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A B S T R A C T   

Recent experiments suggest a role for pressure fluctuations in nucleation. Homogeneous ice nucleation rates for 
the ML-mW and mW water models are evaluated at pressures ranging from atmospheric to −1000 atm, using 
forward flux sampling and constant cooling simulations. Results indicate that the density difference Δνls between 
water and ice exhibited by these models plays a central role in controlling the change in nucleation rate with 
pressure. A linear function is found to be a reasonable approximation for lines of constant nucleation rate, which 
can be useful in making experimental predictions to advance the study of ice nucleation mechanisms.   

1. Introduction 

The physics governing the phase transition from liquid water to ice is 
still under investigation. Molecular dynamics (MD) simulations of ice 
nucleation on the molecular scale are helpful in revealing the funda
mental mechanisms involved in ice formation. This topic is relevant to 
understanding ice formation in clouds, and efforts to control freezing 
through enhancing or suppressing ice nucleation [1,2]. Homogeneous 
ice nucleation occurs in supercooled water when an ice cluster of critical 
radius forms, overcoming the Gibbs free energy barrier imposed by the 
surface energy of the cluster, without catalysis from any impurities or 
container walls. The ice nucleation rate coefficient, J, is the number of 
critical clusters forming per unit volume and time. The nucleation rate 
increases as the temperature is lowered further from the melting point. 
In this study, we aim to understand how negative pressures (negative 
valued diagonal components of the stress tensor) within the liquid in
fluence ice nucleation rates. 

Experiments and everyday experience show that various processes 
can help supercooled liquid overcome the free energy barrier and 
catalyze ice nucleation. Introducing certain impurities, or shaking or 
agitating the water are examples [3,4]. The explanation for the latter 
observations is still unclear. In controlled lab experiments, only certain 
types of mechanical agitation are effective at catalyzing ice formation 
[5,6]. Experiments show that moving the contact line of a water droplet 
across its substrate only triggers ice nucleation when combined with 
stretching/distorting of the contact line [7]. This finding indicates that 

the water surface plays an important role and points to a possible 
contribution from Laplace pressure, which arises from curved liquid
–vapor interfaces. A concave surface has a negative radius of curvature 
and results in negative Laplace pressure. Just as the melting temperature 
of water increases under negative pressures [8], ice nucleation rates also 
increase due to a lowering of the Gibbs free energy barrier. Therefore, 
it’s possible that negative pressure/stress perturbations imposed on a 
supercooled liquid droplet can increase the ice nucleation rate while 
maintaining a constant temperature. This and other possible sources of 
negative pressure in atmospheric water droplets are discussed in Mar
colli et al. [9] and Yang et al. [10]. The atmospheric science community 
has been predominately focused on the temperature dependence of ice 
nucleation. This work, in contrast, is another step in exploring the role 
that pressure changes might play. 

We use molecular dynamics to explore the relative roles of temper
ature and pressure on ice nucleation; specifically, for the range of 
pressures expected in experimental and atmospheric scenarios [10]. Li 
et al. [11], Yang et al. [5], and others have proposed that a Clausius–
Clapeyron-like relation can be used to express the equivalence between 
temperature and pressure in achieving a given nucleation rate: 

p(T) = p0 +
lf

TmΔvls
(T − T0), (1)  

where p0 and T0 are known reference pressure and temperature values 
for a nucleation rate coefficient of interest. In this study we take atmo
spheric pressure as the reference. The molar volume difference between 
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liquid and ice, Δvls, is negative in the pressure regime considered in this 
study, a phenomenon known as the water density anomaly. The variable 
lf is the latent heat of fusion and Tm is the melting temperature, both at 
p0. In subsequent sections, we will outline the derivation of this 
approximation and evaluate the extent to which it provides a reasonable 
prediction of the nucleation rate in pressure–temperature coordinates. 

Freezing of water at negative pressures lacks both simulated and 
experimental data. Roedder [8] took measurements of the melting 
temperature of water at negative pressures, but to our knowledge, no 
experimental assessment of homogeneous freezing rates at negative 
pressures has been conducted. Evidence for an increase in ice nucleation 
rates at negative pressures is found by extrapolating experimental data 
at positive pressures into the negative pressure regime [9], and is also 
implied by the pressure and temperature dependence of the Gibbs free 
energy barrier in classical nucleation theory (CNT). A recent study by 
Bianco et al. used molecular dynamics simulations to explore ice 
nucleation rates in the TIP4P/Ice water model at negative pressures 
[12]. Their work explores anomalous behaviors that occur in water in 
the negative pressure regime, and reports nucleation rates using seeding, 
an approximate method that produces rigorous results by combining 
molecular dynamics simulations with CNT. 

