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Abstract

We describe a new connection between the dilogarithm function and the solutions of
Pell’s equation x> — ny?> = #1. For each solution x, y to Pell’s equation, we obtain a
dilogarithm identity whose terms are given by the continued fraction expansion of the
associated unit x + y\/n € Z[/n]. We further show that Ramanujan’s dilogarithm
value-identities correspond to an identity for the regular ideal hyperbolic hexagon.
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1 Dilogarithm and Pell’s equation

Dilogarithm The dilogarithm function Liy(z) is the integral function

Lia(z) = — /Z log=1) ..
0 t

It follows that it has power series

o0 Zn
Li>(z) = Z p) for |z] < 1.
n=1
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142 M. Bridgeman

In [16], Rogers introduced the following normalization for the dilogarithm for x
real,

L(x) = Lip(x) + %log |x|log(1l — x).

The dilogarithm function arises naturally in many areas of mathematics, including
hyperbolic geometry and number theory (see [17]). In particular, volumes in the Lie
group PSL(2, R) and the symmetric space H> can be described in terms of the dilog-
arithm (see Sect. 5.1 for discussion).

Pell’s equation Pell’s equation for n € Nis the Diophantine equation x> —ny* = %1
over Z. Pell’s equation has a long and interesting history going back to Archimedes’
cattle problem (see [10]). The equation only has solutions for n square-free, so we
assume 7 is square-free. Also, by symmetry, we need only consider solutions with
x,y > 0. A solution is positive/negative depending on whether x> — ny?> = 1, or,
x2 — ny? = —1. For all square-free n there is always a positive solution but not
necessarily a negative solution. Solutions to Pell’s equation correspond to units in
Z|/n] by identifying x, y with x + y+/n and it is natural to identify the two. The
smallest positive unit u = x + y./n is called the fundamental unit and a well-known
result is that the set of positive units is exactly {uk}, k € N (see [15, Theorem 7.26])).

In this paper, we prove a new and surprising connection between the dilogarithm
and solutions to Pell’s equation. Using earlier work of the author, which gave a dilog-
arithm identity associated to a hyperbolic surface, we obtain a dilogarithm identity for
each solution x, y to Pell’s equation whose terms are given by the continued fraction
expansion of x + y/n.

1.1 Dilogarithm identities

The dilogarithm function satisfies a number of classical identities, see [11] for details.
In particular, by adding power series termwise, we have the squaring identity

Li»(z) + Lir(—z) = %Liz(zz).

It follows by direct computation that this identity holds for the Rogers dilogarithm
with

1
L(x) + L(—x) = z£(x2) (Squaring Identity).

The other classic identities are Euler’s reflection identities

2 2
L&)+ L3 —x) = %, Lo+ LG = % (Reflection Identity),
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Landen’s identity (see [9])

1 1
L <__> =L < ) forx >0  (Landen’s identity),
x+1

and Abel’s well-known 5-term identity

LX)+ L(y) =Lxy)+ L <M> +L <M) (Abel’s Identity).
I —xy 1 —xy

It can be easily shown that the reflection identities and Landen’s identity follow from
Abel’s identity.
A closed form for values of £ is only known for a small set of values. These are

72 1 2
co=o Lm="" ¢ <5> -
2 2
-1, _ T -2y _ T
Lp™) = 0’ L@~ = 5 (1.1

where ¢ is the golden ratio. In [11], Lewin gave the following remarkable infinite
identity

Zﬁ(ﬁ) =%. (1.2)

2 Results

Using earlier work of the author, we first prove the below new infinite identity for L.
We prove:

Theorem 2.1 If L > O then

o [ sinh? (3)
Leh =222,
-2 (Gt

One immediate observation is if we let L — 0, we recover the formula of Lewin in
Eq. (1.2) above.
We now apply the above identity to solutions of Pell’s equation and units in the ring

ZI/n].
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Dilogarithm identity for solution to Pell’s equation

In order to obtain our identity associated to a given solution a*> — nb* = =1 of Pell’s
equation, we let L satisfy e2/? = a4 b./n. We then show that the summation terms in
Theorem 2.1 above are given in terms of the continued fraction expansion of a +b./n.
We obtain:

Theorem 2.2 Let u = a + b./n € Z[+/n] be a solution to Pell’s equation.

o Ifu is a positive solution with continued fraction convergentsrj = hj/k;, then

()2 ()

k=1

e Ifu is a negative solution and u® has convergents R i =H;/Kj, then
1 > 1 1
() - (e ) 4 ()
u? g b2n(2Hai—1)? (2Hak 41 — Hap)?

