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1. Introduction

Any discrete faithful representation of the fundamental group 71(.S) of a closed ori-
ented surface S of genus greater than 1 into PSLy(R) is determined, up to conjugacy
in PGL2(R), by the translation lengths of (the images) of a finite collection of elements
represented by simple closed curves. More precisely, a collection of 6g — 5 simple closed
curves will be enough but 6g — 6 simple closed curve will not suffice, see Schmutz [32]
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and Hamenstadt [17]. In PSLy(R) the translation length of an element is determined
by the absolute value of the trace (which is well-defined, although the trace is not), so
one may equivalently say that a discrete faithful representation of m1(S) into PSL2(R)
is determined by the (absolute values of) the traces of a finite collection of elements
represented by simple closed curves.

We establish analogues of this result for Hitchin representations. The fact that traces
of simple closed curves determine the representation is more surprising in the Hitchin
setting as the trace does not even determine the conjugacy class of an element in PSL4(R)
if d > 3.

In the proof, we use Lusztig positivity to establish transversality properties for limit
curves of Hitchin representations, and more generally for positive quadruples of flags.
We also establish a rigidity result which depends on correlation functions associated to
triples of simple closed curves. We hope that these transversality and rigidity results are
of independent interest and that this paper will serve as an introduction to the beautiful
algebraic ideas for mathematicians with a more geometric background.

Hitchin representations. A Hitchin representation of dimension d is a representation of
m1(S) into PSL4(R) which may be continuously deformed to a d-Fuchsian representation
that is the composition of the irreducible representation of PSLy(R) into PSLgz(R) with
a discrete faithful representation of 71 (S) into PSLa(R). The Hitchin component Hq(S)
of all Hitchin representations of mq(S) into PSLyz(R), considered up to conjugacy in
PGL4(R), is homeomorphic to R~(@~Dx(9) In particular, Ho(S) is the Teichmiiller
space of S — see Section 2 for details and history.

A Hitchin representation is said to be self dual if it is conjugate to its contragredient.
Self dual Hitchin representations take values in PSp(2n,R) and PSO(n,n + 1), when
d = 2n or d = 2n + 1 respectively. The set SH4(S) of self dual representations into
PSL4(R) is a contractible submanifold of H4(S) (see [18]).

Spectrum rigidity. The spectral length of a conjugacy class v in 71(S) — or equivalently
a free homotopy class of curve in S — with respect to a Hitchin representation p is

L (p) :=log A(p(7))

where A(p(7)) is the spectral radius of p(y).
The marked length spectrum of p is the function from the set of conjugacy classes in
m1(S) defined by

L(p) : v = Ly(p).

Similarly, the marked trace spectrum is the map

v = [ Tr(p(7))l,



M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901 3

where | Tr(A)| is the absolute value of the trace of a lift of a matrix A € PSLy4(R) to
SL4(R).
Our first main result is then

Theorem 1.1. [SIMPLE MARKED LENGTH RIcIDITY| Two Hitchin representations of a
closed orientable surface of genus greater than 2 are equal whenever their marked length
spectra coincide on simple non-separating curves.

The restriction on the genus may not only reflect the limit of our methods: we have
extended this result to surfaces with boundary, see Section 11, and it is clear that simple
length rigidity fails for the pair of pants when d > 2.

We obtain a finer result for the trace spectrum

Theorem 1.2. [SIMPLE MARKED TRACE RICGIDITY] Two Hitchin representations of a
closed orientable surface of genus greater than 2 are equal whenever their marked trace
spectra coincide on simple non-separating curves. Furthermore, if S is a closed orientable
surface of genus greater than 2 and d > 2, then there exists a finite set Lq4(S) of simple
non-separating curves, so that two Hitchin representations of m1(S) of dimension d are
equal whenever their marked trace spectra coincide on L4(S).

Dal’bo and Kim [11] earlier proved that Zariski dense representations of a group I into
a semi-simple Lie group G without compact factor are determined, up to automorphisms
of G, by the marked spectrum of translation lengths of all elements on the quotient
symmetric space G/K. Similar results were obtained by Charette and Drumm [8] for
subgroups of the affine Minkowski group. Bridgeman, Canary, Labourie and Sambarino
[6] proved that Hitchin representations, are determined up to conjugacy in PGL4(R) by
the spectral radii of all elements. Bridgeman and Canary [5] proved that discrete faithful
representations of 1 (S) into PSL(2,C) are determined by the translation lengths of
simple non-separating curves on S. Duchin, Leininger and Rafi [12] showed that the
simple marked length spectrum determines a flat surface, but that no collection of finitely
many simple closed curves suffices to determine a flat surface. On the other hand, Marché
and Wolff [25, Section 3] gave examples of non-conjugate, indiscrete, non-elementary
representations of a closed surface group of genus two into PSLy(R) with the same simple
marked length spectra.

In Section 11 we establish a version of Theorem 1.1 for Hitchin representations of
compact surfaces with boundary which are “complicated enough,” while in Section 10
we establish an infinitesimal version of Theorem 1.1.

Isometry groups of the intersection. We apply Theorem 1.1 to characterize diffeomor-
phisms preserving the intersection function of representations in H4(S).

In Teichmiiller theory, the intersection I(p, o) of representations p and o in 7(S5) is
the length with respect to o of a random geodesic in H?/p(m1(S)) — where H? is the



4 M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901

hyperbolic plane. Thurston showed that the Hessian of the intersection function gives
rise to a Riemannian metric on 7 (S), which Wolpert [33] showed was a multiple of the
classical Weil-Petersson metric — see also Bonahon [2], McMullen [28], and Bridgeman
[4] for further interpretation. As a special case of their main result, Bridgeman, Canary,
Labourie and Sambarino [6] used the Hessian of a renormalized intersection function to
construct a mapping class group invariant, analytic, Riemannian metric on H4(.5), called
the pressure metric — see Section 8 for details.

Royden [30] showed that the isometry group of 7(S), equipped with the Teichmiiller
metric, is the extended mapping class group, while Masur and Wolf [27] established the
same result for the Weil-Petersson metric.

In our context, the intersection isometry group — respectively self dual intersection
isometry group— is the set of those diffeomorphisms of H4(S) — respectively SHq(S) —
preserving I.

Theorem 1.3. [SELF DUAL ISOMETRY GROUP| For a surface of genus greater than 2, the
self dual intersection isometry group coincides with the extended mapping class group of

S.
‘We have a finer result when d = 3.

Theorem 1.4. [ISOMETRY GROUP IN DIMENSION 3| For a surface S of genus greater
than 2, the intersection isometry group of Hs(S) is generated by the extended mapping
class group of S and the contragredient involution.

Since, as we will see in the proof, isometries of the intersection function are also
isometries of the pressure metric, we view this as evidence for the conjecture that this is
also the isometry group of the pressure metric — See Section 8.1 for precise definitions.

Our proof follows the outline suggested by the proof in Bridgeman—Canary [5] that
the isometry group of the intersection function on quasifuchsian space is generated by
the extended mapping class group and complex conjugation.

A key tool in the proof of Theorem 1.4 is a rigidity result for the marked simple, non-
separating Hilbert length spectrum for a representation into PSL(3,RR), see Section 9.
Kim [19], see also Cooper-Delp [10], had previously proved a marked Hilbert length
rigidity theorem for the full marked length spectrum.

Positivity and correlation functions. Every element of the image of a Hitchin represen-
tation is purely loxodromic, i.e. diagonalizable with real eigenvalues of distinct modulus.
We introduce correlation functions which record the relative positions of eigenspaces of
elements in the image and give rise to a rigidity result for the restrictions of Hitchin rep-
resentation to certain three generator subgroups. This new rigidity result relies crucially
on a new transversality result for eigenbases of images of disjoint curves.

If p is a Hitchin representation of dimension d, and =y is a non-trivial element, a matrix
representing p(7y) may be written —see Section 2 — as
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d

p(Y) =D Xi (p(1)Pi (p()) ,

=1

where A1 (p(7)) > ... > Aa(p(y)) > 0 are the eigenvalues (of some lift) of p(vy) and
pi (p(7)) are the projectors onto the corresponding 1-dimensional eigenspaces. Let

o A= (0oq,...,ay) be an n-tuple of non-trivial elements of 1 (5),
* I =(ij)jeq1,.. ny Pean n-tuple of elements in {1,...,d}.

The associated correlation function Tr(A) on Hq(S) is defined by

Ti(A) o Tr | ] s, (o))

j=1

We show that finitely many of these correlation functions often suffice to determine
the restriction of a Hitchin representation to a three generator subgroup. One may use
this result to give an embedding of H4(S) in some RY and we hope that a refinement
of these ideas could yield new parametrisations of H4(S). In the statement below, recall
that a pair of disjoint simple closed curves is said to be non-parallel if they do not bound
an annulus.

Theorem 1.5. [RIGIDITY FOR CORRELATIONS FUNCTIONS| Let p and o be Hitchin rep-
resentations in Hq(S). Suppose that o, 8,6 € m1(S) — {1} are represented by based loops
which are freely homotopic to a collection of pairwise disjoint and non-parallel simple
closed curves. Assume that

(1) for any n € {a,B,6}, p(n) and o(n) have the same eigenvalues,
(2) foralli,j,k in{1,...,d}

Ti,j,k(aa 67 6)
Tj,k(ﬂa 6)

_ Ti,j,’f(a’ B, 5)
(p) - Tj,k(67 5) <U>7

then p and o are conjugate, in PGL4(R), on the subgroup of m1(S) generated by o, 5 and
7.

Before even stating that theorem, we need to prove the relevant correlation functions
never vanish. This will be a corollary of the following theorem. First recall that a Hitchin
representation in H4(S) defines a limit curve in the flag manifold of R%, so that any two
distinct points are transverse. Recall also that any transverse pair of flags a and b in R¢
defines a decomposition of R? into a sum of d lines L (a,b), ... Ly(a,b).

Theorem 1.6. [TRANSVERSE BASES| Let p be a Hitchin representation of dimension d.
Let (a,x,y,b) be four cyclically ordered points in the limit curve of p, then any d lines in
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{L1(a,b),...,Lq(a,b), L1(x,y),..., La(z,y)}
are in general position.

This last result is a consequence of the positivity theory developed by Lusztig [23] and
used in the theory of Hitchin representations by Fock—Goncharov [13] and is actually
a special case of a more general result about positive quadruples, see Theorem 3.6.
Theorem 3.6 may be familiar to experts but we could not find a proper reference to it
in the literature.

We also establish a more general version of Theorem 1.5, see Theorem 4.4.

Structure of the proof. Let us sketch the proof of Theorem 1.1. The proof runs through
the following steps. We first show, in Section 6, that if the length spectra agree on sim-
ple non-separating curves, then all the eigenvalues agree for these curves. This follows
by considering curves of the form a8 when « and 8 have geometric intersection one
and using an asymptotic expansion. A similar argument yields that ratio of correlation
functions agree for certain triples of curves that only exist in genus greater than 2, see
Theorem 7.1, and a repeated use of Theorem 1.5 concludes the proof of Theorem 1.1.
Theorem 1.6 is crucially used several times to show that coefficients appearing in asymp-
totic expansions do not vanish.
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2. Hitchin representations and limit maps
2.1. Definitions

Let S be a closed orientable surface of genus g > 2. A representation p : m1(S) —
PSL2(R) is said to be Fuchsian if it is discrete and faithful. Recall that Teichmiiller space
T(S) is the subset of
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Hom(m(S), PSL2(R))/PGL2(R)

consisting of (conjugacy classes of) Fuchsian representations.

Let 74 : PSL2(R) — PSL4(R) be the irreducible representation (which is well-defined
up to conjugacy in PGL4(R)). A representation o : m1(S) — PSLg(R) is said to be
d-Fuchsian if it has the form 74 o p for some Fuchsian representation p : m(S) —
PSL2(R). A representation o : m1(S) — PSL4(R) is a Hitchin representation if it may be
continuously deformed to a d-Fuchsian representation. The Hitchin component H4(S) is
the component of the space of reductive representations up to conjugacy:

Hom™ (71 (S), PSL4(R))/PGL4(R)

consisting of (conjugacy classes of) Hitchin representations. In analogy with Teichmiiller
space T (S) = Ha(S), Hitchin proved that H4(S) is a real analytic manifold diffeomorphic
to a cell.

Theorem 2.1. (Hitchin [18]) If S is a closed orientable surface of genus g > 2 and d > 2,

then Hq(S) is a real analytic manifold diffeomorphic to R(@-1)(29-2)

The Fuchsian locus is the subset of Hy(S) consisting of d-Fuchsian representations.
It is naturally identified with 7(S).

2.2. Real-split matrices and proximality

If A € SL4(R) is real-split, i.e. diagonalizable over R, we may order the eigenvalues
{Ai(A)YL | so that

AL(A)] = [A2(A)] = -+ [Aa-1(A)] = [Aa(A)].
Let {e;(A)}L, be a basis for R? so that e;(A) is an eigenvector with eigenvalue \;(A) and
let €(A) denote the linear functional so that (e?(A)le;(A)) =1 and (e?(A)|e;(A4)) = 0 if

i # j. Let p;(A) denote the projection onto (e;(A)) parallel to the hyperplane spanned
by the other d — 1 basis elements. Then,

Pi(A)(v) = (e'(4) | v) ei(4)

and we may write

We say that A is k-proximal if

A (A)] > (A2 (A)] > - [AR(A)] > A (A)]
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and we say that A is purely lozodromic if it is (d — 1)-proximal, in which case it is
diagonalizable over R with eigenvalues of distinct modulus. If A is k-proximal, then,
for all i = 1,...,k, p;(A) is well-defined and e;(A) is well-defined up to scalar mul-
tiplication. Moreover, if A is purely loxodromic p;(A) is well-defined and e;(A) and
e'(A) are well-defined up to scalar multiplication for all i. If A € PSL4(R), we say
that A is purely lozodromic if any lift of A to an element of SL4(R) is purely loxo-
dromic.

2.3. Transverse flags and associated bases

A flag for R? is a nested family

f:(flaf27~~~7fd_1)

of vector subspaces of R? where f* has dimension i and f* C f**! for each i. Let F
denote the space of all flags for R%. An n-tuple (fi,..., f,) € Fi} is transverse if

hefe...of =R

and note that F én)is an open dense subset of FJ.
Two transverse flags (a,b) determine a decomposition of RY as sum of lines
{Li(a,b)}L, where

Li(a,b) = a' Nnpd=iH1

for all i. A basis e = {e;} for R is consistent with (a,b) € ]:52) if e; € L;(a,b) for all i,
or, equivalently, if

aj:<617"'7€j> and bj:<€d,...,€d,j+1>

for all 5. In particular, the choice of basis is well-defined up to scalar multiplication of
basis elements.

2.4. Limit maps

Labourie [20] associates a limit map from duo71(S) into Fy4 to every Hitchin represen-
tation. This map encodes many crucial properties of the representation.

Theorem 2.2. (Labourie [20]

) If p € Ha(S), then there exists a unique continuous
p-equivariant map &, : Onomi (S) = Faq, such that:
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(1) (Prozimality) If v € m1(S) — {1}, then p(v) is purely loxodromic and

&) = (eilp(7)), -, eilp(9)))

for all i, where v € 01 (S) is the attracting fized point of .
(2) (Hyperconvexity) If x1,...,x5 € 0som1(S) are distinct and my + ...+ my = d, then

EM(21)D... ®EM(x;) D ... D EM (zy) = R

Notice that if v € m1(S) — {1} and ¥& € 971 (S) are its attracting and repelling fixed
points, then p(v) is diagonal with respect to any basis consistent with (£,(v7),&,(77)).
Moreover, if o is in the Fuchsian locus, then o(y) has a lift to SLz(R) all of whose
eigenvalues are positive. Therefore, if p € H4(S), then p(y) has a lift to SLyz(R) with
positive eigenvalues and we define

A(p(7)) > A2(p(7)) > -+ > Aalp(v)) > 0

to be the eigenvalues of this specific lift.

