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Abstract

In general, it is difficult to measure distances in the Weil-Petersson metric on Teichmiiller
space. Here we consider the distance between strata in the Weil-Petersson completion of
Teichmiiller space of a surface of finite type. Wolpert showed that for strata whose closures
do not intersect, there is a definite separation independent of the topology of the surface.
We prove that the optimal value for this minimal separation is a constant §;; and show
that it is realized exactly by strata whose nodes intersect once. We also give a nearly sharp
estimate for §; | and give a lower bound on the size of the gap between §; | and the other
distances. A major component of the paper is an effective version of Wolpert’s upper bound
on (Véa,Vfﬁ), the inner product of the Weil-Petersson gradient of length functions. We
further bound the distance to the boundary of Teichmiiller space of a hyperbolic surface in
terms of the length of the systole of the surface. We also obtain new lower bounds on the
systole for the Weil-Petersson metric on the moduli space of a punctured torus.

1 Strata separation

There are several natural quantities associated to the Weil-Petersson metric on Teichmiiller and
moduli space. One is the length of closed geodesics on moduli space or, equivalently, the trans-
lation length of pseudo-Anosovs on Teichmiiller space. Another is the distance between strata
on the boundary of Teichmiiller space. Boundary strata are determined by a multi-curve on the
underlying surface and two strata will have intersecting closures if and only if the associated
multi-curves have positive intersection. Wolpert has shown that there is a definite separation
(independent of the surface) between two strata whose closures do not intersect. The key tool in
the proof of this theorem are upper bounds on the gradients of length functions. In this paper we
will improve on Wolpert’s gradient estimates and use this to show that, as expected, the minimal
distance is realized when the multi-curves intersect exactly once. We will also see that nearly
sharp bounds on this distance follow easily for our gradient estimates.

We begin with some setup before stating our results more precisely. Let S be hyperbolic
surface of finite type and Teich(S) the associated Teichmiiller space. We let Teich(S) be the
completion with respect to the Weil-Petersson metric.

There is a natural stratification of Teich(S) which can be described via length functions.
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Given a closed curve (or multi-curve) o in S we have the length function ¢4 : Teich(S) — (0,00)
given by letting £4(X) be the length of the geodesic representative of & in X. Then ¢4 extends to
a continuous function £ : Teich(S) — [0,e0]. Given a multi-curve 7 on S, we define the associated
stratum

Z2(8) = {X € Teich(S) such that £(X) =0 if and only if o C 7}.
Points in .7%(S) are noded hyperbolic structures on S where the multi-curve « is the set of nodes.

We note that if o C 7 then .7%(S) C .%5(S) and it follows easily that i(c,7) =0 if and only if

dwp(S5(8),-72(8)) =
Wolpert proved the following:

Theorem 1.1 (Wolpert Strata Separation, [Wol2]) There is a universal constant & > 0
such that if S5(S),7:(S) are two strata with geometric intersection number i(c,T) # 0 then

dWP(yG(S)7yT(S)) > 50

Wolpert does not give an explicit value for the constant 8. We will give the optimal value
for &y.

We let T be a punctured torus and a, B two curves on T with i(o, ) = 1. Observe that there
is an element of the mapping class group (i.e. an isometry of Teich(7')) that takes any other pair
of curves on T that intersect once to a and B so the constant

01,1 = dwp(Sa(T),-73(T))

is well defined. An elementary application of Riera’s formula (see Lemma 2.2) shows that
6.57252 < 811 < 6.65603.

Using estimates on the Weil-Petersson gradient of length functions along with Wolpert’s
description of the Alexandrov tangent cone for the Weil-Petersson completion, we prove that the
optimal value for Wolpert’s constant & is exactly 0;,1. More precisely:

Theorem 1.2 Let #5(S),74(S) be two strata in Teich(S). Then one of the following holds;
1. i(0,7) =0 and dwp(S5(S),-7(S)) =0.
2. i(o,7) =1 and dwp(F5(S),%(S)) = 611-
3. i(0,7) > 1 and dwp(-L5(S),72(S)) > 7.61138.

We note that it is not hard to see that the set of distances between strata (even for the punctured
torus) is not a discrete set and Wolpert’s original theorem does not give that the constant & is
attained.

If S is a punctured sphere then intersecting curves intersect at least twice and this setting
needs a slightly separate analysis. See section 5.

Another application is relating the distance of a point in Teich(S) from the boundary dTeich(S)
to the length of its systole. Given X € Teich(S) we let £;,,(X) be the length of the systole of X,
i.e. the minimum length of a geodesic on X. We prove

Theorem 1.3 There exists an explicit continuous function c: (0,00) — (0,1) such that if S is a
surface of finite type and X € Teich(S) then

2 dwp (X, dTeich(S))
\/; = C(gsyS(X)) = Zﬂgsys(x) =!




Furthermore lim, 0 c(t) = lim; 0 c(t) = 1.

The in-radius of Teich(S) is the radius of the largest embedded metric ball in Teich(S) (see
[BB] and [Wu2]). Specifically

InRad(Teich(S)) = max dwp(X,dTeich(S)).

If we let sys(S) = maxycreich(s) fsys(X) then the above theorem gives the following immediate
corollary.

Corollary 1.4 With ¢ the same as above
< InRad(Teich(S))

c(sys(S <l1.
(sys($)) < s
Furthermore if Sg» is the surface of type g,n then
iy InRad(Teich(Sg)

g 27sys(Sen)

Gradient estimates

Riera gave a beautiful formula for the inner product of the Weil-Petersson gradient of length
functions /o and fg (see Theorem 2.1). Using this formula Wolpert obtained the following
estimate:

Theorem 1.5 (Wolpert, [Wol3]) Let lq,lg be geodesic length functions for simple disjoint
curves o,3. Then

%ea(x)ag < (Vig,Vig) < %ea(x)ag +O(Ca(X)2 5 (X)?)

where 5;;‘ is the Kronecker delta function and where for >0 the term O(£e(X)*1g(X)?) is uniform
for £o(X),£p(X) < £.

The lower bound follows directly from Riera’s formula. Following the same basic strategy of
Wolpert’s proof we obtain an upper bound on the inner product by an explicit elementary func-
tion. As in Wolpert’s bound this function will decay quadratically in both £4(X) and £g(X) as
the lengths approach zero but for large lengths it grows exponentially:

Theorem 1.6 Let £y, {g be geodesic length functions for simple disjoint curves &, B with £4(X) <
lg(X). Then

2 0 (X)8% < (Vlg,Vlg) < 2 0a(X)8E + —r 04(X) sinh (£ (X)/2) sinh? (£5(X)/2

;a( )3_< as ﬁ>_E al )ﬁJFW a(X)sinh (£¢(X)/2)sin (ﬁ( )/)

where 65‘ is the Kronecker delta function.

We note that the bound here is asymptotically optimal for small lengths but not when the length
is large. Ome can obtain a better bound by an elementary (but complicated) function that has
better asymptotics for large lengths (see Proposition 2.5). At the end of Section 2 there is a
further discussion on the accuracy of our bounds.



Notation

In using decimals approximations the expression a >~ ag.ajazaz...a, where ag € Ny and a; €
{0,1,...,9} means that this is the first n decimal places of a.
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2 Bounding the gradient

Riera’s formula

The main ingredient in Wolpert’s bound is the following formula of Riera for the Weil-Petersson
inner product of length functions ¢4 and £g.

Theorem 2.1 (Riera, [Rie]) For X =H?/I" € Teich(S), let A,B €T correspond to o, with A,B
having azes a,b. For C € (A)\T/(B), if a,C(b) intersect let u(C) = cos(a,C(b)) the cosine of the
angle of intersection and otherwise let u(C) = cosh(d(a,C(b)). Then

2
(Vea, Vig)y = > (mxmﬁ . R<u<c>>>
T Ce(ANT/(B)
where |
R(u) = ulog ut ’—2.
u—1

Before starting on the main estimate of the paper we use Riera’s formula to bound the distance
between strata in a simple, but important case. We note that if u > 1, R(u) > 0 so if the curves
a and f are disjoint (or equal) then the inner product of V/q and V{g will be positive.