Examples

We now consider some examples:
Case of Z[ﬁ] For Z[ﬁ] the fundamental unit is 3 + 2+4/2 giving

1 1 1 1 1
£<<3+zﬁ>2> ZE(?>+£(F>+£(W)+E<11892>+”"

We note that 3 4+ 2+/2 has convergents r; given by

56 29 35 169 204 985 1189

It can be further shown that the units of Z[+/2] are given by (1 +V2)K Asu = 14+/2
is a negative solution to Pell’s equation with 1% = 3 + 2+/2, we get

1 1 1 1 1
£(3+2ﬁ> =£<2x<2>2>+E<?>+£<2x<12>2>+£<ﬁ>
1 1 1
E(zx(70)2>+£<W)+£<2x(408)2>+“"
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Case of Z[~/13] An interesting case of a large fundamental solution occurs for
Z[+/13]. Here u = 649 + 180+/13 is the fundamental unit, giving

1 1 1
L (=) +L _>
(842401 + 233640+/13 > ( 12982 ) ( 16848032

1
Ll—)....
* <21868729962)

The continued fraction convergents of u are

1297 1298 1683505 1684803 2185188193 2186872996
17 1 7 1297 7 1298 ° 1683505 1684803

Pell’s equation over Q

Similarly, we consider Pell’s equation over Q. If a, b € Q satisfy Pell’s equation
a*> — nb?> = £1, we will identify this with the element a + b/n € Q[/n]. Applying
the identity in Theorem 2.1, we get the following:

Theorem 2.3 Let u = a + b/n € Q[/n],a,b > 0 satisfy Pell’s equation and let

uk = ay + bkﬁ.
If u is a positive solution, then

1 > 1
. (u_z) B ,;E <(bk/b)2> '

Further ifu € Z[\/n), then by /b € Z for all k.
If u is a negative solution, then

1 > 1 1
c(=)=Nc(—)rc(—).
(u2> 2 (n(bZk/a>2>+ ((azk+1/a)2>

Further, ifu € Z[/n), then by /a, axcs1/a € Z for all k.
Fibonacci numbers The golden mean ¢ € Q[+/5] corresponds to a negative solution

to Pell’s equation over Q. Also, we have

_ g+ fids

k
¢ 2

where fj is the classic Fibonacci sequence 1, 1,2,3,5... and g is the Fibonacci

sequence 1,3,4,7,11,....
By Eq. (1.1) we have £(¢_2) = 71'2/15. Therefore we get the identity,

as 1 1 72
k=1 2n 8on+1
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146 M. Bridgeman

Chebyshev polynomials, Pell’s equation and dilogarithms

Chebyshev polynomials arise in numerous areas of mathematics and have a natu-
ral interpretation in terms of Pell’s equation. The Chebyshev polynomial of the first
kind T, is the unique polynomials satisfying 7;,(cos(0)) = cos(nf). The Chebyshev
polynomials of the second kind U, is given by

sin((n + 1)6)

Uy (cos(0)) = sin()

We obtain the following corollary:

Corollary 2.4 Let x > 1, then

1 > 1
cl— |- c(—>
(x +/x% — 1)2 ; Un(x)?

The reader interested in knowing more about the dilogarithm function and its gen-
eralizations, is referred to the book [11] and the aforementioned article [17].

3 Units in Z[/n], Pell’s equation

We assume 7 is not a perfect square. If a + b+/n € Z[/n] is a unit, then +a + b./n are
also units. Therefore, we need only consider solutions (a, b) € N2. It follows easily
that @ + ba/n € Z[+/n] is a unit if and only if (a, b) satisfy Pell’s equation over Z

a* —nb® = +1.
We call a solution (a, b) (or the unit a +b+/n) positive/negative, depending on whether
the right-hand side of the Pell equation is positive/negative. Whereas there is always

a solution to the positive Pell equation x> — ny? = 1, it can be shown that there are
no solutions to x2 — ny2 = —1 for certain n (see [15, Chapter 7]).