It will also be useful to note that any Hitchin representation p : m1(S) — PSLg(R)
can be lifted to a representation p : m1(S) — SL4(R). Moreover, Hitchin [18, Section 10]
observed that every Hitchin component lifts to a component of Hom™ (71 (S), SLg(R))/
SL4(R).

2.5. Other Lie groups and other length functions

More generally, if G is a split, real simple adjoint Lie group, Hitchin [18] studies the
component

H(S,G) € Hom™(7,(S),G)/G

which contains the composition of a Fuchsian representation into PSLy(R) with an ir-
reducible representation of PSLy(R) into G and shows that it is an analytic manifold
diffeomorphic to R(29-2)dim(G)

If p € Hq(S), then we define the contragredient representation p* € H4(S) by p*(v) =
p(y™HT for all v € 71(S). The contragredient involution of Hu(S) takes p to p*.

We define the self dual Hitchin representations — and accordingly the self dual Hitchin
component SH4(S) — to be the fixed points of the contragredient involution. Since the
contragredient involution is an isometry of the pressure metric (see Proposition 8.3),
SHaq(S) is a totally geodesic submanifold of Hq(S).

Observe then that if p is a self dual Hitchin representation and v € m1(S), then the
eigenvalues A1 (p(7)), .., Aa(p(7)) satisty A7 (p(7)) = Aa—ir1(p(y)) for all i. On the
other hand, Theorem 1.2 in [6] implies that if A\;*(p(7)) = Aa(p(y)) for all 7, then p is
conjugate to its contragredient p*. Notice that the contragredient involution fixes each
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point in H (S, PSp(2d,R)), H(S,PSO(d,d + 1)), and H(S, G2,9) considered as subsets of
H(S,PSL(2d,R)), H(S,PSL(2d + 1,R)), and H(S, PSL(7,R)) respectively. Conversely,
a self dual representation, being conjugate to its contragredient, is not Zariski dense,
hence belongs to such a subset by a result of Guichard [16]. In particular, SHa4(S) =
H(S,PSp(2d,R)) and SHaq41(S) = H(S,PSO(d, d + 1)).

In our work on isometries of the intersection function, it will be useful to consider the
Hilbert length L (p) of p(y) when v € m1(S) and p € Hq4(S), where

LI (p) :=log M (p(7)) — log Aa(p(7)) ,

and similarly the Hilbert length spectrum as a function on free homotopy classes.! Notice
that L (p) = Lf,l (p) = LE (p*). One readily observes that a representation is self dual
if and only if L (p) = 2L, (p) for all non-trivial v € 71(5).

3. Transverse bases

In this section, we prove a strong transversality property for ordered quadruples of
flags in the limit curve of a Hitchin representation, which we regard as a generalization
of the hyperconvexity property established by Labourie [20] (see Theorem 2.2). (Recall
that any pair (a,b) of transverse flags determines a decomposition of R? into a sum of d
lines Li(a,b) ®--- @ Ly(a,b) where L;(a,b) = a® N bd=i+1))

Theorem 1.6. Let p be a Hitchin representation of dimension d and let (a,x,y,b) be four
cyclically ordered points in the limit curve of p, then any d lines in

{Li(a,b),...,Lq(a,b), Li(x,y),..., La(z,y)}

are in gemeral position.

The proof of Theorem 1.6 relies on the theory of positivity developed by Lusztig [23]
and applied to representations of surface groups by Fock and Goncharov [13]. Tt will
follow from a more general result for positive quadruples of flags, see Theorem 3.6.

Remark: When p € H3(S), there exists a strictly convex domain Q, in RP? with C*
boundary so that p(m(S)) acts properly discontinuously and cocompactly on ,, see
Benoist [1] and Choi-Goldman [9]. If £, is the limit map of p, then £} identifies Oy (S)
with 0Q,, while Eﬁ (z) is the plane spanned by the (projective) tangent line to 02, at
ffl)(z). In this case, Theorem 1.6 is an immediate consequence of the strict convexity of
Q,, since if z and y lie in the limit curve, then L;(z,y) = x', L3(z,y) = y* and La(z,y)
is the intersection of the tangent lines to 2, at z' and y'. Moreover, one easily observes

L This is called the Hilbert length, since when d = 3 it is the length of the closed geodesic in the homotopy
class of v in the Hilbert metric on the strictly convex real projective structure on S with holonomy p, see,
for example, Benoist [1, Proposition 5.1].
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that the analogue of Theorem 1.6 does not hold for cyclically ordered quadruples of the
form (a,z,b,y).

3.1. Components of positivity

Given a flag a, we define the Schubert cell B, C F4 to be the set of all flags transverse
to a. Let U, be the group of unipotent elements in the stabilizer of a, i.e. the set of
unipotent upper triangular matrices with respect to a basis {e;} consistent with a. If
b € B,, we can assume that {e;} is consistent with (a,b), so it is apparent that the
stabilizer of b in U, is trivial. The lemma below follows easily.

Lemma 3.1. If b € B,, then B, = U,(b). Moreover, the map
hy : U, — B,
defined by hy(u) = u(b) is a diffeomorphism.

Suppose that (a,b) € ]-"(52) and ef is a basis consistent with the pair (a,b). Recall
that A € SLq(R) is totally positive with respect to f, if every minor in its matrix with
respect to the basis €7 is positive. Similarly, we say that A € SLy(R) is totally non-
negative with respect to ef, if every minor in its matrix with respect to the basis e}
is non-negative. Let U(ef)so C U, be the set of totally non-negative unipotent upper
triangular matrices with respect to 5. We say that a minor is an upper minor with
respect to ef if it is non-zero for some element of U(ef)>o. We then let U(ef)so be the
subset of U(ef)>o consisting of elements all of whose upper minors with respect to ef
are positive. Moreover, let A(ef)so be the group of matrices which are diagonalizable
with respect to €f with positive eigenvalues. Notice that although U(ef)so and U(ef) >0
depend on the choice of basis €ff, A(eff)~o depends only on the pair (a,b). Lusztig [23]
proves that

Lemma 3.2. (Lusztig [23, Sec. 2.12, Sec. 5.10]) If (a,b) € .7-";2) and €§ is a basis consistent
with the pair (a,b), then

U(ey)=0U(ep)>0 CU(ey)s0 and U(ef)so = Ul(ey)zo0 C U,.

If i # j and t € R, the elementary Jacobi matrix J;;(t) with respect to e} = {e;} is
the matrix such that J;;(t) = e; + te; and J;;(t)(er) = ex if k # j. If i < j and ¢t > 0,
then J;;(t) € U(ef)>o0. Moreover, U(ef)so is generated by elementary Jacobi matrices
of this form (see, for example, [14, Thm. 12]). So,

(1) the semigroup U(e§)>o is connected, and
(2) if g € A(ef), then gU(ef)s09~" = U(ef)>o-
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We define the component of positivity for €} as
Vie) := Ulep)>o(b).

Lusztig [23, Thm. 8.14] (see also Lusztig [24, Lem. 2.2]) identifies V' (ef) with a com-
ponent of the intersection B, N By, of two opposite Schubert cells.

Lemma 3.3. (Lusztig [23, Thm. 8.14]) If (a,b) € .7-';2) and €f is a basis consistent with
the pair (a,b), then V(ef) is a connected component of B, N By,.

3.2. Positive configurations of flags

We now recall the theory of positive configurations of flags as developed by Fock and
Goncharov [13].

A triple (a,x,b) € .7-';3) is positive with respect to a basis ef consistent with (a,b) if
x = u(b) for some u € U(ef)so. If z € V(ef), we define

V(a,z,b) = V(ep)

and notice that V (a, x, b) is the component of B,NB;, which contains x. A triple (a,z,b) €
]-"53) is then positive if it is positive with respect to some basis €§ consistent with (a,b).

More generally, a (n + 2)-tuple (a, @y, ...,21,b) € ]-'an”) of flags is positive if there
exist a basis ¢ consistent with (a,b) and u; € U(ef)o so that z, = uy - - - u,(b) for all
p. By construction, the set of (n + 2)-tuples of flags is connected. Since U(ef)so is a
semi-group, (a,x;,b) is a positive triple for all ¢ and, more generally, (a,z;,,...,z;_,b)
is a positive (k + 2)-tuple whenever 1 < i; < --+ < i < n.

Fock and Goncharov showed that the positivity of a n-tuple is invariant under the
action of the dihedral group on n elements.

Proposition 3.4. (Fock-Goncharov [13, Thm. 1.2]) If (a1,...,ay) is a positive n-tuple of
flags in Fy, then (az,as,...,an,a1) and (an,an—1,...,a1) are both positive as well.

As a consequence, we see that every sub k-tuple of a positive n-tuple is itself positive.

Corollary 3.5. If (a1,...,a,) is a positive n-tuple of flags in Fq and 1 < i1 < ig < -+ <
i < n, then (a;,, iy, ..., ai,) is positive.

Proof. Tt suffices to prove that every sub (n—1)-tuple of a positive n-tuple is positive. By
Proposition 3.4, we may assume that the sub (n — 1)-tuple has the form (a1, as,...,ay)
and we have already seen that this (n — 1)-tuple is positive. O

The main result of the section can now be formulated more generally as a result about
positive quadruples. Its proof will be completed in Section 3.7.
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Theorem 3.6. [TRANSVERSE BASES FOR QUADRUPLES| Let (a,z,y,b) be a positive
quadruple in Fq, then any d lines in

{Ll(a7b)v s ;Ld(avb)’Ll(xay)v i '7Ld(xay)}

are in general position.
3.3. Positive maps

If ¥ is a cyclically ordered set with at least 4 elements, a map v : ¥ — Fy is said
to be positive if whenever (z1, 29, 23, 24) is an ordered quadruple in X, then its image
(v(21),v(22),v(23),7(24)) is a positive quadruple in .7-"54).

For example, given an irreducible representation

7q : PSL2(R) — PSL4(R)
the 74-equivariant Veronese embedding
v, 0H? = PY(R) — F,

(where v, takes the attracting fixed point of g € PSL3(R) to the attracting fixed point
of 74(g)) is a positive map. More generally, Fock and Goncharov, see also Labourie-
McShane [21, Appendix B], showed that the limit map of a Hitchin representation is
positive.

Theorem 3.7. (Fock-Goncharov [13, Thm 1.15]) If p € Ha(S), then the associated limit
map &, : Osom1(S) = Fq is positive.

Notice that Theorem 1.6 follows immediately from Theorems 3.6 and 3.7.

We observe that one may detect the positivity of a n-tuple using only quadruples,
which immediately implies that positive maps take cyclically ordered subsets to positive
configurations.

Lemma 3.8. If n > 2, then an (n + 2)-tuple (a,zp,...,x1,b) is positive if and only if
(a, i1, xi,b) is positive for alli=1,...,n— 1.

Proof. Corollary 3.5 implies that if (a,2p,...,z1,b) is positive, then (a,2;11,x;,b) is
positive for all 1.

Now suppose that (a,z;y1,x;,b) is positive for all ¢ = 1,...,n — 1. Since (a, x2,21,b)
is positive, there exists ui,us € U(ef)so so that 1 = ui(b) and xzo = uqua(b). If we
assume that there exists u; € U(ef)so, for all ¢ < k < n, so that x, = uq ---u,(b) for
all p < k, then, since (a,Zk+1,Tk,b) is positive, there exists upy1,vr € U(e})s>o such
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that z51 = vgugy1(b) and x5 = vi(b). However, Lemma 3.1 implies that vy = ug - - - ug.
Iteratively applying this argument, we see that (a,zy,...,x1,b) is positive. O

Corollary 3.9. If ¥ is a cyclically ordered set, f : X — Fgq is a positive map and
(a1, ...,ay) is a cyclically ordered n-tuple in X, then (f(a1), f(az2), f(as),..., f(an)) is
a positive n-tuple in Fy.

The following result allows one to simplify the verification that a map of a finite set
into Fy is positive, see also Section 5.11 in Fock-Goncharov [13]

Proposition 3.10. Let P be a finite set in O H? and T be an ideal triangulation of the
convez: polygon spanned by P. A map f : P — Fy is positive if whenever (x,y,z,w) are
the (cyclically ordered) vertices of two ideal triangles in T which share an edge, then

(f(x), f(y), f(2), f(w)) is a positive quadruple.

Proof. Suppose 7’ is obtained from 7T by replacing an internal edge of 7 by an edge
joining the opposite vertices of the adjoining triangles. In this case, we say that 7~ is
obtained from 7T by performing an elementary move. Label the vertices of the original
edge by a and b and the vertices of the new edge by x and y, so that the vertices occur
in the order (a,z,b,y) in O, H2. If the edge (y, a) abuts another triangle with additional
vertex z, then (a,x,y, z) is a cyclically ordered collection of points in P which are the
vertices of two ideal triangles in 7' which share an edge. By our original assumption on
T, (f(a), f(x), f(b), f(y)) and (f(a), f(]), f(y), f(2)) are positive, so, by Proposition 3.4,
(f(y), f(a), f(x), f(b)) and (f(y), f(2), f(a), f(b)) are positive. Lemma 3.8 then implies
that (f(y), f(2), f(a), f(z), f(b)) is positive. One may similarly check that all the images
of cyclically ordered vertices of two ideal triangles which share an edge in 7’ have positive
image. Since any two ideal triangulations can be joined by a sequence of triangulations so
that consecutive triangulations differ by an elementary move, any ordered sub-quadruple
of P has positive image. Therefore, f is a positive map. O

3.4. Complementary components of positivity

If (a,b) € ]-'(52) and € = {e;} is a basis consistent with (a, b), then one obtains a com-
plementary basis o(§) = {(—1)%e;} which is also consistent with (a,b). We first observe
that for a positive sextuple (z,y,a,u,v,b), then the components of positivity for (a,b)
containing {u,v} and {x,y} are associated to complementary bases. The proof proceeds
by first checking the claim for configurations in the image of a Veronese embedding and
then applying a continuity argument.

Lemma 3.11. If (z,y, a,u,v,b) is a positive sextuple of flags and i} is a basis consistent
with (a,b) so that V() contains {u,v}, then V(o (e})) contains {z,y}.
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Proof. Consider the irreducible representation 74 : PSL2(R) — PSL4(R) taking matrices
diagonal in the standard basis for R? to matrices diagonal with respect to €y This gives
rise to a Veronese embedding v, : 0H? = S* — F, taking co to a and 0 to b.

The involution of F4 induced by conjugating by the diagonal matrix D, in the basis
ef, with entries ((—1)?) interchanges the components of v, (S') — {a, b} and interchanges
V(eg) and V(o(ef)). Therefore, our result holds when z, y, v and v lie in the image of
Vr.

Since v, is positive and the set of positive sextuples is connected, there is a family of
positive maps & : {z,y,a,u,v,b} — Fy so that the image of &, lies on the image of the
Veronese embedding and & = Id. Since PSL4(R) acts transitively on space of pairs of
transverse flags, we may assume that ;(a) = a and &;(b) = b for all ¢. Notice that each of
&({z,y}) and & ({u, v}) lies in a component of B, N By for all ¢. Since & ({u,v}) C V(ef),
&{u,v}) C Viep) for all t. Since &o({u,v}) C V(ef) and &o(z,y, a,u,v,b) lies in the
image of an Veronese embedding, & ({z,y}) C V(o(e})), which in turn implies that
&{z,yh) CV(o(el)) forall t. O

We next observe that the closures of complementary components of positivity intersect
in at most one point within an associated Schubert cell.

