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Abstract
Bridgeman–Taylor (Math. Ann. 341 (2008), 927–943)
and McMullen (Invent. Math. 173 (2008), 365–425)
showed that the Weil–Petersson metric on Teichmüller
space can be realized by looking at the infinitesimal
change of the Hausdorff dimension of certain quasi-
Fuchsian deformations. In this article, we give a simi-
lar geometric interpretation of the spectral gap pressure
metric introduced by Bridgeman–Canary–Labourie–
Sambarino (Geom. Dedicata 192 (2018), 57–86) on the
Hitchin component for 𝖯𝖲𝖫𝑑(ℝ). More generally, we
investigate the Hessian of the Hausdorff dimension as
a function on the space of (1,1,2)-hyperconvex represen-
tations, a class introduced in (J. reine angew. Math. 774
(2021), 1–51) which includes small complex deforma-
tions of Hitchin representations and of Θ-positive rep-
resentations. As another application, we prove that the
Hessian of the Hausdorff dimension of the limit set at
the inclusion Γ → 𝖯𝖮(𝑛, 1) → 𝖯𝖴(𝑛, 1) is positive defi-
nite when Γ is co-compact in 𝖯𝖮(𝑛, 1) (unless 𝑛 = 2 and
the deformation is tangent to 𝔛(Γ, 𝖯𝖮(2, 1))).
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1 INTRODUCTION

One of the most interesting and well-studied metrics on the Teichmüller space, the parameter
space of hyperbolic structures on a closed surface 𝑆 of genus g ⩾ 2, is the Weil–Petersson metric,
a non-complete Riemannian metric. A celebrated result by Taylor [17] and McMullen [38] gives a
geometric interpretation of this metric in terms of dynamical invariants of quasi-Fuchsian repre-
sentations.
To describe their result, recall that the holonomy representation realizes the Teichmüller space

 (𝑆) as a connected component of the character variety
𝔛(𝜋1𝑆, 𝖯𝖲𝖫2(ℝ)) ∶= Hom (𝜋1𝑆, 𝖯𝖲𝖫2(ℝ)) ∕∕𝖯𝖲𝖫2(ℝ),

which, in turn, sits as a totally real submanifold of the complex character variety𝔛(𝜋1𝑆, 𝖯𝖲𝖫2(ℂ)),
endowedwith the complex structure 𝐽 induced by the complex structure of the Lie group 𝖯𝖲𝖫2(ℂ).
A neighborhood of  (𝑆) in the complex character variety is given by quasi-Fuchsian space(𝑆),
the set of conjugacy classes of representations 𝜌 ∶ 𝜋1𝑆 → 𝖯𝖲𝖫2(ℂ) = Isom0(ℍ3) preserving a con-
vex subset of ℍ3 on which they act cocompactly. Any such 𝜌 is thus a quasi-isometric embedding
and admits an injective equivariant boundary map 𝜉𝜌 ∶ 𝜕𝜋1𝑆 → ℂℙ1 whose image is a Jordan
curve. Given 𝜌 ∈ (𝑆), we denote by Hff(𝜌) the Hausdorff dimension of this Jordan curve. It
is bounded below by 1 and Bowen showed that Hff(𝜌) equals 1 precisely when 𝜌 belongs to the
Teichmüller space [10]. The result of Taylor and McMullen realizes the Weil–Petersson metric by
looking at the infinitesimal change of the Hausdorff dimension in purely imaginary directions at
a representation 𝜌 ∈  (𝑆) ⊂ (𝑆).
Theorem 1.1 (Taylor [17] McMullen [38]). For each 𝜌 ∈  (𝑆) and every differentiable curve
(𝜌𝑡)𝑡∈(−𝜀,𝜀) ⊂  (𝑆) with 𝜌0 = 𝜌, it holds

Hess Hf f (𝐽𝜌̇) = ‖𝜌̇‖𝑊𝑃.
In recent years, convex-cocompactness has been generalized from rank 1 to real-algebraic

semisimple Lie groups† 𝖦 of arbitrary rank, via the concept ofAnosov representations 𝜌 ∶ Γ → 𝖦𝕂,
where, for𝕂 = ℝ orℂ,𝖦𝕂 denotes the group of the𝕂-points of𝖦. Specifying a setΘ of simple roots,
let𝖦𝕂∕𝖯Θ be the space of parabolic subgroups of typeΘ. ThenΘ-Anosov representations are char-
acterized by admitting a continuous, equivariant, transverse boundary map 𝜉Θ𝜌 ∶ 𝜕Γ → 𝖦𝕂∕𝖯Θ

† (of non-compact type)
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with good dynamical properties [6, 27, 29–31, 34]. They form open subsets

𝔛Θ(Γ, 𝖦𝕂) = {𝜌 ∈ 𝔛(Γ, 𝖦𝕂) ∶ 𝜌 isΘ − Anosov}

of the character variety.
For each 𝖺 ∈ Θ Canary–Labourie. [14] constructed, using the thermodynamic formalism, an

analogue of theWeil–Petersson metric on𝔛Θ(Γ, 𝖦𝕂), the spectral radius pressure form 𝐏𝜔𝖺 , where
𝜔𝖺 is the fundamental weight associated to 𝖺. We will recall this construction on Section 4.
Of particular interest is the Hitchin component

H (𝑆, 𝖦ℝ) ⊂ 𝔛(𝜋1𝑆, 𝖦ℝ),

introduced byHitchinwhen𝖦ℝ ismoreover center-free and simple split.When𝖦ℝ = 𝖯𝖲𝖫2(ℝ), the
Hitchin component agrees with Teichmüller space. When 𝖦ℝ = 𝖯𝖲𝖫2(ℝ), the Hitchin component
H𝑑(𝑆) ⊂ 𝔛(𝜋1𝑆, 𝖯𝖲𝖫𝑑(ℝ)) can be described as the connected component containing a Fuchsian
representation, that is, the composition of the holonomy of a hyperbolic structure with the irre-
ducible representation𝜋1𝑆 → 𝖯𝖲𝖫2(ℝ) → 𝖯𝖲𝖫𝑑(ℝ). On the 𝖯𝖲𝖫𝑑(ℝ)-Hitchin component, Canary–
Labourie [15] defined a different metric, arising from a different pressure form, denoted by 𝐏𝖺1 , to
which we will refer here as the spectral gap pressure form. They prove that 𝐏𝖺1 is non-degenerate
on H𝑑(𝑆) and extends the Weil–Petersson inner product on Teichmüller space, embedded into
H𝑑(𝑆) as the space of Fuchsian representations.
A corollary of themain result of the paper is a geometric interpretation of this spectral gap pres-

sure form through theHession of theHausdorff dimension of appropriate deformations of Anosov
representations. This provides a generalization of Theorem 1.1 to the 𝖯𝖲𝖫𝑑(ℝ)-Hitchin compo-
nents.
To state the result, we denote by Π the set of simple (restricted) roots of 𝖦ℝ and consider the

Hitchin componentH (𝑆, 𝖦ℝ) as a subset of𝔛Π(𝜋1𝑆, 𝖦ℂ), the latter equipped the complex struc-
ture 𝐽 induced by the complex structure of 𝖦ℂ. For 𝖺 ∈ Π, denote by

Hff𝖺(𝜌) = dimHff

(
𝜉𝖺𝜌(𝜕𝜋1𝑆)

)
theHausdorff dimension of the (image of the) limit curve 𝜉𝖺𝜌 ∶ 𝜕Γ → 𝖺(𝖦ℂ) for a(ny) Riemannian
metric on 𝖺(𝖦ℂ). It follows from [43] that Hff𝖺 is critical atH (𝑆, 𝖦ℝ) and thus its Hessian is well
defined.

Corollary A. For every 𝑣 ∈ 𝖳H (𝑆, 𝖦ℝ) and every 𝖺 ∈ Π one has

HessHff𝖺(𝐽𝑣) = 𝐏𝖺(𝑣).

Moreover, when𝖦ℝ = 𝖯𝖲𝖫𝑑(ℝ) theHessian of Hff𝖺1 ∶ 𝔛Π(𝜋1𝑆, 𝖯𝖲𝖫𝑑(ℂ)) → ℝ, at a point 𝜌 ∈H𝑑(𝑆)

is strictly positive on every direction except 𝖳𝜌H𝑑(𝑆), where it is degenerate. In particular, the Hitchin
locusH𝑑(𝑆) ⊂ 𝔛Π(𝜋1𝑆, 𝖯𝖲𝖫𝑑(ℂ)) is an isolated minimum for Hff𝖺1 .

The second statement follows directly from the first, together with the aforementioned non-
degeneracy result by Canary–Labourie [15] for the spectral gap pressure form 𝐏𝖺1 .
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Corollary A provides a bridge between two different worlds: we can understand the spectral
gap pressure metric on the real character variety in terms of the geometry of the limit set of purely
imaginary deformations within the complex character variety. It also brings further evidence that
even though the spectral radius pressure forms are so far the more prominently studied ones, the
spectral gap pressure form is the more geometric one, and shares more similarities to the classical
Weil–Petersson metric.
A key ingredient in the proof of Corollary A is the notion of (1,1,2)-hyperconvex representations,

studied in [43] (see Theorem 2.7). These are representations 𝜌 ∶ Γ → 𝖯𝖦𝖫𝑑(ℂ) that are Anosov
with respect to the first two simple roots andwhose boundarymaps satisfy an additional transver-
sality condition (see Section 2.2). The main result of [43] then yields that, on the open set

𝔛⋔
{𝖺1,𝖺2}

(Γ, 𝖯𝖦𝖫𝑑(ℂ)) =
{
𝜌 ∈ 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ)) ∶ (1, 1, 2)-hyperconvex

}
,

the Hausdorff dimension of the limit set 𝜉1𝜌(𝜕Γ) equals the critical exponent ℎ
𝖺1
𝜌 for the first root

(see Section 2.2 for the definition of the critical exponent) and is thus analytic.