Proposition 2.2 The constant 81 has the following bounds:

2sinh~1(1) dt
T — <& <4y/wsinh~L(1
f/o (1/2)_1,1_\/ (1)

sinh
In particular, numerical estimates give 811 € (6.57252,6.65603).

Proof: Let o and B be curves on the punctured torus T that intersect once. There is
orientation reversing involution t: T — T that fixes both o and B (as homotopy classes). This
involution induces an isometric involution t.: Teich(7) — Teich(T) under which both £ and /g
(and therefore their gradients) are invariant. (In fact there are two such involutions t but they
both induce the same map on Teich(T).) We construct a path X; in Teich(7T') from 7 to g
(which are both single points) that is the fixed point set of 1,. This implies that X; is the unique
geodesic from . to /g and that both V{4 and V{g are tangent to it.



Here is a description of the path: Let R; be a family of ideal quadrilaterals where the two
shortest geodesics connecting opposite sides intersect orthogonally and one of these sides has
length ¢ and the other s. A direct calculation shows that

sinh(z/2)sinh(s/2) = 1.

The tori X; are defined by identifying the opposite sides of R;. The involution t is induced by
reflecting R; along the horizontal geodesic which induces an isometry of X; to itself. For any other
torus Y € Teich(T) the angle between o and B will be some 6 # 7/2 while the angle 1(¢t) and
1(B) will be £— 0 so 1(Y) #Y. Therefore X; is the fixed point set of 1.

Note that £4(X;) =t and £g(X;) = s so on X; the relationship between ¢ and s gives

sinh({q(X;)/2)sinh(£g(X;)/2) = 1.

This and the Riera Formula will allow us to get good bounds on the gradients. In particular,
given that the gradients are tangent to X;, after differentiating we have

Vig(X;) = —sinh({q(X;)/2)VEg(X;).
Applying Riera’s formula to the inner product of V{y with itself we have

2 2t
IVl (X)|1* > Eﬁa(Xt) =7

as all of the terms in the sum are positive. If we take the the inner produce of V{4 and Vg we

have 4
<V€a,VZ[3> > —;

as the only non-positive term comes from lift of B that intersects the lift of o in the double coset.
As the two gradients are tangent but in opposite directions we also have

<V£oc,V£ﬁ> = _vaan : HVEI?”'

Combining with our previous relationship on the gradients we have
s 4. 4 .
Ve (Xp)]]” < p sinh(£q(X;)/2) = p sinh(z/2).

Choose o = 2sinh~'(1). Then /¢(X;,) = lg(X,y) and by symmetry the length of the paths
X(04) and X|y) o) are equal. We will use the above bounds on gradients to bound the length of the
former.

As the tangent vector X; is parallel to V/(X;) after differentiating the formula £¢(X;) =t we
have

1%l [ VEa (X)) = 1
and therefore

1

0]
Length (Xq,,) = /0 mdﬁ



Applying our estimates on |Vl (X;)|| we have

o 1
dr < Length (X(g,,]) < / jdr.
3 1

A
0 /%sinh(/2) 0 j&

T

As 011 =2Length (X(O,to])v the result follows. O

Remark: The first bounds on 6,1 we given in [BB] where it was shown that
0.9744... < 81 <25.8496...

using bounds on volumes hyperbolic 3-manifolds. The method here allows one to estimate ;| to
any degree of accuracy. As m (T) = (o, ) we can enumerate the double cosets in Riera’s formula
for both [|Vlq||* and (Vlq,Vg) in terms of words in A and B. These enumerations give distance
functions u;(¢) and v;(r) so that for any m,n € Ny

%sinh(t/Z) <2—iR(vi(t))> <[V (X)]? < % <t+i;R(ui(t))> .

In particular taking the double cosets C, = (A) \ B"/(B) then u(C,) = cosh(nfg). Similarly, we
observe that the 4 double cosets Ci 1 = (A)\ B*A*/(B) give u(Cx +) = sinh({y)sinh(¢g). Using
these upper and lower bounds, we numerically integrate to obtain

6.59576 < 611 < 6.63283.

In this example the upper bounds on ||V{y|| are obtained by exploiting the extra symmetry
in this setting. To bound ||V{y]|| in a more general setting (which we use to bound distances in
Teich(S)) we need to bound the sum in Riera’s formula directly.

Strategy

We briefly describe the strategy for the proof of Theorem 1.6. The function R(cosh(¢)) can be
approximated by ae~%. To bound the sum in Riera’s formula we compare it to the integral of the
function e~24(®2) on the annular cover Aq of X associated to o where d(a,z) is the distance be a
point z € Ay and the core geodesic. The integral over the annulus is a straightforward calculation.
To compare it to the sum we decompose the annulus into the r-neighborhoods N(h;,r) of the lifts
h;i of B to Ay where r is an explicit constant given by the collar lemma and then compare the
average value of e 24(%2) on N(h;,r) to e 24X,

While the overall strategy of the proof is the same as Wolpert’s, our estimates within the
proof are different. For example Wolpert only estimates the average of e 24(%2) on disks rather
than over the neighborhoods N(h;,r).

Preliminary estimates

Before proving the theorem we need to approximate R and implement our averaging estimate.
We begin with the former.



Lemma 2.3 The function
a(t) = e*R(cosht)

is monotonically decreasing with

fim alo) =5

Furthermore

es}

a(t) < 5—210g(1—e ),

Proof: We have by [Rie] that for s > 1

+...

s+1 2 2 2
2=~ 4 42
) 32 58 T 756

R()_slog( - +

Note that if we replace R by its series above, the individual terms of e*R(cosh(z)) are not each
monotonically decreasing. To prove the lemma we need a different expansion of a(r). Let u=e™*

and consider .
a(u) =u>R <u+2 /u) .

We have

u+1/u
<u+l/u) <u+1/u> ( +2/ )+1
R{UM) — g |~ 2/ |2
2 (u+l/u)71
2
_ (u+t1/u o W +2u+1 3
- 2 S22t
- (u+1/u)log(1+u) )
u

5
= (u+1/u) (2u+2u+2u+...>—2

3 5
¥ 2 Y f
n—l 2n+1 n—l)(2n+1)

n=1 n=1

Therefore

e 8t
a(u)_r;)(2n+l)(2n+3) "

From the expansion, it follows that d(u) is monotonically increasing on [0, 1) and therefore a(f) =

a(e™") is monotonically decreasing on (0,c0) and

lim a(t) = 4(0) = g

f—o0



To obtain the upper bound, we have

8(n+1)u*"
(2n+1)(2n+3)

2 2n+2\ o,
u
1\2n+1 2n+3

au) =

+
uglk

n

n

_|_
()
[ agk

3
I

—2log(1 —u?).

Il
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Let d denote distance in the hyperbolic plane H? and dA the hyperbolic area form. We will
use the following lemma to estimate the integral of e=4(*2) over N(h;,r).

