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We show that a Hitchin representation is determined by 
the spectral radii of the images of simple, non-separating 
closed curves. As a consequence, we classify isometries of the 
intersection function on Hitchin components of dimension 3 
and on the self-dual Hitchin components in all dimensions. As 
an important tool in the proof, we establish a transversality 
result for positive quadruples of flags.
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1. Introduction

Any discrete faithful representation of the fundamental group π1(S) of a closed ori-
ented surface S of genus greater than 1 into PSL2(R) is determined, up to conjugacy 
in PGL2(R), by the translation lengths of (the images) of a finite collection of elements 
represented by simple closed curves. More precisely, a collection of 6g − 5 simple closed 
curves will be enough but 6g − 6 simple closed curve will not suffice, see Schmutz [32]
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and Hamenstädt [17]. In PSL2(R) the translation length of an element is determined 
by the absolute value of the trace (which is well-defined, although the trace is not), so 
one may equivalently say that a discrete faithful representation of π1(S) into PSL2(R)
is determined by the (absolute values of) the traces of a finite collection of elements 
represented by simple closed curves.

We establish analogues of this result for Hitchin representations. The fact that traces 
of simple closed curves determine the representation is more surprising in the Hitchin 
setting as the trace does not even determine the conjugacy class of an element in PSLd(R)
if d � 3.

In the proof, we use Lusztig positivity to establish transversality properties for limit 
curves of Hitchin representations, and more generally for positive quadruples of flags. 
We also establish a rigidity result which depends on correlation functions associated to 
triples of simple closed curves. We hope that these transversality and rigidity results are 
of independent interest and that this paper will serve as an introduction to the beautiful 
algebraic ideas for mathematicians with a more geometric background.

Hitchin representations. A Hitchin representation of dimension d is a representation of 
π1(S) into PSLd(R) which may be continuously deformed to a d-Fuchsian representation
that is the composition of the irreducible representation of PSL2(R) into PSLd(R) with 
a discrete faithful representation of π1(S) into PSL2(R). The Hitchin component Hd(S)
of all Hitchin representations of π1(S) into PSLd(R), considered up to conjugacy in 
PGLd(R), is homeomorphic to R−(d2−1)χ(S). In particular, H2(S) is the Teichmüller 
space of S – see Section 2 for details and history.

A Hitchin representation is said to be self dual if it is conjugate to its contragredient. 
Self dual Hitchin representations take values in PSp(2n, R) and PSO(n, n + 1), when 
d = 2n or d = 2n + 1 respectively. The set SHd(S) of self dual representations into 
PSLd(R) is a contractible submanifold of Hd(S) (see [18]).

Spectrum rigidity. The spectral length of a conjugacy class γ in π1(S) – or equivalently 
a free homotopy class of curve in S – with respect to a Hitchin representation ρ is

Lγ(ρ) := log Λ(ρ(γ))

where Λ(ρ(γ)) is the spectral radius of ρ(γ).
The marked length spectrum of ρ is the function from the set of conjugacy classes in 

π1(S) defined by

L(ρ) : γ �→ Lγ(ρ).

Similarly, the marked trace spectrum is the map

γ �→ |Tr(ρ(γ))|,
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where | Tr(A)| is the absolute value of the trace of a lift of a matrix A ∈ PSLd(R) to 
SLd(R).

Our first main result is then

Theorem 1.1. [Simple Marked Length Rigidity] Two Hitchin representations of a 
closed orientable surface of genus greater than 2 are equal whenever their marked length 
spectra coincide on simple non-separating curves.

The restriction on the genus may not only reflect the limit of our methods: we have 
extended this result to surfaces with boundary, see Section 11, and it is clear that simple 
length rigidity fails for the pair of pants when d > 2.

We obtain a finer result for the trace spectrum

Theorem 1.2. [Simple Marked Trace Rigidity] Two Hitchin representations of a 
closed orientable surface of genus greater than 2 are equal whenever their marked trace 
spectra coincide on simple non-separating curves. Furthermore, if S is a closed orientable 
surface of genus greater than 2 and d � 2, then there exists a finite set Ld(S) of simple 
non-separating curves, so that two Hitchin representations of π1(S) of dimension d are 
equal whenever their marked trace spectra coincide on Ld(S).