Theorem A. Let Γ be a word hyperbolic group with 𝜕Γ homeomorphic to a circle and let 𝜌 ∈
𝔛⋔
{𝖺1,𝖺2}

(Γ, 𝖯𝖦𝖫𝑑(ℝ)) be a regular point of the character variety 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ)). Then for every dif-
ferentiable curve (𝜌𝑡)𝑡∈(−𝜀,𝜀) ⊂ 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℝ)) with 𝜌0 = 𝜌, one has

HessHff𝖺1(𝐽𝜌̇) = 𝐏
𝖺1(𝜌̇).

Another important class of representations of fundamental groups of surfaces are Θ-positive
representations [28], which, asHitchin representations, constitute connected components of char-
acter varieties [5, 26], generalizing Teichmüller space. It was proven in [42, Theorem 10.3] that for
any Θ-positive (Anosov) representation 𝜌 ∶ Γ → 𝖲𝖮0(𝑝, 𝑞) and for any 𝖺 ∈ Θ the representation
Λ𝖺𝜌 is (1,1,2)-hyperconvex. Thus Theorem A applies; note, however, that in these cases, we do not
know for which roots 𝖺 the associated pressure form is non-degenerate.

Corollary B. Let(Γ, 𝖲𝖮0(𝑝, 𝑞)) denote the set ofΘ-positive Anosov representations. Then for every
𝑣 ∈ 𝖳(Γ, 𝖲𝖮0(𝑝, 𝑞)) and every 𝖺 ∈ {𝖺1, … , 𝖺𝑝−2}, one has

HessHff𝖺(𝐽𝑣) = 𝐏𝖺(𝑣).

For the second main result of the paper, we study the Hausdorff dimension of the limit sets
of (1,1,2)-hyperconvex representations, without restricting ourselves to virtual surface groups. We
generalize a result of Bridgeman [13] and show:

Theorem B. Let Γ be a word hyperbolic group and let 𝜌 ∈ 𝔛⋔
{𝖺1,𝖺2}

(Γ, 𝖯𝖦𝖫𝑑(ℂ)) be a smooth point.
Assume moreover that

Hff𝖺1 ∶ 𝔛
⋔
{𝖺1,𝖺2}

(Γ, 𝖯𝖦𝖫𝑑(ℂ)) → ℝ+

is critical at 𝜌. ThenHess𝜌 Hff𝖺1 is positive semidefinite on a subspace of dimension at least half the
real dimension of𝔛⋔

{𝖺1,𝖺2}
(Γ, 𝖯𝖦𝖫𝑑(ℂ)). If, furthermore, the pressure form 𝐏𝖺1 is non-degenerate, then

the function Hff𝖺1 has no local maxima.
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This theorem applies in particular to all convex cocompact Kleinian groups in 𝖯𝖦𝖫2(ℂ), a result
not covered by [13]. In general, admitting (1,1,2)-hyperconvex representations is a relatively restric-
tive assumption on the groupΓ, as, for example, it implies that its boundary has dimension smaller
than 2. However there are many classes of subgroups of 𝖯𝖦𝖫2(ℂ) admitting (1,1,2)-hyperconvex
representations with Zariski dense image in 𝖯𝖦𝖫𝑑(ℂ). It is not yet known if the spectral gap pres-
sure form is non-degenerate for such representations, andwe hope that TheoremBwill encourage
research in this direction.
The proof of both Theorems A and B relies on pluriharmonicity of length functions. Themech-

anism behind both proofs is relatively versatile, and can be applied in many situations. As an
example, we use it in Corollary 5.4 to prove that, at a Fuchsian representation, the critical expo-
nent ℎ𝜔1(𝜌) relative to the first fundamental weight necessarily increases along purely imaginary
deformations (see Section 5.5 for details).
The last result we want to highlight in the introduction is another application of the previ-

ous techniques in a rank one situation. Recall that a representation 𝜌 ∶ Γ → 𝖯𝖴(𝑛, 1) is convex-
cocompact if and only if it is projective Anosov when 𝖯𝖴(𝑛, 1) is considered as a subgroup of
𝖯𝖦𝖫𝑛+1(ℂ) through the standard inclusion. Moreover, for 𝛾 ∈ Γ the real length of the associated
closed geodesic is the spectral radius 𝜔1(𝜆(𝜌(𝛾))).
If 𝜌 ∶ Γ → 𝖯𝖴(𝑛, 1) is convex co-compact, then we denote by Hff𝜕ℂℍ𝑛(𝜌) the Hausdorff dimen-

sion the limit set of Γ in the visual boundary of the complex-hyperbolic space, with respect to a
visual metric. A celebrated result by Sullivan [48] in real-hyperbolic space, and further extended
to arbitrary negatively curved manifolds by Yue [51], asserts that if 𝜌 ∶ Γ → 𝖯𝖴(𝑛, 1) is convex-co-
compact, then

Hff𝜕ℂℍ𝑛(Γ) = ℎ𝜔1(𝜌).

Assume now that Γ is a co-compact lattice of 𝖯𝖲𝖮(𝑛, 1) and denote by 𝜄 the inclusion

𝜄 ∶ Γ → 𝖯𝖲𝖴(𝑛, 1),

where the inclusion of 𝖯𝖲𝖮(𝑛, 1) → 𝖯𝖲𝖴(𝑛, 1) is given by extending the coefficients. Bourdon [8]
proved that 𝜄 is a global rigid minima for Hff𝜕ℂℍ𝑛 among convex co-compact representations of Γ
in 𝖯𝖴(𝑛, 1). In Section 5.4, we prove the following strengthening.

TheoremC. Assume 𝜄 is a regular point of the character variety𝔛(Γ, 𝖯𝖲𝖴(𝑛, 1)), thenHess𝜄 Hff𝜕ℂℍ𝑛
is positive definite in any direction not tangent to𝔛(Γ, 𝖯𝖲𝖮(𝑛, 1)).

If 𝑛 > 2 thenMostow’s classical rigidity result states that 𝜄 is an isolated point of𝔛(Γ, 𝖯𝖲𝖮(𝑛, 1))
so Theorem C implies that the Hessian of the Hausdorff dimension at 𝜄 is positive definite.
Interestingly enough, in the proof of TheoremCwe relate the second variation of theHausdorff

dimension of the limit sets of actions of Γ on the complex hyperbolic space ℂℍ𝑛 to the pressure
metric at the Fuchsian locus on the space of real convex projective structures on the closed man-
ifold ℝℍ𝑛∕Γ, thus providing a link between two very different geometries.

Remark 1.2. If 𝜌 is a small deformation of 𝜄 in 𝖯𝖲𝖴(𝑛, 1) then it is a convex co-compact subgroup
of 𝖯𝖲𝖴(𝑛, 1) and moreover, by [43, Corollary 8.5], the Hausdorff dimension of the limit set for a
Riemannianmetric on 𝜕ℂℍ𝑛 also coincides with ℎ𝜔1(𝜌), so in TheoremCwe can consider Hff𝜕ℂℍ𝑛
either as the Hausdorff dimension for a visual metric or for a Riemannian metric.
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Outline of the paper

In Section 2, we discuss the background on Anosov representations needed in the paper: after
reviewing the basic definitions we discuss, in Section 2.2, the results of [43] which singled out
(1,1,2)-hyperconvex representations. In Section 2.3, we recall the basic facts about higher rank
Teichmüller spaces needed to deduce Corollaries A and B from Theorem A; finally in Section 2.4,
we discuss an important dynamical viewpoint on Anosov representations: these can be thought
of as reparametrizations of the geodesic flow of Γ, and are thus amenable to the thermodynamic
formalism. In Section 3, we discuss the thermodynamic formalism needed to define, in Section 4,
the pressure forms. We conclude the paper in Section 5 introducing the main technical tool of the
paper, pluriharmonicity of dynamical intersection, which is directly used to prove TheoremsA–C.

2 ANOSOV REPRESENTATIONS

In this section,we introduce the necessary background onAnosov representations, and recall how
they give rise to reparametrizations of the geodesic flow.

2.1 Basic notions

We recall the Cartan and the Jordan–Lyapunov projections and the characterization of Anosov
representations we are going to use.
Let𝖦 be a semisimple real-algebraic Lie group of non-compact typewith finite center, for𝕂 = ℝ

or ℂ denote by 𝖦𝕂 the group of the 𝕂-points of 𝖦. Fix a maximal compact subgroup 𝖪 < 𝖦𝕂 with
Lie algebra 𝔱. We denote by 𝖤 < 𝔱⊥ a Cartan subalgebra, and by Δ ⊂ 𝖤∗ a choice of simple roots.
This corresponds to the choice of a Weyl chamber in 𝖤, which we will denote by 𝖤+. In the case
𝖦 = 𝖯𝖦𝖫𝑑, we identify 𝖤+ with{

(𝑥1, … , 𝑥𝑑) ∈ ℝ
𝑑|𝑥1 ⩾ … ⩾ 𝑥𝑑,∑𝑥𝑖 = 0

}
.

