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Abstract

Bridgeman-Taylor (Math. Ann. 341 (2008), 927-943)
and McMullen (Invent. Math. 173 (2008), 365-425)
showed that the Weil-Petersson metric on Teichmiiller
space can be realized by looking at the infinitesimal
change of the Hausdorff dimension of certain quasi-
Fuchsian deformations. In this article, we give a simi-
lar geometric interpretation of the spectral gap pressure
metric introduced by Bridgeman-Canary-Labourie-
Sambarino (Geom. Dedicata 192 (2018), 57-86) on the
Hitchin component for PSL;(R). More generally, we
investigate the Hessian of the Hausdorff dimension as
a function on the space of (1,1,2)-hyperconvex represen-
tations, a class introduced in (J. reine angew. Math. 774
(2021), 1-51) which includes small complex deforma-
tions of Hitchin representations and of ®-positive rep-
resentations. As another application, we prove that the
Hessian of the Hausdorff dimension of the limit set at
the inclusion T’ — PO(n,1) — PU(n, 1) is positive defi-
nite when T is co-compact in PO(n, 1) (unless n = 2 and
the deformation is tangent to (T, PO(2, 1))).
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1 | INTRODUCTION

One of the most interesting and well-studied metrics on the Teichmiiller space, the parameter
space of hyperbolic structures on a closed surface S of genus ¢ > 2, is the Weil-Petersson metric,
a non-complete Riemannian metric. A celebrated result by Taylor [17] and McMullen [38] gives a
geometric interpretation of this metric in terms of dynamical invariants of quasi-Fuchsian repre-
sentations.

To describe their result, recall that the holonomy representation realizes the Teichmdiller space
T (S) as a connected component of the character variety

% (7., PSL,(R)) := Hom (7, S, PSL,(R)) //PSL,(R),

which, in turn, sits as a totally real submanifold of the complex character variety X(7,S, PSL,(C)),
endowed with the complex structure J induced by the complex structure of the Lie group PSL,(C).
A neighborhood of 7(S) in the complex character variety is given by quasi-Fuchsian space QF(S),
the set of conjugacy classes of representations p : 7;S — PSL,(C) = Isom,(H?) preserving a con-
vex subset of H* on which they act cocompactly. Any such p is thus a quasi-isometric embedding
and admits an injective equivariant boundary map & o 1 0mS - CP! whose image is a Jordan
curve. Given p € QF(S), we denote by Hff(p) the Hausdorff dimension of this Jordan curve. It
is bounded below by 1 and Bowen showed that Hff(p) equals 1 precisely when p belongs to the
Teichmidiller space [10]. The result of Taylor and McMullen realizes the Weil-Petersson metric by
looking at the infinitesimal change of the Hausdorff dimension in purely imaginary directions at
a representation p € 7(S) C QF(S).

Theorem 1.1 (Taylor [17] McMullen [38]). For each p € T(S) and every differentiable curve
(P)ie(—ce) C T (S) with py = p, it holds

Hess HEf(J %) = |14l p-

In recent years, convex-cocompactness has been generalized from rank 1 to real-algebraic
semisimple Lie groups’ G of arbitrary rank, via the concept of Anosov representations p : T — Gy,
where, for K = R or C, G denotes the group of the K-points of G. Specifying a set © of simple roots,
let G /Pg be the space of parabolic subgroups of type ®. Then ®-Anosov representations are char-
acterized by admitting a continuous, equivariant, transverse boundary map 51? : 0T — Gy /Pg

* (of non-compact type)
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with good dynamical properties [6, 27, 29-31, 34]. They form open subsets
Xo(T,Gy) = {p € X(T,Gy) : pis® — Anosov}

of the character variety.

For each a € ® Canary-Labourie. [14] constructed, using the thermodynamic formalism, an
analogue of the Weil-Petersson metric on X (T, G), the spectral radius pressure form P*2, where
w, is the fundamental weight associated to a. We will recall this construction on Section 4.

Of particular interest is the Hitchin component

H(S,Gg) C X(,S,Gg),

introduced by Hitchin when G, is moreover center-free and simple split. When G = PSL,(R), the
Hitchin component agrees with Teichmiiller space. When Gy = PSL,(R), the Hitchin component
H6(S) C X(m,S,PSL4(R)) can be described as the connected component containing a Fuchsian
representation, that is, the composition of the holonomy of a hyperbolic structure with the irre-
ducible representation 7;S — PSL,(R) — PSL,(R). On the PSL ;(R)-Hitchin component, Canary-
Labourie [15] defined a different metric, arising from a different pressure form, denoted by P?1, to
which we will refer here as the spectral gap pressure form. They prove that P% is non-degenerate
on J7(S) and extends the Weil-Petersson inner product on Teichmdiller space, embedded into
2;(S) as the space of Fuchsian representations.

A corollary of the main result of the paper is a geometric interpretation of this spectral gap pres-
sure form through the Hession of the Hausdorff dimension of appropriate deformations of Anosov
representations. This provides a generalization of Theorem 1.1 to the PSL;(R)-Hitchin compo-
nents.

To state the result, we denote by IT the set of simple (restricted) roots of G and consider the
Hitchin component J7(S, G) as a subset of X;(77,S, G¢), the latter equipped the complex struc-
ture J induced by the complex structure of G. For a € II, denote by

Ht, (p) = dimyyy (£3(67,5))

the Hausdorff dimension of the (image of the) limit curve §; : 0I' - F,(G) for a(ny) Riemannian
metric on F,(G). It follows from [43] that Hff, is critical at .72°(S, G ) and thus its Hessian is well
defined.

Corollary A. Foreveryv € TJ(S,Gg) and every a € Il one has

HessHff,(Jv) = P?(v).
Moreover, when G = PSL;(R) the Hessian ofHﬁ”al : Xp(mr,S,PSL4(C)) — R, ata point p € 55(S)
is strictly positive on every direction except T ,.7;(S), where it is degenerate. In particular, the Hitchin

locus 7€,(S) C X(m, S, PSL4(C)) is an isolated minimum for Hff, .