Proposition 3.12. If (a,b) € fc(l2) and €¢ is a basis consistent with (a,b), then

B.NV(E) N V(&) = {b}.
Proof. By Lemma 3.1,
Viep) = ho(U(eh)>0) € h(U(ep)>0) C ho(Ua) = Ba
and hy(U(ef)>0) is a closed subset of B,, since hy is a diffeomorphism. So

BaNV(ey) Chp(U(ep)>0) and  Ba NV(o(ep)) C hp(U(o(eq))z0)-

Thus, again since hy is a diffeomorphism,

B, NV (eg)NVi(aley)) € ho(Uley)zo0) Ny (U(o(e5))>0)
= hy (U(eg)>0 NU(0(e4))>0)
= (U(ep)20 NU(a(h))>0) (b)

So Proposition 3.12 follows from the following lemma:

Lemma 3.13.

Uley)zo NU(a(e5))>0 = {1}
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Proof. Let A = (a;5) € U(ef)>0 NU(o(ef))>0 be written with respect to the basis ef.
Notice that if we let @;; be the matrix coefficients for A with respect to the basis o(ef),
then a;; = (—1)""a;;. It follows immediately that a;; = 0 if i + j is odd.

If A#1, let a;; > 0 be a non-zero off-diagonal term which is closest to the diagonal,
te.ay =0if Il # jand ! >7¢and ay = 0if I # ¢ and [ < j. Then, by the above, j # i+ 1.
If I € (i,7), we consider the minor

aii aij| _ |0 ag
ap  apg 1 0
which has determinant —a;;, so contradicts the fact that A is totally non-negative. O

3.5. Nesting of components of positivity

We will need a strict containment property for components of positivity associated to
positive quintuples.

Proposition 3.14. If (a,x, z,y,b) is a positive quintuple in Fg4, then
Viz,z,y) C Via,zb).

We begin by establishing nesting properties for components of positivity associated
to positive quadruples.

Lemma 3.15. If (a,xz,y,b) is a positive quadruple in Fy, then
V(z,y,b) C V(a,y,b) and V(a,z,y) CV(a,z,b)

Proof. Since (a,x,y,b) is a positive quadruple, there exists a basis e§ for (a,b) and
u,v € U(ef) >0 so that y = w(b) and xz = u(v(b)). Since U(ef)so is a semi-group, uv €
Uleg)so and z,y € V(eg) = U(el)>o(b).

Notice that ej = u(ej) = {u(e;)} is a basis consistent with (a,y) since u(a) = a,
u(b) =y and (e;) = a* N b3~ 50

(u(e;)) = u(a?) Nu(b? 1) = gt nyd=tFL,

Let W = uU(ef)sou™", so W = U(e}) 0. Therefore,

V(ey) = W(y) = uU(ep)>0(u™" () = (uU(eh)0) (b) € Uleh)>0(b) = V(ep)

where the inclusion follows from the fact that U(ef)~¢ is a semi-group and u € U(g})>o.
Moreover,

z e V(ey) = (uU(ef)s0) (b) C V(ef)
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since uv € uU(ef)>o and z = u(v(b)), so
Via,z,y) = V(ey) C V(ep) = V(a, z,0b).

Since (b,y,x,a) is also a positive quadruple, the same argument shows that
V(b,y,z) C V(b,y,a). Since V(b,y,z) = V(z,y,b) and V(b,y,a) = V(a,y,b), we con-
clude that

V(z,y,b) C V(a,y,b). O

We now analyze the limiting behavior of sequences of components of positivity.

Lemma 3.16. Let {c,} and {z,} be sequences of flags so that to {c,} converges to a
flag b and (cp, 2n,b) is a positive triple of flags for all n. Then the Hausdorff limit of
{V(cn,2n,b)} is the singleton {b}.

Proof. We note that we can choose flags y1, a and yo such that (y1,a, yo, cn, 2n,b) is a
positive sextuple of flags. Since (a, ¢y, z,,0) and (¢, 2, b, a) are positive, Lemma 3.15
implies that

Vcn, zn,b) CV(a,zn,b) NV (cy, zn,a)

for all n, so

Ven, 2n,b) C V(a, zn,b) NV (ep, 2n, a).

After extracting a subsequence, we may assume that {V(cn,zn,b)} converges to a
Hausdorff limit H. It is enough to prove that H = {b}. Notice that, since each V(¢y,, 2, b)
is connected, H must be connected.

Notice that, for all n, V(a,z,,b) = V(a,yo,b), since (a,yo,2n,b) is positive, and
Ven, 2n,a) = Ven,y1,a), since (¢, 2n,y1,a) is positive. Since {B., } converges to B,

{V(cmzn,a)} = {V(cmyl,a)} converges to V (b, y1,a). Therefore,

{b} C H C V(a,y0,b) NV (b,y1,a).

However, Lemma 3.11 and Proposition 3.12 together imply that

Ba N V(av Yo, b) N V(bv Y1, a) = {b}
Since B, is an open neighborhood of b and H is connected, we conclude that H = {b}. O

Proof of Proposition 3.14. We note that if (a,zy,...,z1,b) is positive with respect to
the basis e} with x,, = vb for v € U(e})so, if u € U(e}) >0 then (a,vu(z1), xn, ..., 21,D)
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is positive. Since positivity is invariant under cyclic permutations, we may add flags in
any position to a positive n-tuple to obtain a positive (n 4 1)-tuple.

Choose ¢ and e so that (a, ¢, z, z,y, e, b) is positive and let g be an element in A(¢)~¢.
We observe that (a,c, g(y), g(z),e,b) is positive.

Lemma 3.17. If (a,c,x,z,e,b) is a positive sextuple in Fq and g € A(eS)so, then
(a,c,g9(x),g(2),e,b) is positive.

Proof. Identify (a,c, g(z),g(2),e,b) with the cyclically ordered vertices of an ideal
hexagon in H? and consider the triangulation 7 all of whose internal edges have an
endpoint at e. Proposition 3.10 implies that it suffices to check that (¢, g(x),g(z),e),
(¢,g9(x),e,a), and (a, ¢, e, b) are positive quadruples, to guarantee that (a,c, g(z), g(2),e, )
is positive.

Since (¢, z, z,e) is positive, there exists u,v € U(e¢)s¢ so that z = vu(e) and z =
v(e). If we let v/ = gug™! and v = gvg™!, then «/,v" € U(e%)s¢ (see property (2) in
Section 3.1). One checks that

so (¢, g(x), g(z),e) is a positive quadruple.
Since (¢, z, e, a) is a positive quadruple, there exists u,v € U(eS)~¢ so that z = vu(a)
and e = v(a). Notice that v(e¢) = ¢, so v lgv € A(ef), which implies that v =

e’

(v tgv)u(v=tgv) ™t € U(g)~o. Notice that
g(z) = gvu(a) = v(v " gv)u(a) = v(v ' gv)u(v"gv) " (a) = vu/(a) and e =wv(a),

so (¢, g(x),e,a) is positive. Since we already know that (a,c, e, b) is positive, this com-
pletes the proof. 0O

Since (z, z,y,e) and (¢, z, 2, ) are positive, Lemma 3.15 implies that
V(z,z,y) CV(z,z,e) C Ve z,e).

We may further choose g so that e is an attractive point, in which case, its basin of
attraction is B.. In particular, since z,z € V(¢ z,e) C B,

lim ¢"(z) = lim ¢"(2) =e.

n—oo n—oo

Proposition 3.16 and Lemma 3.17 then imply that

(Vi@ o @.e} — {e),

as n — oo. Since V(z, z,y) C V(x, z,€),
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V(g™ (x),9"(2),9" () = g"(V(x,2,9) C g"(V(z,2,e)) = V(g"(x),9"(2),e),

SO

(Ve @.9" G, w) | — fe}.

Since B, contains a neighborhood of e, we see that

V(g™ (z),9™(2), 9"(y)) C Be,

for all large enough n. So,

Ve, zy)=g" (V(gn(w)yg”(zxg"(y))) C g "(B.) = Be.
Symmetric arguments show that
V(z,2,y) C B
So, V(z,z,y) is a connected subset of B. N B, which contains z. Therefore,
V(z,z,y) C V(e ze).
Since (a, ¢, z,¢) and (a, z, e, b) are positive, Lemma 3.15 gives that
Vie,z,e) C Via,z,e) C V(a,z,b)
which completes the proof. O
3.6. Rearrangements of flags

Given a pair (z,y) of transverse flags in F,, one obtains a decomposition of R? into
lines {L;(z,y)}. By rearranging the ordering of the lines, one obtains a collection of flags
including z and y. Formally, if P is a permutation of {1,...,d}, then one obtains flags
Fo(P(z,y)) and F1(P(z,y)) given by

Fo(P(.’L‘, y))r = <LP(1)(x’y)> LR LP(r)(Ivy»

and

Fi(P(z,y))" = (Lp@y(z,y), - -, Lp@a—rt+1) (2, 9))

for all r.
We will see that if (a,x,y,b) is positive, then (a,Fi(P(xz,y)),b) is also positive. We
begin by considering the case where P is a transposition.
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Lemma 3.18. If (z,z,y,) is a positive triple in Fq, i < j and P;; is a transposition
interchanging © and j, then

Fi(P;(z,y)) € V(z, 2,9)
In particular, if (a,z, z,y,b) is a positive quintuple in Fq, then F1(P; ;(z,y)) € V(a, z,b).

Proof. Let €] be a basis for (z,y) so that V(z,z,y) = V(ej) and let &) = {e;}. Let
Ji;(t) be the elementary Jacobi matrix with respect to {e;}, i.e. J;;(t)(e;) = e; +te; and
Jij(t)(ex) = ey if k # j. Since

yd_k = <ek+17 ) ed> )

we see that
Jii (W) = (erg1,-seiyeoyejt e, ... en) =y =F (P2, y)F
for all k£ < i,
Tii ()" ") = (ersr, -y ea) =y = Fu (P j(x, )"
for all £ > j, and
Jii (") = (erq1,- - e +tei, ... eq)

for all ¢ < k < j. Therefore,

tll)r{olo ng(t)(yd_k) = <ek+17 ce ey €5-1,64, €541, .., ed> = FI(P’L,J (xﬂ y))d_k7

foralli < k < j, so

lim Jlj(t)(y) = Fl(f)i,j(mvy))'

t—o0

Since J;;(t) € U(ey)zo for all t > 0 and U(ey)>oU(ey)>0 C Uley)so, by Lemma 3.2,
Jij(t)(y) € V(x,z,y) for all t > 0, so F1(P;(z,y)) € V(z,z,y). Lemma 3.14 implies
that V(z,z,y) C V(a,2,b), so Fi(P; j(z,y)) € V(a,z,b). O

With the help of an elementary group-theoretic lemma, we may generalize the argu-
ment above to handle all permutations.

Lemma 3.19. If (a,z,z,y,b) is a positive quintuple in Fq and P is a permutation of
{1,...,d}, then

Fi(P(z,y)) € V(z,z,y) C V(a,z,Db).



M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901 21

Proof. Let ¢} be a basis for (r,y) so that V(z,z,y) = V(ej) and let ] = {e;}. Suppose
that @ is a permutation such that

F1(Q(z,y)) € V(z,2,y) S V(a,2,b).
We first observe, as in the proof of Lemma 3.18, that if n > m, then
Ty (DF1(Q(2, ) = F1(Qa,v)

where Q = Q if Q"}(m) > Q~!(n) and Q = Py, ,Q otherwise. Since J,(t) € U(2)50
if t >0 and U(ey)>oU(ey)>0 C Uley) >0,

Jmn(t)(V(l',Z7y)) c V(Z’,Z,y) )

for all ¢ > 0, which implies that

T () (V(a:,z,y)) C Vix,z,y)
for all ¢ > 0. Therefore,
Fi(Q(z,y)) € V(z,2,9) € V(a,2,b).
We use the following elementary combinatorial lemma.
Lemma 3.20. If P is a permutation of {1,...,d}, then we may write

P=P,, P

kaJk i1,Ji *

So that iy < j; for alll and moreover
Qi (1) < Qi (i)

.. P

where Q;_1 := P; i1 -

I—1.J1—-1 "

We now complete the proof using Lemma 3.20. Let P = P;, ;, ---F;, j as in

Lemma 3.20. Lemma 3.18 implies that
F1(Q1(.’I3, y)) € V(.T, 2 y) C V(CL, 2, b)
and we may iteratively apply the observation above to conclude that

F1(Qu(x,y)) € V(z,2,y) C V(a, 2,b)

for all [, which implies that
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Fi(P(z,y)) € V(z,2,y) € V(a,2,b)
which completes the proof of Lemma 3.19. O

Proof of Lemma 3.20. We proceed by induction on d. So assume our claim hold for
permutations of {1,...,d — 1}.
Let r = P71(1) and, if r # 1, let

Pr=P P 1P

and let P, = id if r = 1. Notice that P; has the desired form, Pfl(l) = r and if
m,n € {1,...,d} — {r} and m < n, then P;(m) < P{!(n). Let P, be the restriction
of PP to {2,...,d}. By our inductive claim, Py = P, j, --- Pi, ;, where i; < j; for all
Land if @y := Py,_,j_, - Pij,, then Q7Y (4) < Q;-,(j1). One may extend each P, ,
to a transposition P;, ; of {1,...,d} by letting 1 be taken to itself. We then note that

..P

P= (P iv,gi ) PLrPrr—1 - Pro

ksJk
has the desired form. 0O

Remark. Notice that Lemma 3.18 is enough to prove Theorem 3.6 in the case that you
choose exactly one line from {L;(z,y)} and d — 1 lines from amongst {L;(a,b)}. (If we
choose z so that (a,z, z,y,b) is an positive quintuple of flags, Lemma 3.18 implies that
Fi(Pjq(z,y)) € V(a,zb), so (a,F1(Pja(z,y)),b) is a transverse triple of flags. So, for
any j and k, a* 1@ F (P} 4(x,y))' @b?* = R?, which is enough to establish the special
case of Theorem 3.6.) This simple case is enough to prove all the results in section 4.
The full statement is only used in the proof of Lemma 6.3, and this use of the general
result may be replaced by an application of Labourie’s Property H, see [20].

3.7. Transverse bases for quadruples

We now restate and prove Theorem 3.6.
Theorem 3.6 Let (a,x,y,b) be a positive quadruple in Fq, then any d lines in

{L1(a,b),...,Lq(a,b), Li(x,y),..., La(z,y)}
are in general position.

Proof. If

Ie€T={(iy,...,ix) €ZF | 1< iy <--- <ip < d}.
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Let
er(a,b) =e;,(a,b) A--- Aej;, (a,b).

Then our claim is equivalent to the claim that er(a,b) A ej(z,y) # 0if I,J € T and
|| + |J| = d (where |(i1, ... i) = k).

Let A be the matrix with coefficients A% = (e’(a,b)le;(x,y)). If I, K € T and |I| = |K],
then let AL be the submatrix of A given by the intersection of the rows with labels in
I and the columns with labels in K.

If I,J € T and |I| + |J| = d, then, since

d
6j(1‘7 y) = Z A;ei(aﬁ b)u
i=1
we see that
er(a,b) Aey(z,y) = £det(AYep(a,b)

where D = (1,2,...,d). So, it suffices to prove that all the minors of A are non-zero.
Notice that since our bases are well-defined up to (non-zero) scalar multiplication of the
elements, the fact that the minors are non-zero is independent of our choice of bases.

We first show that all initial minors are non-zero. A square submatrix Agf is called
initial if both J and K are contiguous blocks in D and JU K contains 1, i.e. it is square
submatrix which borders the first column or row. An initial minor is the determinant of
an initial square submatrix.

