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Abstract
We describe a new connection between the dilogarithm function and the solutions of
Pell’s equation x2 − ny2 = ±1. For each solution x, y to Pell’s equation, we obtain a
dilogarithm identity whose terms are given by the continued fraction expansion of the
associated unit x + y

√
n ∈ Z[√n]. We further show that Ramanujan’s dilogarithm

value-identities correspond to an identity for the regular ideal hyperbolic hexagon.
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1 Dilogarithm and Pell’s equation

Dilogarithm The dilogarithm function Li2(z) is the integral function

Li2(z) = −
∫ z

0

log(1 − t)

t
dt .

It follows that it has power series

Li2(z) =
∞∑

n=1

zn

n2 for |z| ≤ 1.
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142 M. Bridgeman

In [16], Rogers introduced the following normalization for the dilogarithm for x
real,

L(x) = Li2(x) + 1

2
log |x | log(1 − x).

The dilogarithm function arises naturally in many areas of mathematics, including
hyperbolic geometry and number theory (see [17]). In particular, volumes in the Lie
group PSL(2,R) and the symmetric space H3 can be described in terms of the dilog-
arithm (see Sect. 5.1 for discussion).

Pell’s equationPell’s equation for n ∈ N is theDiophantine equation x2−ny2 = ±1
over Z. Pell’s equation has a long and interesting history going back to Archimedes’
cattle problem (see [10]). The equation only has solutions for n square-free, so we
assume n is square-free. Also, by symmetry, we need only consider solutions with
x, y > 0. A solution is positive/negative depending on whether x2 − ny2 = 1, or,
x2 − ny2 = −1. For all square-free n there is always a positive solution but not
necessarily a negative solution. Solutions to Pell’s equation correspond to units in
Z[√n] by identifying x, y with x + y

√
n and it is natural to identify the two. The

smallest positive unit u = x + y
√

n is called the fundamental unit and a well-known
result is that the set of positive units is exactly {uk}, k ∈ N (see [15, Theorem 7.26])).

In this paper, we prove a new and surprising connection between the dilogarithm
and solutions to Pell’s equation. Using earlier work of the author, which gave a dilog-
arithm identity associated to a hyperbolic surface, we obtain a dilogarithm identity for
each solution x, y to Pell’s equation whose terms are given by the continued fraction
expansion of x + y

√
n.

1.1 Dilogarithm identities

The dilogarithm function satisfies a number of classical identities, see [11] for details.
In particular, by adding power series termwise, we have the squaring identity

Li2(z) + Li2(−z) = 1

2
Li2(z2).

It follows by direct computation that this identity holds for the Rogers dilogarithm
with

L(x) + L(−x) = 1

2
L(x2) (Squaring Identity).

The other classic identities are Euler’s reflection identities

L(x) + L(1 − x) = π2

6
, L(x) + L(x−1) = π2

6
(Reflection Identity),

123



Dilogarithm identities for solutions... 143

Landen’s identity (see [9])

L
(

−1

x

)
= −L

(
1

x + 1

)
for x > 0 (Landen’s identity),

and Abel’s well-known 5-term identity

L(x) + L(y) = L(xy) + L
(

x(1 − y)

1 − xy

)
+ L

(
y(1 − x)

1 − xy

)
(Abel’s Identity).

It can be easily shown that the reflection identities and Landen’s identity follow from
Abel’s identity.

A closed form for values of L is only known for a small set of values. These are

L(0) = 0, L(1) = π2

6
, L

(
1

2

)
= π2

12
,

L(φ−1) = π2

10
, L(φ−2) = π2

15
, (1.1)

where φ is the golden ratio. In [11], Lewin gave the following remarkable infinite
identity

∞∑
k=2

L
(

1

k2

)
= π2

6
. (1.2)

2 Results

Using earlier work of the author, we first prove the below new infinite identity for L.
We prove:

Theorem 2.1 If L > 0 then

L(e−L) =
∞∑

k=2

L
(

sinh2
( L
2

)
sinh2

( kL
2

)
)

.

One immediate observation is if we let L → 0, we recover the formula of Lewin in
Eq. (1.2) above.

We now apply the above identity to solutions of Pell’s equation and units in the ring
Z[√n].
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144 M. Bridgeman

Dilogarithm identity for solution to Pell’s equation

In order to obtain our identity associated to a given solution a2 − nb2 = ±1 of Pell’s
equation, we let L satisfy eL/2 = a +b

√
n. We then show that the summation terms in

Theorem 2.1 above are given in terms of the continued fraction expansion of a +b
√

n.
We obtain:

Theorem 2.2 Let u = a + b
√

n ∈ Z[√n] be a solution to Pell’s equation.

• If u is a positive solution with continued fraction convergents r j = h j/k j , then

L
(

1

u2

)
=

∞∑
k=1

L
(

1

(h2k−1)2

)
.