The second statement follows directly from the first, together with the aforementioned non-
degeneracy result by Canary-Labourie [15] for the spectral gap pressure form P2:.
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Corollary A provides a bridge between two different worlds: we can understand the spectral
gap pressure metric on the real character variety in terms of the geometry of the limit set of purely
imaginary deformations within the complex character variety. It also brings further evidence that
even though the spectral radius pressure forms are so far the more prominently studied ones, the
spectral gap pressure form is the more geometric one, and shares more similarities to the classical
Weil-Petersson metric.

A keyingredient in the proof of Corollary A is the notion of (1,1,2)-hyperconvex representations,
studied in [43] (see Theorem 2.7). These are representations p : I' — PGL,4(C) that are Anosov
with respect to the first two simple roots and whose boundary maps satisfy an additional transver-
sality condition (see Section 2.2). The main result of [43] then yields that, on the open set

x?a 2T PGLA(O)) = {p € E(T,PGL4(C)) : (1,1,2)-hyperconvex},

the Hausdorff dimension of the limit set §;(6F) equals the critical exponent h;l for the first root
(see Section 2.2 for the definition of the critical exponent) and is thus analytic.

Theorem A. Let I" be a word hyperbolic group with 0I' homeomorphic to a circle and let p €

%g . }(F, PGL,4(R)) be a regular point of the character variety X(I', PGL4(C)). Then for every dif-
1-92

ferentiable curve (p,);e(—c ) C X(T', PGL4(R)) with p, = p, one has

HessHff, (Jp) = P"(p).

Another important class of representations of fundamental groups of surfaces are ®-positive
representations [28], which, as Hitchin representations, constitute connected components of char-
acter varieties [5, 26], generalizing Teichmiiller space. It was proven in [42, Theorem 10.3] that for
any ©-positive (Anosov) representation p : I' - SOy(p, q) and for any a € © the representation
A, p is (1,1,2)-hyperconvex. Thus Theorem A applies; note, however, that in these cases, we do not
know for which roots a the associated pressure form is non-degenerate.

Corollary B. Let P(T, SOy(p, q)) denote the set of ©-positive Anosov representations. Then for every
v € TP(T,SOy(p, q)) and every a € {ay, ..., ap_z}, one has

HessHff,(Jv) = P?(v).

For the second main result of the paper, we study the Hausdorff dimension of the limit sets
of (1,1,2)-hyperconvex representations, without restricting ourselves to virtual surface groups. We
generalize a result of Bridgeman [13] and show:

Theorem B. Let I' be a word hyperbolic group and let p € &”g . }(I‘, PGL,4(C)) be a smooth point.
1-92
Assume moreover that

Hff, : xgl,az}(r, PGL4(C)) — R,

is critical at p. Then Hess, Hff, is positive semidefinite on a subspace of dimension at least half the

real dimension of xf{g . }(F, PGL,(C)). If, furthermore, the pressure form P?1 is non-degenerate, then
1-92

the function Hff, has no local maxima.
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This theorem applies in particular to all convex cocompact Kleinian groups in PGL,(C), a result
not covered by [13]. In general, admitting (1,1,2)-hyperconvex representations is a relatively restric-
tive assumption on the group I, as, for example, it implies that its boundary has dimension smaller
than 2. However there are many classes of subgroups of PGL,(C) admitting (1,1,2)-hyperconvex
representations with Zariski dense image in PGL;(C). It is not yet known if the spectral gap pres-
sure form is non-degenerate for such representations, and we hope that Theorem B will encourage
research in this direction.

The proof of both Theorems A and B relies on pluriharmonicity of length functions. The mech-
anism behind both proofs is relatively versatile, and can be applied in many situations. As an
example, we use it in Corollary 5.4 to prove that, at a Fuchsian representation, the critical expo-
nent h®1(p) relative to the first fundamental weight necessarily increases along purely imaginary
deformations (see Section 5.5 for details).

The last result we want to highlight in the introduction is another application of the previ-
ous techniques in a rank one situation. Recall that a representation p : I' — PU(n, 1) is convex-
cocompact if and only if it is projective Anosov when PU(n, 1) is considered as a subgroup of
PGL,,,,(C) through the standard inclusion. Moreover, for y € T the real length of the associated
closed geodesic is the spectral radius w; (A(p(¥))).

If p : T — PU(n, 1) is convex co-compact, then we denote by Hff;-,;» (o) the Hausdorff dimen-
sion the limit set of T in the visual boundary of the complex-hyperbolic space, with respect to a
visual metric. A celebrated result by Sullivan [48] in real-hyperbolic space, and further extended
to arbitrary negatively curved manifolds by Yue [51], asserts that if p : ' — PU(n, 1) is convex-co-
compact, then

Hff3c (1) = 11 ().
Assume now that I is a co-compact lattice of PSO(n, 1) and denote by ¢ the inclusion
t: T - PSU(n, 1),

where the inclusion of PSO(n, 1) — PSU(n, 1) is given by extending the coefficients. Bourdon [8]
proved that ¢ is a global rigid minima for Hff;;;» among convex co-compact representations of I'
in PU(n, 1). In Section 5.4, we prove the following strengthening.

Theorem C. Assume tis a regular point of the character variety X(I', PSU(n, 1)), then Hess, Hff 5y
is positive definite in any direction not tangent to X(T, PSO(n, 1)).

If n > 2 then Mostow’s classical rigidity result states that ¢ is an isolated point of X(T", PSO(n, 1))
so Theorem C implies that the Hessian of the Hausdorff dimension at ¢ is positive definite.

Interestingly enough, in the proof of Theorem C we relate the second variation of the Hausdorff
dimension of the limit sets of actions of " on the complex hyperbolic space CH" to the pressure
metric at the Fuchsian locus on the space of real convex projective structures on the closed man-
ifold RH" /T, thus providing a link between two very different geometries.