Dal’bo and Kim [11] earlier proved that Zariski dense representations of a group Γ into 
a semi-simple Lie group G without compact factor are determined, up to automorphisms 
of G, by the marked spectrum of translation lengths of all elements on the quotient 
symmetric space G/K. Similar results were obtained by Charette and Drumm [8] for 
subgroups of the affine Minkowski group. Bridgeman, Canary, Labourie and Sambarino 
[6] proved that Hitchin representations, are determined up to conjugacy in PGLd(R) by 
the spectral radii of all elements. Bridgeman and Canary [5] proved that discrete faithful 
representations of π1(S) into PSL(2, C) are determined by the translation lengths of 
simple non-separating curves on S. Duchin, Leininger and Rafi [12] showed that the 
simple marked length spectrum determines a flat surface, but that no collection of finitely 
many simple closed curves suffices to determine a flat surface. On the other hand, Marché 
and Wolff [25, Section 3] gave examples of non-conjugate, indiscrete, non-elementary 
representations of a closed surface group of genus two into PSL2(R) with the same simple 
marked length spectra.

In Section 11 we establish a version of Theorem 1.1 for Hitchin representations of 
compact surfaces with boundary which are “complicated enough,” while in Section 10
we establish an infinitesimal version of Theorem 1.1.

Isometry groups of the intersection. We apply Theorem 1.1 to characterize diffeomor-
phisms preserving the intersection function of representations in Hd(S).

In Teichmüller theory, the intersection I(ρ, σ) of representations ρ and σ in T (S) is 
the length with respect to σ of a random geodesic in H2/ρ(π1(S)) – where H2 is the 
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hyperbolic plane. Thurston showed that the Hessian of the intersection function gives 
rise to a Riemannian metric on T (S), which Wolpert [33] showed was a multiple of the 
classical Weil–Petersson metric – see also Bonahon [2], McMullen [28], and Bridgeman 
[4] for further interpretation. As a special case of their main result, Bridgeman, Canary, 
Labourie and Sambarino [6] used the Hessian of a renormalized intersection function to 
construct a mapping class group invariant, analytic, Riemannian metric on Hd(S), called 
the pressure metric – see Section 8 for details.

Royden [30] showed that the isometry group of T (S), equipped with the Teichmüller 
metric, is the extended mapping class group, while Masur and Wolf [27] established the 
same result for the Weil–Petersson metric.

In our context, the intersection isometry group – respectively self dual intersection 
isometry group– is the set of those diffeomorphisms of Hd(S) – respectively SHd(S) – 
preserving I.

Theorem 1.3. [Self dual isometry group] For a surface of genus greater than 2, the 
self dual intersection isometry group coincides with the extended mapping class group of 
S.

We have a finer result when d = 3.

Theorem 1.4. [Isometry Group In Dimension 3] For a surface S of genus greater 
than 2, the intersection isometry group of H3(S) is generated by the extended mapping 
class group of S and the contragredient involution.

Since, as we will see in the proof, isometries of the intersection function are also 
isometries of the pressure metric, we view this as evidence for the conjecture that this is 
also the isometry group of the pressure metric – See Section 8.1 for precise definitions.

Our proof follows the outline suggested by the proof in Bridgeman–Canary [5] that 
the isometry group of the intersection function on quasifuchsian space is generated by 
the extended mapping class group and complex conjugation.

A key tool in the proof of Theorem 1.4 is a rigidity result for the marked simple, non-
separating Hilbert length spectrum for a representation into PSL(3, R), see Section 9. 
Kim [19], see also Cooper-Delp [10], had previously proved a marked Hilbert length 
rigidity theorem for the full marked length spectrum.

Positivity and correlation functions. Every element of the image of a Hitchin represen-
tation is purely loxodromic, i.e. diagonalizable with real eigenvalues of distinct modulus. 
We introduce correlation functions which record the relative positions of eigenspaces of 
elements in the image and give rise to a rigidity result for the restrictions of Hitchin rep-
resentation to certain three generator subgroups. This new rigidity result relies crucially 
on a new transversality result for eigenbases of images of disjoint curves.