• If u is a negative solution and u2 has convergents R j = Hj/K j , then

L
(

1

u2

)
=

∞∑
k=0

L
(

1

b2n(2H2k−1)2

)
+ L

(
1

(2H2k+1 − H2k)2

)
.

Examples

We now consider some examples:
Case of Z[√2] For Z[√2] the fundamental unit is 3 + 2

√
2 giving

L
(

1

(3 + 2
√
2)2

)
= L

(
1

62

)
+ L

(
1

352

)
+ L

(
1

2042

)
+ L

(
1

11892

)
+ . . . .

We note that 3 + 2
√
2 has convergents rk given by

5

1
,
6

1
,
29

5
,
35

6
,
169

29
,
204

35
,
985

169
,
1189

204
.

It canbe further shown that the units ofZ[√2] are givenby (1+√
2)k .Asu = 1+√

2
is a negative solution to Pell’s equation with u2 = 3 + 2

√
2, we get

L
(

1

3 + 2
√
2

)
= L

(
1

2 × (2)2

)
+ L

(
1

72

)
+ L

(
1

2 × (12)2

)
+ L

(
1

412

)

+L
(

1

2 × (70)2

)
+ L

(
1

2392

)
+ L

(
1

2 × (408)2

)
+ . . . .
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Case of Z[√13] An interesting case of a large fundamental solution occurs for
Z[√13]. Here u = 649 + 180

√
13 is the fundamental unit, giving

L
(

1

842401 + 233640
√
13

)
= L

(
1

12982

)
+ L

(
1

16848032

)

+L
(

1

21868729962

)
. . . .

The continued fraction convergents of u are

1297

1
,
1298

1
,
1683505

1297
,
1684803

1298
,
2185188193

1683505
,
2186872996

1684803
. . .

Pell’s equation overQ

Similarly, we consider Pell’s equation over Q. If a, b ∈ Q satisfy Pell’s equation
a2 − nb2 = ±1, we will identify this with the element a + b

√
n ∈ Q[√n]. Applying

the identity in Theorem 2.1, we get the following:

Theorem 2.3 Let u = a + b
√

n ∈ Q[√n], a, b > 0 satisfy Pell’s equation and let
uk = ak + bk

√
n.

If u is a positive solution, then

L
(

1

u2

)
=

∞∑
k=2

L
(

1

(bk/b)2

)
.

Further if u ∈ Z[√n], then bk/b ∈ Z for all k.
If u is a negative solution, then

L
(

1

u2

)
=

∞∑
k=1

L
(

1

n(b2k/a)2

)
+ L

(
1

(a2k+1/a)2

)
.

Further, if u ∈ Z[√n], then b2k/a, a2k+1/a ∈ Z for all k.

Fibonacci numbersThe goldenmeanφ ∈ Q[√5] corresponds to a negative solution
to Pell’s equation over Q. Also, we have

φk = gk + fk
√
5

2

where fk is the classic Fibonacci sequence 1, 1, 2, 3, 5 . . . and gk is the Fibonacci
sequence 1, 3, 4, 7, 11, . . ..

By Eq. (1.1) we have L(φ−2) = π2/15. Therefore we get the identity,

∞∑
k=1

(
L

(
1

5 f 22n

)
+ L

(
1

g2
2n+1

))
= π2

15
.
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146 M. Bridgeman

Chebyshev polynomials, Pell’s equation and dilogarithms

Chebyshev polynomials arise in numerous areas of mathematics and have a natu-
ral interpretation in terms of Pell’s equation. The Chebyshev polynomial of the first
kind Tn is the unique polynomials satisfying Tn(cos(θ)) = cos(nθ). The Chebyshev
polynomials of the second kind Un is given by

Un(cos(θ)) = sin((n + 1)θ)

sin(θ)
.

We obtain the following corollary:

Corollary 2.4 Let x > 1, then

L

⎛
⎜⎝ 1(

x + √
x2 − 1

)2
⎞
⎟⎠ =

∞∑
n=1

L
(

1

Un(x)2

)
.

The reader interested in knowing more about the dilogarithm function and its gen-
eralizations, is referred to the book [11] and the aforementioned article [17].

3 Units in Z[√n], Pell’s equation
We assume n is not a perfect square. If a +b

√
n ∈ Z[√n] is a unit, then±a ±b

√
n are

also units. Therefore, we need only consider solutions (a, b) ∈ N
2. It follows easily

that a ± b
√

n ∈ Z[√n] is a unit if and only if (a, b) satisfy Pell’s equation over Z

a2 − nb2 = ±1.

We call a solution (a, b) (or the unit a+b
√

n) positive/negative, depending onwhether
the right-hand side of the Pell equation is positive/negative. Whereas there is always
a solution to the positive Pell equation x2 − ny2 = 1, it can be shown that there are
no solutions to x2 − ny2 = −1 for certain n (see [15, Chapter 7]).