Remark 1.2. If p is a small deformation of ¢ in PSU(n, 1) then it is a convex co-compact subgroup
of PSU(n, 1) and moreover, by [43, Corollary 8.5], the Hausdorff dimension of the limit set for a
Riemannian metric on dCH" also coincides with h*1(p), so in Theorem C we can consider Hff;y»
either as the Hausdorff dimension for a visual metric or for a Riemannian metric.
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Outline of the paper

In Section 2, we discuss the background on Anosov representations needed in the paper: after
reviewing the basic definitions we discuss, in Section 2.2, the results of [43] which singled out
(1,1,2)-hyperconvex representations. In Section 2.3, we recall the basic facts about higher rank
Teichmiiller spaces needed to deduce Corollaries A and B from Theorem A; finally in Section 2.4,
we discuss an important dynamical viewpoint on Anosov representations: these can be thought
of as reparametrizations of the geodesic flow of T, and are thus amenable to the thermodynamic
formalism. In Section 3, we discuss the thermodynamic formalism needed to define, in Section 4,
the pressure forms. We conclude the paper in Section 5 introducing the main technical tool of the
paper, pluriharmonicity of dynamical intersection, which is directly used to prove Theorems A-C.

2 | ANOSOV REPRESENTATIONS

In this section, we introduce the necessary background on Anosov representations, and recall how
they give rise to reparametrizations of the geodesic flow.

2.1 | Basic notions

We recall the Cartan and the Jordan-Lyapunov projections and the characterization of Anosov
representations we are going to use.

Let G be a semisimple real-algebraic Lie group of non-compact type with finite center, for K = R
or C denote by G the group of the K-points of G. Fix a maximal compact subgroup K < G, with
Lie algebra t. We denote by E < t! a Cartan subalgebra, and by A C E* a choice of simple roots.
This corresponds to the choice of a Weyl chamber in E, which we will denote by E*. In the case
G = PGL, we identify E* with

{Oqy e, xg) €Rxy > o 2 Xy, Z x; =0}.

Every element g € Gy can be written as a product

g =k, exp(a(g))k,

for k;, k, € K and a unique element o(g) € E*, the Cartan projection of g. If G = PGL,4(R), the
numbers o;(g) are the logarithms of the square roots of the eigenvalues of the symmetric matrix
g'g.1f a € A, then we denote by w, its associated fundamental weight.

Let ® C A be a subset of simple roots. We denote by Py < G the associated parabolic subgroup,
by Py the opposite associated parabolic group and by

Eg := ﬂ ker(a)

aeA\O

the Lie algebra of the center of the Levi group Pg N Pg. It comes equipped with the unique pro-
jection
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that is invariant under the subgroup W, of the Weyl group that leaves Eg invariant. Finally, let
Eg < E* be the subspace generated by the fundamental weights associated to elements in ©

5 = (w,] 2 € ©) = {p € E| pope = 9}

One has that E, = E and P, is a minimal parabolic subgroup.
Let I be a finitely generated discrete group and denote by | | the word length for a fixed finite
symmetric generating set.

Definition 2.1. Let ® C A. A representation p : I' —» G is ©®-Anosov if there exist positive con-
stants c, u such that for all y € I"and a € ©, one has

a@(p(y)) = ulyl —c. 2
A {a;}-Anosov representation p : I' - PGL,(K) will be called projective Anosov.

Note that this is not the original definition given in Labourie and Guichard [27, 34], but a char-
acterization due to Kapovich-Leeb-Porti and Bochi-Potrie [6, 30]. Note also that there is a recent
characterization by Kassel-Potrie [31] only in terms of the Jordan-Lyapunov projection (see below
for the definition) rather than the Cartan projection.

Anosov representations are quasi-isometric embeddings, thus in particular they are injective
and have discrete image. It was proven in [30] (see also [6]) that only word hyperbolic groups
admit Anosov representations; we will denote by 0T" the Gromov boundary of the group I'.

A key property of Anosov representations is the existence of equivariant boundary maps with
good dynamical properties [6, 25, 27, 30, 34]. With our definition, the existence of boundary maps
for such representations is a Theorem of [30] and [6]. From now on we will restrict ourselves,
without loss of generality, to self-opposite subsets ® C A

Theorem 2.2 (Kapovich-Leeb-Porti [30]). Let p : ' — Gy be ©-Anosov. Then there exist a unique
dynamics preserving, continuous, transverse equivariant boundary map

£9 1 9T — Gy /Po.

If G = PGL, and © = {a,}, then G, /Pg = G,(K%) and we write 52 = ,{Ja’}.
It was proven in [27] that it is possible to reduce the study of general {a}-Anosov representations
to projective Anosov representations. Indeed one can use the following result by Tits, since for the

representations A, below one has
a1 (0(A,(p(y))) = a(a(p(y)))-

Proposition 2.3 (Tits [49]). For every a € A, there exists an irreducible proximal representation
A, : Gi = PGL4(R) whose highest restricted weight is lw, for some | € N.

Recall that the Jordan decomposition states that every g € Gy can be written uniquely as a
commuting product g = g,¢,9,, where g, is elliptic, g;, is R-split and g,, is unipotent. The Jordan-
Lyapunov projection 1 : G, — E™ is defined by the logarithm of the eigenvalues of g, with mul-
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tiplicities and in decreasing order. If G = PGL 4, this corresponds to the logarithm of the modulus
of the roots of the characteristic polynomial of ¢ with multiplicities and in decreasing order, and
we denote by

A9) = A1(9)s -, A4(9)) € {(X15 e, Xg) ERY| Xy > 1> xg, D) x; = 0}

its coordinates.
We will denote by A, C E™ the limit cone of the subgroup p(T') < G. This is the cone given by

Ay ={R, - Ap(¥)| ¥y €T}

It was proven by Benoist [4] that, provided p(T') is Zariski dense, A, is convex and has non-
empty interior.

For every functional ¢ € E* that is positive on the limit cone A, we denote by h?(p) the critical
exponent of the Dirichlet series

S - Z e~
yer

it can be computed as

h?(p) = inf {s : Z e < oo} = sup {S : Z e 5P = oo }
yer yer

2.2 | Hyperconvex representations
We begin with the following definition from [43]:

Definition. A {a;, a,}-Anosov representation p : I' - PGL,(K) is called (1,1,2)-hyperconvex if for
every triple of pairwise distinct points x, y,z € 0T one has

(e em) & 2@ = o
The following is a direct consequence of the uniqueness of boundary maps:
Lemma 2.4. The complexification of a real hyperconvex representation is hyperconvex (over C).

An important property of (1,1,2)-hyperconvex representations, established in [43] is that, for
these representations, the Hausdorff dimension of the limit curve for a Riemannian metric on
P(K?) computes the critical exponent for the first simple root. If p is {a; }-Anosov, the root a, is
positive on the limit cone (recall equation (2)) and thus its critical exponent is well defined. We
then have the following.
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Theorem 2.5 [43]. Let p : T' —» PGL,(K) be (1,1,2)-hyperconvex, then
dim (£1(00)) = k.