Every element g ∈ 𝖦𝕂 can be written as a product

g = 𝑘1 exp (𝜎(g))𝑘2

for 𝑘1, 𝑘2 ∈ 𝖪 and a unique element 𝜎(g) ∈ 𝖤+, the Cartan projection of g . If 𝖦ℝ = 𝖯𝖦𝖫𝑑(ℝ), the
numbers 𝜎𝑖(g) are the logarithms of the square roots of the eigenvalues of the symmetric matrix
g 𝑡g . If 𝖺 ∈ Δ, then we denote by 𝜔𝖺 its associated fundamental weight.
LetΘ ⊂ Δ be a subset of simple roots. We denote by 𝖯Θ < 𝖦 the associated parabolic subgroup,

by 𝖯̌Θ the opposite associated parabolic group and by

𝖤Θ ∶=
⋂
𝖺∈Δ⧵Θ

ker(𝖺)

the Lie algebra of the center of the Levi group 𝖯Θ ∩ 𝖯̌Θ. It comes equipped with the unique pro-
jection

𝑝Θ ∶ 𝖤 → 𝖤Θ (1)
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that is invariant under the subgroup𝑊Θ of the Weyl group that leaves 𝖤Θ invariant. Finally, let
𝖤∗
Θ
< 𝖤∗ be the subspace generated by the fundamental weights associated to elements in Θ

𝖤∗Θ ∶= ⟨𝜔𝖺| 𝖺 ∈ Θ⟩ = {𝜑 ∈ 𝖤∗| 𝜑◦𝑝Θ = 𝜑}.
One has that 𝖤Δ = 𝖤 and 𝖯Δ is a minimal parabolic subgroup.
Let Γ be a finitely generated discrete group and denote by | | the word length for a fixed finite

symmetric generating set.

Definition 2.1. Let Θ ⊂ Δ. A representation 𝜌 ∶ Γ → 𝖦𝕂 is Θ-Anosov if there exist positive con-
stants 𝑐, 𝜇 such that for all 𝛾 ∈ Γ and 𝖺 ∈ Θ, one has

𝖺(𝜎(𝜌(𝛾))) ⩾ 𝜇|𝛾| − 𝑐. (2)

A {𝖺1}-Anosov representation 𝜌 ∶ Γ → 𝖯𝖦𝖫𝑑(𝕂) will be called projective Anosov.

Note that this is not the original definition given in Labourie and Guichard [27, 34], but a char-
acterization due to Kapovich–Leeb–Porti and Bochi–Potrie [6, 30]. Note also that there is a recent
characterization byKassel–Potrie [31] only in terms of the Jordan–Lyapunov projection (see below
for the definition) rather than the Cartan projection.
Anosov representations are quasi-isometric embeddings, thus in particular they are injective

and have discrete image. It was proven in [30] (see also [6]) that only word hyperbolic groups
admit Anosov representations; we will denote by 𝜕Γ the Gromov boundary of the group Γ.
A key property of Anosov representations is the existence of equivariant boundary maps with

good dynamical properties [6, 25, 27, 30, 34]. With our definition, the existence of boundary maps
for such representations is a Theorem of [30] and [6]. From now on we will restrict ourselves,
without loss of generality, to self-opposite subsets Θ ⊂ Δ

Theorem 2.2 (Kapovich–Leeb–Porti [30]). Let 𝜌 ∶ Γ → 𝖦𝕂 beΘ-Anosov. Then there exist a unique
dynamics preserving, continuous, transverse equivariant boundary map

𝜉Θ𝜌 ∶ 𝜕Γ → 𝖦𝕂∕𝖯Θ.

If 𝖦 = 𝖯𝖦𝖫𝑑 and Θ = {𝖺𝑟}, then 𝖦𝕂∕𝖯Θ = 𝑟(𝕂𝑑) and we write 𝜉𝑟𝜌 = 𝜉{𝖺𝑟}𝜌 .
It was proven in [27] that it is possible to reduce the study of general {𝖺}-Anosov representations

to projective Anosov representations. Indeed one can use the following result by Tits, since for the
representations Λ𝖺 below one has

𝖺1(𝜎(Λ𝖺(𝜌(𝛾)))) = 𝖺(𝜎(𝜌(𝛾))).

Proposition 2.3 (Tits [49]). For every 𝖺 ∈ Δ, there exists an irreducible proximal representation
Λ𝖺 ∶ 𝖦ℝ → 𝖯𝖦𝖫𝑑(ℝ) whose highest restricted weight is 𝑙𝜔𝖺 for some 𝑙 ∈ ℕ.

Recall that the Jordan decomposition states that every g ∈ 𝖦𝕂 can be written uniquely as a
commuting product g = g𝑒gℎg𝑛, where g𝑒 is elliptic, gℎ isℝ-split and g𝑛 is unipotent. The Jordan–
Lyapunov projection 𝜆 ∶ 𝖦𝕂 → 𝖤+ is defined by the logarithm of the eigenvalues of gℎ with mul-
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tiplicities and in decreasing order. If 𝖦 = 𝖯𝖦𝖫𝑑, this corresponds to the logarithm of the modulus
of the roots of the characteristic polynomial of g with multiplicities and in decreasing order, and
we denote by

𝜆(g) = (𝜆1(g), … , 𝜆𝑑(g)) ∈
{
(𝑥1, … , 𝑥𝑑) ∈ ℝ

𝑑| 𝑥1 ⩾ … ⩾ 𝑥𝑑,∑𝑥𝑖 = 0
}

its coordinates.
We will denote byΛ𝜌 ⊂ 𝖤+ the limit cone of the subgroup 𝜌(Γ) < 𝖦𝕂. This is the cone given by

Λ𝜌 ∶= {ℝ+ ⋅ 𝜆(𝜌(𝛾))| 𝛾 ∈ Γ}.
It was proven by Benoist [4] that, provided 𝜌(Γ) is Zariski dense, Λ𝜌 is convex and has non-
empty interior.
For every functional 𝜑 ∈ 𝖤∗ that is positive on the limit coneΛ𝜌, we denote by ℎ𝜑(𝜌) the critical

exponent of the Dirichlet series

𝑠 ↦
∑
𝛾∈Γ

𝑒−𝑠𝜑(𝜎(𝜌(𝛾))),

it can be computed as

ℎ𝜑(𝜌) = inf
{
𝑠 ∶

∑
𝛾∈Γ

𝑒−𝑠𝜑(𝜎(𝜌(𝛾))) < ∞
}
= sup

{
𝑠 ∶

∑
𝛾∈Γ

𝑒−𝑠𝜑(𝜎(𝜌(𝛾))) = ∞
}
.

2.2 Hyperconvex representations

We begin with the following definition from [43]:

Definition. A {𝖺1, 𝖺2}-Anosov representation 𝜌 ∶ Γ → 𝖯𝖦𝖫𝑑(𝕂) is called (1,1,2)-hyperconvex if for
every triple of pairwise distinct points 𝑥, 𝑦, 𝑧 ∈ 𝜕Γ one has(

𝜉1𝜌(𝑥) ⊕ 𝜉
1
𝜌(𝑦)

)
∩ 𝜉𝑑−2𝜌 (𝑧) = {0}.

The following is a direct consequence of the uniqueness of boundary maps:

Lemma 2.4. The complexification of a real hyperconvex representation is hyperconvex (over ℂ).

An important property of (1,1,2)-hyperconvex representations, established in [43] is that, for
these representations, the Hausdorff dimension of the limit curve for a Riemannian metric on
ℙ(𝕂𝑑) computes the critical exponent for the first simple root. If 𝜌 is {𝖺1}-Anosov, the root 𝖺1 is
positive on the limit cone (recall equation (2)) and thus its critical exponent is well defined. We
then have the following.
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Theorem 2.5 [43]. Let 𝜌 ∶ Γ → 𝖯𝖦𝖫𝑑(𝕂) be (1,1,2)-hyperconvex, then

dimHff
(
𝜉1(𝜕Γ)

)
= ℎ

𝖺1
𝜌 .

A second important property of (1,1,2)-hyperconvex representations into 𝖯𝖦𝖫𝑑(ℝ) was estab-
lished in [43] (and independently in Zimmer–Zhang [52]) is the following: if Γ is such that 𝜕Γ is
homeomorphic to a circle, then the image of the boundary map 𝜉1𝜌 is a C

1-curve. As a result, we
get

Theorem 2.6 [43]. Let 𝜌 ∶ Γ → 𝖯𝖦𝖫𝑑(ℝ) be (1,1,2)-hyperconvex. If 𝜕Γ is homeomorphic to a circle,
then dimHff(𝜉

1(𝜕Γ)) = 1.

Thus, for fundamental groups of surfaces, the Hausdorff dimension is constant and minimal
on the real (1,1,2)-hyperconvex locus.

2.3 Higher rank Teichmüller Theory

Ahigher Teichmüller space is a union of connected components of a character variety𝔛(𝜋1𝑆, 𝖦ℝ)
only consisting of Anosov representations.
Historically, the first family of higher Teichmüller spaces are Hitchin components. They arise

whenever 𝖦ℝ is a center free real-split simple Lie group. In this case, there is a unique principal

subalgebra 𝔰𝔩2(ℝ) < 𝔤ℝ characterized by the property that the centralizer of (
0 1

0 0
) has minimal

dimension (Kostant [33]). TheHitchin componentH (𝑆, 𝖦ℝ) ⊂ 𝔛(𝜋1𝑆, 𝖦ℝ) is the connected com-
ponent containing Fuchsian representations: the composition of the holonomy of a hyperboliza-
tion 𝜋1𝑆 → 𝖯𝖲𝖫2(ℝ) and the morphism 𝖯𝖲𝖫2(ℝ) → 𝖦ℝ induced by the inclusion of the principal
subalgebra. Representations in the Hitchin component are Anosov with respect to the minimal
parabolic subgroup [34].† Furthermore, representations in the Hitchin component are hypercon-
vex:

Theorem 2.7 [34, 43, 47]. Let 𝖦ℝ be a simple split center-free real group. For every 𝜌 ∈H (𝑆, 𝖦ℝ)

and 𝖺 ∈ Π, the representation Λ𝖺𝜌 ∶ 𝜋1𝑆 → 𝖯𝖲𝖫(𝑉,ℝ) is (1,1,2)-hyperconvex.