If AJD ~1 is initial and J contains 1, then

J=(1,...,0) and T=(1,2,...,r,d—s+1,d—s+2,...,d)
where r + s + 1 = d. (Notice that either r or s may be 0.) Since (a,b,x) € ]:(33),
a" @b @l =R
o
er(a,b) Ney(z,y) #0

which implies that det(A} ") # 0.
If D — I contains a 1 and J does not contain a 1, then

(I+1,142,...,d)
(1,...,0),
G+Li+2....5+0),

1
D-1
J
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where j,1 > 1 and j +1 < d. Let P be any permutation such that

Fi(P(z,9)) = (ej+1(2,9),- -, ej1(2,y)) -
Then, by Lemma 3.19, (a, F1(P(z,y)),b) is a transverse triple of flags. It follows that
v @ Fi(P(z,y) =R,
and hence that

el(a7b) A 6J(‘r5y) 7é 0,

so again det(A” ™) # 0. Therefore we have shown that all the initial minors of A are
non-zero.

We claim that if §; = v, is the Veronese embedding with respect to an irreducible
representation 74 and (ag, o, Yo, bo) is an ordered quadruple in & (P1(R)), then one may
choose bases {e;(ag,bp)} and {e;(xg,yo}} so that all the initial minors of the associated
matrix Ag are positive. We may assume that ag = &€p(00), o = &o(t), yo = &o(1) and
bp = £0(0) where t > 1. Observe that one can choose bases {e;(0,00)} and {e;(1,t)} for
R? so that My = ({e'(0,1)]e;(1,t))) is totally positive. If we choose the bases

{ei(ao, bo) = €1(0,00)" "e2(0,00)" '} and  {e;(xo,y0) = e1(1,£)* Pea(1,)" "1}

for R, then Ay = 74(My). The claim then follows from the fact that the image under
T4 of a totally positive matrix in PSLy(R) is totally positive in PSL4(R), see [13, Prop.
5.7].

We can now continuously deform (a, x,y,b) = (a1, 21, y1, b1), through positive quadru-
ples (a¢, ¢, Y4, be), to a positive quadruple (ag, o, Yo, bo) in the image of & = v,. One
may then continuously choose bases {e;(at, b))} and {e;(x¢, y:)} beginning at {e;(ag, bo)}
and {e;(xo,yo} and terminating at bases {e;(a,b)} and {e;(z,y)} which we may assume
are the bases used above. One gets associated matrices {A:} interpolating between A
and A. Since the initial minors of A; are non-zero for all ¢ and positive for t = 0, we see
that the initial minors of A must be positive.

Gasca and Pena [15, Thm. 4.1] (see also Fomin-Zelevinsky [14, Thm. 9]) proved that
a matrix is totally positive if and only if all its initial minors are positive. Therefore,
A is totally positive, so all its minors are positive, hence non-zero, which completes the
proof. O

4. Correlation functions for Hitchin representations
We define correlation functions which offer measures of the transversality of bases

associated to images of collections of elements in 71 (.5). The results of the previous section
can be used to give conditions guaranteeing that many of these correlation functions
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are non-zero. We then observe that, if we restrict to certain 3-generator subgroups of
m1(S), then the restriction of the Hitchin representation function to the subgroup is
determined, up to conjugation, by correlation functions associated to the generators and
the eigenvalues of the images of the generators.

If {a1,...,a,} is a collection of non-trivial elements of m(5), i; € {0,1,...,d} for
all 1 < j < n, and p € Hy(S), we define the correlation function®

Til,‘-win(al?”-van)(p) =Tr Hpij(p(aj)) ;

where we adopt the convention that

Notice that if all the indices are non-zero, then Ty, ., (oq,...,a,)(p) is well-defined,
while if some indices are allowed to be zero, Ty, ;. (a1,...,an)(p) is only well-defined
up to sign. These correlations functions are somewhat more general than the correlation
functions defined in the introduction as we allow terms which are not projection matrices.

4.1. Nontriviality of correlation functions

We say that a collection {ai,...,a,} of non-trivial elements of 71(S) has non-
intersecting axes if whenever ¢ # j, (o;)+ and (;)— lie in the same component of
Ooom1(S) — {(a;)4+, (aj)—}. Notice that {aq,...,a,} have non-intersecting axes when-
ever they are represented by mutually disjoint and non-parallel simple closed curves on
S.

Theorem 1.6 has the following immediate consequence.

Corollary 4.1. If p € Ha(S5), a, f € m1(S) — {1} and o and 8 have non-intersecting azxes,
then any d elements of

{er(p(a)),. . ealp(a)), er(p(B)), - -, ealp(B))}

span R2. In particular,

(' (p())le;(p(8))) # 0.

One can use Corollary 4.1 to establish that a variety of correlation functions are
non-zero. Notice that the assumptions of Lemma 4.2 will be satisfied whenever « is

2 The name “correlation function” does not bear any physical meaning here and just reflects the fact that
the correlation function between eigenvalues of quantum observables is the trace of products of projections
on the corresponding eigenspaces.
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represented by a simple curve and « and 7 are co-prime, i.e. o™ # 4™ for any m,n €
Z — {0}.

Lemma 4.2. If p € Ha(S), a,v € m1(S) — {1}, a and yay~! have non-intersecting azxes,
andi € {1,...,d}, then

Tio(a,7)(p) = Tr (Pi(p(@))p(7)) # 0.
Proof. Since
Tr(pi(p(a))p(7)) = (¢'(p(a)lp(7)(eilp(e)))) = (€' (p(a))lei(p(yary ™)) ,
the lemma follows immediately from Corollary 4.1 O

The next result deals with correlation functions which naturally arise when studying
configurations of elements of 71 (.S) used in the proof of Theorem 1.1, see Fig. 1.

Proposition 4.3. Suppose that p € Hq(S), o, (5,0 € m(S) — {1} have non-intersecting
azes, and i,j,k € {1,...,d}. Then
(1)

Tij(a, B)(p) = Tr(pi(p(a))p;(p(B))) # 0,

and

T jk(c, 8,6)(p) = Tr(pi(p(a))p;(p(8))Pr(p(d))) # 0.

Moreover, if v € w1 (S) — {1} and B and v6y~! have non-intersecting axes, then

T;.0,5(8,7,90)(p) = Tr(pi(p(B))p(7)P;j(p(0))) # 0,

Tooulen 59:0)(0) = Tiaa(8.7.0)(0) (TASEE) 2o

Proof. Notice that

Te(pi(p(c))P; (p(8))) = (€' (p(e))]e; (p(B)) (€ (p(8)) lei(p(e)))
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for all ¢ and j. Both of the terms on the right-hand side are non-zero, by Corollary 4.1,
SO

Tij(, B)(p) = Tr(pi(p(a))p;(p(B))) # 0.

Similarly,

T; (e, 8,8)(p) = (¢ (p(e))le; (p(8))) (e” (p(B))lex(p(8)) (e (p(8))lei(p(e)))

and Corollary 4.1 guarantees that each of the terms on the right hand side is non-zero,
so (1) and (2) hold.
Since

Tr(pi(p(B))p(1)P; (p(6))) = (' (p(B))|p(7) (e (p(6)))) (€? (p(8))lei(p(B)))
= (" (p(B))le; (p(v67~1))) (€7 (p(8))]es(p(B)))

Corollary 4.1 again guarantees that each of the terms on the right hand side is non-zero,
so (3) holds.
Recall that if P,Q, A € SL4(R) and P and @ are projections onto lines, then
Tr(PAQ)
PAQ = ———PQ

Tr(PQ)
if Tr(PQ) # 0. (Suppose that P projects onto the line (v) with kernel the hyperplane
V and @ project onto the line (w) with kernel the hyperplane W, then both PAQ and
PQ map onto the line (v) and have W in their kernel and are therefore multiples of one
another. The ratio of the traces detects this multiple.)

So, since Tr(p;(p(B))pPr(p(d)) # 0,

Tr(p; (p(B))p(v)Pr(p(6)))
Tr(p;(p(8))Pr(p(9)))

b (p(8))(1)pi(0(8)) = ( ) p; (0(8))pe(p())-

Therefore,

— Te(py (p(8)p(1)pe(p()) (

Ty k(v 8,9)(p)
T;.1(8,0)(p)

Since all the terms on the right hand side have already been proven to be non-zero, the

T, 00(8.7.0)(0) (

entire expression is non-zero, which completes the proof of (4). 0O
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4.2. Correlation functions and eigenvalues rigidity

We now observe that correlation functions and eigenvalues of images of elements
determine the restriction of a Hitchin representation up to conjugation. Theorem 1.5 is
a special case of Theorem 4.4.

Theorem 4.4. Suppose that p,o € Hq(S) and a, 8, € w1(S) — {1} have non-intersecting
azes. If

(1) Xi(p(n) = Xi(a(n)) for anyn € {a, 5,0} and any i € {1,...,d}, and
(2) foralli,j, k in{1,...,d}

Ti,j,k:(a7 67 6)
Tj,k:(ﬁa 6)

Ti,j,k(aa ﬁ7 5)

)= =7, (5.9)

(@),

then p and o are conjugate, in PGL4(R), on the subgroup (o, 8,8) of m1(S) generated by
a, B and 6.

Proof. We will work in lifts of the restrictions of p and o to («, 3, ) so that the images
of a, B and § all have positive eigenvalues. We will abuse notation by referring to these
lifts by simply p and o. With this convention, A\;(p(n)) = Ai(c(n)) for all ¢+ and any
n € {a, 3,0}. It suffices to prove that these lifts are conjugate in GL4(R).

Let a; = ei(p(a)), @' = €'(p(@)), b; = &(p(8)), b = ¢ (p(8)), di = €x(p(6)) and
d* = e*(p(8)) for all i,j,k. Similarly let G; = e;(0(a)), @' = e'(a()), b; = e;(a(B)),
b = el (0(B)), dp = ex(o(6)) and d* = e¥(o(8)) for all 4, j, k. With this notation,

Tiji(o 8,0)(p) _ {a’lbj) (W|dy) (d*]ai) _ (a’]b;) (d*|as)

Tin(B:0)(p) — (Blde) (a¥[b;) (dF[by)

and

so, by assumption,

(atlby) (d[ai) _ (@'lb) (d"]aq) (1)
(dbs) (d*|bs)

We may conjugate ¢ and choose a;, a;, by and 131 so that a; = a; for all 4 (so a' = &' for
all i), by = by and (a|b1) = 1 for all i. (Notice that this is possible since, by Corollary 4.1,
b1 does not lie in any of the coordinate hyperplanes of the basis {a;} and similarly by
does not lie in any of the coordinate hyperplanes of the basis {G;} = {a;}.) Therefore,
since A;i(p(a)) = A\i(o()) for all i, we see that p(a) = o(a).
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Corollary 4.1 also assures us that (d¥|b;) and (d¥|b,) are non-zero, so we may addi-
tionally choose {d*} and {d*} so that (d¥|b;) = 1 and (d*|b;) = 1 for all k. Therefore,
taking j = 1 in Equation (1), we see that

(d*a;) = (d*|a;) = (d"]a;)
for all i and k. It follows that d* = d* for all k, which implies that di = dy, for all k.

Again, since \;(p(9)) = Xi(0(0)) for all i, we see that p(§) = o (9).
Equation (1) then reduces to

We may assume, again applying Corollary 4.1, that {b;} and {13]} have been chosen so
that

(a'[b;) = (a'lb;) =1
for all j, so, by considering the above equation with ¢ = 1, we see that
(d"bs) = (d"[b;)

for all j and k, which implies that b; = Bj for all j, and, again since eigenvalues agree,
we may conclude that p(8) = o(f8), which completes the proof. O

5. Asymptotic expansion of spectral radii

In this section we establish a useful asymptotic expansion for the spectral radii of
families of matrices of the form A" B.

Lemma 5.1. Suppose that A, B € SL4(R) and that A is real-split and 2-prozimal. If (b;)
is the matriz of B with respect to {e;(A)}?_, and b}, b, and b? are non-zero, then

A - B () o () )

We begin by showing that the spectral radius is governed by an analytic function.

Lemma 5.2. Suppose that A, B € SL4(R) and that A is real-split and prozimal. If (b;) is
the matriz of B with respect to {e;(A)}L, and b} is non-zero, then there exists an open
neighborhood V. C R~ of the origin and an analytic function f : V — R such that, for
all sufficiently large n,
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AL(A"B)

———=> = f(2], ..., 2]
)\1 (A)n f( 1 d 1)
where z; = %&;‘) for all i.
Moreover, there exists an analytic function X : V — R such that X (2},. .., 2 1) s

an eigenvector of A™B with eigenvalue A1 (A" B) for all sufficiently large n.

Proof. The proof is based on the following elementary fact from linear algebra. A proof
in the case that U is one-dimensional is given explicitly in Lax [22, Section 9, Theorem
8] but the proof clearly generalizes to our setting.

Lemma 5.3. Suppose that {M (u)}ucu is analytically varying family of d x d matrices,
where U is an open neighborhood of 0 in R™. If M(0) has a simple real eigenvalue Mg # 0
with associated unit eigenvector Xy, then there exists an open sub-neighborhood V. C U
of 0 and analytic functions f : V — R, and X : V — R< such that f(0) = A9, X(0) = X,
and f(v) is a simple eigenvalue of M(v) with eigenvector X (v) for allv € V.

Let U = R ! and, for all w € U, let D(u) be the diagonal matrix, with respect
to {e;(A)}, with entries (1,uy,...,uq—1) and let M(u) = D(u)B for all w € U. Then
M(0) has b} as its only non-zero eigenvalue with associated unit eigenvector e;. So we
may apply Lemma 5.3 with A\g = b] and X(0) = e;. Let V be the open neighbor-
hood and f : V — R and X : V — R? be the analytic functions provided by that
lemma. Further, as M(0) has only one non-zero eigenvalue, we can choose V such that
the eigenvalue f(u) is the maximum modulus eigenvalue of M (u). For sufficiently large

n, (27,...,2]_,) €V, and % = M(27,...,2_). So, for all sufficiently large n,
f(27, ..., 25 ) is the eigenvalue of maximal modulus of A"B/A;(A)™ with associated
eigenvector X (27,...,20_;). O

Proof of Lemma 5.1. Since A is 2-proximal,
A(A)] > A2 (A)] = Az(A)] ... = Aa(A)].

Let f : V — R be the function provided by Lemma 5.2. If z; = X\;11(A4)/A1(A), then
(2f,...,20_4) €V, s0

A1(A"B)

W :f(Z{l,...,Zg_l)

for all large enough n. Since f is analytic

d—1 (9f
f(ul, . ,Ud_l) = f(()) + Z au (O)U, + O(uluj)
i=1 "
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If
S Y S
sb? sby sbi ... sb?
g(s) = £(5,0,...,0) = A1 (D(1,5,0,...,00B)y = | | O O 0 ... 0
0 0 0 0

=M ([sbb% s%%]) ’
then we see, by examining the characteristic equation, that
9(s)® = (by + sb3)g(s) + s(b1b3 — bybi) =0
Differentiating and applying the fact that g(0) = f(0) = b} yields
0=29(0)g'(0) — b1g'(0) — b3g(0) + (b1b3 — b3b}) = big'(0) — bbi,
SO

Of () — g0) = B2t
5y 0) = 9'(0) = 5

Since |z;| < |z1] for all ¢ > 2,

A (A"B . . ) ., .
ﬁ#(zhm,zd_l)=f<0)+;ai-<o’zi o)
bib?
:b}—i—%z?—i—o(z{’). |
1

6. Simple lengths and traces

31

We show that two Hitchin representations have the same simple non-separating length

spectrum if and only if they have the same simple non-separating trace spectrum. More-

over, in either case all eigenvalues of images of simple non-separating curves agree up to

sign.