A second important property of (1,1,2)-hyperconvex representations into PGL;(R) was estab-
lished in [43] (and independently in Zimmer-Zhang [52]) is the following: if T is such that T is
homeomorphic to a circle, then the image of the boundary map §F1J is a Cl-curve. As a result, we
get

Theorem 2.6 [43]. Let p : T' - PGL4(R) be (1,1,2)-hyperconvex. If 0T is homeomorphic to a circle,
then dim(§'(0T)) = 1.

Thus, for fundamental groups of surfaces, the Hausdorff dimension is constant and minimal
on the real (1,1,2)-hyperconvex locus.

2.3 | Higher rank Teichmiiller Theory

A higher Teichmiiller space is a union of connected components of a character variety X(7, S, Gg)
only consisting of Anosov representations.

Historically, the first family of higher Teichmiiller spaces are Hitchin components. They arise
whenever Gy, is a center free real-split simple Lie group. In this case, there is a unique principal

subalgebra 8[,(R) < g characterized by the property that the centralizer of (8 (1)) has minimal

dimension (Kostant [33]). The Hitchin component (S, Gg) C X(7,S, Gg) is the connected com-
ponent containing Fuchsian representations: the composition of the holonomy of a hyperboliza-
tion 77;,S — PSL,(R) and the morphism PSL,(R) — G induced by the inclusion of the principal
subalgebra. Representations in the Hitchin component are Anosov with respect to the minimal
parabolic subgroup [34]." Furthermore, representations in the Hitchin component are hypercon-
vex:

Theorem 2.7 [34, 43, 47]. Let Gy be a simple split center-free real group. For every p € (S, Gg)
and a € I, the representation A,p : 7S — PSL(V,R) is (1,1,2)-hyperconvex.

Proof. This was established, for the groups G = PSL;(R), PSp(2n, R), PSO(n, n + 1) or the split
form of the exceptional complex Lie group G,, by Labourie [34], for G = SO(n, n) by [43, Theorem
9.9]. The general case follows from [47, Remark 5.14]. O

The second family of higher Teichmiiller spaces are spaces of maximal representations in Her-
mitian Lie groups Gy [19]. Our results here do not apply in this setting. Maximal representations
are, in general, only Anosov with respect to one root a, which therefore does not belong to the
Levi-Anosov subspace. Even though we know that for maximal representations the critical expo-
nent h; is constant and equal to 1 ([42, Theorem 1.2]), it is not clear if a spectral gap pressure metric

T In fact, Labourie proved this for G = PSL4(R), which implies the result also for symplectic groups and odd-dimensional
orthogonal groups. Fock and Goncharov gave a characterization of representations in the Hitchin component as positive
representations, from which the Anosov property can be deduced with a little work.



1036 | BRIDGEMAN ET AL.

P? can be constructed in this case. Moreover, since maximal representations are, in general, not
(1,1,2)-hyperconvex, it is not known if, for complex deformationsin p : I — G, the critical expo-
nent 7 equals the Hausdorff dimension of the limit set.

There are two further families of higher Teichmidiller spaces, given by ©-positive representa-
tions as introduced in [28, 50]. @-positive representations exist when Gy, is locally isomorphic
to SO(p, q), p < g, or when G belongs to a special family of exceptional Lie groups. Guichard,
Labourie and Wienhard [26] prove that @-positive representations are @-Anosov. They also show
that set of @-positive representations contain unions of connected components [26]. In the case of
SO(p, q), p < g, Beyrer [5] show that the set of ®@-positive representations is in fact a union of con-
nected components, coinciding with the components described using methods from the theory of
Higgs bundles by Aparicio-Arroyo, Bradlow, Collier, Garcia-Prada, Gothen, and Oliveira [2, 12].
In particular, in the case of SO(p, q), p < g, ©-positive representations are Anosov with respect to
the first p — 1 roots. We will use the following result from [42].

Theorem 2.8 [42, Theorem 10.3]. Let p : T — SO(p, q) be a ©-positive ®-Anosov representation.
For every a € {ay, ...,a,_,}, the representation A,p : 7S — PGL(V, R) is (11,2)-hyperconvex.

2.4 | Reparametrizations of geodesic flows

In this section, we describe a very useful dynamical viewpoint on Anosov representations from
[46] and Canary-Labourie [14], which makes them amenable to the thermodynamic formalism:
Any Anosov representation gives rise to a reparametrization of the geodesic flow.

Given a hyperbolic group I', we denote by UI" the Gromov geodesic flow; this is a metric space
endowed with a topologically transitive flow ¢ whose periodic orbits correspond to conjugacy
classes in . If I admits an Anosov representation, then ¢ is moreover metric Anosov [14]. Note
that, if I" is the fundamental group of a compact negatively curved manifold M, we can choose
UI' = UM; more generally, whenever I' admits an Anosov representation, its geodesic flow can be
explicitly constructed with the aid of the associated boundary maps [14, Theorem 1.10].

If « > 0, we denote by Hol,(UT, R) the space of a-Hdlder continuous functions on UT" and
by Hol(UT, R) the space of all Holder continuous functions. If f € Hol(Ul',R) and a € [T'] is a
conjugacy class, then we define the f-period of a by

Z(a)

Zo(f) = ; f(gx)dt

where x € a. If f € Hol,(UT, R, ), we obtain a new flow ¢f on UT called the reparametrization
of ¢ by f. The flow ¢/ is given by the formula

i) = 8 (O 3)

where k¢(x, 1) = fot f(¢ex)ds forall x € X and t € R. The flow ¢/ is Holder orbit equivalent to ¢
and if a € [I'], then #,(f) is the period of a in the flow ¢/ .

In [14, Section 4], Canary-Labourie associate to any projective Anosov representation a
reparametrization of the geodesic flow UI'. They prove the following statement, the second part
is proved in [14, Section 6].
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Proposition 2.9 [14, §6]. Let p : T — PGL,4(R) be a projective Anosov representation. Then there
exists a positive Holder-continuous function fﬁl : U = Ry, such that for every conjugacy class
[y] € [T], one has

£,(f31) = 2 (o(r).