Lemma 2.4 Let g,h be disjoint geodesics with d(g,h) > r and let N(h,r) be the r neighborhood of
h. Then

248N /( )e_Zd(g’W)dA > 2tan~ ! (sinh(r)) cosh?(r) + 2 sinh(r).
N(h,r

Furthermore if d(g,hy) — oo then

lim (ez‘i(g=h")/ )eZd(g*W)dA) = 2tan”' (sinh(r)) cosh*(r) + 2sinh(r).
N(hy,r

n—oo

Proof: We first make a general observation. We consider the triple (E, p,g) where E is a Borel
set in H?, p € E and g is a geodesic such that E is entirely on one side of g. Note that if b is a
horocycle tangent to g that is on the other side of E then d(g,h) > d(q,g) for all g € E. Therefore

/eiZd(g’w)dAZ/eiZd(h*W)dA.
E E

We can estimate the integral on the right by working in the half space model for H? and normal-
izing so that p =i, g intersects the imaginary axis at yop > 1 and b is the horizontal line at height
yo. Then for w= (x,y) € E we have

d(h,w) = log (yyo>

and )
dxd A(E
/ e 2d(bw) gA — yiz . % — (72) = e 2BPIA(E).
E EYy Y Yo
Let g, be a sequence of geodesics such that in the normalized picture g, intersect at height
yn with lim, ey, = 0. Let b, be the horocycle for y =y,. Then for f,(w)=d(w,h,)—d(w,g,) we
have f, — 0 uniformly on compact subsets of H?. Therefore

lim <62d(gn-,p)/ eZd(gn,W)dA> = lim (e2d(gn7p)/ eZd(bn.,W)dA) =A(E).
E E

n—soo n—soo



We now apply this to the geodesics g,h. We consider the triple (N(h,r),p,g) where p is the
nearest point on & to g. Then from above

/ e 28 g > eiZd(g’h)A(r)
N(h,r)

where A(r) is the Euclidean area of N(h,r) when & is the semicircle of radius 1 about 0.

To calculate A(r), we do some basic calculus. We define ¢ to be the angle between the
boundary of N(h,r) and the geodesic h. Reflecting the bottom boundary component of N(h,r) in
the x-axis, the upper boundary component and the reflected bottom make a Euclidean circle of
radius R with Rcos(¢) = 1. We then consider a Euclidean circle C of radius R about the origin
and let I(¢) be the area between the vertical line x =¢ and C. Then

1(1) =2/R\/R2—x2dx.

We observe that A(r) = TR* — 21 (\/R2 - 1). Substituting x = Rsin 0 we have

I(Jzﬁ) :2R2/

w/2 1
c0s20d6 = R (” o= sin(2¢)) .
0 2 2

Thus

A(r) = R*(2¢ +sin(2¢)) = 2 2cS(iIle((¢¢))COS(¢) ’

By elementary hyperbolic geometry cosh(r) = sec(¢),sinh(r) =tan(¢) and tanh(r) =sin(¢). There-
fore

A(r) = 2tan™ ! (sinh(r)) cosh?(r) 4 2 sinh(r).

Using the above lemmas we prove the following proposition.

Proposition 2.5 Let {q,{g be geodesic length functions for a,B simple and disjoint. Then

2 2
~la(X)8F < (Ve VLg) < ~ta(X) (85 +F(larlp))

where F is an explicit elementary function.

Proof: We let Ay be the annular cover corresponding to geodesic o in X. We let g be the
core geodesic and &; an enumeration of the lifts of B in Ag. We further let #; be the distance from
g and h;. Then by [Rie] we have:

(Vig,Vig) = % <£a6§‘ +ZR(cosh(t,-))> )

The lower bound on (V/,V/g) then follows as R(z) > 0 for t > 1. We let T be the minimum
distance between o and 8 and r,s > 0 be such that the r-neighborhood o and the s neighborhood



of B are both embedded and disjoint. In particular T > r+s. Also by the collar lemma, sinh(r) >
1/sinh(f¢/2) and sinh(s) > 1/sinh({g/2).
As d;(X) > T for all i, by the Lemma 2.3

ZR(cosh(ti)) <a(T) i e i <a(r+s) i e i

i=1

—_

We now bound the expression on the right.

Define N(h;,s) to be the s-neighborhood of ; and N(g,r) to be the r-neighborhood of g. Then
by definition of r and s, the sets {N(h;,s)},N(g,r) are mutually disjoint.

We give A, coordinates x,t where ¢ is the distance to the core geodesic g and x parametrizes
the length about the core geodesic. Then

Z/ e 2dA
i - N(h,-,s)

IN

/ 72[dA
Aq~N(g,r)
Lo
2/ / cosh )dtdx
e
ga (e r+ 3) .

To estimate the terms in the sum on the left we note that the integrals can be lifted to the
hyperbolic plane and then by Lemma 2.4

e M < ! / e dA.
2tan—! (sinh(s)) cosh?(s) 4 2 sinh(s) /N (h.5)

Therefore

ryer
21, < Ea (e + 3 ) )
; 2tan—!(sinh(s)) cosh?(s) 4 2sinh(s)

Therefore by Riera’s formula

a(r+s) (e” + e;3r)
2tan~!(sinh(s)) cosh?(s) 4 2sinh(s)

2 2
(VEa,Vep) < ~la | 55+ = —tq (5;;‘ + G(r,s))

As G is the product of monotonically decreasing functions, it is monotonically decreasing. We
now let sinh(r) = 1/sinh({¢/2) and sinh(s) = 1/sinh(¢g/2) and define F({q,{g) = G(r,s). Then

L, sinh(tg/2)
1+ cosh(lq/2)
giving
F(la,lg) = a(r+s)u(fe)v(fg)sinh(fq/2)sinh®((5/2)
where
w(te) = 2cosh(le/2)+1 W(lg) = 1

3(cosh(£g/2))+1)? tan—! (csch(£g/2)) cosh?(¢g /2) +sinh({g/2)

10



We now prove Theorem 1.6.
Proof of Theorem 1.6: We need to show that for 0 <z <w then

F(z,w) < % sinh(z/2) sinh?(w/2).

We let r =sinh~!(1/sinh(z/2)),s = sinh~!(1/sinh(w/2)). Then F(z,w) = a(r-+s)u(z)v(w)sinh(z/2)sinh?(w/2).
We now show that a(r+s)u(z)v(w) <4/3m by showing it is maximized at z=w = 0.

We first show v is monotonically decreasing. We implicitly define v (sinh(w/2)) = 1/v(w).
Then

vi(t) = (1+*)tan”! (:) +1

1 1 -1 1
Vi(t) = 2rtan~! <> +(1+7%) ; (2> +1=2rtan"! <> .
t 1+4 t t

Therefore v; is monotonically increasing, and v is monotonically decreasing. It follows that
v(w) <v(0)=2/m.
We now show a(r+s)u(z) <2/3. By assumption z <w, giving s <r. Thus

1 —4r 1 —2(r+s)
u(z):4<1+e3 )(l—ezr)§4<1+e 3 (1—e 209y,

giving

We now use the expansion d(g) = ¥ a,¢*"* from Lemma 2.3. Letting ¢ = ¢~ *%) then a(q) = a(z)
giving

2 ) 2 I
da(r+s)u(z) < a(q) <1+q3) (1-¢%) = (;)anq2"> <1+‘g) (1-¢) = ;]Ancﬁ".

Computing we have
1
A, = (an - an—l) + g(an—l - an—Z)

where we define a_; =a_,=0. Forn>1

- (2 +i (2 n 2 \__2 %2 _,
ay —dp—1 = 2n+3 2n+1 2n+1 2n—1 o 2n+3 2n—1

Thus A, <0 for n>2. Also

32

Al=a —a+@—E—§+§<—
=A== 957379~ 45

It follows that A, < 0 for all n # 0. Therefore 4a(r+s)u(z) < Ao = 8/3 giving a(r+ s)u(z)v(w) <
4/3w. O

We define F(r) = F(t,t). Then from above, we have the following;

11



Corollary 2.6 Let S be a finite type hyperbolic surface and £y be a geodesic length function for

a simple. Then
2l (X)

T
where F(t) < (4/3m)sinh®(¢/2).

<9t < 29X (14 praa)

We note that Theorem 1.6 also gives a bound on ||V£y(X)]| in terms of collar radius. Defining
G(r) = G(r,r) then G is monotonically decreasing with

G — a(2r) (e’r + %)
(= 2tan—!(sinh(r)) cosh?(r) + 2sinh(r)

Corollary 2.7 Let S be a finite type hyperbolic surface and o be a geodesic length function for
o simple. Let a have an embedded neighborhood of radius ry(X) in X. Then

Ve < 22X (14 Gl x))).