Continued fraction convergents

If u ∈ R+, we say u has continued fraction expansion u = [c0, c1, c2, c3, . . .] if ci ∈ Z

and

u = c0 + 1

c1 + 1

c2 + 1

c3 + . . .
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Dilogarithm identities for solutions... 147

By this we mean that if we define rn = [c0, c1, c2, . . . , cn] ∈ Q to be the nth

convergent, then rn → u as n → ∞. If the continued fraction coefficients sat-
isfy cn+r = cn for n > k, we say u is periodic with period r and write u =
[c0, c1, . . . , ck, ck+1, . . . , ck+r ]. We have the following standard description of rn :

Theorem 3.1 [15, Theorems 7.4, 7.5] Let u ∈ R+ with u = [c0, c1, c2, . . .]. Define
hn, kn by

hi = ci hi−1 + hi−2 ki = ci ki−1 + ki−2 i ≥ 0

with (h−2, k−2) = (0, 1) and (h−1, k−1) = (1, 0). Then gcd(hi , ki ) = 1 and

rn = [c0, c1, c2, . . . , cn] = hn

kn
.

The positive units in Z[√n] have the following elegant description.

Theorem 3.2 [15, Theorem 7.26] Let n ∈ N not be a perfect square. Then there is
a unique solution (a, b) ∈ N

2 of Pell’s equation x2 − ny2 = 1 such that the set of
solutions to x2 − ny2 = 1 in N

2 is {(ak, bk)}∞k=1 where

ak + bk
√

n = (a + b
√

n)k .

The pair (a, b) is called the fundamental solution of x2−ny2 = 1.One consequence
of the above is, if u is the fundamental unit, then {uk} gives the set of all positive
solutions to Pell’s equation. Thus the dilogarithm identity in Theorem 2.2 can be
interpreted as a sum over all solutions to Pell’s equation.

4 The orthospectrum identity

In a prior paper, the author proved a dilogarithm identity for a hyperbolic surface with
geodesic boundary. In [6] the identity was generalized to hyperbolic manifolds by the
author and Kahn. The relation to other identities on hyperbolic manifolds, such as the
Basmajian identity (see [3]), the McShane–Mirzakhani identity (see [13,14]), and the
Luo–Tan identity (see [12]), is discussed in [7].

4.1 Hyperbolic geometry

We will use two models for the hyperbolic plane H
2, the upper half-plane model

H = {z | Im(z) > 0}, with hyperbolic metric ds = |dz|/ Im(z), and the Poincaré
model D = {z | |z| < 1} with the hyperbolic metric ds = 2|dz|/(1 − |z|2). In
each model, the group of orientation preserving isometries correspond to the group of
conformal automorphisms and is therefore isomorphic to PSL(2,R).
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148 M. Bridgeman

Fig. 1 Lift of orthogeodesic α to universal cover S̃

InH the geodesics are semi-circles which are orthogonal to the boundary ∂H = R

(including vertical lines). Thus a geodesic can be identifiedwith its endpoints inR×R.
Two disjoint geodesics are ultra parallel if they do not have a common endpoint in R,
and asymptotically parallel if they have a common endpoint. If g, h are ultra parallel,
then by a Móbius transformation m ∈ PSL(2,R), g, h can be mapped to geodesics
m(g), m(h) where m(g) has endpoints 1,−1 and m(h) has endpoints el ,−el for
some l > 0. Then the y-axis is a common perpendicular geodesic to m(g), m(h) inH,
showing that g, h have a common perpendicular. Also by simple integration, we have
that l is the length of the common perpendicular. If g, h are asymptotically parallel,
then there is no common perpendicular and the region between g, h is said to form a
cusp at the common endpoint in R.

4.2 Orthogeodesics and orthospectrum

In order to state the orthospectrum identity, we recall some basic terms.
Let S be a finite area hyperbolic surface with totally geodesic boundary. Then an

orthogeodesic for S is a proper geodesic arc α which is perpendicular to the boundary
∂S at its endpoints. The set of orthogeodesics of S is denoted O(S). Each boundary
component is either a closed geodesic or an infinite geodesic whose endpoints are
boundary cusps of S. We let N (S) be the number of boundary cusps of S. Further, let
χ(S) be given by Area(S) = −2πχ(S). We note that if there are no boundary cusps,
then χ(S) is the Euler Characteristic of S.

Wenote that for S afinite area hyperbolic surfacewith totally geodesic boundary, the
universal cover S̃ ⊆ H

2 is a simply connected convex region bounded by a countable
collection of geodesics (see Fig. 1). A lift of an orthogeodesic is then a common
perpendicular to two boundary components of S̃ that are ultra parallel.

One elementary example of a surface is an ideal hyperbolic n-gon. In this case,
N (S) = n and O(S) is a finite set. Also as Area(S) = (n−2)π , then χ(S) = 1−n/2.
In fact, ideal hyperbolic n-gons are the only surfaces with O(S) finite.