Moreover, if D is a small disc and {p,},cp is an analytic family of such representations, then there
exists o such that f;o; can be chosen in Hol ,(UT, R) and the function u fii is analytic.

Proposition 2.9 together with Tits Proposition 2.3 directly give the following from Potrie [41],
where K = R case is treated. When K = C, the result follows at once by considering G as a real
group. Recall equation (1) for the definition of pg : E — Eg.

Corollary 2.10 [41, Corollary 4.5]. Letp : T — Gy be ®-Anosov, then there exists a positive Holder-
continuous function f/? : Ul — Eg such that for every conjugacy class [y] € [I'], one has

£,(£9) = po(Ae()).

Moreover, if D is a small disc and {p,},cp is an analytic family of such representations, then there
exists o such that fg) can be chosen in Hol ,(UT, R) and the function u — fg’ is analytic.
u u

Thus, Corollary 2.10 readily implies that if p is ©-Anosov, then for every ¢ € (Eg)* thatis strictly
positive on A, — {0} there exists a reparametrization of the geodesic flow of I' whose periods are
given by’

P(A(p(¥)))-

namely, if we denote by f g =op(f ,S))’ then one considers the flow ¢f ¢ . We will need in the follow-

ing that, in this situation, the critical exponent h¥(p) is also the entropy of the flow ¢f ¢ . This can
be found, for example. in Ledrappier [35], [46] and on Glorieux-Monclair-Tholozan [24] for the
general version.

Proposition 2.11. Let p : T — Gy be ©-Anosov. For each ¢ € E strictly positive on A, — {0}, it
holds that

log #{ € [ | p(A(e() < T |
T

B?(p) = lim

This applies, in particular, to the root a, if a representation p is (1,1,2)-hyperconvex.

3 | THERMODYNAMIC FORMALISM

We now briefly describe the thermodynamic formalism introduced by Bowen, Ruelle, Parry, Pol-
licott (among others), and in particular the pressure function on the space of Holder observables

T Recall that for every ¢ € (Eg)*, one has popg = .



1038 | BRIDGEMAN ET AL.

on a metric space with a Holder flow (see [45]). This will then be used, in Section 4, to define
various pressure forms P? on subsets of the representation variety X(I', PGL;(R)) by assigning to
each representation p the Holder function ff,f on the geodesic flow space UT of the group.

For a moment we forget about representations and let X be a compact metric space with a
Holder continuous flow ¢ = {¢, : X — X}, without fixed points. As in Section 2.4, we denote
by Hol, (X, R) the space of «-Holder continuous functions on X for some o > 0 endowed with the
complete norm

If1=1fle + sup M

x#yeX d(x,y)*

We denote by O the collection of periodic orbits of the flow ¢. For a € O and f € Hol (X, R),
we let Z(a) be the period of the periodic orbit a,

Z(a)

Zo(f) = | f(gx)dt

be f-period of a € O, and &, the associated ¢-invariant probability measure

4
,(1) = 2L,

Two maps f, g € Hol (X, R) are called Livsic cohomologuous if there exists U : X — R such
that, for all x € X, then

)= 0= 5| UGx)

It follows that if f and g are LivSic cohomologous, then Z,(f) =¢,(g) foralla € O. If f €
Hol, (X, R, ), we denote by ¢/ the reparametrization of ¢ by f, which is the flow on X defined
by (3).

We let M, be the set of ¢-invariant probability measures on X. For u € M, we denote by
h(¢, u) its metric entropy. Then, for f € Hol, (X, R), the topological pressure is

P(f)= sup {h(¢,m)+/xfdm}.

m€M¢

Note that the topological pressure P depends on the flow ¢, but we will omit this in the notation.
The topological entropy of a flow is given by hy,,(¢) = P4(0). A measure m  that attains this supre-
mum is called an equilibrium state for f and an equilibrium state for the zero function is called a
measure of maximal entropy.

We note that P(f) only depends on the Liv§ic cohomology class of f.

Lemma 3.1 [46, Lemma 2.4]. Let ¢ be a Holder continuous flow on a compact metric space X and
f € Hol (X, R,). Then

P(=hf) =0
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ifandonlyifh = htop(qbf). Moreover, if m is an equilibrium state of —h,,(¢) f, then fm is a positive
multiple of a measure of maximal entropy for the flow ¢/ .

We now restrict to transitive metric Anosov flows. In the manifold setting, and if the flow is dif-
ferentiable, a metric Anosov flow ¢ corresponds to a standard Anosov flow where the unit tangent
bundle of X has a ¢-invariant decomposition T,(X) = E_ @ E, @ E, where E_ is exponentially
contracted under the flow, E) is the direction of the flow and E,_ is exponentially contracted under
the flow reverse flow of ¢ (see [40] for details). We have the following theorem of Livsic.

Theorem 3.2 (Livsic’s Theorem, [37]). Let ¢ be a transitive metric Anosov flow. If f € Hol (X, R),
then ¢,(f) = 0forall a € O ifand only if f is LivSic cohomologous to O.

It follows that for metric Anosov flows, the LivSic cohomology class of f is determined by
its periods.
Given f € Hol (X, R), we let

RY(f) = Re(f) ={a € 0| £,(f) <T}.
Then we have the following;

Theorem 3.3 [9], [11], [40]. Let ¢ be a transitive metric Anosov flow and f € Hol (X, R, ) nowhere
vanishing. Then

log #R7(f)
T

h(f) = lim = hiop(¢')

is finite and positive. Moreover, for all g € Hol, (X, R) there exists a unique equilibrium state m  for
g. The measure of maximal entropy uy for the flow ¢ is

) 1 Z
Mg = lim ——— b
¢ T o #RT(D a€Ry(1) ’

Furthermore for Anosov flows the derivatives of the Pressure function satisfy the following.