Theorem 6.1. If p € Hq, (S) and 0 € Ha,(S), then |Tr(p(a))| = |Tr(o(a))| for
any « € w1(S) represented by a simple non-separating curve on S if and only if

Lo(p) = La(0) for any a € m1(S) represented by a simple non-separating curve on S. In
either case, di = dg, and \i(p()) = Ai(o(a)) for all i and any a € 71(S) represented

by a simple non-separating curve on S.
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Theorem 6.1 follows immediately from Lemma 6.2, which shows that one can detect
the length of a curve from the traces of a related family of curves, and Lemma 6.3, which
obtains information about traces and eigenvalues from information about length. (Notice
that every non-separating curve on S has geometric intersection number one with some
other non-separating curve on S.)

Lemma 6.2. Suppose that o and B are represented by simple based loops on S which
intersect only at the basepoint and have geometric intersection one. If p € Hq,(S),0 €
Ha, (S) and | Tr(p(a™B))| = | Tr(o(a™B))| for all n, then di = d2 and Lo (p) = La(0).
Moreover, \i(p(a)) = Ai(o()) for all .

Proof. We assume that d; < ds. It suffices to prove our lemma for lifts of the restriction
of p and o to («, ) so that the all the eigenvalues of the images of a are positive. We
will abuse notation by calling these lifts p and o.

Since Tr(p(a™B)) = e(n) Tr(o(a™B)) for all n, where €(n) € {£1}, we may expand to
see that

EA" ) Tr(pi(p(a))p ZA" ) Tr(pi(o()(B))

for all n. Lemma 4.2 implies that Tr(p;(p(a))p(B)) and Tr(p;(c(a))o(B8)) are non-zero
for all i. There exists an infinite subsequence {n;} of integers, so that e(ng) = € is
constant. Passing to limits as n — oo, and comparing the leading terms in descending
order, we see that \;(p(a)) = Ni(o()) if 1 <4 < dy. In particular, L,(p) = Lo(0). If
dy < dg, then

2 Ai(pla)) = T, (o () = 1
which is impossible, since A\;(p(a)) = Ai(o()) if 1 < i < d; and
Ai(o(a)) < Agy(0(@)) = Aa, (p(@)) <1
if di <1 < dy. Therefore di = dy. O

Lemma 6.3. Suppose that v and 0 are represented by simple based loops on S which
intersect only at the basepoint and have geometric intersection one. If p € Hq,(S),0 €
Ha, (S) and Lo (p) = Lo (o) whenever o € (7, d) is represented by a simple non-separating
based loop, then di = da, | Tr(p(a))| = |Tr(o(@))| and Ai(p(e)) = Ni(o(a)) for all i
whenever a € (v,0) is represented by a simple non-separating based loop.

Proof. We assume that d; < da. If « € (7, 0) is represented by a simple, non-separating
based loop, then there exists 5 € (7, d) so that § is represented by a simple based loop
which intersects « only at the basepoint and « and 8 have geometric intersection one,
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so o' is simple and non-separating for all n. It again suffices to prove our lemma for
lifts of the restriction of p and o to {a, 3) so that the all the eigenvalues of the images
of « are positive.

Let A = p(a), B=p(3), A=c(a), and B = o(8). Let A\; = X\i(A) and \; = \;(A).
Let e; = e;(A) and é; = e;(A) and let (b%) be the matrix of B with respect to {ei}d,
and (l;;) be the matrix of B with respect to {¢;}%2,. Let Q =e; Aeg A... Aeg, # 0 be
the volume form associated to the basis {e; }%, for R%:.

We begin by showing that Ao = A2. Notice that A and A™B are real-split and 2-
proximal for all n. We need the result of the following lemma to be able to apply
Lemma 5.1.

Lemma 6.4. Suppose that o and B are represented by simple based loops on S which
intersect only at the basepoint and have geometric intersection one. If p € Hq(S) and
B = (b)) is a matriz representing p(3) in the basis {e;(p(c)}, then b}, b, and b3 are all
non-zero.

Proof. Notice that B(e;) A (e2 A ... Aeq) = biQ. So, if b} = 0, then B(e1), which is a
non-trivial multiple of e;(p(BaB~1)), lies in the hyperplane spanned by {es,...,eq} =
{e2(p(a)), ..., eq(p(a)}, which contradicts Corollary 4.1 (and also hyperconvexity). No-
tice that the fixed points of a8~ must lie in the same component of £,(S*) —{a™t, o™},
since « is simple. Therefore, b # 0.

Similarly, B(e1) A(e1 Aeg A...Aeg) = —b3Q. So, if b2 = 0, then e;(p(BaB™1)), lies in
the hyperplane spanned by {e;(p(a)),es(p(a)),...,eq(p(a))}, which again contradicts
Corollary 4.1. Therefore, b? # 0.

Moreover, B(ea) A (e2 Aez A ... Aeq) = byQ. So, if b) = 0, then ea(p(Baf™1)), lies
in the hyperplane spanned by {e;(p(a)),es(p(),...,eq(p(a)}, which again contradicts
Corollary 4.1. Thus, b3 #0. O

By assumption |\ (A" B)| = [\ (A’LE)| for all n. Lemma 5.1 then implies that

bLb2 [ Ag\" A\ " b2 () Ao )
b1+ﬁ(—) +o((—> )‘:b1+31 =) +ol |
P A\ A P\ A

)

so [bl| = |b}|. Comparing the second order terms, we see that
Ao Ao
>\1 5\1

Since, by assumption, A\; = 5\1, we see that Ay = \o.

We now assume that for some k = 2,...,d; — 1, N\i(p(8)) = \i(0(B)) for all ¢ < k
whenever 8 € (7, d) is represented by a simple, non-separating based loop. We will prove
that this implies that X\;(p(5)) = Ni(c(B8)) for all i@ < k + 1 whenever 8 € (v,4) is
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represented by a simple, non-separating based loop. Applying this iteratively will allow
us to complete the proof.

Let E*(p) be the kth-exterior product representation. If o € (7, §) is represented by a
simple non-separating based loop, we again choose 5 € (v, d) so that [ is represented by
a simple based loop which intersects « only at the basepoint and « and § have geometric
intersection one. We adapt the notations and conventions from the second paragraph of
the proof.

Let C = E*(p)(a), D = E*(p)(3), C = E*(0)(a) and D = E¥(o)(3). Notice
that C is diagonal with respect to the basis {e;(C)} given by all k-fold wedge prod-
ucts of {ey,...,eq} where e; = ¢;(A) for all i. In particular, A\1(C) = A\ (4) -+ Ax(4),
)\2(0) = )\1(14) N ‘)\kfl(A))\kle(A), 61(0) = el(A) VANRERIAN ek(A) and 62(0) = 61(A) AN
- Aegp—1(A) A egt1(A). Since A\3(C) is given by either A\j(A) - Ag—1(A)Apy2(A) or
AM(A) - Ae_a(A)Me(A)Arp1(A), C is 2-proximal. Similarly, ¢, CD™ and C D" are real-
split and 2-proximal for all n.

Let (d}) be the matrix for D in the basis {e;}. We define &; and (dA;) completely
analogously. Notice that D(e; Aea A... Aeg) A (exr1 A ... Aeq,) = diQ. So, if d} =0,
then

B(gp(ay) @& (o) = &5 (Blar)) @ & (an) #R™,

which would contradict the hyperconvexity of £,. Therefore, dj # 0.
Furthermore, D(e; Aea A...Aek) A(ex AegyaA...Aeq,) = —d3€Q. So, if d3 = 0, then

{Li(p(Bap™), ... Li(p(Bap™)), Li(p(@)), Lit2(p(e)), - .., La, (p(e)) }

does not span R% | which contradicts Corollary 4.1. Therefore, d3 # 0
Similarly, D(e; Aea A...Aex_1Aepr1) A(err1AersaA...Neq,) = diQ. So, if di = 0,
then

{Ll(p(ﬂaﬁ_l))v BERE) kal(p(ﬁaﬂ_l))v LkJrl(p(ﬁO‘B_l))v Lk+1(p(a))7 s 7Ld1 (p(a))}

does not span R% | which contradicts Corollary 4.1. Thus d} # 0.
Analogous arguments imply that d}, d? and d} are all non-zero. Moreover, by our
iterative assumption

M(C"D)| = [M(A"B) - M(A"B)| = [M(A"B) - M (A" B)| = [\ (C" D))
for all n. We may again apply Lemma 5.1 to conclude that
A2(C)
A(C)

v
5

Akl _ ‘ A2(C) ‘
Ak A (C)

Since, by our inductive assumption, Ax = j\k, we conclude that \yy1 = 5\k+1. Therefore,
after iteratively applying our argument, we conclude that \;(p(e)) = Ai(o(a)) for all
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Fig. 1. Curves «, 3,7, 9.

1 < < d;. As in the proof of Lemma 6.2 it follows that dy = dy. Therefore, | Tr(p(a))| =
| Tr(o(a))]. O

7. Simple length rigidity

We are now ready to establish our main results on simple length and simple trace
rigidity. We begin by studying configurations of curves in the form pictured in Fig. 1.

Theorem 7.1. Suppose that F is an essential, connected subsurface of S, and that
a,B,6 € m(F) — {1} are represented by based simple loops in F which intersect only
at the basepoint, and are freely homotopic to a collection of mutually disjoint and non-
parallel, non-separating closed curves in F' which do not bound a pair of pants in F. If
p,0 € Ha(S) and | Tr(p(n))| = | Tr(o(n))| whenever n € m1(S) is represented by a simple
closed curve in F, then p and o are conjugate, in PGL4(R), on the subgroup < a, 3,6 >

OfT('l(S).

Proof. We first show that we can replace o, § and § with based loops in F', configured
as in Fig. 1, which generate the same subgroup of 71(S). We then show that if «, 53, v
and § have the form in Fig. 1, then p and o are conjugate on («, 3, ).

Lemma 7.2. Suppose that F is an essential, connected subsurface of S, and that o, 5,0 €
m1(F) — {1} are represented by based simple loops in F which intersect only at the base-
point, and are freely homotopic to a collection of mutually disjoint and non-parallel,
non-separating closed curves in F' which do not bound a pair of pants in F. Then there
exist based loops &, B, 4 and § in F which intersect only at the basepoint so that &, B
and § are freely homotopic to a collection of mutually disjoint and non-parallel, non-
separating closed curves, each has geometric intersection one with 4 and

(&, 8,0) = (a, B,6) .

Proof. We first assume one of the curves, say 3, has the property that the other two
curves lie on opposite sides of [, i.e. there exists a regular neighborhood N of 3, so that
« intersects only one component of N — § and ¢ only intersects the other (see Fig. 2).
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Fig. 2. A regular neighborhood of o U 8 U § when S locally separates o and §.

(Notice that since the curves intersect exactly once and can be homotoped to be disjoint,
a and ¢ each intersect exactly one component of N — {§}, if NV is chosen small enough.)

Let Fy be a regular neighborhood of T'= o U U §. Then Fj is a four-holed sphere
and each component of F; — T is an annulus. We label the boundary components A, D,
J and K, where A is parallel to «, D is parallel to §, J is parallel to the based loop Sa*!
and K is parallel to the based loop $6<2 for some €1, €2 € {£1}.

If A and D lie in the boundary of the same component of F' — Fj, then one may
extend an arc in F' — F} joining A to D to a closed curve 4 which intersects 7" only at
the basepoint and intersects each of «, 5 and § with geometric intersection one. In this
case, we simply take & = «, B = and 5 = §. We assume from now on that A and D do
not lie in the same boundary component of F' — F}.

Since « is non-separating, A must lie in the boundary of a component G of F — F}
which also has either J or K in its boundary. If the boundary of G contains J but not
K, then 8 would separate F' which would contradict our assumptions, so the boundary
of G must contain K. (Recall that by assumption, the boundary of G cannot contain
D.)

We may then extend an arc in G joining A to K to a closed curve 4 which intersects
T only at the basepoint and has geometric intersection one with «, 8 and K. Moreover,
we may choose a based loop § in the (based) homotopy class of 5§¢2 which intersects a,
5 and 4 only at the basepoint. In this case, let & = a and § = B A, f and K are simple,
disjoint non-separating curves freely homotopic to &, B and §. If K is parallel to A, then
disjoint representative of «, § and d would bound a pair of pants, which is disallowed.
Moreover, since K is homotopic to 862 and 5 and § are non-parallel simple closed curves,
K cannot be parallel to 8 or §. Since A and [ are non-parallel, by assumption, A, § and
K are mutually non-parallel as required.

We may now assume that if v € {«a,,d}, then there is a regular neighborhood
of v, so that the other two based loops only intersect one component of the regular
neighborhood. Let F; be a regular neighborhood of T'. Again, F} is a four-holed sphere
and each component of F} — T is an annulus. We label the components of the boundary
of F1 by A, B, D and E, where A is parallel to «, B is parallel to 3, and D is parallel
to ¢ (see Fig. 3). Since « is non-separating in F', there exists a component G of F — F}
whose boundary contains A and at least one other component of the boundary of Fj.
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Fig. 3. A regular neighborhood of o U 8 U § when no curve locally separates.

If the boundary of G contains B, then one may extend an arc in G joining A to B to
a curve 4 which intersects T only at the basepoint and has geometric intersection one
with o and § and geometric intersection zero with 0. Let 5 be a simple based loop in F}
in the (based) homotopy class of ad¢ for some e € {+1} which intersects 4 and T only
at the basepoint. Since 6 has algebraic intersection £1 with %, it must have geometric
intersection one with 4. Let & = o and 3 = f3, then &, B and ¢ are freely homotopic to
the collection {A, B,S} of mutually disjoint, non-separating curves. Notice that A and
B are non-parallel by our original assumption, while if S is parallel to A or B, then
our original collection of curves would be freely homotopic to the boundary of a pair of
pants, contradicting our original assumption. Therefore, A, B and § are non-parallel as
required.

If the boundary of G, contains D, then we may perform the same procedure reversing
the roles of § and §. Therefore, we may assume that the boundary of G contains both
A and FE, but not B or D. Since (3 is non-separating and B is not in the boundary of G,
there must be another component H of F'— F; which has both B and D in its boundary.
We then simply repeat the procedure above to construct a curve 4 which intersects T
only at the basepoint which has geometric intersection one with 8 and ¢ and geometric
intersection zero with a. We then let & be a simple based loop in F} intersecting 4 only
at the basepoint, in the based homotopy class of Sa¢ for some e € {£1}, which has
geometric intersection one with 4. Letting B = (8 and 5= 0, we may complete the proof
as in the previous paragraph. 0O

Notice that we may always re-order the curves produced by Lemma 7.2 so that
ar B‘Vyg’" is represented by a simple non-separating curve in F for all p,q,r € Z. More-
over, our assumptions imply that &, 3 and ¢ have non-intersecting axes and that /3’ and
'AyB’Ay_l have non-intersecting axes. Theorem 7.1 will then follow from the following result.

Proposition 7.3. Suppose that o, 8,7,0 € m1(S) — {1}, a, 8 and 6 have non-intersecting
azes and that B and yBy~' have non-intersecting azes. If p,o € Ha(S) and
| Tr(p(a?Biv07))| = | Tr(o(aP 519d7))| for all p,q,r € Z, then p and o are conjugate, in
PGL4(R), on the subgroup < o, 8,8 > of m1(S).
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Proof. We may apply Lemma 6.2 to the pairs («,7), (8,7) and (d,7) to conclude that
Ai(p(n)) = Xi(o(n)) for all ¢ and any n € {«,3,d}. (Notice, for example, that for the
pair (a,7) our assumptions imply that | Tr(p(a™y))| = | Tr(o(a™y))| for all n, so the
assumptions of Lemma 6.2 are satisfied.)