Proof. This was established, for the groups 𝖦ℝ = 𝖯𝖲𝖫𝑑(ℝ), 𝖯𝖲𝗉(2𝑛, ℝ), 𝖯𝖲𝖮(𝑛, 𝑛 + 1) or the split
form of the exceptional complex Lie group𝖦2, by Labourie [34], for𝖦 = 𝖲𝖮(𝑛, 𝑛) by [43, Theorem
9.9]. The general case follows from [47, Remark 5.14]. □

The second family of higher Teichmüller spaces are spaces of maximal representations in Her-
mitian Lie groups 𝖦ℝ [19]. Our results here do not apply in this setting. Maximal representations
are, in general, only Anosov with respect to one root 𝖺, which therefore does not belong to the
Levi–Anosov subspace. Even though we know that for maximal representations the critical expo-
nentℎ𝖺𝜌 is constant and equal to 1 ([42, Theorem 1.2]), it is not clear if a spectral gap pressuremetric

† In fact, Labourie proved this for𝖦ℝ = 𝖯𝖲𝖫𝑑(ℝ), which implies the result also for symplectic groups and odd-dimensional
orthogonal groups. Fock and Goncharov gave a characterization of representations in the Hitchin component as positive
representations, from which the Anosov property can be deduced with a little work.
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𝐏𝖺 can be constructed in this case. Moreover, since maximal representations are, in general, not
(1,1,2)-hyperconvex, it is not known if, for complex deformations in 𝜌 ∶ Γ → 𝖦ℂ, the critical expo-
nent ℎ𝖺𝜌 equals the Hausdorff dimension of the limit set.
There are two further families of higher Teichmüller spaces, given by Θ-positive representa-

tions as introduced in [28, 50]. Θ-positive representations exist when 𝖦ℝ is locally isomorphic
to 𝖲𝖮(𝑝, 𝑞), 𝑝 < 𝑞, or when 𝖦ℝ belongs to a special family of exceptional Lie groups. Guichard,
Labourie andWienhard [26] prove thatΘ-positive representations areΘ-Anosov. They also show
that set ofΘ-positive representations contain unions of connected components [26]. In the case of
𝖲𝖮(𝑝, 𝑞), 𝑝 < 𝑞, Beyrer [5] show that the set ofΘ-positive representations is in fact a union of con-
nected components, coinciding with the components described using methods from the theory of
Higgs bundles by Aparicio-Arroyo, Bradlow, Collier, García-Prada, Gothen, and Oliveira [2, 12].
In particular, in the case of 𝖲𝖮(𝑝, 𝑞), 𝑝 < 𝑞,Θ-positive representations are Anosov with respect to
the first 𝑝 − 1 roots. We will use the following result from [42].

Theorem 2.8 [42, Theorem 10.3]. Let 𝜌 ∶ Γ → 𝖲𝖮(𝑝, 𝑞) be a Θ-positive Θ-Anosov representation.
For every 𝖺 ∈ {𝖺1, … , 𝖺𝑝−2}, the representation Λ𝖺𝜌 ∶ 𝜋1𝑆 → 𝖯𝖦𝖫(𝑉,ℝ) is (1,1,2)-hyperconvex.

2.4 Reparametrizations of geodesic flows

In this section, we describe a very useful dynamical viewpoint on Anosov representations from
[46] and Canary–Labourie [14], which makes them amenable to the thermodynamic formalism:
Any Anosov representation gives rise to a reparametrization of the geodesic flow.
Given a hyperbolic group Γ, we denote by 𝖴Γ the Gromov geodesic flow; this is a metric space

endowed with a topologically transitive flow 𝜙 whose periodic orbits correspond to conjugacy
classes in Γ. If Γ admits an Anosov representation, then 𝜙 is moreover metric Anosov [14]. Note
that, if Γ is the fundamental group of a compact negatively curved manifold 𝑀, we can choose
𝖴Γ = 𝖴𝑀; more generally, whenever Γ admits an Anosov representation, its geodesic flow can be
explicitly constructed with the aid of the associated boundary maps [14, Theorem 1.10].
If 𝛼 > 0, we denote by Hol𝛼(𝖴Γ, ℝ) the space of 𝛼-Hölder continuous functions on 𝖴Γ and

by Hol(𝖴Γ, ℝ) the space of all Hölder continuous functions. If 𝑓 ∈ Hol(𝖴Γ, ℝ) and 𝑎 ∈ [Γ] is a
conjugacy class, then we define the 𝑓-period of 𝑎 by

𝓁𝑎(𝑓) = ∫
𝓁(𝑎)

0
𝑓(𝜙𝑡𝑥)𝑑𝑡

where 𝑥 ∈ 𝑎. If 𝑓 ∈ Hol𝛼(𝖴Γ, ℝ+), we obtain a new flow 𝜙𝑓 on 𝖴Γ called the reparametrization
of 𝜙 by 𝑓. The flow 𝜙𝑓 is given by the formula

𝜙𝑡(𝑥) = 𝜙
𝑓

𝑘𝑓(𝑥,𝑡)
(𝑥), (3)

where 𝑘𝑓(𝑥, 𝑡) = ∫ 𝑡0 𝑓(𝜙𝑠𝑥)𝑑𝑠 for all 𝑥 ∈ 𝑋 and 𝑡 ∈ ℝ. The flow 𝜙𝑓 is Hölder orbit equivalent to 𝜙
and if 𝑎 ∈ [Γ], then 𝓁𝑎(𝑓) is the period of 𝑎 in the flow 𝜙𝑓 .
In [14, Section 4], Canary–Labourie associate to any projective Anosov representation a

reparametrization of the geodesic flow 𝖴Γ. They prove the following statement, the second part
is proved in [14, Section 6].
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Proposition 2.9 [14, § 6]. Let 𝜌 ∶ Γ → 𝖯𝖦𝖫𝑑(ℝ) be a projective Anosov representation. Then there
exists a positive Hölder-continuous function 𝑓𝜆1𝜌 ∶ 𝖴Γ → ℝ>0 such that for every conjugacy class
[𝛾] ∈ [Γ], one has

𝓁𝛾(𝑓
𝜆1
𝜌 ) = 𝜆1(𝜌(𝛾)).

Moreover, if 𝐷 is a small disc and {𝜌𝑢}𝑢∈𝐷 is an analytic family of such representations, then there
exists 𝛼 such that 𝑓𝜔1𝜌𝑢 can be chosen inHol𝛼(𝖴Γ, ℝ) and the function 𝑢 ↦ 𝑓

𝜆1
𝜌𝑢
is analytic.

Proposition 2.9 together with Tits Proposition 2.3 directly give the following from Potrie [41],
where 𝕂 = ℝ case is treated. When 𝕂 = ℂ, the result follows at once by considering 𝖦ℂ as a real
group. Recall equation (1) for the definition of 𝑝Θ ∶ 𝖤 → 𝖤Θ.

Corollary 2.10 [41, Corollary 4.5]. Let 𝜌 ∶ Γ → 𝖦𝕂 beΘ-Anosov, then there exists a positive Hölder-
continuous function 𝑓Θ𝜌 ∶ 𝖴Γ → 𝖤Θ such that for every conjugacy class [𝛾] ∈ [Γ], one has

𝓁𝛾(𝑓
Θ
𝜌 ) = 𝑝Θ(𝜆(𝜌(𝛾))).

Moreover, if 𝐷 is a small disc and {𝜌𝑢}𝑢∈𝐷 is an analytic family of such representations, then there
exists 𝛼 such that 𝑓Θ𝜌𝑢 can be chosen inHol𝛼(𝖴Γ, ℝ) and the function 𝑢 ↦ 𝑓

Θ
𝜌𝑢
is analytic.

Thus, Corollary 2.10 readily implies that if 𝜌 isΘ-Anosov, then for every𝜑 ∈ (𝖤Θ)∗ that is strictly
positive on Λ𝜌 − {0} there exists a reparametrization of the geodesic flow of Γ whose periods are
given by†

𝜑(𝜆(𝜌(𝛾))).

namely, if we denote by 𝑓𝜑𝜌 = 𝜑(𝑓Θ𝜌 ), then one considers the flow 𝜙
𝑓
𝜑
𝜌 . We will need in the follow-

ing that, in this situation, the critical exponent ℎ𝜑(𝜌) is also the entropy of the flow 𝜙𝑓
𝜑
𝜌 . This can

be found, for example. in Ledrappier [35], [46] and on Glorieux–Monclair–Tholozan [24] for the
general version.

Proposition 2.11. Let 𝜌 ∶ Γ → 𝖦𝕂 be Θ-Anosov. For each 𝜑 ∈ 𝖤∗Θ strictly positive on Λ𝜌 − {0}, it
holds that

ℎ𝜑(𝜌) = lim
𝑇→∞

log#
{
𝛾 ∈ [Γ] | 𝜑(𝜆(𝜌(𝛾))) < 𝑇}

𝑇

This applies, in particular, to the root 𝖺1 if a representation 𝜌 is (1,1,2)-hyperconvex.