Proposition 3.4 [39]. Let ¢ be a transitive metric Anosov flow and f, g € Hol (X, R). Then:

(i) the functiont — P(f + tg) is analytic;
(ii) the first derivative satisfies

OP(f +tg)
ot

= dmg,
o= [ s

where m is the equilibrium state for f;
(i) if / gdm; = 0 (mean-zero), then

2

T
FPUH| iy < /0 g(¢s(x))dS> dmy(x) = Var(g, my),

o2

T—o0

t=0

(iv) ifVar(g,my) = 0, then g is LivSic cohomologous to zero.
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Using the above, in [38] McMullen defined the Pressure semi-norm as follows. We let P(X) be
the space of pressure zero functions, that is,

P(X) = {F € Hol(X,R) | P(F) = O}.

Then by Proposition 3.4(ii), the tangent space to P(X) at F can be identified with

Tr(PX)) = {g € Hol(X,R) I/gde = 0},

where my, is the equilibrium state for F. Then the pressure semi-norm of g € Tp(P(X)) is

P(g) = _Var(g,mF)‘

[ Fdmg,
Observe that P is a quadratic form, so actually \/1_3 (and not P) is a semi-norm. It follows from
Proposition 3.4 (iii) that P is induced by a bilinear paring, which is positive semi-definite. We
call P the pressure semi-norm with a slight abuse of notation to stress the fact that the associated
bilinear form is positive semi-definite.

By Proposition 3.4, it follows that P(g) only depends on the Liv§ic-cohomology class [¢] and is
positive definite in the sense that it is zero if and only if [¢g] = 0. Therefore, it can be considered
as a (positive-definite) metric on the space of Liv§ic cohomology classes.

The dynamical intersection is defined in [14] as follows; if f, g € Hol, (X, R) are positive, then
their dynamical intersection is

I fgdm_
I(f,g) = Jim —L al9) _ = [ Sy @

T—eo #RT(f) aERT(f) fa(f) - /fdm_hff

The last equalities follow from [14, Section 3.4]. Similar definitions have been studied in different
situations, for example, by Bonahon [7], Burger [18] and Knieper [32].
The renormalized dynamical intersection is

Xf.g) = %w, 9.

It follows from [14, Proposition 3.12] that both g — I(f, g) and g — h(g) are analytic functions, in
particular J is twice differentiable.

Proposition 3.5 (Canary-Labourie [14, Proposition 3.8]). For every pair of positive Holder-
continuous functions f and g, one has J(f, g) > 1. In particular, J(f, -) is critical at f which gives

0 d

3t - logh(f,) = 3 t:OI(f’ft)’ (5)

where (f)ie(—ee) is @ C! curve of positive Holder-continuous functions with f, = f.
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Then we have:

Theorem 3.6 (Canary-Labourie [14, Proposition 3.11]). Let ¢ be a transitive metric Anosov flow on
a compact metric space X. If f; € Hol(X,R,),t € (—1,1) is a I-parameter family and F; = —hy f;,
then

62
9121

I(fo. f) =P(Fy)
The following proposition characterizes degenerate vectors for the second derivative of J.

Proposition 3.7 (Canary-Labourie [14, Lemma 9.3]). Let (f;);e_c¢) be a C? curve of positive
Hélder-continuous functions. Then (3%/3t?)|,_o3(fo, f;) = 0 if and only if for every periodic orbit
T, one has

d
a [zoh(ft)fr(ft) =0.

4 | PRESSURE FORMS

Now we will apply the thermodynamic formalism to representations. For this we make use of
the interpretation of a ®-Anosov representation as a reparametrization of the geodesic flow as
explained in Section 2.4.

Given any functional ¢ € Eg that is positive on the limit cone, one can associate a
reparametrization ff,f of the geodesic flow on I'. Here we describe in detail two special cases of
this construction which play an important role in the paper

4.1 | Spectral radius pressure form

Let p,n be two projective Anosov representations (with possibly different target groups). They
both give rise to reparametrizations of the geodesic flow f;ol and f ;J !, where w, is the first funda-
mental weight.

We define the spectral radius dynamical intersection of the two projective-Anosov representa-
tions p, 7 to be the dynamical intersection between f;fl and ff; L

1o, n) = I(f3", ).

Analogously we define J*1(p, 7). Moreover, given a C! curve (Pr)te(—c ) Of projective Anosov rep-
resentations the spectral radius pressure norm' of g, is defined by

oo P
P, (b)) = ETE) :=0J '(pos 1) = 0.

 Again P is a quadratic form and not a norm.
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The spectral radius pressure norm induces a positive semidefinite symmetric bilinear two form
at the smooth points of {a; }-Anosov representations. However, positive semi-definiteness is as far
as thermodynamics goes, and one needs geometric arguments to establish non-degeneracy. In
[14], Canary-Labourie prove non-degeneracy under some mild assumptions, giving

Theorem 4.1 (Canary-Labourie [14, Theorem 1.4]). Let I" be word hyperbolic, and G < PGL4(R)
be reductive. The spectral radius pressure form is an analytic Riemannian metric on the space
C,(T, Gg) of conjugacy classes of Gp-generic, regular, irreducible, projective Anosov representations.

Recall that a representation p : I' - Gy is Gg-generic if its Zariski closure contains elements
whose centralizer is a maximal torus in Gy, and it is regular if it is a smooth point of the algebraic
variety Hom(T', Gg).

4.2 | Spectral gap pressure form

We now consider two {a;, a,}-Anosov representations p, 7 (with possibly different target groups).
As explained in Section 2.4, they define reparametrizations f;l and f;l of the geodesic flow.

We define the spectral gap dynamical intersection of p and 7 to be the dynamical intersection
between f;l and ff;l:

(o, n) = I(f3", 1),

and analogously for J% (o, 7). Given a C' curve (p,),¢(_ ¢ of such {a,, a,}-representations the spec-
tral gap pressure norm of g, is defined by

2
PZI (o) = :7 z:oJa] (Posp) 2 0.

The spectral gap pressure norm induces a semidefinite symmetric bilinear two form on smooth
points of {a;, a,}-Anosov representations. This looks very similar to the spectral radius pressure
norm. It is, however, in general harder to check when the spectral gap pressure form is non-
degenerate. As far as the authors know this has, so far, only been established for the Hitchin
component in PSL;(R):

Theorem 4.2 (Canary-Labourie [15, Theorem 1.6]). Let G denote either PSL;(R), PSp(2n, R),
PSO(n, n + 1) or the split form of the exceptional complex Lie group G,. Then the spectral gap pressure
form is positive definite on the Hitchin component ¢ (S, Gg).