Continued fraction convergents

Ifu € R4, we say u has continued fraction expansion u = [cy, c1, ¢2, 3, ...]if¢c; € Z
and

u=cy-+
c1+
c2 +

3+ ...

@ Springer
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By this we mean that if we define r, = [co,c1,¢2,...,¢,] € Q to be the n'h
convergent, then r, — u as n — oo. If the continued fraction coefficients sat-
isfy ¢p4r = cp for n > k, we say u is periodic with period r and write u =
[co, c1y -y Ckys Chx1s - - -, Chtr]. We have the following standard description of r;,:

Theorem 3.1 [15, Theorems 7.4, 7.5] Let u € Ry withu = [co, c1, ¢2, . ..]. Define
hn, ky by

hi =cihi-1+hi—> ki=cki-1+kio >0

with (h—2,k_2) = (0, 1) and (h_1, k—1) = (1, 0). Then gcd(h;, k;) = 1 and

hy
rqn = [co,c1,02, ..., Cp]l = —.
kn

The positive units in Z[+/n] have the following elegant description.

Theorem 3.2 [15, Theorem 7.26] Let n € N not be a perfect square. Then there is
a unique solution (a,b) € N? of Pell’s equation x> — ny> = 1 such that the set of
solutions to x> — ny2 =1in N? is {(a, bk)},f‘;1 where

ar + bp/n = (a + b«/ﬁ)k.

The pair (a, b) is called the fundamental solution of x> —ny?> = 1. One consequence
of the above is, if u is the fundamental unit, then {uk} gives the set of all positive
solutions to Pell’s equation. Thus the dilogarithm identity in Theorem 2.2 can be
interpreted as a sum over all solutions to Pell’s equation.

4 The orthospectrum identity

In a prior paper, the author proved a dilogarithm identity for a hyperbolic surface with
geodesic boundary. In [6] the identity was generalized to hyperbolic manifolds by the
author and Kahn. The relation to other identities on hyperbolic manifolds, such as the
Basmajian identity (see [3]), the McShane—Mirzakhani identity (see [13,14]), and the
Luo-Tan identity (see [12]), is discussed in [7].

4.1 Hyperbolic geometry

We will use two models for the hyperbolic plane H?, the upper half-plane model
H = {z | Im(z) > 0}, with hyperbolic metric ds = |dz|/Im(z), and the Poincaré
model D = {z | |z] < 1} with the hyperbolic metric ds = 2|dz|/(1 — 1z|%). In
each model, the group of orientation preserving isometries correspond to the group of
conformal automorphisms and is therefore isomorphic to PSL(2, R).
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148 M. Bridgeman

Fig. 1 Lift of orthogeodesic « to universal cover S

In H the geodesics are semi-circles which are orthogonal to the boundary 9H = R
(including vertical lines). Thus a geodesic can be identified with its endpoints in R x R.
Two disjoint geodesics are ultra parallel if they do not have a common endpoint in R,
and asymptotically parallel if they have a common endpoint. If g, & are ultra parallel,
then by a Mdbius transformation m € PSL(2, R), g, & can be mapped to geodesics
m(g), m(h) where m(g) has endpoints 1, —1 and m(h) has endpoints el, —e! for
some/ > 0. Then the y-axis is a common perpendicular geodesic to m(g), m(h) in H,
showing that g, 4 have a common perpendicular. Also by simple integration, we have
that / is the length of the common perpendicular. If g, & are asymptotically parallel,
then there is no common perpendicular and the region between g, 4 is said to form a
cusp at the common endpoint in R.

4.2 Orthogeodesics and orthospectrum

In order to state the orthospectrum identity, we recall some basic terms.

Let S be a finite area hyperbolic surface with totally geodesic boundary. Then an
orthogeodesic for S is a proper geodesic arc « which is perpendicular to the boundary
dS at its endpoints. The set of orthogeodesics of S is denoted O(S). Each boundary
component is either a closed geodesic or an infinite geodesic whose endpoints are
boundary cusps of S. We let N (S) be the number of boundary cusps of S. Further, let
x (S) be given by Area(S) = —2m x (S). We note that if there are no boundary cusps,
then x (S) is the Euler Characteristic of S.

We note that for S a finite area hyperbolic surface with totally geodesic boundary, the
universal cover S € H2 is a simply connected convex region bounded by a countable
collection of geodesics (see Fig. 1). A lift of an orthogeodesic is then a common
perpendicular to two boundary components of S that are ultra parallel.