Combining the expansions

d d

pla) =D Nilp(a))pi(p(e) and o(a) =) Ai(o(a))pi(o(@))

i=1 i=1

with our assumption that | Tr(p(a?B97"))| = | Tr(o(aPBi67))| for all p,q,r € Z, we
see that

d
D N (p() Tr (pi(p(e))p(B767)) iZAP ) Tr (pi(o(a))a(8970"))

i=1

for all p,q,r € N. Since p(a) and o(«) are purely loxodromic and A;(p(a)) = Ai(o())
for all 7, we may fix g and r, let p tend to +oo and consider terms of the same order to
conclude that

Tr (pi(p(a))p(B?78")) = £ Tr (pi(a(a))a(5774")) (2)

for all i € {1,...,d} and all ¢,r € N. Similarly, we expand Equation (2) to see that, for
all 7,

Z/\q ) Tr (pi(p())p; (p(B))p(73")) iZAq ) Tr (pi(a(a))p;(a(B))a(vd"))

and consider terms of the same order as ¢ — +00 to conclude that

Tr (pi(p(a))p; (p(8))p(78")) = £ Tr (pi(a(a))pi(a(8))o(vd"))

for all 4,5 € {1,...,d} and r € N. Expanding this last equation and letting r tend to
400, we finally conclude that

Tr(pi(p()p; (p(8)) p(7)Pr(p(0))) = £ Tr(pi(o(a))p;(0(B))o(v)Pr(c(9)))
for all 4,5,k € {1,...,d}, i.e.
,7,0, k( ﬂ s )( ) = :I:Ti7j,0,k(av/6577 5)(0) (3)

for all 4,5,k € {1,...,d}.
We similarly expand the equation

Tr(p(B1y8")) = £ Tr(a(8770"))
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to see that

Tj0.1(8,7,0)(p) = £T50.1(8,7,0) (o) (4)

for all j and k.
Recall, from part (4) of Proposition 4.3, that

T, 00 B.7.8)(0) = Ty04(8.7.6) (p) (M) 40

T;x(8,6)(p)

for all p € Hy4(S) and 4,5,k € {1,...,d}, so we may conclude from Equations (3) and
(4) that

for all 4,5,k € {1,...,d}.
We may join p to o by a path {p;} of Hitchin representations. So, since W
I ) t

is non-zero for all ¢, again by Proposition 4.3, and varies continuously, it follows that

Ti,j,k‘(a7ﬁa6)(p) Ti7j7k(a7675)(0)

Tix(8,0)(p) — Tjk(B,0)(0)

for all i,4,k € {1,...,d}. Therefore, since we have already seen that A;(p(n)) = Xi(a(n))
for all ¢ if n € {a, 8,7}, Theorem 4.4 implies that p and o are conjugate, in PGL4(R),
on the subgroup < a, 3,0 > of m1(S5). O

We are now ready to establish that the restriction of the marked trace spectrum to
the simple non-separating curves determines a Hitchin representation.

Theorem 7.4. Let S be a closed orientable surface of genus g > 3. If p € Ha,(5), o €
Ha, (S) and | Tr(p(a))| = | Tr(o(o))| whenever oo € w1(S) is represented by a simple non-
separating curve, then di = ds and p = o.

Proof. Notice that Theorem 6.1 immediately implies that d; = ds, so we may assume
that d = d; = do. Consider the standard generating set

S= {0117517“-70‘9769}

for m1(S) so that [[{_,[as, 8;] = 1, each generator is represented by a based loop, and
any two such based loops intersect only at the basepoint.

Notice that the generators are freely homotopic to simple, non-separating closed curves
so that the representative of «; is disjoint from the representative of every other generator
except 3; and that the representative of [; is disjoint from the representative of every
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other generator except «;. Moreover, no three of the representatives which are disjoint
bound a pair of pants. Therefore, Theorem 7.1 implies that we may assume that p and
o agree on < (g, g, 3 >.

If n € S — {a1, 2,01, 52}, then Theorem 7.1 implies that there exists C' € PGL4(R)
so that p and CoC~! agree on < oy, as,n >. Since p and o agree on a; and as, the
following lemma, which we memorialize for repeated use later in the paper, assures that

C=1,s0p(n) =oan).

Lemma 7.5. Suppose that S is a closed surface of genus at least two, p : w1 (S) — PSLg(R)
and o : 71 (S) = PSLg(R) are Hitchin representations, and there exists a subgroup H of
71(S) and C € PSLy(R) so that p|g = Co|gC~L. If there exists vi,vo € H with non-
intersecting azes, so that p(v1) = o(v1) and p(ve) = o(v2), then C =1, so plg = o|u.

Proof. Since p and o agree on vy and ve, C must commute with p(v1) and p(v2). Thus C
is diagonalizable over R with respect to both {e;(p(v1))} and {e;(p(rv2)}. If C' # I, then
R admits a non-trivial decomposition into eigenspaces of C' with distinct eigenvalues.
Any such eigenspace W is spanned by a sub-collection of {e;(p(v1))} and by a sub-
collection of {e;(p(r2))}. In particular, some e;(p(r1)) is in the subspace spanned by a
subcollection of {e;(p(r2))}. Since 11 and v, have non-intersecting axes, this contradicts
Corollary 4.1. Therefore, C' =1. O

In order to prove that p(81) = o(81), we similarly apply Theorem 7.1 and Lemma 7.5
to the elements a2, a3 and 81, while to prove that p(82) = o(82) we consider the elements
a1, ag and f2. Since we have established that p and o agree on every element in the
generating set S, we conclude that p=0. O

Marked simple length rigidity, Theorem 1.1, is an immediate consequence of Theo-
rems 7.4 and 6.1.

We may further use the Noetherian property of polynomial rings to prove the fi-
nal statement in Theorem 1.2, which asserts that Hitchin representations of the same
dimension are determined by the traces of a finite set of simple non-separating curves.

Proof of Theorem 1.2. We consider the affine algebraic variety
V(S) = Hom(m(5),SLa(R)) x Hom(m (5), SLg(R)).

Let {v;}2, C m(S) be an ordering of the collection of (conjugacy classes of) elements
of m1(S) which are represented by simple, non-separating curves, and define, for each n,

Va(8) = {(p,0) € VI(S) | Tr(p(i)) = Tr(o(v:)) if i <nj

and let
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o0
Voo = [ Vo
n=1

Then each V,,(S) is a subvariety of V(S) and by the Noetherian property of polynomial
rings, there exists NV so that Vy = V. We define £4(5) = {7:}¥,.

There exists a component Hq(S) of Hom(m(S), SLg(R)) consisting of lifts of Hitchin
representations so that Hg(S) is identified with the quotient of Hq(S) by SLg(R), see
Hitchin [18]. Since traces of elements in images of (lifts of) Hitchin representations are
non-zero, for all v € 7, (S), Tr(v(7)) is cither positive for all v € H4(S) or negative for all
v € Ha(S), for all v € m1(S). Therefore, if the marked trace spectra of p, o € Hq(S) agree
on L4(S), they admit lifts 5 and & in Ha(S) so that (3,6) € V. Since Viy = Vi, the
marked trace spectra of p and o agree on all simple, non-separating curves. Therefore,
by Theorem 7.4, p =0 € Hq(S). O

Remark. The set £4(S) contains at least dim(Hq(5)) = —x(5)(d? — 1) curves, but our
methods do not provide any upper bound on the size of L4(5).

8. Isometries of intersection

In this section, we investigate isometries of the intersection function which is used to
construct the pressure metric on the Hitchin component. Our main tool will be Bonahon’s
theory of geodesic currents and his reinterpretation of Thurston’s compactification of
Teichmiiller space in this language, see Bonahon [2].

8.1. Intersection and the pressure metric
Given p € Hq(S), let

Ry (p) ={l1] € [m(9)] | Ly(p) <T}

be the set of conjugacy classes of elements of m1(S) whose images have length at most
T. One may then define the entropy

Given p,o € Hq(S), their intersection is given by

-1 1 Ly(o)
He.0) = Jim, #Rr(p) Ly(p)

[vI€RT (p)

and their renormalized intersection is given by

J<p70) = %I(p, 0)'
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One may show that all the quantities above give rise to analytic functions.

Theorem 8.1. (Bridgeman—Canary—Labourie-Sambarino [6, Thm. 1.3]) If S is a closed
surface of genus greater than 1, the entropy h, the intersection 1, and remormalized
intersection J are analytic functions on Hq(S), Ha(S) x Ha(S) and Ha(S) x Ha(S)
respectively.

Let J, : Ha(S) — R be defined by J,(c) = J(p,0). The analytic function J, has a
minimum at p (see [6, Thm. 1.1]) and hence its Hessian gives rise to an non-negative
quadratic form on T},(H4(S)), called the pressure metric. Bridgeman, Canary, Labourie
and Sambarino proved that the resulting quadratic form is positive definite. A result of
Wolpert [33] implies that the restriction of the pressure metric to the Fuchsian locus is
a multiple of the classical Weil-Petersson metric. (See [7] for a survey of this theory.)

Theorem 8.2. (Bridgeman—Canary-Labourie-Sambarino [6, Cor. 1.6]) If S is a closed
surface of genus greater than 1, the pressure metric is a mapping class group invari-
ant, analytic, Riemannian metric on Hq(S) whose restriction to the Fuchsian locus is a
multiple of the Weil-Petersson metric.

Recall that a diffeomorphism f : Hq(S) — Hq(S) is said to be an isometry of in-
tersection if I(f(p), f(c)) = I(p,o) for all p,o € Hy(S). Let Isomy(H4(S)) denote the
group of isometries of I. Notice that, by construction, the extended mapping class group
Mod(S) is a subgroup of Isomy(H4(S)). (The extended mapping class group Mod(S)
can be identified with the group Out(m(5)) of outer automorphisms of 71 (S) and acts
naturally on H4(S) by pre-composition.)

The entire discussion of intersection, renormalized intersection and the pressure metric

restricts to H(S, G) when G is PSp(2d,R), PSO(d,d + 1), or Gz .
8.2. Basic properties

We first show that isometries of intersection preserve entropy and hence preserve
renormalized intersection, so are isometries of the pressure metric.

Proposition 8.3. If S is a closed orientable surface of genus greater than 1, G is PSLg(R),
PSp(2d,R), PSO(d,d + 1), or G and f: H(S,G) — H(S,G) is an isometry of inter-
section I, then h(p) = h(f(p)) for all p € H(S,G). Therefore, J(f(p), f(o)) = I(p, o) for
all p,o € H(S,G), and f is an isometry of H(S,G) with respect to the pressure metric.

Proof. Suppose that p € H(S,G), v € T,(H(S,G)) and v = %‘t:o pr =Py for a smooth
path {p:}+c(—1,1) in Ha(S). Then,

L (o) = L(p, pr) = I(f (), f(p(t)) = Ly (p) (f (1)),
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SO

DI, (v) = DIy, (Df,(v)).

Since J, has a minimum at p, DJ,(v) =0, so

DJ,(v) = D:(”/S}) L(p) + %DIP(’U) = Ds(”p(;’) +DI,(v) =0
which implies that
DI, (v) = —%{E;) = —D(log h)(v).

Thus, for all p € H(S,G) and v € T,(H(S,G))

D(log h)(v) = D(log(h o f))(v),

o (ho f)/h is constant, since H(S, G) is a connected manifold. If (ho f)/h = ¢ # 1 then
either ho f™ or ho f~™ grows to infinity with n. However, since h is a bounded positive
function, it must be the case that c=1 and ho f = h.

It follows, by the definition of renormalized intersection, that f preserves renormal-
ized intersection. Since the pressure metric is obtained by considering the Hessian of
renormalized intersection, f is also an isometry of H(S, G) with respect to the pressure
metric. O

Potrie and Sambarino [29] proved that the entropy function achieves its maximum
exactly on the Fuchsian locus, so we have the following immediate corollary.

Corollary 8.4. If S is a closed orientable surface of genus greater than 1, G is PSLg(R),
PSp(2d,R), PSO(d,d + 1), or Gao and f : H(S,G) — H(S,G) is an isometry of inter-
section I, then f preserves the Fuchsian locus.

8.3. Geodesic currents

We identify S with a fixed hyperbolic surface H? /T, which in turn identifies 71 (S) with
I' and D71 (S) with 9, H?. One can identify the space G(H?) of unoriented geodesics
in H? with (0ocH? x O5xH? — A)/Z5, where A is the diagonal in 9, H? x d,,H? and
Zs acts by interchanging coordinates. A geodesic current on S is a I'-invariant Borel
measure on G(H?) and C(S) is the space of geodesic currents on S, endowed with the
weak® topology.

If « is a closed geodesic on S, one obtains a geodesic current §, by taking the sum of
the Dirac measures on the pre-images of a. The set of currents which are scalar multiples
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of closed geodesics is dense in C(.9), see Bonahon [2, Proposition 2]. If p € T(S) = Hz(S)
has associated limit map &, : 9m1(S) — 0Ha, one defines the Liouville measure of p by

(fp(a) - ﬁp(c)) (fp(b) - §p(d))

my([a,b] x [¢,d]) = [log (fp(a) - fp(d)) (fp(b) - 6P(C)) .

Theorem 8.5. (Bonahon [2, Propositions 3, 14, 15]) Let S be a closed oriented surface of
genus g > 2 and p € T(S) = Ha(S). Then there exist continuous functions £, : C(S) — R
and i : C(S)xC(S) — R which are linear on rays such that if o and  are closed geodesics,
then

i(myp, 0a) = Ly(a), i(mp,mp) = 7°|x(5)],
and i(a, B) is the geometric intersection between o and f3.

Moreover, Bonahon defines an embedding
Q:T(S)—PC(S)

of Teichmiller space into the space of projective classes of geodesic currents given by
Q(p) = [m,]. Bonahon shows that the closure of Q(7(S)) is homeomorphic to a closed
ball of dimension 6g—6, and the boundary of Q(7(5)) is the space PML(S) of projective
classes of measured laminations. (Recall that a measured lamination may be defined to
be a geodesic current of self-intersection 0.) In particular, the geodesic current associated
to any simple closed curve lies in the boundary of Q(7 (S)). Moreover, Bonahon [2, The-
orem 18] shows that this compactification of Teichmiiller space agrees with Thurston’s
compactification.

8.4. Length functions for Hitchin representations

If p € Ha(S), then there is a Holder function f, : T1S — R such that if « is a closed
oriented geodesic on S = H?/T', then

[ fodt=1a0)

where dt is the Lebesgue measure along o C T1(S), see [6, Prop. 4.1] or Sambarino [31,
Sec. 5]. Given p € C(S), one may define a I'-invariant measure fi on T'H? which has the
local form p x dt where dt is Lebesgue measure along the flow lines of T'H? (which are
oriented geodesics in H?), so fi descends to a measure fi on T(S). One may then define
a length function ¢, : C(S) — R by letting



M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901 45

b= [ 1,dn
T1(S)

Notice that if « is a simple closed geodesic on S, then
0p(6a) = Lil (p) = La(p) + La-1(p)

since 4, is Dirac measure support on the closed orbits of geodesics associated to o and
a~!. Moreover, by the definition of the weak* topology, ¢, is clearly continuous, since
T1S is compact.

Recall that (see Bowen [3] or Margulis [26]) if o € T(S) = H2(S) then the Liouville
current satisfies

m 1 )
_Mo  _ Jim = lim < .
go’ (mo) T—o0 #RT RX(;T [ T—>°° #RT (0) R;(;r) 2L, (0)

Since 74 multiplies the logarithm of the spectral radius by d — 1, if p € Hq(S), then

Ly(me . 1 Lf
Gk 2 s

1 La(p)
= d -1 hm -
( ) T—oo #Rg_1)r(Ta00) RMI)XTEMW) Lo(1400)

=(d—1) I(rgo00,p).