Furthermore G is monotonically decreasing with
F(t) =G ( sinh™! 1
N sinh(1/2) ) )

From Corollary 2.6 the asymptotics of our bounds as ¢, — 0 are easy to see. In particular,
the difference between the upper and lower bounds is of order E‘&. In this form the asymptotics
of our bounds are not as transparent when ¢ — eo. For this purpose, it is useful to rephrase our
bounds in terms of simpler functions.

Before doing so we first state a theorem of Wolpert:

Theorem 2.8 (Wolpert, [Wol3]) Let {y be a geodesic length functions on Teich(S), then

I9a(011 < ¢ (¢alX) + La(X)%e™5")

for some universal constant ¢ > 0.
Our bound gives an effective version of Wolpert’s result with the same asymptotics as £y — .
Corollary 2.9 Let £y be a geodesic length functions on Teich(S), then

2 1
VeI < 2 (fa(X) + Sa(x 22

Proof: We have that the function F(t) = a(T )u(r)v(t) sinh®(z/2) where T = 2sinh~!(1/sinh(z/2)).
Considering u we have

~ 2cosh(1/2)) +1 2 4e1/2
u) = 3 cosh(t/2)) + 12 = 3cosh(/2) = 3

12



For v(t) we consider f(s) =tan~!(1/s) —1/v1+s2 for s > 0. We have

—/ 2
Fls) = — 1 + s _s 1+s <0.
1+S2 (1+s2)3/2 <1+S2)3/2

Therefore f is monotonically decreasing and lims_,e f(s) = 0. It follows that for s = sinh(z/2) we
get tan~!(csch(¢/2)) > sech(t/2). Therefore

)= ! < 1 — 12
tan—! (csch(z/2)) cosh?(t/2) + sinh(z/2) ~ cosh(r/2)+ sinh(/2) )

We now bound a(T). As sinh(7/2)sinh(z/2) = 1, we have

_r _cosh(t/2) —1
~ cosh(t/2)+1°

By Lemma 2.3 we have the bound a(T) < 8/3 —2log(1 —e~?T). Therefore

8 (1+cosh(/2))? (1+cosh(z/2))?
a(T) < 7 +2log (400811([/2)) 4ef/2cosh(r/2>>'

8
3 +t+210g<

3
As

(1+cosh(t/2))* 1( 2 2 +1+e—f <1
4et/2cosh(t/2) 4 =

dtl g2 2
we obtain a(T) < 8/3+1¢. Therefore

F(t) < g <t+ 2) e 'sinh®(z/2).

It follows that

te!/2 =6 3t
By simple calculus, g has a single critical point #y > 0 that is the global maximum. Evaluating
we get g(f) < 1/3. The result follows. O

F) 1 (1+8> (1-e) < 1+i,(1—e*’)3 =3s(0).

3 Bounding strata separation

We now give an explicit bound on Wolpert’s strata separation. Before doing so we prove the
following elementary lemma.

Lemma 3.1 Let M be a Riemannian manifold and f: M — R be a smooth function. Let U and
L be non-negative integrable functions with

L(f(x)) < VA <U(f(x))
for allx e M. Then if x,; is an integral curve of Vf that is defined on the interval [a,b] we have

! )< /f(Xh) 1
-xau-x = ——as
"= i L(s)
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and for any x,y € M with f(x) < f(y) we have

d(xy) > /f ™ 1 4
X,y) = S
OR40)

Proof: We begin with the first inequality. We have

b b
d(x0) < Length (vi0py) = [ lilldr = |19 fo)
a a
If we make the substitution s = f(x,) we have

ds =df () = (Vf(x),4)dt = (V.f (), V.f (x))dt = |V f (xr) [Pt

and therefore

a( ) /f (xp) 1 Us < /f (xp) 1 J /f () 1 4
X, Xp) = — a5 < ——as = —das
P i TVFG)]] o) L(F(xr)) f) L(s)

Let y; be a smooth path in M with x =yy and y =y;. Letting s = f(y,) we have
ds=df(yr) = (V). y)dt <[yl - V£ () llde.
We let E C [0,1] where s is monotonically increasing. Then

Lensth *1'd> 1 d>f(y)1d
eng (y[oﬁ,l])*/o [ t_/lsm t_/f(x) IO

As this holds for all paths from x to y we have

I )>/f(Y) 4
X,y) = S
fw Ul(s)

The following proposition will allow us to apply this lemma to the gradient flow on length
functions on Teich(S).

Proposition 3.2 Let X; be an integral curve of Vly and let (a,b) be the mazimal domain where
X; is defined. Then
lim £o(X;) =0 and lim £g(X;) = +oo.

t—at t—b~

Furthermore the limit of X; ast — a* exists and lies in 7z

Proof: By Theorem 1.5 an upper bound on £4(X) gives an upper bound on ||Vl (X)||. Therefore
if we fix T € (a,b) the length of the flow line X; on (a,T] will be finite so X, converges to some
X, € Teich(S) as t — a’. As V{4 is non-zero on Teich(S) the limit must be in some boundary
strata .7 where T is a multi-curve on S. In particular if f C 7 then [lim+ lg(X;) =0.

a
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Note that for all # € (a,T] we have £y (X;) < £q(X7) so every curve on X, that intersects o will
have length uniformly bounded away from zero by a constant depending on £ (T). Therefore o
and f are disjoint if B C .

We simplify notation and set £q(t) = £o(X;) and £g(t) = £g(X;). As X; is an integral curve
of Ve, £y(t) > 0. By the Riera formula (Theorem 2.1), the inner produce of Vly and Vig is
non-negative, so fﬁ( ) >0 and /g is non-decreasing. Therefore for # € (a,T] both £4(t) and £g(t)

are bounded above by max{{q(T),£g(T)}. Again applying Theorem 1.5 we have
2
o,(t) > —la(r) and Cp(1) < Cla(t)tp (1)

for t € (a,T] where C depends on max{¢q(T),¢s(T)}.
If £5(X,) =0 and (g (X,) =€ > 0 then

this function is decreasing as

IO 1ONRA ()
<log€a(f)> B m—ga(f)

< Cla(t)p(t) — =
< 0.

However, when £g(t) < ﬁ

This contradiction proves that £4(X,) =0 and therefore X, € .%.

For the second statement, if the limit of £¢(X;) as t — b™ is finite then, as above, the integral
curve will have finite length and must have a limit in some boundary strata .#; C Teich(S).
However, if 7 intersects a then the length of a will be infinite in the limit, a contradiction.
Therefore T must be disjoint from «. However, by the Riera formula, the length of every curve
disjoint from o will increase along X;, again a contradiction. This establishes the second claim.
O

In the following, as the surface S is understood, we will denote strata as .#; where 7T is a
multicurve.
Motivated by Theorem 1.6 we define
b dr
and K(a,b) = / 27a.

P dt
"D urw a7

We will often be interested in the case when a =0 and in this case we will write H(b) = H(0,b)
and K(b) = K(0,b). We denote the level sets of the length function £, by

Sy =g (L) C Teich(S).
Combining Lemma 3.1 and Proposition 3.2 to the bounds in Theorem 1.6 we get:
Theorem 3.3 Let o be a simple closed curve on S. Then for a,b € [0,) and X € #§ we have
|H (a.b)| < dwp(Ss, 75) < dwp(X,.75) < |K(a,b)|.
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Accuracy of bounds

We now discuss the accuracy of our bounds. For this purpose we define functions

7 () = sup IVea(X)]?
{x with ¢4 (x)=0}

and
(0= _inf Ve
{x with ¢4(x)=¢}

It is not hard to check that 2~ (¢) = 2—75 and therefore the lower bound is optimal. In particular,
one can find a sequence X; where £4(X;) = ¢ and the widths of the maximal collars about o on X;
go to infinity. By Corollary 2.7 as the width limits to infinity the difference between the upper
and lower bound will converge to zero.