3 THERMODYNAMIC FORMALISM

We now briefly describe the thermodynamic formalism introduced by Bowen, Ruelle, Parry, Pol-
licott (among others), and in particular the pressure function on the space of Hölder observables

†Recall that for every 𝜑 ∈ (𝖤Θ)∗, one has 𝜑◦𝑝Θ = 𝜑.
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on a metric space with a Hölder flow (see [45]). This will then be used, in Section 4, to define
various pressure forms 𝐏𝜑 on subsets of the representation variety 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℝ)) by assigning to
each representation 𝜌 the Hölder function 𝑓𝜑𝜌 on the geodesic flow space 𝖴Γ of the group.
For a moment we forget about representations and let 𝑋 be a compact metric space with a

Hölder continuous flow 𝜙 = {𝜙𝑡 ∶ 𝑋 → 𝑋}𝑡∈ℝ without fixed points. As in Section 2.4, we denote
byHol𝛼(𝑋, ℝ) the space of 𝛼-Hölder continuous functions on𝑋 for some 𝛼 > 0 endowed with the
complete norm

‖𝑓‖ = |𝑓|∞ + sup
𝑥≠𝑦∈𝑋

||𝑓(𝑥) − 𝑓(𝑦)||
𝑑(𝑥, 𝑦)𝛼

.

We denote by 𝑂 the collection of periodic orbits of the flow 𝜙. For 𝑎 ∈ 𝑂 and 𝑓 ∈ Hol𝛼(𝑋, ℝ),
we let 𝓁(𝑎) be the period of the periodic orbit 𝑎,

𝓁𝑎(𝑓) = ∫
𝓁(𝑎)

0
𝑓(𝜙𝑡𝑥)𝑑𝑡

be 𝑓-period of 𝑎 ∈ 𝑂, and 𝛿𝑎 the associated 𝜙-invariant probability measure

𝛿𝑎(𝑓) =
𝓁𝑎(𝑓)

𝓁(𝑎)
.

Two maps 𝑓, g ∈ Hol𝛼(𝑋, ℝ) are called Livšic cohomologuous if there exists 𝑈 ∶ 𝑋 → ℝ such
that, for all 𝑥 ∈ 𝑋, then

𝑓(𝑥) − g(𝑥) = 𝜕
𝜕𝑡

||||𝑡=0𝑈(𝜙𝑡𝑥).
It follows that if 𝑓 and g are Livšic cohomologous, then 𝓁𝑎(𝑓) = 𝓁𝑎(g) for all 𝑎 ∈ 𝑂. If 𝑓 ∈
Hol𝛼(𝑋, ℝ+), we denote by 𝜙𝑓 the reparametrization of 𝜙 by 𝑓, which is the flow on 𝑋 defined
by (3).
We let 𝜙 be the set of 𝜙-invariant probability measures on 𝑋. For 𝜇 ∈𝜙, we denote by

ℎ(𝜙, 𝜇) its metric entropy. Then, for 𝑓 ∈ Hol𝛼(𝑋, ℝ), the topological pressure is

𝑃(𝑓) = sup
𝑚∈𝜙

{
ℎ(𝜙,𝑚) + ∫𝑋 𝑓𝑑𝑚

}
.

Note that the topological pressure 𝑃 depends on the flow 𝜙, but we will omit this in the notation.
The topological entropy of a flow is given by ℎtop(𝜙) = 𝑃𝜙(0). Ameasure𝑚𝑓 that attains this supre-
mum is called an equilibrium state for 𝑓 and an equilibrium state for the zero function is called a
measure of maximal entropy.
We note that 𝑃(𝑓) only depends on the Livšic cohomology class of 𝑓.

Lemma 3.1 [46, Lemma 2.4]. Let 𝜙 be a Hölder continuous flow on a compact metric space X and
𝑓 ∈ Hol𝛼(𝑋, ℝ+). Then

𝑃(−ℎ𝑓) = 0
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if and only if ℎ = ℎtop(𝜙𝑓). Moreover, if m is an equilibrium state of−ℎtop(𝜙)𝑓, then 𝑓𝑚 is a positive
multiple of a measure of maximal entropy for the flow 𝜙𝑓 .

We now restrict to transitive metric Anosov flows. In the manifold setting, and if the flow is dif-
ferentiable, ametric Anosov flow 𝜙 corresponds to a standard Anosov flowwhere the unit tangent
bundle of 𝑋 has a 𝜙-invariant decomposition 𝑇1(𝑋) = 𝐸− ⊕ 𝐸0 ⊕ 𝐸+ where 𝐸− is exponentially
contracted under the flow, 𝐸0 is the direction of the flow and 𝐸+ is exponentially contracted under
the flow reverse flow of 𝜙 (see [40] for details). We have the following theorem of Livšic.

Theorem 3.2 (Livšic’s Theorem, [37]). Let 𝜙 be a transitive metric Anosov flow. If 𝑓 ∈ Hol𝛼(𝑋, ℝ),
then 𝓁𝑎(𝑓) = 0 for all 𝑎 ∈ 𝑂 if and only if 𝑓 is Livšic cohomologous to 0.

It follows that for metric Anosov flows, the Livšic cohomology class of 𝑓 is determined by
its periods.
Given 𝑓 ∈ Hol𝛼(𝑋, ℝ), we let

𝑅
𝜙
𝑇
(𝑓) = 𝑅𝑇(𝑓) = {𝑎 ∈ 𝑂 | 𝓁𝑎(𝑓) ⩽ 𝑇}.

Then we have the following;

Theorem3.3 [9], [11], [40]. Let 𝜙 be a transitivemetric Anosov flow and 𝑓 ∈ Hol𝛼(𝑋, ℝ+) nowhere
vanishing. Then

ℎ(𝑓) = lim
𝑇→∞

log#𝑅𝑇(𝑓)

𝑇
= ℎtop(𝜙

𝑓)

is finite and positive. Moreover, for all g ∈ Hol𝛼(𝑋, ℝ) there exists a unique equilibrium state𝑚g for
g . The measure of maximal entropy 𝜇𝜙 for the flow 𝜙 is

𝜇𝜙 = lim
𝑇→∞

1

#𝑅𝑇(1)

∑
𝑎∈𝑅𝑇(1)

𝛿𝑎.

Furthermore for Anosov flows the derivatives of the Pressure function satisfy the following.

Proposition 3.4 [39]. Let 𝜙 be a transitive metric Anosov flow and 𝑓, g ∈ Hol𝛼(𝑋, ℝ). Then:

(i) the function 𝑡 → 𝑃(𝑓 + 𝑡g) is analytic;
(ii) the first derivative satisfies

𝜕𝑃(𝑓 + 𝑡g)
𝜕𝑡

||||𝑡=0 = ∫ g𝑑𝑚𝑓,

where𝑚𝑓 is the equilibrium state for 𝑓;
(iii) if ∫ g𝑑𝑚𝑓 = 0 (mean-zero), then

𝜕2𝑃(𝑓 + 𝑡g)
𝜕𝑡2

|||||𝑡=0 = lim𝑇→∞∫
(
∫
𝑇

0
g(𝜙𝑠(𝑥))𝑑𝑠

)2
𝑑𝑚𝑓(𝑥) = Var(g , 𝑚𝑓),

(iv) if Var(g , 𝑚𝑓) = 0, then g is Livšic cohomologous to zero.
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Using the above, in [38] McMullen defined the Pressure semi-norm as follows. We let (𝑋) be
the space of pressure zero functions, that is,

(𝑋) = {𝐹 ∈ Hol(𝑋, ℝ) | 𝑃(𝐹) = 0}.
Then by Proposition 3.4(ii), the tangent space to (𝑋) at 𝐹 can be identified with

𝖳𝐹((𝑋)) =
{

g ∈ Hol(𝑋, ℝ) |∫ g𝑑𝑚𝐹 = 0
}
,

where𝑚𝐹 is the equilibrium state for 𝐹. Then the pressure semi-norm of g ∈ 𝖳𝐹((𝑋)) is

𝐏(g) = −
Var(g , 𝑚𝐹)

∫ 𝐹𝑑𝑚𝐹 .

Observe that 𝐏 is a quadratic form, so actually
√
𝐏 (and not 𝐏) is a semi-norm. It follows from

Proposition 3.4 (iii) that 𝐏 is induced by a bilinear paring, which is positive semi-definite. We
call 𝐏 the pressure semi-norm with a slight abuse of notation to stress the fact that the associated
bilinear form is positive semi-definite.
By Proposition 3.4, it follows that 𝐏(g) only depends on the Livšic-cohomology class [g] and is

positive definite in the sense that it is zero if and only if [g] = 0. Therefore, it can be considered
as a (positive-definite) metric on the space of Livšic cohomology classes.
The dynamical intersection is defined in [14] as follows; if 𝑓, g ∈ Hol𝛼(𝑋, ℝ) are positive, then

their dynamical intersection is

𝐈(𝑓, g) = lim
𝑇→∞

1

#𝑅𝑇(𝑓)

∑
𝑎∈𝑅𝑇(𝑓)

𝓁𝑎(g)
𝓁𝑎(𝑓)

=
∫ g𝐝𝑚−ℎ𝑓𝑓

∫ 𝑓𝐝𝑚−ℎ𝑓𝑓
= ∫

g
𝑓
𝑑𝜇𝜙𝑓 . (4)

The last equalities follow from [14, Section 3.4]. Similar definitions have been studied in different
situations, for example, by Bonahon [7], Burger [18] and Knieper [32].
The renormalized dynamical intersection is

𝐉(𝑓, g) =
ℎ(g)
ℎ(𝑓)

𝐈(𝑓, g).