The dilogarithm orthospectrum identity is as follows:
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Dilogarithm identities for solutions... 149

Theorem 4.1 (Dilogarithm Orthospectrum Identity, [5]) Let S be a finite area hyper-
bolic surface with totally geodesic boundary ∂S 	= 0. Then

∑
α∈O(S)

L
⎛
⎝ 1

cosh2
(

l(α)
2

)
⎞
⎠ = −π2

12
(6χ(S) + N (S)),

and equivalently,

∑
α∈O(S)

L
⎛
⎝− 1

sinh2
(

l(α)
2

)
⎞
⎠ = π2

12
(6χ(S) + N (S)).

4.3 A geometric decomposition using orthogeodesics

For completeness, we now give a sketch of the proof of the orthospectrum identity. We
will see that it follows from an elementary decomposition of the unit tangent bundle
of S.

Let T1(S) be the unit tangent bundle of S. Given v ∈ T1(S), we letαv be themaximal
geodesic with tangent vector v. Generically (except for a set of measure zero), αv will
be a geodesic arc with endpoints on the boundary of S. We define an equivalence
relation on T1(S), by defining v ∼ w if the geodesics αv, αw are homotopic rel. ∂S.
This gives a partition of (a full measure subset of) T1(S) into equivalence classes of two
types, one type corresponding to the orthogeodesics and the other type corresponding
to boundary cusps. For each orthogeodesic γ ∈ O(S) we have an equivalance class
Eγ corresponding to all w ∈ T1(S) such that αw is homotopic rel. boundary to γ . For
each boundary cusp c, we have an equivalence class Ec corresponding to allw ∈ T1(S)

such that αw is homotopic rel boundary out the cusp c. Then the equivalence relation
gives a volume relation

V ol(T1(S)) =
∑

γ∈O(S)

V ol(Eγ ) +
∑

c boundar y cusp

V ol(Ec).

For the left-hand side, we have V ol(T1(S)) = 2π Area(S) = −4π2χ(S).
Lifting an orthogeodesic γ to γ̃ in the universal cover S̃, we have γ̃ is the common

perpendicular to two geodesic components g, h of ∂ S̃. Then Eγ lifts to the set Ẽγ of
vectors which are between g and h in the following sense. The vector v ∈ T1(H2) is
between g and h, if the unique geodesic αv tangent to v, intersects both g and h. Thus
it follows that V ol(Eγ ) only depends on l(γ ) and, by direct calculation (see [5]), we
have

V ol(Eγ ) = 8L
⎛
⎝ 1

cosh2
(

l(γ )
2

)
⎞
⎠ . (4.3)
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150 M. Bridgeman

Similarly, the equivalence class corresponding to a cusp Ec lifts to the set of tangent
vectors between two geodesics g, h that have a common ideal endpoint. Therefore,
as PSL(2,R) acts transitively on triples on R, we can assume the endpoints of g are
0, 1 and h are 1, 2. Therefore each Ec are isometric and have the same volume. Then
applying the identity to an ideal triangle, which has no orthogeodesics, 3 boundary
cusps and area π , we get

V ol(Ec) = 2π2

3
.

Substituting these gives the orthospectrum identity,

V ol(T1(S)) = −4π2χ(S) =
∑

γ∈O(S)

8L
⎛
⎝ 1

cosh2
(

l(γ )
2

)
⎞
⎠ + N (S)

2π2

3
.

In the original paper [5], we showed that the orthospectrum identity above recovers
the reflection identities, Landen’s identity and Abel’s identity, by considering the
elementary cases of the ideal quadrilateral and ideal pentagon, respectively.

5 An infinite dilogarithm identity

Given z1, z2, z3, z4 ∈ Ĉ distinct points we define the cross-ratio by

[z1, z2, z3, z4] = (z1 − z2)(z4 − z3)

(z1 − z3)(z4 − z2)
.

Let H be the upper half-plane model for the hyperbolic plane and x1, x2, x3, x4 ∈
∂H = R be distinct points, ordered counterclockwise on R. If g is the geodesic with
endpoints x1, x2, and h is the geodesic with endpoints x3, x4, then g, h are disjoint.
We let l be the perpendicular distance between g and h. Then we can choose a Möbius
transformation m ∈ PSL(2,R) such that m(g) has endpoints −1, 1 and m(h) has
endpoints−el , el . Then by invariance of the cross-ratio underMöbius transformations,
we have

[x1, x2, x3, x4] = [−1, 1, el ,−el ] = 1

cosh2(l/2)
(5.4)

We now prove Theorem 2.1.

Proof of Theorem 2.1 Let S be an annulus with two geodesic boundary components
g, h. Let g be a closed geodesic of length L , and h an infinite geodesic with a single
boundary cusp (see Fig. 2).