One elementary example of a surface is an ideal hyperbolic n-gon. In this case,
N(S) = nand O(S) is afinite set. Also as Area(S) = (n—2)m,then x(S) = 1 —n/2.
In fact, ideal hyperbolic n-gons are the only surfaces with O (S) finite.

The dilogarithm orthospectrum identity is as follows:

@ Springer



Dilogarithm identities for solutions... 149

Theorem 4.1 (Dilogarithm Orthospectrum Identity, [S]) Let S be a finite area hyper-
bolic surface with totally geodesic boundary 0S # 0. Then

c ! 72 62(5) + N(S))
— | =15 x :
€0 (S) cosh? (%) 12

and equivalently,

Y oof-—t ) =ex Ny
ac0(S) sinh2 (@) 12

4.3 A geometric decomposition using orthogeodesics

For completeness, we now give a sketch of the proof of the orthospectrum identity. We
will see that it follows from an elementary decomposition of the unit tangent bundle
of S.

Let 77 (S) be the unit tangent bundle of S. Given v € Ti(S), we let oy, be the maximal
geodesic with tangent vector v. Generically (except for a set of measure zero), a,, will
be a geodesic arc with endpoints on the boundary of S. We define an equivalence
relation on 77(S), by defining v ~ w if the geodesics oy, oy, are homotopic rel. 9.
This gives a partition of (a full measure subset of) 77 (S) into equivalence classes of two
types, one type corresponding to the orthogeodesics and the other type corresponding
to boundary cusps. For each orthogeodesic y € O(S) we have an equivalance class
E, corresponding to all w € T7(S) such that «,, is homotopic rel. boundary to y. For
each boundary cusp ¢, we have an equivalence class E. corresponding to all w € 77 (S)
such that «,, is homotopic rel boundary out the cusp c. Then the equivalence relation
gives a volume relation

Vol(Ty(S)) = > Vol(E,)+ Y. Vol(E).

yeO(S) ¢ boundary cusp

For the left-hand side, we have Vol (T{(S)) = 2m Area(S) = —4712)((5).

Lifting an orthogeodesic y to y in the universal cover S, we have 7 is the common
perpendicular to two geodesic components g, i of 3S. Then E,, lifts to the set E y of
vectors which are between g and 4 in the following sense. The vector v € Tj (H?) is
between g and h, if the unique geodesic «, tangent to v, intersects both g and /. Thus
it follows that Vol (E, ) only depends on /(y) and, by direct calculation (see [5]), we
have

1

Vol(Ey)) =8L | ——F———
2 (L)
cosh (T)

4.3)
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150 M. Bridgeman

Similarly, the equivalence class corresponding to a cusp E. lifts to the set of tangent
vectors between two geodesics g, i that have a common ideal endpoint. Therefore,
as PSL(2, R) acts transitively on triples on R, we can assume the endpoints of g are
0, 1 and 4 are 1, 2. Therefore each E. are isometric and have the same volume. Then
applying the identity to an ideal triangle, which has no orthogeodesics, 3 boundary
cusps and area 7, we get

2 2
Vol(E,) = %

Substituting these gives the orthospectrum identity,

2 2
Vol(Ty(8)) = —4n’x () = 3 8L —— +N(S)%
ye0(S) COSh2 <Ty>

In the original paper [5], we showed that the orthospectrum identity above recovers
the reflection identities, Landen’s identity and Abel’s identity, by considering the
elementary cases of the ideal quadrilateral and ideal pentagon, respectively.

5 An infinite dilogarithm identity

Given z1, 22, 23, z4 € C distinct points we define the cross-ratio by

(z1 — 22)(z4 — 23)
(z1 —z3)(za — 22)

[z1,22,23,24] =

Let H be the upper half-plane model for the hyperbolic plane and x1, x2, x3, x4 €
9H = R be distinct points, ordered counterclockwise on R. If g is the geodesic with
endpoints x1, xp, and A is the geodesic with endpoints x3, x4, then g, i are disjoint.
We let [ be the perpendicular distance between g and /. Then we can choose a Mobius
transformation m € PSL(2, R) such that m(g) has endpoints —1, 1 and m(h) has
endpoints —el, e!. Then by invariance of the cross-ratio under Mobius transformations,
we have

1

cosh?(1/2) 4

[x1, x2, %3, x4] = [—1,1, ¢, —¢l] =

We now prove Theorem 2.1.