To estimate 27 (£) we return to the family of rectangular punctured tori from the proof Lemma
2.2. Here there are two curves & and 8 meeting orthogonally with sinh(//2)sinh({g/2) = 1. Then

2 2 2 :
Vo > = (o + R(cosh(lg))) > P <£°‘+3 <C<)Shz(€ﬁ)>> .

Thus
2 2
Vil > = =
|Vig|” > <€a+3(

T

sinh*(£4 /2) )
14-cosh?(£¢/2))2) "

We consider £, small. Then

2. 2 g 6
Vi ZE ga"’ﬁ"‘o(goc) :

We note that by Corollary 2.6 the upper bound for £, small gives

20 2 £4
Veal* < == (14+F(la) = - <€a+6jr +0(£g)> .

Thus for short geodesics 27 (¢) and our upper bound differ at order 4.
Similarly we consider {4 large. As sinh({q/2)sinh({g/2) =1 differentiating we have

2 3

2 ) 29 il B 6
Vel = sinh® (£ /2) ([ VL5 > > sinh® (fa/2) (z,; + g +o(43)>
As {y is large

(a2

¢ l
(1+0(e™)) sinh((g/2) = (14 0(6})) = Z(1+0(e™")).

sinh(fg/2) = &
As sinh(£q /2)sinh({g/2) = 1 then {g = 4e~lal2(14 0(e"e)) giving
4

2 4 2
2 ) < B 6\ _ 2 la)2 —ly
VL]l > sinh (61;5/2)7r (Eﬁ + 2 —I—O(Zﬁ)) = e (1+0(e ))
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We note that the upper bound is
1
IVeal* < g@e%‘/z (1+0(1/ty)).

Thus as £ goes to infinity, 2 (¢) grows of order at least e!/?

order e!/21€,

while our upper bound grows of

4 Orthogonal projection onto strata
The Weil-Petersson completion Teich(S) is a CAT(0) space. Let T be a multicurve in S, .%; the
associated strata and S; = S~ 7. Then .7 is isometric to Teich(S;) and the closure .77 is convex
in Teich(S) (see [Yam]|, [Woll]). Note that if S¢ is disconnected then Teich(S;) is the product of
the Teichmiiller spaces of each component.

Now, let 7p and 71 be multicurves in § and %7, and .7, the associated strata. We will show
that the infimum of distance between .7, and /7, is attained on any stratum .75 for which is ¢
is mutually disjoint from both 79 and 7. Specifically we prove:

Theorem 4.1 Let 7y, 1), and o be multicurves with i(7;,,0) =0 for i=0,1. If T, =1,U0 then

dWP(yfmy‘El) :dWP(y‘f()?y‘ﬁ)'

In a CAT(0) space the nearest point projection to a convex set is 1-Lipschitz (see [BH, Propo-
sition 2.4]). Here we will project to the closure .#5 and the theorem will follow once we show
that this projection maps /7, into %3 C 771 This in turn follows quickly from Wolpert’s char-
acterization of tangent cones in the Weil-Petersson metric (see [Wol3]). We begin by reviewing
this work.

Given p,q,r € Teich(S) we let Z(p;q,r) be the angle at p in the comparison Euclidean triangle
with side lengths dwp(p,q), dwp(q,r) and dwp(p,r). Let b(¢) and ¢(z) be constant speed geodesic
segments starting at p. The CAT(0) property implies that if 0 < sp <s; and 0 <ty <#; then

Z(p3b(s0),c(t0)) < Z(p;b(si),¢(tr))

and therefore
Z(b,c) = linaé(p;b(t),c(t))
—

is defined. Let |b| and |c| be the (constant) speed of the two segments. We define an equivalence
relation where b ~ ¢ if |b| =|c| and Z(b,c) = 0. If we take all geodesic segments beginning at p
and take the quotient under this equivalence relation we have the Alexandrov tangent cone at p.
At points in Teich(S) this is the usual tangent space at p.

We also define an inner product by

(b,c) = |b| - |c| cos(£(b,c)).
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Theorem 4.2 (Wolpert, [Wol3]) Let t={v,...,%} be a multicurve and assume that p € ..
The the Alexandrov tangent cone at p is

R‘;(‘) xT,S%

where the inner product is the product of the standard inner produce on Rl and the Weil-
Petersson inner product on T,.%;. Furthermore if b(t) is a constant speed geodesic segment
starting at p and £y, (b(t)) =0 then the ith coordinate of b in the tangent cone is zero.

Given a multicurve o let

Tis : Teich(S) — 5
be the nearest point projection.

Lemma 4.3 Let ¢ be a multicurve in S and p and q points in Teich(S) with p = n5(q). Then
p € S5 where & is a (possibly trivial) extension of o. Let b(t) be a geodesic segment from p to

q- Then the image of b in the tangent cone is orthogonal to R‘;O\G‘ xT,5s.

Proof: Let c: (—¢,€) — %5 C %5 be a constant speed geodesic with ¢(0) = p. If we let
¢(t) =c(—t) then Z(c,¢) = m. By (3) of [BH, Proposition 2.4] the angles Z(b,c) and Z(b,¢) are at
least /2. Therefore they must be equal to 7/2 and hence b is orthogonal to 7). In particular,
by Theorem 4.2, b lies in RS,

Every vector in leo\cl is represented by a geodesic segment c: [0,€) — .75 with ¢(0) = p. In

particular dwp(g,c(t)) > dwp(q, p) for all 1 € (0,€). As above, (3) of [BH, Proposition 2.4] implies

6]

that Z(b,c) > /2. However, as b lies in R5, we must have that Z(b,c) =7/2. O

Proposition 4.4 Let © and 6 be multicurves with i(t,0) =0 and let T =1U0c. Then
T (S7) C S

Proof: Let g be a point in .%; and p = m;:(q) and r = 75(g) its nearest point projections to
% and .%5. By the previous lemma the angles of the triangle gpr at p and r are 7/2 so in the
Euclidean comparison triangles the corresponding angles must be at least 7/2. However, if p # r
then the angle at ¢ in the comparison triangle will be > 0, a contradiction.O

Proof of Theorem 4.1: As .%; is contained in 7% we have
dwp (S, L) < dwp(Fays 2, )-
On the other hand, for any Xy € /%, and X; € /7, we have
dwp (X0, X1) > dwp(7ts(X0), s (X1))

as the nearest point projection is 1-Lipschitz. By Proposition 4.4, 75 (X;) C .74 so

dWP(yrmyrl) Zdwp(yf'ovyf’l) :dwp(yfovyf’l)'



5 Topological properties of nearby strata

We now prove Theorem 1.2 which we first restate.

Theorem 1.2 Let Y5, be two strata in Teich(S). Then one of the following holds;
1. i(0,7) =0 and dwp(Fs,-7%) = 0.
2. i(o,7) =1 and dwp(Fs, %) = 81.1.
3. i(6,7) > 1 and dwp(s,.%:) > 7.61138.

Proof: If i(0,7) =0 then the closures of the strata intersect and therefore dwp(Ls,.7;) = 0.

Now assume that i(o,7) =k > 0 and that for every oo € 6 we have i(at,7) =0 or 1. Note that
this implies that for every B € 7 then i(f,0) =0or 1 and if i(o, 7) = 1 this condition automatically
holds. Then the surface filled by ¢ and 7 will be a collection of punctured tori and annuli. Let
U be a maximal multicurve such that i(o,u) =i(t,p) =0. Then S~ u will be the collection of
k punctured tori filled by ¢ and 7 along with a collection of thrice punctured spheres. If we let
6 =o0cUpu and T =71Uu then by Theorem 4.1

dwp(Ss, 1) = dwp(Ls,-7%).

The strata %5 and .%; are both maximal and hence each are a single point. As u is a multicurve
contained in both 6 and 7, these strata are in the closure of Z Furthermore Z is the product
of k copies of the Weil-Petersson completion of the Teichmiiller space of the punctured torus and
when we project to each factor the image of the strata .5 and .%; are curves intersecting once.
It follows that

dwp(Fs,73) = VKB .