4.3 | Vanishing directions

Complex conjugation of matrices is an external automorphism of PGL;(C) and thus induces an
involution

T 1 2(T,PGL,4(C)) — %(T, PGL,(C))
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whose fixed point set contains X(T', PGL4(R)). If p € X(T, PGL,4(R)) is a regular point, then the
differential d, T splits the tangent space as a sum of purely imaginary vectors and the tangent space
to the real characters:

T,%(T, PGL4(C)) = ker(d, T +id) @ T, %(T, PGL4(R));

the almost complex structure J of X(T', PGL4(C)) interchanges this splitting.
With a standard symmetry argument (see, for example, Canary [16, Section 5.8]), we get:

Lemma 4.3. Let p : I' - PGL4(R) be {a,}-Anosov and let v be a purely imaginary direction at p.
Then P*1(v) = 0. If p is moreover {a,}-Anosov, then P?1(v) = 0.

Proof. Let us prove on the second statement, the first one being analogous. Consider a differen-
tiable curve (0,);e(—c,e) C Xga, a,)(I', PGL4(C)) such that p, = p, py = v and 7p; = p_,. For every
conjugacy class [y] € [T], the functions

te £,(f2) = (A — )0 () and €+ h(f)

are invariant under t — —t and are thus critical at 0. Consequently, for every conjugacy class, the
function t — h( f;i)f},( f:i) is critical at 0 and hence Proposition 3.7 implies P?1(v) = 0. O

5 | PLURIHARMONICITY OF LENGTH FUNCTIONS AND ITS
CONSEQUENCES

In this section, we prove the main results stated in the Introduction.

5.1 | Pluriharmonic length functions

Recall that we denote by Xo(T, G¢) the set of ® Anosov representations I' - G and, for p €
Xo(T,Ge), we denote by A, C E* the limit cone of the subgroup p(T).

If p,n € Xo(I',Ge) and ¢ € (Eg)™ is strictly positive on (A, U A,) — {0}, then one can define
their p-dynamical intersection by

Plo,m) =15 f) = lim —— ) PAm@))

, 6
PR GD) )y, PR ©

where ff,f = qo(fg’) is given by Corollary 2.10.
Recall that a function is pluriharmonic if it is locally the real part of a holomorphic function.
The argument from Taylor [17, Section 5] applies directly and one has the following result.

Proposition 5.1. Consider p € Xo(T',G¢) and ¢ € (Eg)” that is strictly positive in A, — {0}. Then
the function

Y =1%(p,-) : ¥¢(T,Gc) » R
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is pluriharmonic when defined (that is, on the open set consisting of representations n € Xg(T, G)
such that @|A, — {0} is strictly positive).

Recall from Potrie [41, Corollary 4.9] that the map 7 — P(pg(4,)) is continuous on X (I, Gy),
when considering the Hausdorff topology on compact subsets of P((Eg)*). Thus the domain of
definition of I:f is an open subset of X (T, G.) that contains, in particular, p. The proposition
implies then that Iﬁ is (defined and) pluriharmonic on a neighborhood of p.

P
Proof. In order to simplify notation, we denote by ¢ = ¢f ¢ the reparametrized flow and, for a
periodic orbit a € O, let 5? be the associated i-invariant probability measure. A computation
gives (as in Abramov [1], see, for example, [46, § 2]), for every continuous g : Ul - R,

. )
5%(g) = / o(px)ds =
0

fa
?(¢yx)ds.
l’ﬂa(fg) A g(¢sx)fp (¢SX) S

1
2o(f)

Thus, for T > 0 one has R?(l) = Ry( ff;). We consider the ¢-invariant probability measure

Ly &

T = m
#R.(1) aer¥(1)

Using the last equality in equation (4) together with Bowen’s Theorem 3.3 applied to ¢, one has

2 9
I?(n) = / %dﬂd; = 711_{130 MT(]fF_;;) @)
0

P

We now justify that the weak-* convergence in equation (7) is uniform when 7 varies on
compact subsets of the domain of definition of I;’. Indeed, Corollary 2.10 states that the map
7N f,f € Hol,(UT, R) is continuous and thus, when # varies on a compact set K C X (I, Gc),

the family of Holder functions with fixed exponent {f ,f : 1 € K}is bounded and equicontinuous.
Applying then, for example, Rao [44, Theorem 3.1], one has

®
lim sup juT<f—”) ~1Z0)| =0,

T—o0 ek f;/;

giving the desired uniformity.
Since for each T > 0, the map

_— <ﬁ>= Ly sG00)
\iE) 4R (D) o) PR

is the real part of a holomorphic function, the result follows from Axler-Bourdon-Ramey [3, The-
orem 1.23]. O
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5.2 | Proofof Theorem A

Let p € (7S, PGL4(R)) be (1,1,2)-hyperconvex and assume that it is a regular point of the char-
acter variety X(m; S, PGL4(R)). Consider a tangent vector v € T,X(m,S,PG L4(R)). Note that then
Ju is a purely imaginary tangent direction in T, X (7S, PGL4(C)). Thus, Lemma 4.3 implies that
for any C' curve (p,),(_c o) With py = p, 6y = Jvand 7p, = p_, we have

62
0 - Pa1 JU -_ Jal ’ . 8
( ) 6t2 =0 (pO pt) ( )

If p is (1,1,2)-hyperconvex then Theorem 2.6 states that h?1(p) = 1, moreover, as observed in the
proof of Lemma 4.3, fzal(po) = 0 and hence by equation (5) i:l (py) = 0. Moreover, from (4) one
has I?1(p, p) = 1; so developing the last term of equation (8), one obtains

0= Hessp(hal)(Jv) + Hess, Ila; Jv).
Proposition 5.1 states that I;l is pluriharmonic, so Hess, I:l (Ju) = —Hess, I;l(v) and thus
Hess,, h*a(Jv) = Hess,, I;l(v).

Since being (1,1,2)-hyperconvex is an open condition in the character variety [43, Proposition
6.2], Lemma 2.4 implies that, at least for small ¢, the representation p; is (1,1,2)-hyperconvex (over
C) and thus Theorem 2.5 yields h®(p;) = Hffal(p[). Finally, since h%1 = 1 in a neighborhood of p
in X2(7, S, PGL4(R)), one has

Hess, I;l (v) = P1(v).