In this study, we consider two coarse-grained water models that are 
commonly used to explore ice nucleation due to their computational 
efficiency: ML-mW and the original mW model. The mW model was 
introduced by Molinero et al. [13] based on the Stillinger–Weber po
tential. The ML-mW model was created by further optimizing the mW 
model parameters using machine learning with properties of real water 
as a target [14]. If the approximation given by Eq. 1 is valid, it suggests 
the density anomaly plays a central role in determining the slope of lines 
of constant nucleation rate in pressure–temperature space. The molar 
volume difference upon melting, Δvls, has undergone great improve
ment in the ML-mW model compared to the original mW model. The 
experimental value for Δvls at 1 atm and 273 K is −1.61 cm3 mol−1, 
which the ML-mW model reproduces with much more fidelity than the 
original mW model, giving −1.38 and −0.42 respectively [14]. These 
two water models, which exhibit significantly different density anom
alies, provide useful contrasts to assess the validity of Eq. 1 and explore 
the dependence of nucleation rates on pressure. We propose that the 
improvement to Δvls results in a more accurate representation of the 
homogeneous freezing line, (dp/dT)J=const . 

2. Methods and Results 

We investigate the homogeneous ice nucleation rate coefficients of 
the mW and ML-mW water models at 1, −500, and −1000 atm. Most 
studies of ice nucleation and water model properties have been con
ducted at 1 atm, so inclusion of this pressure allows us to compare and 
validate our results with other studies. The −500 atm and −1000 atm 
values were chosen to be within the negative Laplace pressure range that 
would correspond to negative surface curvatures down to approximately 
10 nm radius, and could account for enhanced nucleation rates observed 
in experiments [7]. The selected pressures remain in the regime where 
the molar volume of ice is larger than liquid water, Δvls < 0. The sign of 
Δvls is a crucial factor when studying the behavior of homogeneous 
freezing with respect to pressure. Bianco et al. [12] shows a peak in the 

curve of the homogeneous nucleation rate in TIP4P at around −1000 
atm, which is caused by the density anomaly switching sign. In our 
study, we also notice the density of ice and liquid converging as we 
approach −1000 atm. 

We use two approaches to obtain nucleation rates. In the first 
method, we obtain nucleation rates from direct simulations of homo
geneous ice nucleation at negative pressures. We do this by repeating 
constant cooling rate simulations many times at a fixed pressure. This 
approach is akin to experimental methods of measuring ice nucleation 
rates. The second method obtains nucleation rates in a range of tem
peratures and (negative) pressures using forward flux sampling [15] at 
constant temperature. These two approaches are complementary and 
allow us to explore a broad range of nucleation rates. They are also more 
direct than the methods commonly used in MD studies, where nucle
ation rates are derived using precise calculation of thermodynamic 
properties combined with expressions from classical nucleation theory 
[12,16]. The methods used in our study do not rely on CNT, thus we are 
able to compare the results of our simulations with theoretical expres
sions. In our analysis, we compare the slope of our constant nucleation 
rate lines with theoretical predictions from Eq. 1. 

LAMMPS [17] is used to conduct the molecular dynamics simula
tions. For the constant cooling rate simulations, a simulation box con
taining 4,096 coarse-grained water molecules is first equilibrated at the 
starting temperature. The temperature range that the system is cooled 
through differs for each pressure and between the models. The tem
perature range in each case is selected so that ice nucleation is extremely 
likely to occur during the linear cooling process at the cooling rate 
chosen. For the mW model the temperature ranges are 215 K to 195 K at 
1 atm and −500 atm; and 215 K to 200 K at −1000 atm. For the ML-mW 
model the ranges are 225 K to 205 K at 1 atm; 230 K to 210 K at −500 
atm; and 230 K to 215 K at −1000 atm. The constant cooling rate 
simulations are conducted in an isenthalpic (NPH) ensemble coupled 
with a thermostat and with periodic boundary conditions employed. 
After equilibration at the initial temperature, the system is cooled at rate 
of 0.25 K/ns. Johnston et al. reported that a cooling rate of 1 K/ns is the 
highest cooling rate one can use to still observe crystallization in mW 
model nanodroplets containing 13,824 molecules [18]. We found that at 
lower pressures, e.g., −1000 atm, lower cooling rates were needed to 
observe crystallization. For the ML-mW, 16% of our trajectories at 
−1000 atm did not crystallize. This is marked by a very gradual, linear 
increase in ice-like fraction during cooling with the final ice fraction not 
reaching 0.8. These runs were not included in the data on ice nucleation 
phase transition. 