We lift S to the upper half-plane with g lifted to the y-axis. Further let λ = eL .
Then S̃ is an infinite-sided ideal polygon invariant under multiplication by λ (see Fig.
3). ��
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Fig. 2 Surface S

Fig. 3 Universal cover of S

We normalize so that one of the ideal vertices is at z = 1. Then the vertices of S̃ are
0,∞ and λk for k ∈ Z. The edges of S̃ are the lift of g, denoted g̃, which has vertices
0,∞, and the lifts of h, labelled h̃k , which has vertices λk, λk+1.

Wenowcompute the orthospectrumof S. Everyorthogeodesic lifts to a geodesic that
is the common perpendicular between two boundary components of S̃. We consider
two types.

If α is an orthospectrum with an endpoint on g, then it lifts to α̃ which is a per-
pendicular between two edges of S̃, with one edge being g̃. By the Z action, which
preserves g̃, we can choose α̃ to have the other endpoint on h̃0. Therefore α has length
l satisfying

1

cosh2(l/2)
= [∞, 0, 1, λ] = λ − 1

λ
= 1 − e−L .

Any other orthogeodesic α has both endpoints in h. Therefore α lifts to α̃ which is
the perpendicular between h̃ j , h̃k for some j < k. By the action of Z, we can assume
j = 0. Also, as adjacent sides do not have a common perpendicular, we have that
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152 M. Bridgeman

k ≥ 2. Denoting the length lk of the perpendicular between h̃0 and h̃k , we have

1

cosh2(lk/2)
= [1, λ, λk, λk+1] = (1 − λ)(λk+1 − λk)

(1 − λk)(λk+1 − λ)
= λk−1 (λ − 1)2

(λk − 1)2

= (λ1/2 − λ−1/2)2

(λk/2 − λ−k/2)2
= sinh2(L/2)

sinh2(kL/2)
.

As Area(S) = π , then χ(S) = −1/2. Furthermore N (S) = 1. Thus by Theorem 4.1,
we have the dilogarithm identity for S is

L(1 − e−L) +
∞∑

k=2

L
(

sinh2(L/2)

sinh2(kL/2)

)
= −π2

12
(−6(1/2) + 1) = π2

6
.

Using the reflection identity L(1 − x) + L(x) = π2/6, we get

L(e−L) =
∞∑

k=2

L
(

sinh2(L/2)

sinh2(kL/2)

)
.

��

5.1 Hyperbolic volume and PSL(2,R) volume

Another important normalization of the dilogarithm is the Bloch–Wigner dilogarithm
D : C − {0, 1} → R by

D(z) = Im(Li2(z)) + arg(1 − z) log |z|.

This was introduced by Bloch on his work in K-theory and regulators and by Wigner
in his work on Lie groups (see [4]).

The Bloch–Wigner dilogarithm function also arises naturally in the formula for the
volume of an ideal hyperbolic tetrahedron. If T is an ideal hyperbolic tetrahedron T
in H

3, with ideal vertices z1, z2, z3, z4 ∈ Ĉ, then a classical result (see [8, Equation
4.13] states that the volume of T is given by

V ol(T ) = D([z1, z2, z3, z4]).

Similarly, in the orthospectrum identity, we see that L(x) is also a volume. If
x1, x2, x3, x4 are distinct points ordered counterclockwise on ∂H2, we let g be the
geodesic with endpoints x1, x2 and h the geodesic with endpoints x3, x4. We let T
be the set of tangent vectors in T1(H2) between g, h as described in Sect. 4.3. Then,
considering the volume measure on T1(H2), by Eq. (4.3), we have

V ol(T ) = 8L([x1, x2, x3, x4]).
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Dilogarithm identities for solutions... 153

Interpreting T1(H2) as PSL(2,R), we see that the volume of an ideal tetrahedron in
PSL(2,R) is given by the Rogers dilogarithm of the cross-ratio of its vertices.

6 Proof of identity for solutions to Pell’s equation overQ

We now prove the dilogarithm identity for solutions to Pell’s equation over Q given
in Theorem 2.3.

Proof of Theorem 2.3 Let eL/2 = u = a + b
√

n, then e−L/2 = u−1 = ±(a − b
√

n)

with the sign depending on if u is a positive or negative unit. If u is a positive unit,
then

cosh(L/2) = a and sinh(L/2) = b
√

n.

If u is a negative unit, then

sinh(L/2) = a and cosh(L/2) = b
√

n.

In both cases we have

uk = ekL/2 = cosh(kL/2) + sinh(kL/2).

We let mk = sinh(kL/2) and nk = cosh(kL/2). The dilogarithm identity gives

L
(

1

u2

)
=

∞∑
k=2

L
(

sinh2(L/2)

sinh2(kL/2)

)
=

∞∑
k=2

L
(

m2
1

m2
k

)
.