Proof of Theorem 2.1 Let S be an annulus with two geodesic boundary components
g, h. Let g be a closed geodesic of length L, and % an infinite geodesic with a single
boundary cusp (see Fig. 2).

We lift S to the upper half-plane with g lifted to the y-axis. Further let A = e”.
Then § is an infinite-sided ideal polygon invariant under multiplication by A (see Fig.
3). O
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Boundary cusp

Fig.2 Surface S

Fig.3 Universal cover of S

We normalize so that one of the ideal vertices is at z = 1. Then the vertices of S are
0, 0o and A* for k € Z. The edges of S are the lift of g, denoted g, which has vertices
0, 0o, and the lifts of %, labelled ﬁk, which has vertices A%, AF+1,

‘We now compute the orthospectrum of S. Every orthogeodesic lifts to a geodesic that
is the common perpendicular between two boundary components of S. We consider
two types.

If « is an orthospectrum with an endpoint on g, then it lifts to & which is a per-
pendicular between two edges of S, with one edge being 3. By the Z action, which
preserves g, we can choose « to have the other endpoint on ho. Therefore « has length
[ satisfying

1 A—1 _L
2 =[O0,0,1,)\-]= = l_e °
cosh”(1/2) A

Any other orthogeodesic o has both endpoints in /. Therefore « lifts to & which is
the perpendicular between 4 j, hy for some j < k. By the action of Z, we can assume
j = 0. Also, as adjacent sides do not have a common perpendicular, we have that
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152 M. Bridgeman

k > 2. Denoting the length /; of the perpendicular between /g and &y, , we have

1
cosh?(lx/2)

(1= =2k o= 1)?
(I=ahekt = =7 ek =12
A2 — 17122 sinh?(L/2)

T QR R T Gnn2 (kL))

= [1, 2, 2K, 251 =

As Area(S) = m, then x (§) = —1/2. Furthermore N (S) = 1. Thus by Theorem 4.1,
we have the dilogarithm identity for S is

2

A M>__”_2_ _ T
pl=e )+k2=;£<sinh2(kL/2) ==

Using the reflection identity £(1 — x) + L(x) = 7%/6, we get

L sinhz(L/Z))
Ll )_Z£<Sinh2(kL/2) ‘

k=2

5.1 Hyperbolic volume and PSL(2, R) volume

Another important normalization of the dilogarithm is the Bloch—Wigner dilogarithm
D:C—-{0,1} - Rby

D(z) = Im(Liz(z)) + arg(1 — z) log |z].

This was introduced by Bloch on his work in K-theory and regulators and by Wigner
in his work on Lie groups (see [4]).

The Bloch—Wigner dilogarithm function also arises naturally in the formula for the
volume of an ideal hyperbolic tetrahedron. If T is an ideal hyperbolic tetrahedron T’
in H3, with ideal vertices z 1,22,23,24 € @, then a classical result (see [8, Equation
4.13] states that the volume of 7 is given by

Vol(T) = D([z1, 22, 23, 24]).
Similarly, in the orthospectrum identity, we see that £(x) is also a volume. If
X1, X2, X3, X4 are distinct points ordered counterclockwise on 8]1-]12, we let g be the
geodesic with endpoints xp, x and & the geodesic with endpoints x3, x4. We let T

be the set of tangent vectors in 77 (Hz) between g, h as described in Sect. 4.3. Then,
considering the volume measure on 7} (H?), by Eq. (4.3), we have

Vol(T) = 8L([x1, x2, x3, x4]).
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Interpreting 77 (H?2) as PSL(2, R), we see that the volume of an ideal tetrahedron in
PSL(2, R) is given by the Rogers dilogarithm of the cross-ratio of its vertices.
6 Proof of identity for solutions to Pell’s equation over )

We now prove the dilogarithm identity for solutions to Pell’s equation over Q given
in Theorem 2.3.