The phase of the system is monitored using the q6 order parameter 
with a cutoff distance of 3.5 Angstroms [19]. Fig. 1 shows how this order 
parameter evolves for each atom in the volume of water as the system 
freezes. A molecule with q6 order parameter greater than 0.54 is 
considered an ice-like molecule and is colored blue in Fig. 1 while atoms 
with q6 value smaller than the 0.54 threshold are considered liquid-like 
and are shaded in red. This threshold was determined by measuring the 
distribution of order parameters in a box of pure ice, and selecting a 
threshold value just outside that range. The threshold we have chosen is 
the same for both ML-mW and mW models and is consistent with the 
threshold used in other studies [20]. To determine the freezing tem
perature of a single cooling run, we look at the ratio of ice-like molecules 

Fig. 1. Snapshots from a representative constant cooling simulation where homogeneous freezing occurs in the mW model. The coloring indicates the value of the q6 

order parameter, with blue shades denoting molecules with ice-like q6 order parameter greater than 0.54 and red shades denoting liquid-like order parameter. 
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to total molecules as a function of time, which is equivalent to a function 
of temperature because the system is being cooled at a constant rate. 
When the system freezes, the fraction of ice-like molecules steeply in
creases and plateaus at around 0.8. We fit a sigmoidal curve, F(t) =

A/(1 + exp( −B(x −C))) −D, to the data and specify the freezing tem
perature to be the inflection point of the sigmoid. A,B,C, and D are fitting 
parameters that represent the maximum ice fraction, speed of transition, 
inflection point, and vertical shift, respectively. These sigmoidal fits can 
be seen in the top panel of Fig. 2, which shows all the simulations tra
jectories for the ML-mW model. At each pressure, 30–50 cooling trials 
are run to gather a distribution of freezing temperatures, and the 
resulting temperature distributions are shown in the bottom panel of 
Fig. 2. 

In Chan et al., ML-mW water is cooled at a rate of 0.5 K/ns at 1 atm, 
and ice nucleation occurs at 210 K [14]. With our slower cooling rate of 
0.25 K/ns, we observe that ice nucleation in ML-mW occurs at a higher 
temperature of 215 K. As anticipated, Fig. 2 shows that homogeneous ice 
nucleation occurs at higher temperatures when the system is under more 
negative pressures. This is seen to be the case for both water models, 
with the ML-mW exhibiting a larger increase than the original mW. 

The freezing temperature distributions in the bottom panel of Fig. 2 
are used to calculate nucleation rate coefficients in these temperature 
ranges using the method described by Zobrist et al. [21]. We count the 
number of freezing events that occur in evenly spaced temperature in
tervals centered at temperatures Ti. Next the total observation time in 
each temperature interval, ttot,i, is calculated as the sum of the contri
butions from the simulation trajectories that remained liquid over the 
entire temperature interval and the ones that freeze. Once a trajectory 
freezes, the remaining time spent in that temperature interval is not 
counted in the observation time. We obtain the average homogeneous 
ice nucleation rates (s−1) at the mean temperatures Ti by dividing the 
total number of freezing events in the internal by ttot,i. To obtain the 
nucleation rate coefficient (s−1m−3) from this, we divide by the volume 
of the simulation box. 

The nucleation rate coefficients observed via constant cooling rate 
simulations are confined to a certain observable range, limited by the 
chosen cooling rate and volume of water. The calculated nucleation rate 
coefficients for each pressure are on the order of 1032 and 1033 s−1m−3, 
plotted in Fig. 3. This method of cooling a water ‘sample’ many times is 
similar to the way that freezing temperature measurements are often 

Fig. 2. Top: All freezing trajectories for the ML-mW model at three different pressures. The dots indicate the inflection point that is used as the nominal freezing 
temperature for each run. The markers on the abscissa denote the average freezing temperature for each pressure, and the standard deviation. Bottom: Distribution of 
nucleation events, used to calculate nucleation rates. 
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conducted experimentally [21–24], albeit that the sample volume in 
these simulations (1.3 × 10−19 cm3) is much smaller than in experiments 
and the cooling rate is much faster. As a result, the nucleation rate co
efficients accessible to this approach falls far beyond experimental 
range. This gap can be closed by the forward flux sampling approach, as 
discussed later. 

Fig. 4 shows the pressure versus temperature dependence of the J =

1032 s−1 m−3 line (triangles) for both the mW and ML-mW models 
plotted along with the equilibrium melting point line (circles). There is 
99% certainty that the J = 1032 s−1 m−3 line lies within the shaded re
gion [25]. 

The data points for the melting-point line are obtained by using the 
direct-phase coexistence method at each pressure, where the melting 
temperature is taken as the lowest temperature at which the system 
completely melts [26,27]. The grey solid line is the experimental 
melting point line extrapolated to negative pressures [9]. For both 
models, water melts at higher temperatures when the pressure is nega
tive in accordance with the Clausius–Clapeyron relation. The qualitative 
behavior of the ML-mW melting point line is in good agreement with the 
extrapolation from experimental measurements. It is worth noting that 
the ML-mW melting temperature obtained using this method is greater 
than what was reported in Chan et al. [14] by 3 K (See A). 

To gain a more complete understanding of the p, T dependence of 
nucleation rate, we also calculate the nucleation rate coefficients of the 
ML-mW model for a range of pressures and temperatures using forward 

flux sampling (FFS) [15]. FFS enables a direct calculation of nucleation 
rate coefficient covering a wide range of thermodynamic conditions, 
particularly those where nucleation rate becomes too small to be ob
tained by standard MD simulation. More importantly, since FFS does not 
rely on any nucleation theory, the method can be used independent of 
CNT. Indeed, FFS has been successfully employed to study homogeneous 
ice nucleation based on both mW model [28,29] and TIP4P/Ice model 
[30]. 