If u is a positive root, then m1 = sinh(L/2) = b
√

n and n1 = cosh(L/2) = a. Then
by the addition formulae, we have

mk+1 = a.mk + bnk
√

n and nk+1 = nka + bmk
√

n.

By induction, we have nk = ak and mk = bk
√

n, and

bk+1 = abk + bak and ak+1 = aak + nbbk .

Substituting, we get

L
(

1

u2

)
=

∞∑
k=1

L
(

b2

b2k

)
=

∞∑
k=1

L
(

1

(bk/b)2

)
.

If u is a negative solution, then m1 = sinh(L/2) = a and n1 = cosh(L/2) = b
√

n.
Then, by the addition formulae we have,

mk+1 = bmk
√

n + ank and nk+1 = bnk
√

n + amk .
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Therefore

n2k = a2k, n2k+1 = b2k+1
√

n, m2k = b2k
√

n, and m2k+1 = a2k+1.

It follows that

b2k = ba2k−1 + ab2k−1 and a2k+1 = bb2kn + aa2n .

Therefore,

L
(

1

u2

)
=

∞∑
k=1

L
(

m2
1

m2
k

)
=

∞∑
k=1

L
(

1

n(b2k/a)2

)
+ L

(
1

(a2k+1/a)2

)
.

��
We now prove Corollary 2.4 relating the identity to the Chebyshev polynomials Un

of the second kind.

Proof of Corollary 2.4 We have the Chebyshev polynomials Tn(x), Un(x) ∈ R[x]. We
let x = cos(θ), then sin(θ) = √

1 − x2. Therefore

eiθ = cos(θ) + i sin(θ) = x + i
√
1 − x2 = x +

√
x2 − 1.

Thus

einθ = (x +
√

x2 − 1)n and e−inθ = (x −
√

x2 − 1)n .

Substituting, we get

Tn(x) = cos(nθ) = 1

2

(
(x +

√
x2 − 1)n + (x −

√
x2 − 1)n

)

and

Un−1(x) = sin(nθ)

sin θ
= 1

2
√

x2 − 1

(
(x +

√
x2 − 1)n − (x −

√
x2 − 1)n

)
.

As this holds for |x | < 1, it also holds for all x ∈ R. If x > 1, we define L > 0 to be
given by x = cosh(L/2). Then

√
x2 − 1 = sinh(L/2), giving

x +
√

x2 − 1 = eL/2 and x −
√

x2 − 1 = e−L/2.

Therefore, by the above formulae

Tk(x) = ekL/2 + e−kL/2

2
= cosh(kL/2) and

Uk−1(x) = ekL/2 − e−kL/2

2 sinh(L/2)
= sinh(kL/2)

sinh(L/2)
.
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Thus

L

⎛
⎜⎝ 1(

x + √
x2 − 1

)2
⎞
⎟⎠ =

∞∑
k=2

L
(

sinh2(L/2)

sinh2(kL/2)

)
=

∞∑
k=1

L
(

1

Uk(x)2

)
.

��

7 Identity for continued fraction convergents

We now consider the case where u ∈ Z[√n]. We prove Theorem 2.2 expressing the
above in terms of the convergents r j = h j/k j of their continued fractions expansion.
First, we have the following lemma.

Lemma 7.1 Let u = a +b
√

n ∈ Z[√n] be a solution to Pell’s equation with a, b ∈ N.
If u is a positive solution, then u = [2a − 1, 1, 2a − 2]. If u is a negative solution,
then u = [2a].
Proof If u is a negative solution, then u = a +√

a2 + 1. Therefore u2 −2au −1 = 0.
Therefore

u = 2a + 1

u
.

Thus u = [2a].
If u is a positive solution, then u = a+√

a2 − 1. Therefore u satisfies the quadratic
u2 − 2au + 1 = 0. Rewriting, we have

u = 2a − 1

u
= 2a − 1 + 1 − 1

u
= 2a − 1 + u − 1

u
.

Now we have

u − 1

u
= 1

u
u−1

= 1

1 + 1
u−1

= 1

1 + 1
2a−2+ u−1

u

.

Therefore u = [2a − 1, 1, 2a − 2]. ��
Using the above description of the continued fraction, we will show the relation

between the approximates r j = h j/k j for u and the coefficients a j , b j given by
u j = a j + b j

√
n. This will allow us to prove Theorem 2.2.

Lemma 7.2 Let u = a + b
√

n ∈ Z[√n] be a solution to Pell’s equation.
If u is a positive solution and u has continued fraction convergents r j = h j/k j ,

then k j = h j−2 and

L
(

1

u2

)
=

∞∑
j=1

L
(

1

(h2 j−1)2

)
.
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If u is a negative solution and u2 has continued fraction convergents R j = Hj/K j ,
then

L
(

1

u2

)
=

∞∑
j=0

(
L

(
1

nb2(2H2 j−1)2

)
+ L

(
1

(2H2k+1 − H2k)2

))
.