The result follows from Theorem 2.5.

5.3 | Proof of Theorem B

By Theorem 2.5, Hff; = h* in a neighborhood of p, and thus by assumption, the latter is critical
at p. Since J%1(p, -) is also critical at p (Proposition 3.5), one concludes that Izl is critical at p and
thus its Hessian is well defined.

By Proposition 5.1, Izl is pluriharmonic and thus one has (as before) that for every v €
T,%(T, PGL4(C))

a a
Hess, I.'(Ju) = —Hess, I} (v).

One concludes that the (+, 0, —) signature of Hess/J I;l is of the form (p, 2k, p) for some p < half
dimy X(T, PGL4(C)). Moreover, by Theorem 3.6, one has

0<P1(Jv) = Hess, h*1(Jv) — h;l Hess, Ila; (v),
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so that Hess, I;l(v) > 0implies Hess, h*1(Jv) > 0. In particular, Hess, h# is positive semidefinite
on a subspace of dimension at least

dimy, (T, PGL,(C)) — p > % dimg, (T, PGL(C))

and the theorem is proven.

5.4 | Proof of Theorem C
Let " be a co-compact lattice in PSO(#n, 1) such that the inclusion ¢ : T' — PSO(n, 1) defines, after
extending coefficients, a regular point of the character variety 2(T’, PSU(n, 1)). Theorem 2.2 (and
the Remark following it) in Cooper-Long-Thistlethwaite [20] assert that ¢ is then a regular point
of the PSL, ; (R) character variety X(T, PSL,,; (R)).

Moreover, since 8o(n, 1) is the fixed point set of an involution in 8[, | ; (R), one has the decom-
position 8, ;(R) = 8o(n,1) @ 3 with [8, 3] C 30(n, 1). One readily sees that

3u(n,1) = 8o(n,1) @ i8 C 8l,,,(C). (9)
The twisted cohomology H 11 (T, 81,1 (R)) splits as
H}(T,81,,,(R)) = H\(T,80(n, 1)) ® H'(T, 8).

Consequently, by equation (9) the subspace H}(F, 3)CH }(F, 8l,,,(C)) is sent bijectively to
H} (T, i8) when multiplied by the complex structure J, that is,

J-H!T,8) = H!(T,i83). (10)
We will need the following generalization of Crampon [21].

Theorem 5.2 (Potrie [41, Theorem 7.2]). Assume p € X(T', PSL,,;(R)) has finite kernel and divides
a proper open convex set of P(R"1). Then the entropy

h*1(p) <n—1
and equality holds only if p has values in PSO(n, 1).
This has the following useful consequence.
Corollary 5.3. The spectral radius pressure form P*1 on X(T', PSL,, ; (R)) is non-degenerate at ..
Proof. When n = 2, this follows directly from Theorem 4.1, but if n > 2, the embedding 8o0(n, 1) C

8[,.1(R) is not PSL,,, ;(R)-generic so, even though «(T') is irreducible, we need additional argu-
ments. Nevertheless, by Theorem 5.2, the entropy function p — h®1(p) is critical at ¢, so by Propo-
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sition 3.7 one only needs to verify that the set
{de : [y] € [T}

spans the cotangent space T X(T', PSL, ,;(R)), where wi’ 1 X(I', PGL,,,(R)) — R is the function

p = w1(A(p(7)))-

As 1 is irreducible and projective Anosov, this is the content of Canary-Labourie [14, Proposition

10.1]. 0

Considerthenv € H [1 (T, 8) c T,X(T, PSL,(R)), by equation (10), the purely imaginary vector
J.-veTXT,PSL,,,(C)) belongs to H }(F, PSU(n, 1)) and represents thus a non-trivial infinites-
imal deformation of ¢ inside PSU(n,1). As in Lemma 4.3, we choose a differentiable curve
(P)ie(—ce) € (L, PSU(n, 1)) with py = tand g, = Jv and 70, = p_;.

By Lemma 4.3, we have that

2
0="P"(Jv) = % [_OJC"1 L py). 1y

Expanding the second term, and using that both h*1(p,) and I, (p,) are critical at t = 0 (as in the
proof of Lemma 4.3) and that I, is pluriharmonic, we get

0 = Hess,(h“1)(Jv) — (n — 1) Hess, (I )(v).
On the other hand
P, (v) = Hess,(h*1)(v) + (n — 1) Hess,(I,")(v),
which in turn gives
Hess,(h®1)(Jv) = P{"(v) — Hess,(h“1)(v) > 0,
since Pfol (v) > 0 by Corollary 5.3, and — Hess,(h®1)(v) > 0 since by Theorem 5.2 ¢ is a global max-
ima of h*1 among deformations in PSL,,, ;(R). The result then follows.
5.5 | The Hessian of the entropy at the Fuchsian locus of the Hitchin
component

Applying the same techniques as in the last section, we can also show the following result on the
Hitchin component.

Corollary 5.4. Let 1 € 7;(S) be a representation m,S — PSL,(R) — PSL;(R) in the embed-
ded Teichhmiiller space. Then Hess(hlwl) is positive definite on purely imaginary directions of
T,X(m, S, PSL4(C)).
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Proof. We mimic the last paragraph. In this case, the pressure form P*1 is positive definite on
T,72(S, PSL4(R)) directly by Theorem 4.1. One gets, through the same arguments, that

Hess,(h*1)(Jv) = P“1(v) — Hess(h“1)(v).

As we already observed, the first term on the right-hand side is positive by Theorem 4.1, while
Hess(h®1)(v) < 0 since, by Potrie [41, Theorem A], Fuchsian representations are maxima for the
entropy within the Hitchin locus. The corollary follows. [

We refer the reader to Dey-Kapovich [23] (see also Ledrappier [35] and Link [36]) for an inter-
pretation of the critical exponent h®1(p) as the Hausdorff dimension of the limit set with respect
to a visual metric, that is, a metric with respect to which the group action is conformal.

Finally, it would be interesting to relate Corollary 5.4, or an analog of it, to the recent work
by Dai-Li [22] studying the translation lengths on the symmetric space of PSL,(C), when one
deforms a Fuchsian representation along its Hitchin fiber.
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