Here we carry out FFS calculation using our recent implementation 
to compute homogeneous ice nucleation rate coefficients for the p, T 
range from −1000 atm to 1 atm and 222 K to 250 K, respectively. Under 
the framework of FFS [15], the rate constant R is given by R =

Φ̇λ0

∏n
i=0P(λi|λi−1), where Φ̇λ0 is the flux rate crossing the first interface 

λ0, and P(λi|λi−1) is the probability for a trajectory starting from the 
interface λi−1 and successfully reaching the next interface λi. The inter
face λi is defined by the order parameter λ, which is the number of ice- 
like water molecules, characterized by a local bond-order parameter 
q6 > 0.5, within the largest ice cluster [28]. For ice nucleation based on 
the mW model, such an order parameter has been demonstrated to 
effectively reflect the actual reaction coordinates of ice nucleation 
[31–33]. Given the similarity between the mW and ML-mW models, we 
thus expect this order parameter is equally applicable to the current 
study. The initial flux rate Φ̇λ0 is obtained through dividing the number 
N of direct crossings to the first interface λ0 from liquid basin (∼ 200) by 
the product of the total simulation time t of this step and the simulation 

Fig. 3. Contours of constant nucleation rate coefficient for the ML-mW model from forward flux sampling simulations. The black points are data from constant 
cooling rate simulations, labeled with the nucleation rate coefficient order of magnitude. The red data point is from direct MD simulation at constant temperature and 
pressure. The data sets are self consistent and the contour lines are roughly linear. 
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volume V, namely, Φ̇λ0 = N/(tV). Using the collected configurations at 
the interface λ0, we then consecutively fire a large number of shootings 
Mi−1 at each interface λi−1 and collect Ni−1 (∼ 120) configurations that 
successfully cross the next interface λi, to compute the crossing proba
bility P(λi|λi−1) = Ni−1/Mi−1. The convergence of the calculation with 
respect to the number of collected configurations is carefully checked, as 
explained in B. The typical error bar of the computed nucleation rate 
coefficient is within 75 ∼ 90% of the absolute rate [11]. To further 
enhance the accuracy of the calculated rate coefficients, we conduct 
three independent FFS runs for each p, T condition, through which the 
final rate is obtained by a geometric average of the calculated rates, i.e., 

R(p, T) =
(∏3

j=1Rj

)1/3
. The FFS calculations cover a wide range of ice 

nucleation rate coefficients, from 108 s−1m−3 to 1033 s−1m−3. 
Fig. 3 reports the contours of constant nucleation rate coefficient for 

ML-mW obtained from FFS, along with data from the constant cooling 
rate simulations. The two methods show agreement to within the un
certainties. To ensure that FFS and constant cooling rate simulations are 
consistent with direct MD simulation of homogeneous nucleation at a 
fixed temperature and pressure, we carried out direct MD simulation for 
the ML-mW model at −500 atm and 227 K, one of few conditions where 
nucleation is accessible to direct MD. The nucleation rate coefficient at 
this condition is obtained by 20 independent trajectories through fitting 
the distribution of induction time following the method in Cox et al. [34] 
(see B for details.) This data point is plotted on Fig. 3, confirming the 
self-consistency of our methods. 

3. Discussion 

The performance of the ML-mW model is summarized by Chan et al. 
[14]. As acknowledged there, the improvement in Δvls results in an 
improved representation of the melting point line, (dp/dT)melt [14]. 
From the Clausius–Clapeyron relation, (dp/dT)melt = Δs/Δvls, it is clear 
that the model’s improvement in Δvls is primarily responsible for the 
improved behavior. The change in entropy upon melting, Δs, is the same 
within 5% between the two models, whereas the change in volume upon 
melting, Δvls, differs by roughly 230% between the two models. In this 
study, we analyze our simulation results in the context of Eq. 1, leading 

us to conclude that an accurate representation of Δvls will also result in a 
more accurate representation of constant homogeneous nucleation rate 
lines, (dp/dT)J=const . 

When considering the behavior of homogeneous nucleation as a 
function of negative pressure, we can look at two effects: an elevation of 
the melting point, and a lowering of the Gibbs free energy barrier to 
nucleation. If one assumes that the level of supercooling needed to 
achieve a given nucleation rate coefficient remains fixed as one moves to 
lower pressures, then the elevated melting point alone leads to an 
equivalent elevation in the temperature corresponding to a given 
nucleation rate coefficient. However, the level of supercooling required 
is also expected to decrease due to a lowering of the Gibbs free energy 
barrier to nucleation: 

ΔG* =
16πγ3

ls

3(ρΔμ)
2 . (2)  

In this expression, ρ is the ice density, γls is the solid–liquid interfacial 
energy, and Δμ is the change in chemical potential between the solid and 
liquid. A change in pressure shifts the chemical potential difference Δμ 
[35,36]: 