Here we use the fact that, since o € T(S), Lo(0) = Ly-1(0), so

for all a € 71(S).
8.5. Isometries of intersection and the simple Hilbert length spectrum

We next observe that any isometry of intersection preserves the simple marked Hilbert
length spectrum.

Proposition 8.6. If S is a closed surface of genus g > 2, G = PSL4(R), PSp(2d,R),
PSO(d,d + 1), or Gag and f : H(S,G) — H(S,G) is an isometry of intersection, then
there exists an element ¢ of the extended mapping class group so that if p € H(S,G),
then p and f o ¢(p) have the same simple marked Hilbert length spectrum.

Proof. Recall, from Corollary 8.4, that f preserves the Fuchsian locus. Since any isometry
of T(S) with the Weil-Petersson metric agrees with an element of the extended mapping
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class group, by a result of Masur-Wolf [27], and the restriction of the pressure metric
to the Fuchsian locus is a multiple of the Weil-Petersson metric, the restriction of f
to the Fuchsian locus agrees with the action of an element ¢ of the extended mapping
class group. We can thus consider f = f o ¢!, which is an isometry of the intersection
function that fixes the Fuchsian locus.

If o € m1(S) is represented by a simple curve, we may choose a sequence {o,,} in T(5)
such that {Q(c,)} converges to [d4] € PC(S), so there exists a sequence {c,} of real
numbers so that lim ¢,, = +00 and

. Mme,,
lim —= = §,.

Therefore, if p € H(S,G) C Ha(S), then

LH(p) = £,(6,) = lim ¢, (m"n) = lim (%I(Td o Un,p)) .

Cn Cn

By Theorem 8.5, as oy, € T(S), then Lo, (M, ) = i(mq,,, Mo, ) = 2|x(S)]|. pr € H(S G)
and « € m1(S), then since I(74 0 0, p) = I(74 0 0, f(p)) for all n, LE (p) = LE(f(p)).
Therefore, p and f(p) have the same simple marked Hilbert length spectrum. O

Recall that if p lies in H(S, G) and G is PSp(2d, R), PSO(d, d+1) or Gz, then L (p) =
2L, (p) for all o € m1(S). Therefore, we may combine Theorem 1.1 and Proposition 8.6
to obtain:

Corollary 8.7. If S is a closed surface of genus g > 3, then any isometry of the intersec-
tion I on H(S,PSp(2d,R)), H(S,PSO(d,d + 1)), or H(S,Gay) agrees with an element
of the extended mapping class group.

Notice that Corollary 8.7 is a generalization of Theorem 1.3 which was stated in the
introduction, since it also covers H (.S, G ).

9. Hilbert length rigidity

Proposition 8.6 suggests the following potential generalization of our main simple
length rigidity result.

Conjecture: If p,o € Hy(S) have the same marked simple Hilbert length spectrum then
they either agree or differ by the contragredient involution.

We establish this conjecture when d = 3.
Theorem 9.1. If S is a closed orientable surface of genus greater than 2, p,o € Hz(S)

and LH (p) = LE (o) for any o € 71(S) which is represented by a simple non-separating
curve, then p =0 or p=o*.
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The classification of the isometries of intersection on H3(S), Theorem 1.4, is an im-
mediate consequence of Theorem 9.1 and Proposition 8.6.

Proof. Notice that PSL3(R) = SL3(R) and that if v € 71(S), then all the eigenvalues of
p(7y) are positive, since eigenvalues vary continuously over H3(S) and are positive on the
Fuchsian locus. In particular, if L7 (p) = L¥ (o), then

Mip(@) _ Aloe)) |

As(p(a))  As(o(a))

We first show that for individual elements the traces and eigenvalues either agree or

are consistent with the contragredient involution.

Lemma 9.2. If a and B are represented by simple, non-separating based loops on S which
intersect only at the basepoint and have geometric intersection one, and Lgnﬁ(p) =
L. 5(0) for all n, then either

(1 Z(,o(a)) = \i(o(a)) for all i, so Tr(p(a)) = Tr(o(w)), or
M(o(a=1)) = Ai(o*(a)) for all i, so Tr(p(a)) = Tr(0*(a0).

Proof. As in the proof of Lemma 6.3, let A = p( ), B = p(B) and A"B = p(a™p)
and \;(n ) (A"B) Similarly, let A = o(a), B = o(8) and A"B = o(a"8) and let
Ai(n) = M(A"B). 1f (b%) is the matrix of B with respect to the basis {e;(A)}, then, b},
b}, and b? are all non-zero by Lemma 6.4, so Lemma 5.1 implies that

R R (),

A;L bl M
where \; = \;(A). Similarly, applying Lemma 5.1 to p* and noting that \;*(p*(7)) =
Aa—i(p(7)) for all v € m1(S), gives that
As\”
0 "

Ny Bt (e
A3 (n) Yoal \

where (d}) is the matrix of (B~')” in the basis {e;((A~")7)}.
Taking the product of the previous two equations gives

)\1 (n) /\3 " 1 1 d1b1b2 /\2 b1d2d2 )\3
)\3 (TL) )\1 b )\1 d )\2

we((5)) = ()

One obtains an analogous equality for ¢, and since the left hand sides are equal by

()

assumption, we see that
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dibib? [\ brdid? [ As\" Az\" A2 \"
1yt 4 @10 2 10201 (A3 A3 A2
e St () =2 () () ) ()
npipe A3\ a2 /50\" VAN W\
=bd! + dib3t A2) | hiddi (s (s vol 22 (6)
b% /\1 d% )\2 )\2 /\1

where A\; = A\;i(A) and (13;) and (cz;) are the matrix representatives of B and (B~1)T
with respect to the bases {e;(A)} and {e;((A~1)T)} respectively. Since lim A1 — () and

An
)\l“ =0 for i = 1,2, we see that bldi = bld1

Lemma 6.4 implies that all the coefficients in Equation (6) are non-zero. We further
show that they are all positive.

lim

Lemma 9.3. Suppose that « and 5 are represented by simple based loops on S which
intersect only at the basepoint and have geometric intersection one. If p € Hs(S) and
B = (b]) is a matriz representing p(B) in the basis {e;(p(c)}, then b} and bib} are
positive.

Proof. We may normalize p so that {e;(p(c)} is the standard basis for R3. The coef-
ficients b1, b} and b? give non-zero functions on Hz(S), so have well-defined signs. If
o9 = 73 0 pg lies in the Fuchsian locus, then we may assume that

A2 0 0

A0
0'0(04)_’7'3(|:0 )\1:|> = 0 1 0
0 0 A2

a b a® ab b2
oo(B) =713 ([c d]) = |[2ac ad+bc 2bd
c? cd d?

Since « and [ intersect essentially, the fixed points z; and z5 of z — “Z+b lie on opposite
sides of 0 in R = 9, H?2. Since z; and 2z, are the roots of cz2 + (d— a)z —b=0, we see
that 2 = —z125 > 0, so bc > 0. Therefore, b}(o0) = a> > 0 and b3b}(00) = 2a%bc > 0. It
follows that b} and b?bl are positive on all of H3(S). O

—

Notice that i—; = i—f(p(a‘l)) and )‘3 = 22(g(a~')). Then, by considering the second
2
order terms in Equation (6), we see that there exists €1, €3 € {1} such that

A2 vy A2 o
Ti(a) = Fola).

Since we have assumed that

j—j@(aﬁl» L, (p) = LM, (0) = Lﬁz(a>=j—j<a<a62>>

and
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(A1 A223)(p(a™)) = (M A2As3)(0(a?)) =1,

we see that (A1 (p(a))® = (A1 (a(2))?, s0 A (p(a)) = A1 (o(a®?)), hence A;(p(a)) =
Ai(o(af?)) for all i. If €3 = e, then we are in case (1), while if €, = —ey we are in case
(2). O

We next show that if Tr(p(a)) = Tr(o(«)) and Tr(p(a)) # Tr(c*(«)), then we may
control the traces of images of simple based loops having geometric intersection one with
a.

Lemma 9.4. Suppose that S is a closed orientable surface of genus greater than 1,
p,o € Hs(S) and LY (p) = LI (o) for any v € m(S) which is represented by a sim-
ple, non-separating curve. If o € 71(S) is represented by a simple, non-separating based
loop,

Tr(p(a) = Tr(o(a)) and  Tr(p(a)) # Tr(0* (a))

and 8 € w1(S) is represented by a simple non-separating based loop intersecting o only at
the basepoint and having geometric intersection one with «, then Tr(p(B)) = Tr(a(5)).

Proof. We adopt the notation of Lemma 9.2, and notice that Lemma 9.2 implies that
i = Xi(p(@)) = \i(o (@) = A; for all 4.

If there is an infinite sequence {ny} of positive numbers such that Tr(p(a™3)) =
Tr(o(a™f3)), then,

ATFDE 4 XDED2 4 AZFDS = NP*DY 4 ADFD2 4+ N2v D3

for all ny. So, by considering the leading terms, we see that b} = b!. Considering the
remaining terms, we conclude that b2 = b2 and b3 = b3, so Tr(p(8)) = Tr(o(3)).
If not, then, by Lemma 9.2, Tr(p(a™3)) = Tr(c*(a™f)) for all sufficiently large n, so

APBY 4 AIBE + AZDE = A3 "d) + Ay dE + AT dS

for all sufficiently large n. Since b1 # 0 and LZ} = 0, we conclude, by considering leading
terms, that \; = A3, so Ay = 1. However, this implies that \;(p()) = \;(c*(a™")) for
all 7, so Tr(p(a)) = Tr(o* (), which contradicts our assumptions. 0O

If Tr(p(a)) = Tr(o()) for any « represented by a simple non-separating curve, then
Theorem 1.2 implies that p = o. Similarly, if Tr(p(«)) = Tr(o*(«)) for any « represented
by a simple non-separating curve, then Theorem 1.2 implies that p = o*. Therefore, we
may assume that there exists a simple non-separating based loop « so that Tr(p(«)) =

Tr(o(a)) and Tr(p(a)) # Tr(o*(a)).
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Fig. 4. The curves a1, as, asaz and 7 on a surface of genus 3.

Let 8 be a simple, non-separating based loop intersecting « only at the basepoint
which has geometric intersection one with 3. Since Tr(p(a)) # Tr(c*(«)) and Tr(p(5))
and Tr(o(3)) are non-zero, there exists n so that Tr(p(a”f)) # Tr(o*(a™3)). Moreover,
Lemma 9.4 implies that Tr(p(a™B)) = Tr(o(a™p)). Extend «, a™f to a standard set of
generators S = {a1, B1,...,a4, By} so that o = oy and " = fy.

The remainder of the proof now mimics the proof of Theorem 1.2. Notice that for the
standard generators, if j > ¢ > 1, then o;0; and ai@’;l can, and for the remainder of the
proof will be, represented by simple non-separating based loops which intersect a;; and «y
only at the basepoint, with geometric intersection zero. There exists a based loop v which
intersects each curve in the collection {1, as, asas, ... ,O(QOég,OéQB3_17 .. .,a25;1} only
at the basepoint and with geometric intersection one, see Fig. 4. Moreover, if 7 is either
Qa0 Or agﬁi_l, with i > 3, then every curve of the form nPadyaj is freely homotopic
to a simple based loop, in the based homotopy class of ajnPady, which has geometric
intersection one with a7 and intersects a; only at the basepoint. It then follows from
Lemma 9.4 that

Tr(p(nPazyar)) = Tr(o(n agyal))

for all p, g, r € Z. Proposition 7.3 then implies that p and o are conjugate on (1, as, a1).
In particular, we may assume that p and o agree on (a1, as,a3) = (asas, as,aq). If
1N = agq;, with ¢ > 4, then, since p and o agree on {1, as, a3) and are conjugate on
(n, a2, 1), Lemma 7.5 implies that they agree on 1 and hence on o, 'n = «;. Similarly,
if n = Oégﬁi_l, with ¢ > 3, we can use Lemma 7.5 to show that p and n agree on 1 and
hence on S;.

It remains to check that p and o agree on 81 and P3. Recall that there exists a
homeomorphism h : S — S so that hoa; = 8; and ho 8; = a;. Then p = po h,
and & = o o h, are Hitchin representations. The above argument shows that p and & are
conjugate on {(ay, as, as, B3), which implies that p and o are conjugate on (31, B2, 3, a3).
Since p and o agree on a3 and on B335 ! (which have non-intersecting axes), Lemma 7.5
implies that p and o agree on 8; and S, which completes the proof. 0O

10. Infinitesmal simple length rigidity

In this section, we prove that the differentials of simple length functions generate the
cotangent space of a Hitchin component. In earlier work [6, Prop. 10.3] we showed that
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the differentials of all length functions generate the cotangent space, and that result
played a key role in the proof that the pressure metric on the Hitchin component is
non-degenerate.

Proposition 10.1. Suppose that S is a closed orientable surface of genus greater than 2
and p € Hq(S). If v € T,(Ha(S)) and DL (v) = 0 for every simple non-separating curve
a, then v = 0.

Moreover, if D Trq(v) = 0 for every simple non-separating curve «, then v = 0.

Proof. We recall that there exists a component H4(S) of Hom(m; (S), SLg(R)) which is
an analytic manifold, so that the projection map 7 : 7-Ld(S ) = Ha(S) is real analytic and
is obtained by quotienting out by the action of SL4(R) by conjugation, see Hitchin [18].
Any smooth path in H4(5) lifts to a smooth path in #4(S). The real-valued functions Tra
and Xi’a on H4(S) given by TrNa(ﬁ) = Tr(p(a)) and 5\:;(,5) = \i(p(a)) are analytic and
SL4(R)-invariant, so descend to real analytic functions Tr, and \; o on H4(S). (Notice
that if we chose a different component of Hom (1 (S), SLg(R)) as Hq(S), then Tr, and
Ai,o could differ up to sign.)

The proof of Proposition 10.1 has the same basic structure as the proof of our simple
length rigidity result. We first establish an infinitesimal version of Theorem 6.1.

Lemma 10.2. If S is a closed orientable surface of genus more than 1, p € Hq(S) and
v € THq(S) then DL, (v) = 0 for every simple non-separating curve « if and only if
D Tr,(v) = 0 for every simple non-separating curve o. In both cases DA; o(v) = 0 for
all i.

Proof. Let {pt}ie(—1,1) be an analytic path in Hq(S) such that if Py = %|t:0pt then
dr(fo) = v.

First assume that DL, (v) = 0 for every simple non-separating curve «. Choose a
simple based loop S which intersects « only at the basepoint and has geometric in-
tersection one with a. Let A(t) = pi(a), B(t) = pu(8) and \(t) = Nia(pr). Let
A(n,t) = |A1(A(t)"B(t))| and notice that our assumptions imply that

A(n,0) = % Aot =0
for all n. Let (b(t)) be the matrix representative of B(t) in the basis {e;i(A(t))} and
notice that we may choose {e;(A(t))} to vary analytically, so that the coefficients (b;(t))
vary analytically.

If v € R1 let D(v) € SL4(R) be chosen so that its matrix is diagonal with respect
to the basis {e;(A(t))} with diagonal entries (1,v1,...,v4-1), then M(v,t) = D(v)B(t)
depends analytically on v and t. Notice that M (0,0) has a simple eigenvalue b}(0) with
eigenvector e;. By Lemma 5.3 there exists an open neighborhood V' of the origin in
R4 x R and an analytic function F : V — R so that
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M(M(v,t)) = F(v,1).
= () - Gag) )
() (i) ) ev

for all sufficiently large n and ¢ sufficiently close to 0,

Ant) _ Al(i’i(gf(t» “ (A”(t)B(t)> _F ((Az(t))n,_.,, (Ad(t)>n,t> :

Since

and

A (t)" ( A(t)" Ax(t) A (t)
Letting u;(t) = A;:zt()t)7 we see that

Aln,t) = A (@)"F (ua ()", ... ua—1(t)",1).