Therefore if i(0,7) =1 we have
dwp(s,7) = 811

and if i(0,7) =k > 2 then by Lemma 2.2
dwp( e, S7) > V2811 > 9.29495.

Now we can assume, without loss of generality, that there is a curve a € ¢ and curves f3
and P in 7 (possibly with f; = ;) and i(a,B; UBy) > 2. Let ¢ be any path from .75 to 7
and choose fy such that at c(#)) = X we have max{{g (X),{s,(X)} = 2&; where &, is the Margulis
constant in dimension two. Therefore the collars about B; and B, have length at least 2& and
as i(o,B1 U By) =2 this implies o (X) > 4&. Then by Theorem 3.3, dwp(X,.%) > H(4€) and
dWP(X75ﬁT) > H(282). Thus

dwp(Ss,S7) > H(4e) + H(28).

Evaluating we obtain H(4&,) + H(2&) > 7.61138. Thus if i(c,7) > 1 and dwp(-%5,-7%) > 7.61138.
O
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Topology of supporting surface

If the subsurface S(o,7) C S filled by ¢ and 7 has n > 1 non-annular components then by the
above
dwp(Fs,S7) > V2811 > 9.29495.

Thus if dwp(-S,-%) < 9.29495 then S(u,7) has a single non-annular component. Also by the
above, if dwp(Ls,%r) < 7.61138 then the non-annular component is a punctured torus with
i(n,7) =1 and in fact dwp(Ss,-7z) = 01,1

Separating curves and punctured spheres

The above shows that for any finite type surface, &, is a lower bound on the distance between
strata in Teich(S) whose closures do not intersect. Also it follows that it is attained for any S
with a non-separating curve. The only case left is the n-punctured sphere So, for n > 4. For
completeness, we now consider this case.

In a punctured sphere every curve is separating so any two curves with non-trivial intersection
will intersect an even number of times. In particular, on the 4-punctured sphere any two distinct
curves intersect and the minimal intersection is two. In parallel with the punctured torus case,
if a and B are simple closed curves in Sp4 with i(a, B) =2 we define

%04 = dwp(Fa(S0.4),5(S04))-

We note that there is an canonical isomorphism between Teich(S] ;) and Teich(Sp4) and as the
area of 4-punctured hyperbolic spheres is twice that of punctured tori this isomorphism scales
the Weil-Petersson metric by the v/2. Two noded surfaces in Teich(Sy,;) whose nodes intersect
once will be taken to noded surfaces in Teich(Sp4) where the nodes intersect twice and therefore

G4 = \@51,1

Therefore by the bounds on 8; | in Lemma 2.2 we have & 4 € (9.29495,9.41305).

The usual collar lemma states that if o is a simple closed geodesic in a complete hyperbolic
surface X then o has an embedded collar of width r with sinh(r/2) = 1/sinh({¢(X)). If o is
non-separating then this result is optimal: for any & > 0 there is a hyperbolic structure X (on
any hyperbolizable surface §) such that o doesn’t have a collar of width r+ €. However, for
separating curves this can be improved. While the proof is elementary we were unable to find a
reference so we include one here. (See [Par] for a similar observation.)

Lemma 5.1 Let @ be a separating curve on a complete hyperbolic surface X. Then a has an
embedded collar of width r with

sinh(¢¢(X)/4)sinh(r/2) > 1.
Proof: Let B be the shortest non-trivial geodesic arc from « to itself. Then we can choose r
to be the length of B. As « is separating, B starts and ends on the same side of . Therefore o

and B are supported on a pair of pants P in X. We decompose P into two isometric right-angled
hexagons in the standard way by taking perpendiculars between boundary components of P.
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This hexagon has base of length £4(X)/2. We extend the sides of H to geodesics in H?. The
sides perpendicular to the base are distance £(X)/2 apart and therefore are the opposite sides of
an ideal quadrilateral Q with the two other sides a distance 2sinh~!(£4(X)/4) apart (see Figure
1). The geodesic opposite the base geodesic is separated from the base geodesic by a side of Q.
Therefore the distance from the base to the opposite geodesic is at least sinh~!(1/sinh(£4(X)/4)).

As B is the union of two geodesic arcs joining the base of H to its opposite side and r is the
length of B, we have

r>2sinh ™! <s1nh(€al(X)M)>

ta(X)/2
Figure 1: r > 2sinh~!(1/sinh(¢q(X)/4))

In the usual collar lemma, the standard collars are disjoint. We emphasize that this does not
hold for the collars we construct here.
Using the above we can improve our gradient bound for separating curves. We have

Theorem 5.2 Let S be a finite type surface and £y be a geodesic length function for o a simple
separating curve on S. Then for X € Teich(S)

205X
Veal? < 29 (14 p(tx)/2).
Furthermore
dwp(S8,. L) > Hy(a,b)
where

b dt
Hg(a,b) = _
o) /“ VE(1+F(t/2))
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Proof: The proof is the same as in Theorem 1.6. The only difference is that the embedded
neighborhood has width 2sinh~!(1/sinh(f4(X)/4)) rather than 2sinh~!(1/sinh(¢¢(X)/2)). Thus
we can substitute £4(X)/2 into the lower bound in Corollary 2.6 to obtain the new lower bound.
We note the linear factor arises from integrating in the o direction in the collar and therefore

remains unchanged. The Weil-Petersson distance bound follows immediately as in Lemma 3.3.
O

We repeat the proof of Theorem 1.2 for the punctured sphere case. For simplicity, we will let
H(t) = Hy(0,1).

Theorem 5.3 Let S5(S),-7%(S) be two strata in Teich(S) for S an n-punctured sphere. Then one
of the following holds;

1. i(0,7) =0 and dwp(F5(S),7%(S)) =0.

2. i(0,7) =2 and dwp(Z5(S),-72(S)) = So.4.

3. i(0,7) > 2 and dwp(Fs(S),-(S)) > 10.09656.

Proof: If i(o,7) = 0 then the closures of the strata intersect and therefore dwp(-%s,-%7) = 0.

Now assume that i(o, ) = 2k > 0 and that for every @ € o we have i(o,7) =0 or 2. Then by
the same argument as in Theorem 1.2 we can decompose into 4-punctured spheres and get

dWP(ymyr) = \/];50,4-
Therefore if i(o,7) =2 we have
dWP(ymyr) - 50,4
and if i(o,T) = 2k > 4 then by Lemma 2.2
dwp( S5, Tc) > V284 =281 > 13.145.

Now we can assume one of the following;

e there is curve o € 6 and curve f € T with i(a, ) > 4.

e there is curve a € o and curves f1,5, € 7 and i(o, B1) = i(a, Br) = 2.

In the first case, we let ¢ be any path from .%; to .7 and choose o such that at c(fp) =
X we have £g(X) = L. Therefore by Lemma 5.1 above, a has an embedded collar of width

2sinh~!(1/sinh(L/4)). Therefore £ (X) > 8sinh~!(1/sinh(L/4)). Then by Theorem 5.2,

1
dwp(Fs,-7) > Hy(L)+Hy  8sinh ™! (| ———— | | =W, (L
el 0 > B+ (3sinn ™ (s ) ) =)
We choose L = 3.678 and evaluating we get
dwp (S5, 1) > W1(3.678) > 10.76596.

In the second case, we choose #y such that at c(to) = X and L = max{{g, (X),€p,(X)}. Then
B1 UPB, split o into 4 geodesic arcs with endpoints in f; U ;. Two of the arcs have endpoints
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in the same component of B; U B, and therefore by Lemma 5.1 are both of length at least
2sinh~!(1/sinh(L/4)). The other two geodesic arcs have one endpoint in f; and another in
B>. Then using the fact that the collars about By, B, of width 2sinh~!(1/sinh(L/2)) are disjoint
we have each of these arcs are of length at least 2sinh~!(1/sinh(L/2)). Thus

lo(X) > 4sinh~! (smh(lL/4)> +4sinh~! (smh(1L/2)) .