Δμ =
lf (Tm − T)

Tm
+ ΔpΔvls, (3)  

where lf is the enthalpy of fusion and Tm is the equilibrium melting 
temperature at the reference pressure, p0. A derivation of Eq. 3 is 
included in C. As long as Δvls is negative, a decrease in pressure will 
increase Δμ at any given temperature, lowering the magnitude of G*. 
This in turn increases the nucleation rate. We note that the value of Δvls 
decreases with decreasing pressure and is expected to eventually reach 
an inflection point where it switches sign [12], so this proposed 
enhancement in nucleation rate due to Δvls is confined to the negative- 
pressure range where Δvls remains negative, approximately the pressure 
range of this study. 

An approximate expression of this nucleation enhancement with 
decreasing pressure is proposed by Eq. 1. Its derivation is outlined here, 
with mathematical details provided in C. Starting from a reference point 
(p0, T0) with a known nucleation rate coefficient J, we would like to find 

Fig. 4. ‘Phase diagram’ showing the pressure and 
temperature dependence of the equilibrium melting 
point and line of constant nucleation rate coefficient 
J = 1032m−3s−1. Circles are the melting tempera
tures for the mW water model (blue) and ML-mW 
model (green), while the grey line is the experi
mental melting point line extrapolated to negative 
pressures [9]. Triangles denote our simulation results 
for homogeneous nucleation rate coefficient at 
negative pressures. The dashed lines are theoretical 
predictions given by Eq. 1. The simulation results 
obtained at 1 atm are used as the reference values (p0,

T0) for Eq. 1. The origin of the y-axis is set as the 
melting temperature, Tme.lt at 1 atm.   
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p, T coordinates where this rate coefficient remains constant. By 
equating J(p0 + Δp, T0 + ΔT) = J(p0, T0), we arrive at an equation for 
lines of constant J in terms of pressure and temperature. When applying 
the approximation that (T0 −ΔT)/T0 ≈ 1, the equation ends up taking a 
linear form that mimics the Clausius–Clapeyron equation for melting 
point. This approximation requires that the reference freezing temper
ature T0 be large compared to the temperature shift caused by the 
pressure change. In this study, the largest value we encounter is 
(T0 −ΔT)/T0 = 1.03. 

We have identified that the density anomaly Δvls is a key factor in 
determining the shape of the melting point line and also influences the 
change in Gibbs free energy barrier with pressure through its impact on 
Δμ. Given that the ML-mW model exhibits a density anomaly roughly 
230% larger than that of the mW model, our expectation is that 
decreasing pressure will have a much more significant influence on the 
nucleation rate in the ML-mW model over the mW model. When 
comparing our results for the two models, we do indeed observe that the 
slope (dP/dT)J=const is larger for the ML-mW model. As shown in Fig. 4, 
the ML-mW model shows a larger increase in homogeneous nucleation 
rate coefficient for the same decrease of pressure. This analysis leads to 
our conclusion that the improved density anomaly makes ML-mW better 
equipped for studying ice nucleation in the context of changing pres
sures. When using a water model with a small density anomaly 
compared to real water, one may not capture the effects of pressure 
change on ice nucleation that would be exhibited in real water. A table 
of Δvls values for each model at negative pressures can be found in A. 

Next we wish to compare the simulation results with Eq. 1. For 
reference values p0 and T0, we use the temperature corresponding to J =

1032m−3s−1 at 1 atm, obtained from our constant cooling rate simula
tions. We input into Eq. 1 the values we obtained for Tm and Δvls, and the 
value for lf that is published in Chan et al. at 1 atm [14]. Eq. 1 can then 
be used to predict the line of constant J = 1032 m−3s−1 at negative 
pressures. The dashed lines in Fig. 4 show the resulting expressions 
plotted along with the simulation results, showing satisfactory agree
ment in the pressure regime of interest. We find that this simple linear 
approximation gives reliable estimates of freezing point elevation under 
negative pressures in this pressure range. We note that the contours in 
Fig. 3 are roughly linear as well, indicating that this trend remains 
consistent for smaller nucleation rate coefficients and lower 
supercooling. 

Despite the various ways that the Gibbs free energy barrier is affected 
by decreasing pressures, our simulation results indicate that a linear 
approximation for the slope of constant nucleation rate lines can provide 
an excellent first order approximation in the pressure range that is 
studied in this work. The slope given in Eq. 1 is parallel to the melting 
point line, despite the fact that the elevated melting temperature is 
known to not be the only mechanism contributing the shape of constant 
nucleation rate lines. For example, previous molecular dynamics studies 
have observed that γls increases in response to strongly positive pres
sures, dominating the trend in G* and causing lines of constant nucle
ation rate to differ significantly in slope from that of the melting point 
line [37]. As seen in Fig. 4, we have observed that, within our error 
bounds, lines of constant nucleation rate are roughly parallel to the 
melting point line. The derivation of Eq. 1 assumes that γls remains 
constant along lines of constant nucleation rate. The agreement between 
Eq. 1 and our data suggests that this approximation is valid in this range 
of pressures, for these models. Given that γls is cubed in Eq. 2, it is likely 
to be a primary source of error in our linear approximation. However, 
since γls decreases with both temperature and pressure, it is expected 

that those two effects will tend to compensate for each other along lines 
of constant J, mitigating the error introduced in the approximation. 