Since 1 (0) = 0 and \(n,0) =0,

d

— F "o 1)) =

=] P (®),8) =0
for all large enough n. Therefore,

d—1
%—f(ul(())n, N ,ud,l(O)n, 0)+Z gi (u1 (O)n, N ,ud,l(O)n, O)TLUZ(O)H_I 1.%(0) = O7 (7)

for all large enough n, so

oF
E( ) 70a 0) =0
Moreover, since %—f is analytic,
d—1
oF O’°F
SO0 10,0 = Y (52 0.0)0)" + o(us(0)"))

i=1
s0, since 1 > |u1(0)| > |u;(0)| > 0 for all ¢ > 2,

fim L OF
00 nuy (0)n~—1 Ot
L ow(0)r [ O%F

(’)viat

(u1(0)", ..., uq—1(0))",0)

0

= lim
naooi 1 nul(O)’”_l

(o,...,0,0)>0
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Equation (7) then implies that

n—oo nay (0)7 — ov;
oF N
8—1)1(0’ ,0,0) ul(O) = O

OF d
9 0. . - =
d
T ds

s=0 ds

o (Lﬁ%{’& fééé’&}) ’

~ b3(0)b7(0)
a0, 00 = =gy

SO

Lemma 6.4 implies that bl( ), b3(0) and b2(0) are non-zero, so gqi (0,...,0,0) # 0. There-
fore, 21 (0) = 0 and, since X1 (0) = 0, we have

o d

(w)) _ 2(0)M(0)= Xi(0)22(0) _ %(0)
A1(0)2 A1 (0)’

S0 Ao (0) =0.

We may iteratively consider the 1-parameter families of representations given by
{E*(p;)} and apply the same analysis to conclude that S\W(O) = 0 for all 4, and thus
that D Tr,(v) = 0.

Now assume that D Tr,(v) = 0 for every a € m1(S) represented by a simple non-
separating curve. Given a simple, non-separating curve « represented by a simple based
loop, we again choose a simple based loop  which intersects « only at the basepoint
and has geometric intersection one with «. Notice that

d

d
Tr(pi(a”"p)) = Z A (pi(@)) Tr(pi(pe (@) pe(B)) = D ha(D)AT (1),

i=1

where h;(t) = Tr(pi(pt(a))pe(B)) # 0 for all ¢. Differentiating, and noting that
D Tryng(v) = 0 for all n, we see that

d
0= (0)AT(0) + nhs(0) Ji(0) X (0)" "

=1
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for all n. Since h;(0) # 0 and X;(0) # 0, it must be that }.11(0) =0 and 3\1(0) =0, so
DLo(v) =0. O

We next generalize the proof of Theorem 7.1 to obtain a criterion guaranteeing that
v is infinitesmally trivial on its restriction to certain 3-generator subgroups.

Lemma 10.3. Suppose that p € Hq(S), v € T,(Ha(S)) and DL, (v) = 0 for every simple
non-separating curve n on S. If o, 8,6 € w1 (S) are represented by simple based loops
which intersect only at the basepoint, and are freely homotopic to a collection of mutually
disjoint and non-parallel, non-separating closed curves which do not bound a pair of pants
in S, and {p,} is a path in Ha(S) so that D (Do) = v, then there exists a path {Cy} in
SL4(R), so that Co = I and if n € (o, B,0), then

d
— (C C; ') =0 € sl(n,R).
S| Gy =0 € sin, R)
Proof. Lemma 7.2 guarantees that there exist based loops &, B, ~ and § as in Fig. 1,
which intersect only at the basepoint, so that &, B and & are freely homotopic to a
collection of mutually disjoint, non-parallel, non-separating curves and v has geometric
intersection one with each such that

(o, B,8) = (&, B,0).

We may thus assume that «, § and J already have this form.

We may also, by possibly re-ordering o, 8 and d, assume that a?39y9" is represented
by a simple non-separating curve for all p,q,r € Z. We next generalize the proof of
Proposition 7.3 to show that D (%) (v) =0 for all 4, j and k.

Recall that

d
Tr(p(a?87757)) = 3 Ava () Tr (ps(p(@))p(B™"))

=1

Differentiating and noting that, by Lemma 10.2, D Tryrgaqs~(v) = 0 for all p, ¢ and r
and DX; o(v) = 0 for all 4, one sees that

d
Z Xia(p)PDT; o, fIv0")(v) =0
i=1
for all p. By examining terms of different orders and taking limits, we see that

DT; o(a, B9 )(v) =0

for all ¢, ¢ and r. Repeating, as in the proof of Proposition 7.3, we find that
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DTi,j,O,k(av ﬁ? v 6)(U) =0

for all 4, j, and k. Similarly, by considering $9vd", we see that

DT;o.x(8,7,0)(v) =0

for all j and k.
Recall, from part (4) of Proposition 4.3, that

k(3,0)(p)

for all 7, j and k. Since we have established that the two leftmost terms in this expression

T j0.6(c, 8,7,0)(p) = Tj0.%(8,7.0)(p) <M> 40

are non-zero and have derivative 0 in the direction v, we conclude that

PG )00

for all 7, j and k.

Let a;(t) = ei(pi(a)), a'(t) = e(pe(@)), b;(t) = e;(pr(B)), ¥/ (t) = € (pe(B)), di(t) =
ex(p¢(9)) and d*(t) = e¥(ps(8)) for all i, j, k. We will assume throughout, by replacing
{p¢} by {Cip:C; '} where {Cy} is a path in SLg(R) so that Cy = I, that a;(t) are constant
as functions of ¢ for all 4, by (¢) is constant as a function of ¢, and by scaling the bases, that
(a®(t)|b1(t)) = 1 for alli and ¢, (a' (t)|b; (¢ )) = 1forall j and ¢, and (d*(¢ )|b1( )) = 1 for all
k and t. Since a;(t) is constant and < |t _oMia(p) =0, by Lemma 10.2, & |t oP(a) = 0.

Recall, from Proposition 4.3, that

Tijn(e B,0)(pr) _ (a’(B)Ib; (1)) (@ (t)]ai(t))
> :

= 8
T,4(5.9) 00 D1t 1) )
By considering Equation (8) when j = 1, we see that
z,l’k( B, 6)(

Pt)_ .
Ty 2.0 (p) (& Wlas®)

so, since the left-hand side has derivative 0 at 0 and a;(t) is constant for all 4,

. (d @las(t))) = (@ 0)ar(0)) =0

for all i and k. Therefore, d*(0) = 0 for all k, so dj = 0 for all k. Since we also know,
from Lemma 10.2, that %|t:0)\i75(pt) = 0 for all ¢, it follows that %’tzopt(é) =0.
Considering Equation (8) when ¢ = 1, one obtains

Tyk(a, B,0)(pe) _ (a'(@)]b; (1)) (d*(D)]ar(t)) _ (d*(t)|as (1))
t

Tr(B.0)(pe) (d*()b; (£)) (d@)[bi (1))
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Since the derivative of the left hand side is 0 at 0, a1 (t) is constant, and d*(0) = 0 for
all k, we see that

so (d*| l')J(O)> = 0 for all j and %, so l.)j(O) = 0 for all j. We may then argue, just as
before, that %|t=0pt(ﬂ) = 0. Therefore, %|t=opt(n) =0forallnexpB49). O

We are now ready to complete the proof of Proposition 10.1. Let S = {aq,S1, ...,
a4, By} be a standard generating set for m;(S). By Lemma 10.3, we may choose an
analytic family {p;} in Hom(m(S), PSL4(R)) so that dm(Pg) = v and %}tzopt(’y) =0
for all n € {aq, g, as).

For any 6 € S — {aq,@2,a3,01,82}, we may apply Lemma 10.3 to the triple
{a1,a2,n} to show that there exists a family {C;} in PSLg(R) so that Cp = I and
%’tZO(Ctpt(’y)C’t_l) =0 for all v € (a1, oz, 6). In particular,

° _ (] d _ ] °
Copo(ai)Cy ' — Copo(ai) Co + Co <&L_Opt(ai)> Cy ™t =Copo(ci) — pola;) Co =0,

s0 [Clo, po(e)] = 0 for i = 1,2. Thus, (Y is diagonalizable over R with respect to both
{ei(po(n))} and {ei(po(az)}- .

If Oy # 0, then R? admits a non-trivial decomposition into eigenspaces of O with dis-
tinct eigenvalues. Any such eigenspace W is spanned by a sub-collection of {e;(po(c1))}
and by a sub-collection of {e;(po(a2))}. In particular, some e;(po(cv1)) is in the sub-
space spanned by a subcollection of {e;(po(c2))}. Since ay and ay are disjoint curves,
this contradicts Theorem 1.6. Therefore, é’o =0.

Since ¢ = 0 and %|t=0(0tpt(5)0[1) = 0, we calculate that

d
T pe(0) = 0.

t=0

. _ . d _
Com(0)C5" = Com(8) En+ o (| ) 05

By considering the subgroups (as, as, f1) and (a1, as, B2), we similarly show that

d d

- Opt(ﬁl) =0 and  —

dt 1= dt‘t:opt(ﬁ2) =0

Since %|t20pt(n) =0forallnesS,
/.)0 =0c¢c Tﬁd(S).

Therefore, v = D7 (bo) =0 as claimed. O
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11. Hitchin representations for surfaces with boundary

In this section, we observe that our main simple length rigidity result extends to
Hitchin representations of most compact surfaces with boundary.

If S is a compact surface with boundary, we say that a representation p : m1(S) —
PSL4(R) is a Hitchin representation if p is the restriction of a Hitchin representation
of m1(DS) into PSL4(R), where DS is the double of S. Labourie and McShane [21, Sec-
tion 9] show that this is equivalent to assuming that p is deformable to the composition
of a convex cocompact Fuchsian uniformization of S and the irreducible representation
through representations so that the image of every peripheral element is purely lox-
odromic. (Recall that a non-trivial element of 71(S) is peripheral if it is represented
by a curve in 9S5.) Fock and Goncharov [13] refer to such representations as positive
representations.

Theorem 11.1. Suppose that S is a compact, orientable surface of genus g > 0 with
p > 0 boundary components, and (g,p) is not (1,1) or (1,2). If p and o are two Hitchin
representations of m1(S) of dimension d and L,(c)) = Ly(v) for any a represented by a
simple non-separating curve on S, then p and o are conjugate in PGL4(R).

Notice that our techniques don’t apply to punctured spheres, since they contain no
simple non-separating curves. In the remaining excluded cases, there are no configura-
tions of three non-parallel simple non-separating closed curves which do not bound a
pair of pants.

Proof. We choose a generating set

S = {alyﬁla-'~ag7/8g7517~'-75p—1}

represented by simple, non-separating based loops which intersect only at the basepoint
so that {a1, 81, ..., a4, By} is a standard generating set for the surface of genus g obtained
by capping each boundary component of S with a disk, each d; has geometric intersection
one with 51 and zero with every other generator, as in Fig. 5. Notice that any collection
of 3 based loops in & which have geometric intersection zero with each other are freely
homotopic to a mutually disjoint, non-parallel collection of simple closed curves which
do not bound a pair of pants.

Throughout the proof we identify S with a subsurface of DS and apply our earlier
results to the representations p and & of m1(DS). Lemma 6.3 implies that if € m1(5)
is represented by a simple non-separating curve on S, then | Tr(p(n))| = | Tr(c(n))| and
Ai(p(n)) = Ai(o(n)) for all i.

If ¢ > 3, the proof of Theorem 1.2 generalizes rather immediately. We first apply
Theorem 7.1 to p and &, to see that we may assume, after conjugation in PGL4(R),
that p and 0 agree on (aj,a9,a3). If n € § — {1, a9, f1, 52}, we may again apply
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o9

Fig. 5. Our generators on a surface with genus 2 and 3 boundary components.

Theorem 7.1 to show that p and ¢ are conjugate on (ay, s, 7). Since p and & agree on
a1 and ag, Lemma 7.5 implies that p and o agree on (ay,as,n). We then consider the
triples {as, ag, 51} and {a1, a3, B2} to show that p and o agree on 8; and B2, and hence
that p=o.

If g =2 and p > 2, we again use Theorem 7.1 to show that we may conjugate p and
o so that they agree on (a1, aq,d1). If ¢ > 2, we may again apply Theorem 7.1 to show
that p and o are conjugate on (a1, s, ;) and then Lemma 7.5 to show that p and o
agree on (aj,as,d;). We consider the triple {ay,d1, 82} to show that p and o agree on
B2. Therefore, p and o agree on S — {f;1}. Recall that there exists a homeomorphism
h:S — S such that ho«a; = §; and h o 8; = «;. The above argument implies that the
Hitchin representations p o h, and o o h, are conjugate on (a1, az, B2) and hence that
p and o are conjugate on (81, B2, as). Since p and o agree on B2 and s, Lemma 7.5
implies that they agree on ;. So, we conclude that p = o.

Ifg=1and p > 3, then S = {ay,B1,61,...,0p—1}. We first apply Theorem 7.1 to
show that we may conjugate p and o so that they agree on {«y, d1,02). If i > 3, we may
consider the triple {1, d1,d;} to see that p and o agree on ¢;. It remains to check that
p and o agree on f3;.

Let &; be as in Fig. 6, so that if S’ = {ay, B, 51,.. 5,,,1}7 then the based loops in &’
intersect only at the basepoint and each 51 has geometric intersection one with «y and
has geometric intersection zero with every other element of S’. Notice that a1d; = 31-61
and let u; = a16;. Then, p and o agree on the subgroup (a1, uq,. .., up—1). We may apply
the same argument as above to show that p and o are conjugate on (5, 51, e ,Sp_1>.
Since this subgroup contains u; and us, p and o agree on u; and ug, and u; and us have
non-intersecting axes in m1(DS), Lemma 7.5, applied to p and &, implies that p and o
agree on <B1,31, . ,3,9,1) and hence on 1, so p = 0.

If g=2and p =1, then § = {ay, 81, a2, B2}. We will consider the based loops &;
and Bl as in Fig. 7. As the based loops {1, as, a1} are freely homotopic to a mutually
disjoint, non-parallel collection of simple, non-separating curves which do not bound a
pair of pants, Theorem 7.1 implies that we may assume that p and o agree on (a1, ag, 41).
Similarly, the representations are conjugate on (a1, as, 4s), and since they already agree
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Fig. 6. Curves on a surface of type (1, p) for p > 3.

Fig. 7. Genus 2 with 1 puncture.

on (a1, a9, &) and a7 and as have non-intersecting axes, Lemma 7.5 implies that they
agree on (aq, o, &, Aa). Next, by considering the triples {ay, 82, a1} and {a1, Ba, B2},
we see that p and o are conjugate on (al,ﬂz,&l,&}. Since p and o agree on a7 and
41, they agree on (aq, B2, 41, Bg) By similarly considering the triples {aq, 81,42} and
{az, p1, 31}, we show that p and o agree on ;. Since we have shown that, after an initial
conjugation, p and o agree on each generator, we have completed the proof in the case
that (¢,p) = (2,1). O

We similarly obtain the analogue of our Simple Trace Rigidity Theorem in this setting.

Theorem 11.2. Suppose that S is a compact, orientable surface of genus g > 0 with
p > 0 boundary components and (g,p) is not (1,1) or (1,2). Then, for all d > 2, there
exists a finite collection L4(S) of elements of m(S) which are represented by simple
non-separating curves, such that if p and o are two Hitchin representations of w1 (S) of
dimension d and | Tr(p(n))| = | Tr(o(n))| for any n € L4(S), then p and o are conjugate
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