Proof of Theorem 2.3 Let e!/> = u = a + b/n, then e /2 = u=! = +(a — b/n)
with the sign depending on if u is a positive or negative unit. If u is a positive unit,
then
cosh(L/2) =a and  sinh(L/2) = b/n.
If u is a negative unit, then
sinh(L/2) =a and  cosh(L/2) = b+/n.
In both cases we have
uk = k1'% = cosh(kL/2) + sinh(kL/2).
We let my = sinh(kL/2) and ny = cosh(kL/2). The dilogarithm identity gives
1 > inh?(L/2 [ m?
£<_2> :ZLj(sz#) :Zﬁ _% .
u P sinh“ (kL /2) = my

If u is a positive root, then m| = sinh(L/2) = b+/n and n; = cosh(L/2) = a. Then
by the addition formulae, we have

M1 = a.my + bnk«/ﬁ and  ngy =nga + bmk\/ﬁ.
By induction, we have ny = a; and my = bi+/n, and
br+1 = aby + bay and ai+1 = aay + nbby.

Substituting, we get

( ) ;£< ) i <<bk/b>2>

If u is a negative solution, then m| = sinh(L/2) = a and n| = cosh(L/2) = b./n.
Then, by the addition formulae we have,

Mgy = bmk\/ﬁ + any and Ngy1 = bnkﬁ + amy.
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154 M. Bridgeman

Therefore
nog = ax, N1 =bygpi/n,  moy =by~/n, and  moq = ax4i.
It follows that

byr = bayk—1 +aby—1 and  azg+1 = bbyn + aayy,.

lllCIefOIe,
<“ ) 1 < ) ( )
k=1 k k= ”(kzk/a) (a2k+1/a)

We now prove Corollary 2.4 relating the identity to the Chebyshev polynomials U,
of the second kind.

Proof of Corollary 2.4 We have the Chebyshev polynomials 7, (x), U, (x) € R[x]. We
let x = cos(#), then sin(6) = +/1 — x2. Therefore

O = cos(@) +isin@) =x +iv1—x2=x+vVx2—1.

m}

Thus
=@ +Vx2 D" and e =(x—Vx2 - D"

Substituting, we get

T,(x) = cos(nf) =

((x FV D (- \/ﬁ)")

1
2

and

sin(n6) " "
Un-1) = =~ 2\/_<(x+\/ 1 (x—\/xz—l)).

As this holds for |x| < 1, it also holds for all x € R. If x > 1, we define L > 0 to be
given by x = cosh(L/2). Then /x2 — 1 = sinh(L/2), giving

x+vVx2—1=e? and x—Vx2—-1=¢12,

Therefore, by the above formulae

kL)2 | —kL)2
Te(x) = % — cosh(kL/2) and
ekL/Z — e=kL/2 ginh(kL/2)

Uk-1(x) = 2 sinh(L/2) - sinh(L/2) -

@ Springer



Dilogarithm identities for solutions... 155

Thus

1 i 51nh2(L/2)) > < 1 )
L| ———mmmm— L =Y L[——).
(x + /—xz_l)z k; <smh2(kL/2) 1; Uk (x)?

7 Identity for continued fraction convergents

We now consider the case where u € Z[/n]. We prove Theorem 2.2 expressing the
above in terms of the convergents r; = h/k; of their continued fractions expansion.
First, we have the following lemma.

Lemma7.1 Letu = a+b./n € Z[/n] be a solution to Pell’s equation witha, b € N.
If u is a positive solution, then u = [2a — 1, 1,2a — 2]. If u is a negative solution,
then u = [2a).

Proof If u is a negative solution, then u = a ++/a? + 1. Therefore u?—2au—1=0.
Therefore

1
u=2a+ —.
u

Thus u = [2a].
If u is a positive solution, then u = a ++/a? — 1. Therefore u satisfies the quadratic
u? —2au+1=0. Rewriting, we have

1 1 u—1
u=2a——=2a—-1+1——-—=2a—-1+ .
u u u
Now we have
u—1 1 1 1
u MMT] 1~|—m 1+m
Therefore u = [2a — 1, 1, 2a — 2]. m]

Using the above description of the continued fraction, we will show the relation
between the approximates r; = hj/k; for u and the coefficients a;, b; given by
u/ =aj+ bj/n. This will allow us to prove Theorem 2.2.