It follows from [14, Proposition 3.12] that both g ↦ 𝐈(𝑓, g) and g ↦ ℎ(g) are analytic functions, in
particular 𝐉 is twice differentiable.

Proposition 3.5 (Canary–Labourie [14, Proposition 3.8]). For every pair of positive Hölder-
continuous functions 𝑓 and g , one has 𝐉(𝑓, g) ⩾ 1. In particular, 𝐉(𝑓, ⋅) is critical at 𝑓 which gives

𝜕

𝜕𝑡

||||𝑡=0 log ℎ(𝑓𝑡) = 𝜕𝜕𝑡 ||||𝑡=0𝐈(𝑓, 𝑓𝑡), (5)

where (𝑓𝑡)𝑡∈(−𝜀,𝜀) is a C1 curve of positive Hölder-continuous functions with 𝑓0 = 𝑓.
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Then we have:

Theorem 3.6 (Canary–Labourie [14, Proposition 3.11]). Let 𝜙 be a transitive metric Anosov flow on
a compact metric space𝑋. If 𝑓𝑡 ∈ Hol(𝑋, ℝ+), 𝑡 ∈ (−1, 1) is a 1-parameter family and 𝐹𝑡 = −ℎ𝑓𝑡𝑓𝑡 ,
then

𝜕2

𝜕𝑡2

||||𝑡=0𝐉(𝑓0, 𝑓𝑡) = 𝐏(𝐹̇0)
The following proposition characterizes degenerate vectors for the second derivative of 𝐉.

Proposition 3.7 (Canary–Labourie [14, Lemma 9.3]). Let (𝑓𝑡)𝑡∈(−𝜀,𝜀) be a C2 curve of positive
Hölder-continuous functions. Then (𝜕2∕𝜕𝑡2)|𝑡=0𝐉(𝑓0, 𝑓𝑡) = 0 if and only if for every periodic orbit
𝜏, one has

𝜕

𝜕𝑡

||||𝑡=0ℎ(𝑓𝑡)𝓁𝜏(𝑓𝑡) = 0.
4 PRESSURE FORMS

Now we will apply the thermodynamic formalism to representations. For this we make use of
the interpretation of a Θ-Anosov representation as a reparametrization of the geodesic flow as
explained in Section 2.4.
Given any functional 𝜑 ∈ 𝖤∗

Θ
that is positive on the limit cone, one can associate a

reparametrization 𝑓𝜑𝜌 of the geodesic flow on Γ. Here we describe in detail two special cases of
this construction which play an important role in the paper

4.1 Spectral radius pressure form

Let 𝜌, 𝜂 be two projective Anosov representations (with possibly different target groups). They
both give rise to reparametrizations of the geodesic flow 𝑓𝜔1𝜌 and 𝑓𝜔1𝜂 , where 𝜔1 is the first funda-
mental weight.
We define the spectral radius dynamical intersection of the two projective-Anosov representa-

tions 𝜌, 𝜂 to be the dynamical intersection between 𝑓𝜔1𝜌 and 𝑓𝜔1𝜂 :

𝐈𝜔1(𝜌, 𝜂) = 𝐈(𝑓
𝜔1
𝜌 , 𝑓

𝜔1
𝜂 ).

Analogously we define 𝐉𝜔1(𝜌, 𝜂). Moreover, given a C1 curve (𝜌𝑡)𝑡∈(−𝜀,𝜀) of projective Anosov rep-
resentations the spectral radius pressure norm† of 𝜌̇0 is defined by

𝐏
𝜔1
𝜌 (𝜌̇0) =

𝜕2

𝜕𝑡2

||||𝑡=0𝐉𝜔1(𝜌0, 𝜌𝑡) ⩾ 0.

†Again 𝐏 is a quadratic form and not a norm.
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The spectral radius pressure norm induces a positive semidefinite symmetric bilinear two form
at the smooth points of {𝖺1}-Anosov representations. However, positive semi-definiteness is as far
as thermodynamics goes, and one needs geometric arguments to establish non-degeneracy. In
[14], Canary–Labourie prove non-degeneracy under some mild assumptions, giving

Theorem 4.1 (Canary–Labourie [14, Theorem 1.4]). Let Γ be word hyperbolic, and 𝖦ℝ < 𝖯𝖦𝖫𝑑(ℝ)
be reductive. The spectral radius pressure form is an analytic Riemannian metric on the space
g (Γ, 𝖦ℝ) of conjugacy classes of 𝖦ℝ-generic, regular, irreducible, projective Anosov representations.

Recall that a representation 𝜌 ∶ Γ → 𝖦ℝ is 𝖦ℝ-generic if its Zariski closure contains elements
whose centralizer is a maximal torus in 𝖦ℝ, and it is regular if it is a smooth point of the algebraic
variety Hom(Γ, 𝖦ℝ).

4.2 Spectral gap pressure form

We now consider two {𝖺1, 𝖺2}-Anosov representations 𝜌, 𝜂 (with possibly different target groups).
As explained in Section 2.4, they define reparametrizations 𝑓𝖺1𝜌 and 𝑓𝖺1𝜂 of the geodesic flow.
We define the spectral gap dynamical intersection of 𝜌 and 𝜂 to be the dynamical intersection

between 𝑓𝖺1𝜌 and 𝑓𝖺1𝜂 :

𝐈𝖺1(𝜌, 𝜂) = 𝐈(𝑓
𝖺1
𝜌 , 𝑓

𝖺1
𝜂 ),

and analogously for 𝐉𝖺1(𝜌, 𝜂). Given aC1 curve (𝜌𝑡)𝑡∈(−𝜀,𝜀) of such {𝖺1, 𝖺2}-representations the spec-
tral gap pressure norm of 𝜌̇0 is defined by

𝐏
𝖺1
𝜌 (𝜌̇0) =

𝜕2

𝜕𝑡2

||||𝑡=0𝐉𝖺1(𝜌0, 𝜌𝑡) ⩾ 0.
The spectral gap pressure norm induces a semidefinite symmetric bilinear two form on smooth

points of {𝖺1, 𝖺2}-Anosov representations. This looks very similar to the spectral radius pressure
norm. It is, however, in general harder to check when the spectral gap pressure form is non-
degenerate. As far as the authors know this has, so far, only been established for the Hitchin
component in 𝖯𝖲𝖫𝑑(ℝ):

Theorem 4.2 (Canary–Labourie [15, Theorem 1.6]). Let 𝖦ℝ denote either 𝖯𝖲𝖫𝑑(ℝ), 𝖯𝖲𝗉(2𝑛, ℝ),
𝖯𝖲𝖮(𝑛, 𝑛 + 1) or the split formof the exceptional complex Lie group𝖦2. Then the spectral gap pressure
form is positive definite on the Hitchin componentH (𝑆, 𝖦ℝ).

4.3 Vanishing directions

Complex conjugation of matrices is an external automorphism of 𝖯𝖦𝖫𝑑(ℂ) and thus induces an
involution

τ ∶ 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ)) → 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ))
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whose fixed point set contains 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℝ)). If 𝜌 ∈ 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℝ)) is a regular point, then the
differential 𝑑𝜌 τ splits the tangent space as a sum of purely imaginary vectors and the tangent space
to the real characters:

𝖳𝜌𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ)) = ker(𝑑𝜌 τ + id) ⊕ 𝖳𝜌𝔛(Γ, 𝖯𝖦𝖫𝑑(ℝ));

the almost complex structure 𝐽 of 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ)) interchanges this splitting.
With a standard symmetry argument (see, for example, Canary [16, Section 5.8]), we get:

Lemma 4.3. Let 𝜌 ∶ Γ → 𝖯𝖦𝖫𝑑(ℝ) be {𝖺1}-Anosov and let 𝑣 be a purely imaginary direction at 𝜌.
Then 𝐏𝜔1(𝑣) = 0. If 𝜌 is moreover {𝖺2}-Anosov, then 𝐏𝖺1(𝑣) = 0.

Proof. Let us prove on the second statement, the first one being analogous. Consider a differen-
tiable curve (𝜌𝑡)𝑡∈(−𝜀,𝜀) ⊂ 𝔛{𝖺1,𝖺2}(Γ, 𝖯𝖦𝖫𝑑(ℂ)) such that 𝜌0 = 𝜌, 𝜌̇0 = 𝑣 and 𝜏𝜌𝑡 = 𝜌−𝑡. For every
conjugacy class [𝛾] ∈ [Γ], the functions

𝑡 ↦ 𝓁𝛾(𝑓
𝖺1
𝜌𝑡
) = (𝜆1 − 𝜆2)(𝜌𝑡(𝛾)) and 𝑡 ↦ ℎ(𝑓

𝖺1
𝜌𝑡
)

are invariant under 𝑡 ↦ −𝑡 and are thus critical at 0. Consequently, for every conjugacy class, the
function 𝑡 ↦ ℎ(𝑓𝖺1𝜌𝑡 )𝓁𝛾(𝑓

𝖺1
𝜌𝑡
) is critical at 0 and hence Proposition 3.7 implies 𝐏𝖺1(𝑣) = 0. □

5 PLURIHARMONICITY OF LENGTH FUNCTIONS AND ITS
CONSEQUENCES

In this section, we prove the main results stated in the Introduction.