Furthermore, the derivation of Eq. 1 assumes that several thermo
dynamic values (interfacial energy γls, enthalpy of fusion lf , and kinetic 
flux) remain constant along lines of constant J. Despite experimental and 
theoretical uncertainty around the pressure dependence of these vari
ables, we have shown that approximating these variables as constants 
results in satisfactory agreement with simulation results. It is possible 
that some of these variables increase along lines of constant J while 
others decrease, resulting in fortuitous cancellation of errors. 

The finding that the enhancement in nucleation rate due to negative 
pressure can be approximated by Eq. 1 will be helpful in future studies of 
ice nucleation at negative pressures, and in designing laboratory ex
periments to further explore this phenomenon. An important result is 
that pressure and temperature can each be modified independently to 
achieve a given nucleation rate enhancement. The apparent equivalence 
between temperature and pressure in influencing nucleation rates is a 
useful perspective in studying atmospheric ice nucleation, for which 
focus has been placed primarily on the effect of temperature on nucle
ation rates with pressure held constant. This work provides further tools 
for the continued investigation of pressure fluctuations as an ice 
nucleation mechanism. 

4. Conclusion 

We use MD simulation to evaluate homogeneous ice nucleation rate 
coefficients in a range of negative pressures, by means of constant 
cooling rate simulations as well as forward flux sampling. We compare 
the effect of negative pressure on nucleation rate coefficients between 
the ML-mW and the original mW model, concluding that the density 
difference between water and ice is a dominant factor in determining the 
extent to which nucleation rates in these models are increased when 
negative pressure (stress) is applied to the system. Based on this analysis, 
the ML-mW model is more appropriate than the original mW model for 
simulations involving ice nucleation at different pressures. 

We obtaine freezing temperature distributions for both water models 
at each pressure, which are then converted to nucleation rate co
efficients. Contours of constant nucleation rate coefficient in pressur
e–temperature coordinates verify that a linear approximation can be 
used to predict the enhancement in nucleation rate due to negative 
pressure in the pressure range that is studied. 
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Appendix A. Determination of Δvls, Freezing Temperatures, and Melting Temperatures 

A.1. Freezing temperature 

Fig. 5 is an example evolution of the Nice/Ntotal ratio for one constant cooling ramp simulation run. The figure shows the raw data, the sigmoidal fit, 
and the nominal freezing temperature of the run as described in the Methods section. Note added in proof: In the process of making final checks we 
identified an inconsistency in the molecular mass of water used in the simulations. In these constant cooling simulations the mass was 18.15 g/mole, 
whereas in all other calculations 18.015 g/mole was used. We have run ten constant cooling realizations at atmospheric pressure and at -500 at
mospheres using a mass of 18.015 g/mole, and find that the mean freezing temperature and nucleation rate coefficients vary well within the statistical 
uncertainties. The findings presented in the paper therefore are not influenced by this inconsistency. 

A.2. Melting temperature 

The data points for the mW and ML-mW melting points in Fig. 4 are obtained by using the direct-phase coexistence method at each pressure, where 
the melting temperature is taken as the lowest temperature where the system completely melts [26] [27]. Fig. 6 shows our results at 1 atm for the two 
water models. We can use our 1 atm result as validation. While our outcome for the mW model precisely matches published results of 273 K, we find 
that our outcome for ML-mW (292 K) is different from the published value by Chan et al. [14] for the melting temperature of ML-mW (289 K). Chan 
et al. [14] used a different method than used here, but other work has shown that these two methods typically agree [38], so the discrepancy is at this 
point unexplained. Nevertheless, for this study we are not concerned with the exact value of the melting point, but the relative changes with respect to 
pressure, and the qualitative behavior of the freezing point relative to the melting point. 

The results for melting temperatures are summarised in Table 1. The uncertainty on the reported values are ±1K. 

Fig. 5. An example of one freezing trajectory at 1 atm. The grey line shows the raw data of ice fraction. The colored line is a sigmoid fit to the data. The blue dot 
indicates the inflection points that is used as the nominal freezing temperature for the run. The dashed line and red marker are a guide for the eye. 

Fig. 6. Left: Original mW model potential energy trajectories at 1 atm, showing the system melting at temperatures equal or greater than 273 K. Right: ML-mW 
model potential energy trajectories at 1 atm, showing the system melting at temperatures equal or greater than 292 K. 
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A.3. Density anomaly Δvls 

Table 2 reports Δvls values that we have computed for the mW and ML-mW models at their equilibrium melting temperatures at 1 atm, −500 atm, 
and −1000 atm. The values were determined by measuring the molar volume (cm3 mol−1) of an equilibrated box of liquid containing ∼ 4100 water 
molecules and separately measuring the molar volume of equilibrated ice at the same temperature and pressure. We take the difference between these 
values to obtain Δvls. The values we report at 1 atm are in agreement with published values in Chan et al. [14]. 