Lemma7.2 Let u = a + b/n € Z[/n] be a solution to Pell’s equation.
If u is a positive solution and u has continued fraction convergents rj = hj/kj,

thenkj = hj_5 and
1 o0
(_2> X; <(h21 1)2>
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If u is a negative solution and u* has continued fraction convergents R i =Hj/Kj,

then
1 > 1 1
L|l—=])= Ll ——— Ll—— ).
<M2> jZ:(:) ( ("bz(Zsz—l)z) * <(2H2k+1 - sz)2>)

Proof Letu = a+b/n = /2, then u* = a; + by/n = cosh(kL/2) + sinh(kL/2).
If u is a positive solution, then u = [2a — 1, 1,2a — 2]. Therefore we have
(ho,h—1) = (2a — 1, 1). By Theorem 3.1 describing the continued fraction con-

vergents, for k > 0
hok e [2a -1
=A
|:h2k—li| |1

A 2a—2 1][1 1] _[2a—1 2a-2
- 1 of[1 0] 1 1 '
The matrix A has characteristic polynomial x> — 2ax + 1. Therefore A has eigen-
values u, u~! and eigenvectors (u — 1, 1), (1 — u, u). Diagonalizing, we get

hoy | 1 u—1 1—u]u* o0 u u—1|[2a—-1
hok—1 |~ u2—1 1 u 0 u*||-1 u—-1 1 ’

where

As u = /2, we have
(u—1) (k2 +u=* D) cosh((k + 3)L/2)
hox = ; = , (75)
u-—1 cosh(L/4)
k+2 —k .
u —u sinh((k + 1)L/2)
hok—1 = 5 = - / . (7.6)
us—1 sinh(L/2)

It follows that for k > 1

_sinh(kL/2) by
ho—s = sinh(L/2) b 7.7

Therefore

1 > 1 > 1
Ll—=])= L|—=]|= Ll—]).
<u2> ,; <(bk/b)2> ; ((/m_l)z)
= ]_
Similarly, we note that as (ko, k1) = (1, 0), then applying the above analysis we get

cosh((j +3)L/2)
2= T cosh(L/4)

=hyj—
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and

sinh(jL/2)

koig =
2717 TSinh(L/2)

= haj_3.

Therefore k; = hj_».

Let u is a negative solution. Then for k odd, a; = sinh(kL/2), bx/n = cosh(kL/2)
and for k even, by+/n = sinh(kL/2), ax = cosh(kL/2).

As u = [2a], by Theorem 3.1 we have the formula

hj+1:2ahj+hj_1 and kj+l :2ak.,~+kj+1,

with (h_2,k_3) = (0, 1) and (h_1, k—1) = (1, 0). Iterating, we geth; =0, 1, 2a, ...
and k; = 1,0,1,2a,.... Therefore k; = h;_; for j > —1. We focus on calculating
hy.As (h—1, h_») = (1, 0), we have the recursion

hk o ak+1 1 . 2a 1
[hk—l]_A ol where A= 1 ol

The matrix A has characteristic polynomial x> — 2ax — 1 = 0. Therefore A has
eigenvalues u, —u~land eigenvectors (u, 1), (1, —u). Thus,

e 11 Ju 1 ]ut 0 e 11
heot| w2 +1 |1 —u 0 (—w)*1|[1 —ul|O]|

Multiplying, we get

(uk+3 + (—l)kHu_(kH)) = —1

h
k u—+u-!

_ k+2 k41, —(k+2)

For k odd, we have

_cosh((k +2)L/2)  bry2
~ cosh(L/2) b

Similarly, for k even, we have

_sinh((k+2)L/2) by
~ cosh(L/2) b

Thus forall k > 0

We let Hj, K ; be the convergents for the continued fraction expansion of u2. Then

u® = ¢! is a positive solution to Pell’s equation. Applying Eqs. 7.5 and 7.6 above we
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have,
cosh((2k +3)L/2 bok+3
Hy = = = hog+1-
cosh(L/2) b
L sinh( 4 DL) 1 (sinh@k +1)L/2 | cosh(2k + 1)L/
PTGy T 2 sinh(L/2) cosh(L/2)

1 rax
=5 ( p + hzk—l) .

Also, if (u?)* = Ay + By/n then Ay = aoi, By = bai. Then by Eq. (7.7),

B by ha—

s = = 5 = oa
Therefore
hok =2aHpy—1 and  hoxyq = Hy.
Also
bk Dak+1

= 2bHy—3  and = 2Hpp—1 — hok—1 = 2Ho—1 — Hop—2.