5.1 Pluriharmonic length functions

Recall that we denote by 𝔛Θ(Γ, 𝖦ℂ) the set of Θ Anosov representations Γ → 𝖦ℂ and, for 𝜌 ∈
𝔛Θ(Γ, 𝖦ℂ), we denote by Λ𝜌 ⊂ 𝖤+ the limit cone of the subgroup 𝜌(Γ).
If 𝜌, 𝜂 ∈ 𝔛Θ(Γ, 𝖦ℂ) and 𝜑 ∈ (𝖤Θ)∗ is strictly positive on (Λ𝜌 ∪ Λ𝜂) − {0}, then one can define

their 𝜑-dynamical intersection by

𝐈𝜑(𝜌, 𝜂) = 𝐈(𝑓
𝜑
𝜌 , 𝑓

𝜑
𝜂 ) = lim𝑇→∞

1

#𝑅𝑇(𝑓
𝜑
𝜌 )

∑
[𝛾]∈𝑅𝑇(𝑓

𝜑
𝜌 )

𝜑(𝜆(𝜂(𝛾)))

𝜑(𝜆(𝜌(𝛾)))
, (6)

where 𝑓𝜑𝜌 = 𝜑(𝑓Θ𝜌 ) is given by Corollary 2.10.
Recall that a function is pluriharmonic if it is locally the real part of a holomorphic function.

The argument from Taylor [17, Section 5] applies directly and one has the following result.

Proposition 5.1. Consider 𝜌 ∈ 𝔛Θ(Γ, 𝖦ℂ) and 𝜑 ∈ (𝖤Θ)∗ that is strictly positive in Λ𝜌 − {0}. Then
the function

𝐈
𝜑
𝜌 = 𝐈

𝜑(𝜌, ⋅) ∶ 𝔛Θ(Γ, 𝖦ℂ) → ℝ
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is pluriharmonic when defined (that is, on the open set consisting of representations 𝜂 ∈ 𝔛Θ(Γ, 𝖦ℂ)
such that 𝜑|Λ𝜂 − {0} is strictly positive).
Recall from Potrie [41, Corollary 4.9] that the map 𝜂 ↦ ℙ(𝑝Θ(Λ𝜂)) is continuous on𝔛Θ(Γ, 𝖦𝕂),

when considering the Hausdorff topology on compact subsets of ℙ((𝖤Θ)∗). Thus the domain of
definition of 𝐈𝜑𝜌 is an open subset of 𝔛Θ(Γ, 𝖦ℂ) that contains, in particular, 𝜌. The proposition
implies then that 𝐈𝜑𝜌 is (defined and) pluriharmonic on a neighborhood of 𝜌.

Proof. In order to simplify notation, we denote by 𝜓 = 𝜙𝑓
𝜑
𝜌 the reparametrized flow and, for a

periodic orbit 𝑎 ∈ 𝑂, let 𝛿𝜓𝑎 be the associated 𝜓-invariant probability measure. A computation
gives (as in Abramov [1], see, for example, [46, § 2]), for every continuous g ∶ 𝖴Γ → ℝ,

𝛿
𝜓
𝑎 (g) =

1

𝓁𝑎(𝑓
𝜑
𝜌 )

∫
𝓁𝑎(𝑓

𝜑
𝜌 )

0
g(𝜓𝑠𝑥)𝑑𝑠 =

1

𝓁𝑎(𝑓
𝜑
𝜌 )

∫
𝓁𝑎

0
g(𝜙𝑠𝑥)𝑓

𝜑
𝜌 (𝜙𝑠𝑥)𝑑𝑠.

Thus, for 𝑇 > 0 one has 𝑅𝜓
𝑇
(1) = 𝑅𝑇(𝑓

𝜑
𝜌 ). We consider the 𝜓-invariant probability measure

𝜇𝑇 =
1

#𝑅
𝜓
𝑇
(1)

∑
𝑎∈𝑅

𝜓
𝑇
(1)

𝛿
𝜓
𝑎 .

Using the last equality in equation (4) together with Bowen’s Theorem 3.3 applied to 𝜓, one has

𝐈
𝜑
𝜌(𝜂) = ∫

𝑓
𝜑
𝜂

𝑓
𝜑
𝜌

𝑑𝜇𝜓 = lim
𝑇→∞

𝜇𝑇

(
𝑓
𝜑
𝜂

𝑓
𝜑
𝜌

)
. (7)

We now justify that the weak-* convergence in equation (7) is uniform when 𝜂 varies on
compact subsets of the domain of definition of 𝐈𝜑𝜌 . Indeed, Corollary 2.10 states that the map
𝜂 ↦ 𝑓

𝜑
𝜂 ∈ Hol𝛼(𝖴Γ, ℝ) is continuous and thus, when 𝜂 varies on a compact set 𝐾 ⊂ 𝔛Θ(Γ, 𝖦ℂ),

the family of Hölder functions with fixed exponent {𝑓𝜑𝜂 ∶ 𝜂 ∈ 𝐾} is bounded and equicontinuous.
Applying then, for example, Rao [44, Theorem 3.1], one has

lim
𝑇→∞

sup
𝜂∈𝐾

|||𝜇𝑇
(
𝑓
𝜑
𝜂

𝑓
𝜑
𝜌

)
− 𝐈
𝜑
𝜌(𝜂)

||| = 0,
giving the desired uniformity.
Since for each 𝑇 > 0, the map

𝜂 ↦ 𝜇𝑇

(
𝑓
𝜑
𝜂

𝑓
𝜑
𝜌

)
=

1

#𝑅𝑇(𝑓
𝜑
𝜌 )

∑
[𝛾]∈𝑅𝑇(𝑓

𝜑
𝜌 )

𝜑(𝜆(𝜂(𝛾)))

𝜑(𝜆(𝜌(𝛾)))

is the real part of a holomorphic function, the result follows fromAxler–Bourdon–Ramey [3, The-
orem 1.23]. □
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5.2 Proof of Theorem A

Let 𝜌 ∈ 𝔛(𝜋1𝑆, 𝖯𝖦𝖫𝑑(ℝ)) be (1,1,2)-hyperconvex and assume that it is a regular point of the char-
acter variety𝔛(𝜋1𝑆, 𝖯𝖦𝖫𝑑(ℝ)). Consider a tangent vector 𝑣 ∈ 𝖳𝜌𝔛(𝜋1𝑆, 𝖯𝖦𝖫𝑑(ℝ)). Note that then
𝐽𝑣 is a purely imaginary tangent direction in 𝖳𝜌𝔛(𝜋1𝑆, 𝖯𝖦𝖫𝑑(ℂ)). Thus, Lemma 4.3 implies that
for any C1 curve (𝜌𝑡)𝑡∈(−𝜀,𝜀) with 𝜌0 = 𝜌, 𝜌̇0 = 𝐽𝑣 and 𝜏𝜌𝑡 = 𝜌−𝑡 we have

0 = 𝐏𝖺1(𝐽𝑣) =
𝜕2

𝜕𝑡2

||||𝑡=0𝐉𝖺1(𝜌0, 𝜌𝑡). (8)

If 𝜌 is (1,1,2)-hyperconvex then Theorem 2.6 states that ℎ𝖺1(𝜌) = 1, moreover, as observed in the
proof of Lemma 4.3, ℎ̇𝖺1 (𝜌̇0) = 0 and hence by equation (5) 𝐈̇

𝖺1
𝜌 (𝜌̇0) = 0. Moreover, from (4) one

has 𝐈𝖺1(𝜌, 𝜌) = 1; so developing the last term of equation (8), one obtains

0 = Hess𝜌(ℎ
𝖺1)(𝐽𝑣) + Hess𝜌 𝐈

𝖺1
𝜌 (𝐽𝑣).

Proposition 5.1 states that 𝐈𝖺1𝜌 is pluriharmonic, so Hess𝜌 𝐈
𝖺1
𝜌 (𝐽𝑣) = −Hess𝜌 𝐈

𝖺1
𝜌 (𝑣) and thus

Hess𝜌 ℎ
𝖺1(𝐽𝑣) = Hess𝜌 𝐈

𝖺1
𝜌 (𝑣).

Since being (1,1,2)-hyperconvex is an open condition in the character variety [43, Proposition
6.2], Lemma 2.4 implies that, at least for small 𝑡, the representation 𝜌𝑡 is (1,1,2)-hyperconvex (over
ℂ) and thus Theorem 2.5 yields ℎ𝖺1(𝜌𝑡) = Hff𝖺1(𝜌𝑡). Finally, since ℎ

𝖺1 ≡ 1 in a neighborhood of 𝜌
in 𝔛(𝜋1𝑆, 𝖯𝖦𝖫𝑑(ℝ)), one has

Hess𝜌 𝐈
𝖺1
𝜌 (𝑣) = 𝐏

𝖺1(𝑣).

The result follows from Theorem 2.5.

5.3 Proof of Theorem B

By Theorem 2.5, Hff1 = ℎ𝖺1 in a neighborhood of 𝜌, and thus by assumption, the latter is critical
at 𝜌. Since 𝐉𝖺1(𝜌, ⋅) is also critical at 𝜌 (Proposition 3.5), one concludes that 𝐈𝖺1𝜌 is critical at 𝜌 and
thus its Hessian is well defined.
By Proposition 5.1, 𝐈𝖺1𝜌 is pluriharmonic and thus one has (as before) that for every 𝑣 ∈

𝖳𝜌𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ))

Hess𝜌 𝐈
𝖺1
𝜌 (𝐽𝑣) = −Hess𝜌 𝐈

𝖺1
𝜌 (𝑣).