Thus

dwp(Fs,-%%) > Hy(L) + H, (4sinh‘ (smh(lL/4)) +4sinh™! (smh(lL/Z))) =Ws(L).

We choose L =2.420 and get
dwp (L5, T1) > Wr(2.42) > 10.09656.

Thus if i(0,7) > 2 then dwp(Fs,.%) > 10.09656. O

Strata distances and gaps

From the above, if S has positive genus then the minimal distance between strata .%s,.%; with
i(0,7) #0 is 81,1 and is achieved if and only if i(o,7) = 1. Furthermore if i(c,7) > 1 then the
distance between the strata is at least H(4€&;) + H(2¢&;). Therefore there is a gap in the distances
from 811 to H(4&)+H(2&) of size

H(4&)+H(2g) — ;1 > 7.61138 — 6.65603 = 0.95535.

Similarly if S is an n-punctured sphere with n >4, then the minimal distance between strata
So, 7 with i(0,7) #0 is dp4 and is achieved if and only if i(c,7) = 2. Furthermore if i(c,7) > 2
then the distance between the strata is at least W5(2.42). Therefore there is a gap in the distances
from 8y 4 to W2(2.42) of size

W2(2.420) — 8o 4 > 10.09656 —9.41305 = .68351.

6 Gradient bounds at systoles and the in-radius of Teich(S)
A systole is a shortest closed geodesic on a Riemannian manifold. The systole function
Lsys : Teich(S) — R-o

is the length of the systole at X € Teich(S). The systole function is a proper, bounded function
to (0,e0) (as it extends continuously to zero on dTeich(S)) and therefore

S) = Loy (X
sys(S) XGrTIl%(S) ys(X)

is defined. Note that for a fixed curve a we have bounded from below the distance between X and
Sy in terms of £4(X). One would similarly expect a lower bounded on the distance between X
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and dTeich(S) in terms of fg(X). Bounds of this type were first obtained by Wu. Before stating
Wu's result we define the in-radius of the Teichmiiller space Teich(S) by

InRad(Teich(S)) = . rTnjdﬁ(S) dwp(X,dTeich(S)).
cTeic!

Then Wu proves:

Theorem 6.1 (Wu, [Wu2]) There exists a universal constant K such that for all X,Y € Teich(S)
we have

’\/‘Zsys(x)— \/fsys(Y)‘ < Kdwp(X,Y).

Therefore
I 1
dwp (X, dTeich(S)) > X Lsys(X)
and 1
InRad(S) > X sys(S)

By Theorem 1.5, for any length function the gradient of /4 is uniformly bounded when the
length of the curve is bounded so one would expect a similar statement to hold for \/és? where
the bound depends on sys(S). What is surprising is that there is a bound independent of topology.

Here we will show that \/65; is 1/2-Lipschitz and we will also give precise asymptotics for

dwp(X,dTeich(S)) as Leys(X) — oo. A key observation in Wu’s work is that when a curve is a
systole there are improved lower bounds on the width of embedded collars and this leads to
better gradient bounds for length functions at systoles. This same observation will be central to
our work.

One extra complication is that the systole function is not smooth. However it has enough
regularity that we can still discuss its gradient in a modified form that will still satisfy the lower
bounds from Lemma 3.1. We define

Viys(X)|| = max ||[VE,(X
V(0] = max |92,0)]

where sys(X) is the set of curves a that are systoles for X. Note that sys(X) is a finite set so the
maximum is always defined.

Lemma 6.2 Assume that U is an integrable function with
[Visys(X) | < U (Lsys(X)).

Then for any X,Y € Teich(S) we have

de(X,Y) Z

loys(Y) 1 ‘
/ —ds]|.
tys(x) U(s)

Proof: Let X; be a smooth path from X to ¥ parameterized by [0, 1] and for each curve a let

Ja(t) = La(X:) and fsys(t) :gsys(Xz)~
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The path is a compact set in Teich(S) and as a smooth function is Lipschitz when restricted to a
compact set, each £, will be Lipschitz on the image and therefore each fy will also be Lipschitz.
Furthermore, on a compact set £sys is the minimum of finitely many length functions so fys is
the minimum of finitely many f,. As the minimum of finitely many Lipschitz functions is also
Lipschitz we have that fy is Lipschitz. By standard results in analysis f is differentiable
almost everywhere and satisfies the fundamental theorem calculus. Also, as fgys is the minimum
of finitely many fo whenever f((¢) exists we have

fs/ys(t) - f(lx([) - dga(Xt)
for some « € sys(X;). Therefore
[foys (O < [ Vesys (X)I]- 1X: ]
when the derivative is defined. The rest of the proof the follows exactly as in Lemma 3.1. O

While Theorem 1.6 gives bounds on ||V/ys]|| these bounds can be significantly improved. In
particular, for any closed geodesic ¥ on a hyperbolic surface X, the collar lemma gives a uniform
lower bound on ry(X) the radius of an embedded collar about y depending only on £,(X). If v is
a systole then this radius is bounded below by £,(X)/4. For the usual collar lemma the width of
the collar decreases to zero as the length grows, in contrast to here where the collar width of the
systole limits to infinity. Combining this and Corollary 2.7 we can improve our upper bounds on
the gradient of £, at X. We first record the lower bound on the radius of collars of systoles in the
following lemma.

Lemma 6.3 Let

oot = ()}

ry(X) 2 reys(€y(X)) = reys(Lo)
where Ly is the unique positive number with sinh(Ly/4)sinh(Lo/2) = 1.

If y e sys(X) then

Combined with Corollary 2.7 we then have:
Corollary 6.4 Let G be the function from Corollary 2.7. Then

IVEsys (X)11? <

2o (14 G ().

Mimicking the definition of the function H(a,b) that we used to bound from below the distance
between level sets of lengths functions we define

b dt
Hy(a,b) = |
y( ) /a %(1+G(rsys(t))

As before we further define Hgy(t) = Hgys(0,1). We also let

s =Llys(L) C Teich(S)
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be the level sets of {5 and note that .79, = dTeich(S).

sys
Note that if fs(X) = b and 7y € sys(X) then by Theorem 3.3, for all a € [0,00) we have
dwp (-7, X) <K(a,b). As lsys <ty if a <b then, since fyys is continuous, dwp(-7s,X) < K(a,b).

sys?
In particular, we don’t need to modify K(a,b) for the systole function and we have:

Theorem 6.5 If0<a<b and X € 2 then

sys
HSyS(a7b) < dWP(‘%K;/sﬂSﬂsl;s) < dWP(Jﬂst)l/st) < K(avb)'
Recall that K(a,b) =27 (\/E* \/E> It will be useful to estimate Hgys(a,b).

Proposition 6.6 If0 <a <b then

Hqys(a,b) > 2 <\/1;— \/5)

and
2 < Hys (1)
T 2m
with
lim Hoys(1) _ lim Hoys(t) _ 1.

=0 /27t 1= /27Tt

Proof: We note that the ry(f) is the maximum of a monotonically increasing and monotoni-
cally decreasing function so it is minimized where the two functions agree. That is the minimum of
rsys(Lo) = Lo /4 is the minimum where Lo is the unique positive solution to sinh(Lo/4)sinh(Ly/2) =
1. Therefore

Hyys(a,b) > T (p
o(0:0) 2 gy (VB Va).
To evaluate the constant term on right we need to solve sinh(Ly/4)sinh(Ly/2) =1 for Ly and the

evaluate the function G at Ly/4. The function G is an elementary function and can be (rigorously)
evaluated using Mathematica to get

21

————— ~2.00423
1+G(Lo/4)

and, in particular, it is greater than two. Both inequalities then follow.
For the two limits we observe that re(f) tends to infinity both as t — 0 and t — o while

lim G(t) = 0.