Thus, if u is a negative solution to Pell’s equation

1 > 1 1
Ll—=])= L|————— L .
('42) ,; <n(2bH2k—1)2) * <(2H2k—l - H2k—2)2>

8 Ideal n-gon identities

We now describe the orthospectrum identity for a general ideal hyperbolic n-gon. We
show that the case of the regular ideal hyperbolic (2n+1)-gon recovers an identity of
Richmond and Szekeres (see [11, Equation 2.51]). We also show that the regular ideal
hyperbolic hexagon case recovers the following value-identities.

Ramanujan gave the following value-identities for linear combinations of specific
values of L (see [1, Entry 39]):

Lt (3) =t (3) = 711_; _;ogéza 2 2

2. Lip (_%) + %Li2 (é) = —7g +log2log3 — % — %

3. Lia (3) + i (§) = 75 + 2log 2log 3 — 210g? 2 — 213
2

4. Lip (1) — b () = _711_2; _ log6 3

5. Lia (=3) + Lia (§) = = 0/®
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More recently, in the article [2], Bailey, Borwein and Plouffe gave the identity

1 1 1 1
36Li (§> — 36Liy <4_1) — 12Lip (g) + 6Li» (6_4) =2 (8.8)

Applying Landen’s identity, we have £(—1/3) = —L£(1/4) and L(—1/8) =
—L(1/9). This reduces the value-identities of Ramanujan to the two equations

1 1 (1\ =? 1y 1, /1\ =?
L\- “L|-)=— d Llz)—-=L|=)=—.
(4>+3 (9) g " (3) 6 (9) 18
We recall the dilogarithm identity in [5] for ideal hyperbolic polygons. Let P be an
ideal polygon in H? with vertices in counterclockwise order x1, . . ., x,, about dH?. If
l;; is the length of the orthogeodesic joining side [x;, x;+1] to [x;, xj41], then by Eq.
(5.4), we have

1

Xis Xjdl, X, Xj = .
[Xi, Xig1 J j+1] COShz(li.//Z)

As Area(P) = (n — 2)m, then x (P) = —n/2. Furthermore, N(P) = n.
Applying the orthospectrum identity in Theorem 4.1 to P, we obtain the equation

2 -2 — 72
2 ﬁ([xi’xi+1’x1'»xj'+1])=—jlf—2 (—6(”2 >+n)=_(” 6)”‘

li—jl=2

If P is the regular ideal n-gon, then in the Poincaré disk model for H?, we can

choose P to have vertices e » fork =0, ...,n — 1. Therefore, taking cross-ratios
and grouping terms, we obtain the equation

L5]

%"E <sin2 (n/n)) + 2 L

( sin (7 /n) ) _ (- 3)m? 8.9)

sin(km /n) 6n
where e, = 0ifnisodd and e, = 1if nis even. In the case of n odd, Eq. (8.9) recovers

the identity of Richmond and Szekeres (see [11, Equation 2.51]) which they derived
using Rogers—Ramanujan partition identities.

8.1 Ideal hexagons and Ramanujan’s value-identities
We now show that Ramanujan’s value-identities 1-5, and identity 8.8 of Bailey, Bor-

wein, Plouffe, correspond to identities for the regular ideal hexagon.
For the regular 6-gon H,, the orthospectrum identity gives

1 1 2
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By Landen’s identity, £(—1/3) = —L(1/4). Therefore applying the squaring identity

e0)-2() <) <))
() <) 15()

Combining this and the identity above for the regular hexagon, we obtain Ramanujan’s
value-identities

1 1.1 n? 1 1./(1 n?
L|- Ll=-)=— Ll=z)-=L|=])=—.
<4>+3 <9> 18 (3) 6 <9> 18
To recover the identity 8.8, we note that by Landen’s identity £(—1/8) = —£(1/9).
Then by the squaring identity, we have

1 1 1 1 1 1
2 (qa)=2(s) +(5) =2(5) ()
Therefore, substituting for £(1/8), we get
1 1 1 1
i Vo122 = _
soc (1) 302 (1) - e (3) woe (2)
1 1 1
=36L|=-)—=36L(-)—-12L(~-).
2 4 9

As £(1/2) = 7?/12, and applying the hexagon identity 3£(1/4) + £(1/9) = n2/6,
we recover identity 8.8.
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