One concludes that the (+, 0, −) signature of Hess𝜌 𝐈
𝖺1
𝜌 is of the form (𝑝, 2𝑘, 𝑝) for some 𝑝 ≤ half

dimℝ 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ)). Moreover, by Theorem 3.6, one has

0 ⩽ 𝐏𝖺1(𝐽𝑣) = Hess𝜌 ℎ
𝖺1(𝐽𝑣) − ℎ

𝖺1
𝜌 Hess𝜌 𝐈

𝖺1
𝜌 (𝑣),
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so thatHess𝜌 𝐈
𝖺1
𝜌 (𝑣) ⩾ 0 impliesHess𝜌 ℎ𝖺1(𝐽𝑣) ⩾ 0. In particular,Hess𝜌 ℎ𝖺1 is positive semidefinite

on a subspace of dimension at least

dimℝ 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ)) − 𝑝 ⩾
1

2
dimℝ 𝔛(Γ, 𝖯𝖦𝖫𝑑(ℂ))

and the theorem is proven.

5.4 Proof of Theorem C

Let Γ be a co-compact lattice in 𝖯𝖲𝖮(𝑛, 1) such that the inclusion 𝜄 ∶ Γ → 𝖯𝖲𝖮(𝑛, 1) defines, after
extending coefficients, a regular point of the character variety 𝔛(Γ, 𝖯𝖲𝖴(𝑛, 1)). Theorem 2.2 (and
the Remark following it) in Cooper–Long–Thistlethwaite [20] assert that 𝜄 is then a regular point
of the 𝖯𝖲𝖫𝑛+1(ℝ) character variety 𝔛(Γ, 𝖯𝖲𝖫𝑛+1(ℝ)).
Moreover, since 𝔰𝔬(𝑛, 1) is the fixed point set of an involution in 𝔰𝔩𝑛+1(ℝ), one has the decom-

position 𝔰𝔩𝑛+1(ℝ) = 𝔰𝔬(𝑛, 1) ⊕ 𝔰 with [𝔰, 𝔰] ⊂ 𝔰𝔬(𝑛, 1). One readily sees that

𝔰𝔲(𝑛, 1) = 𝔰𝔬(𝑛, 1) ⊕ 𝑖𝔰 ⊂ 𝔰𝔩𝑛+1(ℂ). (9)

The twisted cohomology𝐻1𝜄 (Γ, 𝔰𝔩𝑛+1(ℝ)) splits as

𝐻1𝜄
(
Γ, 𝔰𝔩𝑛+1(ℝ)

)
= 𝐻1𝜄 (Γ, 𝔰𝔬(𝑛, 1)) ⊕ 𝐻

1
𝜄 (Γ, 𝔰).

Consequently, by equation (9) the subspace 𝐻1𝜄 (Γ, 𝔰) ⊂ 𝐻
1
𝜄 (Γ, 𝔰𝔩𝑛+1(ℂ)) is sent bijectively to

𝐻1𝜄 (Γ, 𝑖𝔰) when multiplied by the complex structure 𝐽, that is,

𝐽 ⋅𝐻1𝜄 (Γ, 𝔰) = 𝐻
1
𝜄 (Γ, 𝑖𝔰). (10)

We will need the following generalization of Crampon [21].

Theorem5.2 (Potrie [41, Theorem 7.2]). Assume 𝜌 ∈ 𝔛(Γ, 𝖯𝖲𝖫𝑛+1(ℝ)) has finite kernel and divides
a proper open convex set of ℙ(ℝ𝑛+1). Then the entropy

ℎ𝜔1(𝜌) ⩽ 𝑛 − 1

and equality holds only if 𝜌 has values in 𝖯𝖲𝖮(𝑛, 1).

This has the following useful consequence.

Corollary 5.3. The spectral radius pressure form 𝐏𝜔1 on𝔛(Γ, 𝖯𝖲𝖫𝑛+1(ℝ)) is non-degenerate at 𝜄.

Proof. When 𝑛 = 2, this follows directly from Theorem 4.1, but if 𝑛 > 2, the embedding 𝔰𝔬(𝑛, 1) ⊂
𝔰𝔩𝑛+1(ℝ) is not 𝖯𝖲𝖫𝑛+1(ℝ)-generic so, even though 𝜄(Γ) is irreducible, we need additional argu-
ments. Nevertheless, by Theorem 5.2, the entropy function 𝜌 ↦ ℎ𝜔1(𝜌) is critical at 𝜄, so by Propo-
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sition 3.7 one only needs to verify that the set{
𝑑𝜄𝜔

𝛾
1
∶ [𝛾] ∈ [Γ]

}
spans the cotangent space 𝖳∗𝜄 𝔛(Γ, 𝖯𝖲𝖫𝑛+1(ℝ)), where 𝜔

𝛾
1
∶ 𝔛(Γ, 𝖯𝖦𝖫𝑛+1(ℝ)) → ℝ is the function

𝜌 ↦ 𝜔1(𝜆(𝜌(𝛾))).

As 𝜄 is irreducible and projective Anosov, this is the content of Canary–Labourie [14, Proposition
10.1]. □

Consider then 𝑣 ∈ 𝐻1𝜄 (Γ, 𝔰) ⊂ 𝖳𝜄𝔛(Γ, 𝖯𝖲𝖫𝑛+1(ℝ)), by equation (10), the purely imaginary vector
𝐽 ⋅ 𝑣 ∈ 𝖳𝜄𝔛(Γ, 𝖯𝖲𝖫𝑛+1(ℂ)) belongs to 𝐻1𝜄 (Γ, 𝖯𝖲𝖴(𝑛, 1)) and represents thus a non-trivial infinites-
imal deformation of 𝜄 inside 𝖯𝖲𝖴(𝑛, 1). As in Lemma 4.3, we choose a differentiable curve
(𝜌𝑡)𝑡∈(−𝜀,𝜀) ⊂ 𝔛(Γ, 𝖯𝖲𝖴(𝑛, 1)) with 𝜌0 = 𝜄 and 𝜌̇0 = 𝐽𝑣 and 𝜏𝜌𝑡 = 𝜌−𝑡.
By Lemma 4.3, we have that

0 = 𝐏
𝜔1
𝜄 (𝐽𝑣) =

𝜕2

𝜕𝑡2

||||𝑡=0𝐉𝜔1(𝜄, 𝜌𝑡). (11)

Expanding the second term, and using that both ℎ𝜔1(𝜌𝑡) and 𝐈
𝜔1
𝜄 (𝜌𝑡) are critical at 𝑡 = 0 (as in the

proof of Lemma 4.3) and that 𝐈𝜔1𝜄 is pluriharmonic, we get

0 = Hess𝜄(ℎ
𝜔1)(𝐽𝑣) − (𝑛 − 1)Hess𝜄(𝐈

𝜔1
𝜄 )(𝑣).

On the other hand

𝐏
𝜔1
𝜄 (𝑣) = Hess𝜄(ℎ

𝜔1)(𝑣) + (𝑛 − 1)Hess𝜄(𝐈
𝜔1
𝜄 )(𝑣),

which in turn gives

Hess𝜄(ℎ
𝜔1)(𝐽𝑣) = 𝐏

𝜔1
𝜄 (𝑣) − Hess𝜄(ℎ

𝜔1)(𝑣) > 0,

since 𝐏𝜔1𝜄 (𝑣) > 0 by Corollary 5.3, and −Hess𝜄(ℎ𝜔1)(𝑣) ⩾ 0 since by Theorem 5.2 𝜄 is a global max-
ima of ℎ𝜔1 among deformations in 𝖯𝖲𝖫𝑛+1(ℝ). The result then follows.

5.5 The Hessian of the entropy at the Fuchsian locus of the Hitchin
component

Applying the same techniques as in the last section, we can also show the following result on the
Hitchin component.

Corollary 5.4. Let 𝜄 ∈H𝑑(𝑆) be a representation 𝜋1𝑆 → 𝖯𝖲𝖫2(ℝ) → 𝖯𝖲𝖫𝑑(ℝ) in the embed-
ded Teichhmüller space. Then Hess(ℎ𝜔1𝜄 ) is positive definite on purely imaginary directions of
𝖳𝜄𝔛(𝜋1𝑆, 𝖯𝖲𝖫𝑑(ℂ)).
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Proof. We mimic the last paragraph. In this case, the pressure form 𝐏𝜔1 is positive definite on
𝖳𝜄H (𝑆, 𝖯𝖲𝖫𝑑(ℝ)) directly by Theorem 4.1. One gets, through the same arguments, that

Hess𝜌(ℎ
𝜔1)(𝐽𝑣) = 𝐏𝜔1(𝑣) − Hess(ℎ𝜔1)(𝑣).

As we already observed, the first term on the right-hand side is positive by Theorem 4.1, while
Hess(ℎ𝜔1)(𝑣) ⩽ 0 since, by Potrie [41, Theorem A], Fuchsian representations are maxima for the
entropy within the Hitchin locus. The corollary follows. □

We refer the reader to Dey–Kapovich [23] (see also Ledrappier [35] and Link [36]) for an inter-
pretation of the critical exponent ℎ𝜔1(𝜌) as the Hausdorff dimension of the limit set with respect
to a visual metric, that is, a metric with respect to which the group action is conformal.
Finally, it would be interesting to relate Corollary 5.4, or an analog of it, to the recent work

by Dai–Li [22] studying the translation lengths on the symmetric space of 𝖯𝖲𝖫𝑑(ℂ), when one
deforms a Fuchsian representation along its Hitchin fiber.
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