Proof Let u = a + b
√

n = eL/2, then uk = ak + bk
√

n = cosh(kL/2)+ sinh(kL/2).
If u is a positive solution, then u = [2a − 1, 1, 2a − 2]. Therefore we have

(h0, h−1) = (2a − 1, 1). By Theorem 3.1 describing the continued fraction con-
vergents, for k > 0

[
h2k

h2k−1

]
= Ak

[
2a − 1

1

]

where

A =
[
2a − 2 1

1 0

] [
1 1
1 0

]
=

[
2a − 1 2a − 2

1 1

]
.

The matrix A has characteristic polynomial x2 − 2ax + 1. Therefore A has eigen-
values u, u−1 and eigenvectors (u − 1, 1), (1 − u, u). Diagonalizing, we get

[
h2k

h2k−1

]
= 1

u2 − 1

[
u − 1 1 − u
1 u

] [
uk 0
0 u−k

] [
u u − 1

−1 u − 1

] [
2a − 1

1

]
.

As u = eL/2, we have

h2k = (u − 1)
(
uk+2 + u−(k+1)

)
u2 − 1

= cosh((k + 3
2 )L/2)

cosh(L/4)
, (7.5)

h2k−1 = uk+2 − u−k

u2 − 1
= sinh((k + 1)L/2)

sinh(L/2)
. (7.6)

It follows that for k ≥ 1

h2k−3 = sinh(kL/2)

sinh(L/2)
= bk

b
. (7.7)

Therefore

L
(

1

u2

)
=

∞∑
k=2

L
(

1

(bk/b)2

)
=

∞∑
j=1

L
(

1

(h2 j−1)2

)
.

Similarly, we note that as (k0, k1) = (1, 0), then applying the above analysis we get

k2 j = cosh(( j + 1
2 )L/2)

cosh(L/4)
= h2 j−2
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and

k2 j−1 = sinh( j L/2)

sinh(L/2)
= h2 j−3.

Therefore k j = h j−2.
Let u is a negative solution. Then for k odd, ak = sinh(kL/2), bk

√
n = cosh(kL/2)

and for k even, bk
√

n = sinh(kL/2), ak = cosh(kL/2).
As u = [2a], by Theorem 3.1 we have the formula

h j+1 = 2ah j + h j−1 and k j+1 = 2ak j + k j+1,

with (h−2, k−2) = (0, 1) and (h−1, k−1) = (1, 0). Iterating, we get h j = 0, 1, 2a, . . .

and k j = 1, 0, 1, 2a, . . .. Therefore k j = h j−1 for j ≥ −1. We focus on calculating
hk . As (h−1, h−2) = (1, 0), we have the recursion

[
hk

hk−1

]
= Ak+1

[
1
0

]
, where A =

[
2a 1
1 0

]
.

The matrix A has characteristic polynomial x2 − 2ax − 1 = 0. Therefore A has
eigenvalues u,−u−1 and eigenvectors (u, 1), (1,−u). Thus,

[
hk

hk−1

]
= 1

u2 + 1

[
u 1
1 −u

] [
uk+1 0
0 (−u)−k−1

] [
u 1
1 −u

] [
1
0

]
.

Multiplying, we get

hk = 1

u2 + 1

(
uk+3 + (−1)k+1u−(k+1)

)
= 1

u + u−1

(
uk+2 + (−1)k+1u−(k+2)

)
.

For k odd, we have

hk = cosh((k + 2)L/2)

cosh(L/2)
= bk+2

b
.

Similarly, for k even, we have

hk = sinh((k + 2)L/2)

cosh(L/2)
= bk+2

b
.

Thus for all k ≥ 0

bk

b
= hk−2.

We let Hj , K j be the convergents for the continued fraction expansion of u2. Then
u2 = eL is a positive solution to Pell’s equation. Applying Eqs. 7.5 and 7.6 above we
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have,

H2k = cosh((2k + 3)L/2

cosh(L/2)
= b2k+3

b
= h2k+1.

H2k−1 = sinh((k + 1)L)

sinh(L)
= 1

2

(
sinh(2k + 1)L/2

sinh(L/2)
+ cosh(2k + 1)L/2

cosh(L/2)

)

= 1

2

(a2k+1

a
+ h2k−1

)
.

Also, if (u2)k = Ak + Bk
√

n then Ak = a2k, Bk = b2k . Then by Eq. (7.7),

H2k−3 = Bk

B1
= b2k

2ab
= h2k−2

2a
.

Therefore

h2k = 2aH2k−1 and h2k+1 = H2k .

Also

b2k

a
= 2bH2k−3 and

a2k+1

a
= 2H2k−1 − h2k−1 = 2H2k−1 − H2k−2.

Thus, if u is a negative solution to Pell’s equation

L
(

1

u2

)
=

∞∑
k=0

L
(

1

n(2bH2k−1)2

)
+ L

(
1

(2H2k−1 − H2k−2)2

)
.

