower the degree of the generalized Kronecker symbol.
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