[—>o0
The two limits follow. O

We note that in [Wu2, Theorem 1.4] Wu obtains similar bounds to Theorem 6.5. In both
Theorems the upper bound is the same and follows directly from the lower bound in Riera’s
formula. In [Wu2, Theorem 1.4] the lower bound is also uniformly comparable to v/b —+/a as in
Theorem 6.5.
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Remark: A more detailed analysis of the function Iis/yz%) shows that it has a unique critical

point which is therefore a global minimum. Evaluating at this minimum gives 1) > .94 (see

Vant
Figure 2).

As an immediate corollary to Theorem 6.5 we have:

Corollary 6.7 The function \/lsys is 1/2-Lipschitz.

We note that using different methods, Wu shows that |//sy is Lipschitz with constant .5492 for
the closed case S, (see [Wul]).

2 4 6 8 10

: . Hsys (1)
Figure 2: The graph of ot

We also obtain bounds on InRad(Sg,). For this we apply our work here to bounds on sys(S, ).
For example when n is fixed by [BMP] we have

S}gl(}osys(Sgyn) = oo,

If g is fixed then sys(S,,) is uniformly bounded (also see [BMP]). However, it is uniformly
bounded below by 2é&,.
Thus we have:

Corollary 6.8 For any hyperbolic surface S we have

2 < Hys(sys(S)) < InRad(Teich(S)) <1

TS ams) © Vamws)

and therefore
InRad(Teich(S, ,))

im
g—reo 27sys(Sen)

=1

and
InRad(Teich(S,,)) > Hgys(2€2) = H(2€) ~ 3.27466.
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We note that in [Wu2, Theorem 1.2] it was shown that InRad(Teich(S)) is uniformly bounded
below without producing a concrete bound. We also remark that that, as in Theorem 5.3, using
the fact that we obtain improved lower bounds on the width of collar neighborhoods of separating
curves one can show that

InRad(Teich(So,)) > Hs(4€) ~ 4.63108.

Computation

The calculation of H,Hy, Hyys are by numerical integration using Mathematica. The integrand
in each can be written in terms of F where F(t) = a(T)u(t)v(t) where T = 2sinh~!(1/sinh(z/2)).
The functions a,u, and h are elementary functions involving trigonometric, exponential and log
functions. To calculate the function a for ¢t small with precision we cannot use its description
in terms of basic functions and must instead use a series expansion. The reason for this is that
although a is monotonic and a(0) = 8/3, the expression for a for small ¢ is the difference of two
large numbers with the computation being of the form (1= +8/37%) —+~*. To avoid this problem
and have arbitrarily high precision, we use the series for the function @ introduced in Lemma 2.3

and the relation ht/2) -1
cosh(t/2) —

TY=d(eT)=aq =222 ).

a(l)=a(e) a(cosh(r/2)+1>

-]
T

m
T

Figure 3: Graph of H versus K

See Figure 3 for a comparison of H(t) and K(t) = /2.

Appendix: Closed geodesics in the moduli space of the punc-
tured torus

Our methods can also be used to obtain lower bounds on the minimal Weil-Petersson translation
length of a pseudo-Anosov mapping class acting on Teichmiiller space. We demonstrate the

method on the Teichmiiller space of punctured tori. For a surface of higher complexity the basic
idea will still work but it be harder to get explicit estimates.
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Let T be the punctured torus and
v: T =T

a pseudo-Anosov mapping class. By [DW] there is a unique y-invariant geodesic y in the Weil-
Petersson metric on Teich (S ;). This will descend to a closed geodesic in the moduli space . .
We can use our estimates to give a lower bound on the length of the shortest such geodesic.

We identify Teich(T') so that y can be represented by an element of SLy(Z):

(1)

We can conjugate Y so that the axis y crosses the imaginary axis at some punctured torus X. (This
is equivalent to b/c >0.) Then X is rectangular: the (1,0)-curve and (0, 1)-curve are represented
by geodesics o and f that meet orthogonally at a single point. A standard calculation shows
that

sinh(£¢(X)/2)sinh(£g(X)/2) = 1.

One of these two curves will be the systole on X (with the other the second shortest curve). In
fact this is exactly the situation where the collar lemma is optimal: the width of the collar about
a is £g(X) In a particular if i(a,y) =k then

C4(X) > klg(X).

We have a similar statement when we switch the roles of o and .

As X lies on the axis y the translation length of v is dwp(X, w(X)). To bound this distance
from below we observe that for any curve £y, (X) = £y(y(X)). We assume that a is the shortest
curve.

If i, w(a)) > 2 then

ga(X) <2g& and f‘l/(a) (X) >2-28

so by Lemma 3.3

dwp(X,W(X)) > dwp(Fa2 Sa%)
> H(Zé‘z, 482)
> 1.06205

It follows that for y with i(a, y(a)) > 2 then

Otherwise as y(a) = (a,c) then |c| =1 and y?(a) = (a* +be,c(a+d)). As |a+d| > 2 then
i(a,y?(a)) = |c(a+d)| = |a+d| >3 and

Lo(X) <2& and Eu/(a)(x) >3.26.

Therefore
dwp(X,l[/z(X)) > dWP( 025827 0?82)
> H(282, 682)
> 1.56949.



Therefore in general
1.56949

|wllwp > > .78474.

In [BB], the second author and Brock give a lower bound on the systole for of Teich(Sg,)
using renormalized volume and the lower bound for the volume of a hyperbolic 3-manifold. They
prove

Theorem 6.9 (Brock-Bromberg, [BB]) Let y be a closed geodesic for the Weil-Petersson
metric on moduli space My, of the surface Sy, with n>0. Then

473
bwp(Y) 2 T m——

where Y3 is the volume of the regular ideal hyperbolic tetrahedron.

We note that for .#) i, the above theorem gives a bound of .53724 and our bound is .78474.
While a more refined analysis could improve this bound, it seems unlikely that these estimates
are close to optimal so we do not include them.

References

[BMP] Florent Balacheff, Eran Makover, and Hugo Parlier. Systole growth for finite area hyper-
bolic surfaces. Annales de la faculté des sciences de Toulouse Mathématiques 23(2014),
175-180.

[BH] M. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature. Springer-Verlag,
1999.

[BB] J. Brock and K. Bromberg. Inflexibility, Weil-Petersson distance, and volumes of fibered
3-manifolds. Math. Res. Lett. 23(2016), 649-674.

[DW] Georgios Daskalopoulos and Richard Wentworth. Classification of Weil-Petersson isome-
tries. Amer. J. Math. 125(2003), 941-975.

[Par] Hugo Parlier. A Note on Collars of Simple Closed Geodesics. Geometriae Dedicata
112(2005), 165-168.

[Rie] Gonzalo Riera. A formula for the Weil-Petersson product of quadratic differentials. Jour-
nal d’Analyse Mathématique 95(2005), 105-120.

[Woll] S. Wolpert. Geodesic length functions and the Nielsen problem. J. Diff. Geom. 25(1987),
275-296.

[Wol2] S. Wolpert. Geometry of the Weil-Petersson completion of Teichmiiller space. In Surveys
in differential geometry, Vol. VIII (Boston, MA, 2002), Surv. Differ. Geom., VIII, pages
357-393. Int. Press, Somerville, MA, 2003.

[Wol3] S. Wolpert. Behavior of geodesic-length functions on Teichmiiller space. J. Differential
Geom. 79(2008), 277-334.

30



[Wul] Y. Wu. A new uniform lower bound on Weil-Petersson distance. preprint 2020.

[Wu2] Yunhui Wu. Growth of the Weil-Petersson inradius of moduli space. Annales de 'Institut
Fourier 69(2019), 1309-1346.

[Yam] Sumio Yamada. On the geometry of Weil-Petersson completion of Teichmiiller spaces.
Math. Res. Lett. 11(2004), 327-344.

31