��

8 Ideal n-gon identities

We now describe the orthospectrum identity for a general ideal hyperbolic n-gon. We
show that the case of the regular ideal hyperbolic (2n+1)-gon recovers an identity of
Richmond and Szekeres (see [11, Equation 2.51]). We also show that the regular ideal
hyperbolic hexagon case recovers the following value-identities.

Ramanujan gave the following value-identities for linear combinations of specific
values of L (see [1, Entry 39]):

1. Li2
( 1
3

) − 1
6Li2

( 1
9

) = π2

18 − log2 3
6

2. Li2
(− 1

2

) + 1
6Li2

( 1
9

) = −π2

18 + log 2 log 3 − log2 2
2 − log2 3

3

3. Li2
( 1
4

) + 1
3Li2

( 1
9

) = π2

18 + 2 log 2 log 3 − 2 log2 2 − 2 log2 3
3

4. Li2
(− 1

3

) − 1
3Li2

( 1
9

) = −π2

18 − log2 3
6

5. Li2
(− 1

8

) + Li2
( 1
9

) = − log2(9/8)
2
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More recently, in the article [2], Bailey, Borwein and Plouffe gave the identity

36Li2

(
1

2

)
− 36Li2

(
1

4

)
− 12Li2

(
1

8

)
+ 6Li2

(
1

64

)
= π2. (8.8)

Applying Landen’s identity, we have L(−1/3) = −L(1/4) and L(−1/8) =
−L(1/9). This reduces the value-identities of Ramanujan to the two equations

L
(
1

4

)
+ 1

3
L

(
1

9

)
= π2

18
and L

(
1

3

)
− 1

6
L

(
1

9

)
= π2

18
.

We recall the dilogarithm identity in [5] for ideal hyperbolic polygons. Let P be an
ideal polygon inH2 with vertices in counterclockwise order x1, . . . , xn about ∂H2. If
li j is the length of the orthogeodesic joining side [xi , xi+1] to [x j , x j+1], then by Eq.
(5.4), we have

[xi , xi+1, x j , x j+1] = 1

cosh2(li j/2)
.

As Area(P) = (n − 2)π , then χ(P) = −n/2. Furthermore, N (P) = n.
Applying the orthospectrum identity in Theorem 4.1 to P , we obtain the equation

∑
|i− j |≥2

L([xi , xi+1, x j , x j+1]) = −π2

12

(
−6

(
n − 2

2

)
+ n

)
= (n − 3)π2

6
.

If P is the regular ideal n-gon, then in the Poincaré disk model for H2, we can

choose P to have vertices e
2π ik

n for k = 0, . . . , n − 1. Therefore, taking cross-ratios
and grouping terms, we obtain the equation

en

2
L

(
sin2 (π/n)

)
+


 n
2 �∑

k=2

L
(

sin2(π/n)

sin2(kπ/n)

)
= (n − 3)π2

6n
(8.9)

where en = 0 if n is odd and en = 1 if n is even. In the case of n odd, Eq. (8.9) recovers
the identity of Richmond and Szekeres (see [11, Equation 2.51]) which they derived
using Rogers–Ramanujan partition identities.

8.1 Ideal hexagons and Ramanujan’s value-identities

We now show that Ramanujan’s value-identities 1–5, and identity 8.8 of Bailey, Bor-
wein, Plouffe, correspond to identities for the regular ideal hexagon.

For the regular 6-gon Hreg the orthospectrum identity gives

6L
(
1

3

)
+ 3L

(
1

4

)
= π2

2
.
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By Landen’s identity, L(−1/3) = −L(1/4). Therefore applying the squaring identity
we get

1

2
L

(
1

9

)
= L

(
1

3

)
+ L

(
−1

3

)
= L

(
1

3

)
− L

(
1

4

)
.

Thus, we obtain

L
(
1

3

)
− L

(
1

4

)
= 1

2
L

(
1

9

)
.

Combining this and the identity above for the regular hexagon, we obtain Ramanujan’s
value-identities

L
(
1

4

)
+ 1

3
L

(
1

9

)
= π2

18
L

(
1

3

)
− 1

6
L

(
1

9

)
= π2

18
.

To recover the identity 8.8, we note that by Landen’s identityL(−1/8) = −L(1/9).
Then by the squaring identity, we have

1

2
L

(
1

64

)
= L

(
1

8

)
+ L

(
−1

8

)
= L

(
1

8

)
− L

(
1

9

)
.

Therefore, substituting for L(1/8), we get

36L
(
1

2

)
− 36L

(
1

4

)
− 12L

(
1

8

)
+ 6L

(
1

64

)

= 36L
(
1

2

)
− 36L

(
1

4

)
− 12L

(
1

9

)
.

As L(1/2) = π2/12, and applying the hexagon identity 3L(1/4) + L(1/9) = π2/6,
we recover identity 8.8.
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