Appendix B. Convergence and validation of FFS 

To validate the convergence of FFS calculation with respect to the number of configurations (Ni) collected at each interface λi, we repeat FFS 
calculations under two conditions, i.e., 227 K, −500 atm and 233 K, 1 atm, by collecting 1,000 configurations at each interface. The calculated rates 
are compared against with those computed using 600 configurations, based on three independent FFS runs each collecting 200 configurations. As 
shown in Table 3, the calculated rates are virtually unchanged with respect to the number of collected configurations, demonstrating the convergence 
of rate constants calculated by FFS. 

The validity of FFS can be further confirmed by explicitly comparing the rates obtained by different approaches under a condition where spon
taneous nucleation becomes accessible to direct MD. Here we choose such condition to be 227 K, −500 atm, guided by the calculated ice nucleation 
rate based on FFS. We carry out 20 independent direct MD simulations using an isobaric-isothermal canonical ensemble, each lasting one micro 
second. From the distribution of induction time to ice nucleation (tind), defined as the time taken to form a critical ice nucleus, we obtain the dis
tribution of probability for the system remaining liquid Pliq(t). Following the procedure described in Cox et al. [34], we fit the calculated Pliq(t) by the 
following equation: 

Pliq(t) = exp[ − (Rt)γ
], (B.1)  

where R is nucleation rate and γ is fitting constant, as shown in Fig. 7. The fitted ice nucleation rate R for this condition is found to agree well with the 
FFS calculations, as shown in Table 3, thus further confirming the validity of our FFS study. 

Table 1 
Melting temperatures of ML-mW model and original mW model at negative pressures.  

Pressure (atm) ML-mW (K) mW (K) Experiment (K) 

1 292 273 273 
−500  295 274  

−1000  298 275 279 [9]  

Table 2 
Δvls (cm3mol−1) at liquid–solid coexistence temperature for ML-mW model and original mW model at negative pressures.  

Pressure (atm) ML-mW mW Experiment 

1 −1.35 −0.42 −1.61 [14] 
−500  −1.17 −0.35  

−1000  −0.95 −0.27   

Table 3 
Comparison of the calculated ice nucleation rates (m−3s−1).  

Method 227 K, −500 atm 233 K, 1 atm  

FFS (600 configurations) 3.72 ± 0.97 × 1031  3.00 ± 0.43 × 1026   

FFS (1,000 configurations) 3.07 ± 1.5 × 1031  1.54 ± 0.62 × 1026   

Direct MD (20 runs) 6.93 ± 0.13 × 1031  N/A   
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Appendix C. Derivation of p(T) Approximation 

When the pressure of water is decreased, the nucleation rate is lowered due to a change in the chemical potential difference between liquid water 
and ice. Deriving a pressure-dependent formulation of the chemical potential difference between ice and liquid water under isothermal conditions, 
Němec 2013 arrives at the following expression [35]: 

μs − μl = (p − pe,s)vs − (p − pe,l)
vl(p) + vl(pe,l)

2
− kTln

(
pe,l

pe,s

)

. (C.1)  

The derivation can be found in Eqs. 2–5 of Němec 2013 [35]. The value of μs −μl that is obtained is for the given pressure p. The molecular volumes 
(m3) for ice and liquid water are denoted by vs and vl. Note that in the present work, we use molar volumes (cm3 mol−1). Eq. C.1 is derived in reference 
to known values for μs and μl at their equilibrium vapor pressures pe,s and pe,l respectively. This reference value is given as the third term on the right 
hand side of the equation, with the preceding terms interpreted as a change due to pressure. We substitute the ratio of equilibrium vapor pressures over 
supercooled liquid and ice with the commonly used expression from the Clausius–Clapeyron equation 

pe,l

pe,s
= exp

(
lf

RTm

(Tm − T)

T

)

. (C.2)  

We also impose the assumption that (p −pe,s) ≈ (p −pe,l). This is valid because the values of p that we are investigating are on the order or 10–100 MPa, 
many orders of magnitude larger than the maximum difference pe,l −pe,s seen in water (roughly 3 × 10−5 MPa). This approximation, combined with the 
substitution of Eq. C.2 gives us the following form, now expressed in terms of moles instead of per molecule: 

μs − μl = (p − pe,l)

[

(vs − vl(pe,l)) −
1
2

(vl(p) − vl(pe,l))

]

−
lf (Tm − T)

Tm
. (C.3)  

From here we shall make some adjustments to the equation to suit our needs. First, we identify pe,l to be our reference pressure p0, and Δp = p −p0. We 
substitute Δvls = vl(p0) −vs and define Δμ = μl −μs: 

Δμ = Δp
(

Δvls +
1
2

(vl(p) − vl(p0))

)

+
lf (Tm − T)

Tm
. (C.4)  

Lastly, we make the approximation that 12(vl(p) −vl(p0)) ≈ 0. In other words, we make the assumption that vl is a constant, independent of pressure. In 
actuality, the value of vl increases as the pressure decreases, due to water becoming less dense and closer in density to ice. This pressure dependence in 
vl may explain the slight nonlinearity of temperature–pressure contours in Fig. 3. To better approximate the observations, the vl(p) −vl(p0) term needs 
to be kept. To reasonable approximation we can ignore this dependence. Thus we arrive at Eq. 3 of this work, an approximation for the difference in 
chemical potential between supercooled liquid and solid, accounting for a pressure change: 

Δμ =
lf (Tm − T)

Tm
+ ΔpΔvls. (C.5) 

Fig. 7. Ice nucleation rate R is obtained by fitting the calculated Pliq(t) (blue dots) by Eqn. B.1. The fitted distribution is represented .by the red line.  
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This relation works well when T is close to Tm and the temperature dependence of lf can be neglected. Higher order terms should be included when T is 
much lower than Tm. The chemical potential contributes to the Gibbs free energy barrier to nucleation, and the nucleation rate coefficient can be 
written as 

J = Aexp
(

C
TΔμ2

)

, (C.6)  

with C = 16πγ3
ls/(3kBρ2). In this derivation, we assume that surface tension (γls), density (ρ), and kinetic prefactor (A) remain constant for small 

changes in temperature and pressure. Starting from reference point J(p0, T0), we aim to find an expression for lines of constant nucleation rate in 
temperature–pressure coordinates: 

J(p0 + Δp, T0 + ΔT) = J(p0, T0). (C.7)  

We use Eqs. C.5 and C.6 in the above expression to solve for the slope (Δp/ΔT) of the constant nucleation rate lines. Because we have taken A and all 
terms in C to be constant, they are eliminated from both sides of the expression. Taking the logarithm of both sides, we have 

(T0 + ΔT)

(
lf (Tm − T0 − ΔT)

Tm
+ ΔpΔvls

)
2 = T0

(
lf (Tm − T0)

Tm

)
2. (C.8)  

Next we divide both sides by T0 and make the approximation that (T0 −ΔT)/T0 ≈ 1. After taking the square root of both sides and rearranging, the 
resulting relation is 

Δp
ΔT

=
lf

TmΔvls
(C.9)  

Using Δp = p −p0 and ΔT = T −T0, we can express the relation as 

p(T) = p0 +
lf

TmΔvls
(T − T0)

Overall, the derivation is valid in the regime of linear response where the change of T or p is small and can be considered as small perturbation. It may 
also work in a greater range of (T, p) change, depending on the linearity of the melting line. 
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[35] T. Němec, Estimation of ice–water interfacial energy based on pressure-dependent 
formulation of classical nucleation theory, Chem. Phys. Lett. 583 (2013) 64–68. 

[36] J. Huang, L.S. Bartell, Kinetics of homogeneous nucleation in the freezing of large 
water clusters, J. Phys. Chem. 99 (12) (1995) 3924–3931. 

[37] J.R. Espinosa, A. Zaragoza, P. Rosales-Pelaez, C. Navarro, C. Valeriani, C. Vega, 
E. Sanz, Interfacial free energy as the key to the pressure-induced deceleration of 
ice nucleation, Phys. Rev. Lett. 117 (2016) 135702, https://doi.org/10.1103/ 
PhysRevLett.117.135702. 

[38] C. Vega, E. Sanz, J.L.F. Abascal, E.G. Noya, Determination of phase diagrams via 
computer simulation: methodology and applications to water, electrolytes and 
proteins, J. Phys.: Condens. Matter 20 (15) (2008) 153101, https://doi.org/ 
10.1088/0953-8984/20/15/153101. 

E. Rosky et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0009-2614(21)00972-6/h0150
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0150
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0150
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0155
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0155
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0160
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0160
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0160
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0165
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0165
https://doi.org/10.1063/1.4919714
https://doi.org/10.1063/1.4919714
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0175
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0175
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0180
http://refhub.elsevier.com/S0009-2614(21)00972-6/h0180
https://doi.org/10.1103/PhysRevLett.117.135702
https://doi.org/10.1103/PhysRevLett.117.135702
https://doi.org/10.1088/0953-8984/20/15/153101
https://doi.org/10.1088/0953-8984/20/15/153101

	Homogeneous ice nucleation rate at negative pressures: The role of the density anomaly
	1 Introduction
	2 Methods and Results
	3 Discussion
	4 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Determination of Δvls, Freezing Temperatures, and Melting Temperatures
	A.1 Freezing temperature
	A.2 Melting temperature
	A.3 Density anomaly Δvls

	Appendix B Convergence and validation of FFS
	Appendix C Derivation of p(T) Approximation
	References