If ρ is a Hitchin representation of dimension d, and γ is a non-trivial element, a matrix 
representing ρ(γ) may be written –see Section 2 – as
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ρ(γ) =
d∑

i=1
λi (ρ(γ))pi (ρ(γ)) ,

where λ1 (ρ(γ)) > . . . > λd (ρ(γ)) > 0 are the eigenvalues (of some lift) of ρ(γ) and 
pi (ρ(γ)) are the projectors onto the corresponding 1-dimensional eigenspaces. Let

• A = (α1, . . . , αn) be an n-tuple of non-trivial elements of π1(S),
• I = (ij)j∈{1,...,n} be an n-tuple of elements in {1, . . . , d}.

The associated correlation function TI(A) on Hd(S) is defined by

TI(A) : ρ �→ Tr

⎛⎝ n∏
j=1

pij (ρ(αj))

⎞⎠ .

We show that finitely many of these correlation functions often suffice to determine 
the restriction of a Hitchin representation to a three generator subgroup. One may use 
this result to give an embedding of Hd(S) in some RN and we hope that a refinement 
of these ideas could yield new parametrisations of Hd(S). In the statement below, recall 
that a pair of disjoint simple closed curves is said to be non-parallel if they do not bound 
an annulus.

Theorem 1.5. [Rigidity for correlations functions] Let ρ and σ be Hitchin rep-
resentations in Hd(S). Suppose that α, β, δ ∈ π1(S) −{1} are represented by based loops 
which are freely homotopic to a collection of pairwise disjoint and non-parallel simple 
closed curves. Assume that

(1) for any η ∈ {α, β, δ}, ρ(η) and σ(η) have the same eigenvalues,
(2) for all i, j, k in {1, . . . , d}

Ti,j,k(α, β, δ)
Tj,k(β, δ)

(ρ) = Ti,j,k(α, β, δ)
Tj,k(β, δ)

(σ),

then ρ and σ are conjugate, in PGLd(R), on the subgroup of π1(S) generated by α, β and 
γ.

Before even stating that theorem, we need to prove the relevant correlation functions 
never vanish. This will be a corollary of the following theorem. First recall that a Hitchin 
representation in Hd(S) defines a limit curve in the flag manifold of Rd, so that any two 
distinct points are transverse. Recall also that any transverse pair of flags a and b in Rd

defines a decomposition of Rd into a sum of d lines L1(a, b), . . . Ld(a, b).

Theorem 1.6. [Transverse bases] Let ρ be a Hitchin representation of dimension d. 
Let (a, x, y, b) be four cyclically ordered points in the limit curve of ρ, then any d lines in
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{L1(a, b), . . . , Ld(a, b), L1(x, y), . . . , Ld(x, y)}

are in general position.

This last result is a consequence of the positivity theory developed by Lusztig [23] and 
used in the theory of Hitchin representations by Fock–Goncharov [13] and is actually 
a special case of a more general result about positive quadruples, see Theorem 3.6. 
Theorem 3.6 may be familiar to experts but we could not find a proper reference to it 
in the literature.

We also establish a more general version of Theorem 1.5, see Theorem 4.4.

Structure of the proof. Let us sketch the proof of Theorem 1.1. The proof runs through 
the following steps. We first show, in Section 6, that if the length spectra agree on sim-
ple non-separating curves, then all the eigenvalues agree for these curves. This follows 
by considering curves of the form αnβ when α and β have geometric intersection one 
and using an asymptotic expansion. A similar argument yields that ratio of correlation 
functions agree for certain triples of curves that only exist in genus greater than 2, see 
Theorem 7.1, and a repeated use of Theorem 1.5 concludes the proof of Theorem 1.1. 
Theorem 1.6 is crucially used several times to show that coefficients appearing in asymp-
totic expansions do not vanish.
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2. Hitchin representations and limit maps

2.1. Definitions

Let S be a closed orientable surface of genus g � 2. A representation ρ : π1(S) →
PSL2(R) is said to be Fuchsian if it is discrete and faithful. Recall that Teichmüller space 
T (S) is the subset of
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Hom(π1(S),PSL2(R))/PGL2(R)

consisting of (conjugacy classes of) Fuchsian representations.
Let τd : PSL2(R) → PSLd(R) be the irreducible representation (which is well-defined 

up to conjugacy in PGLd(R)). A representation σ : π1(S) → PSLd(R) is said to be 
d-Fuchsian if it has the form τd ◦ ρ for some Fuchsian representation ρ : π1(S) →
PSL2(R). A representation σ : π1(S) → PSLd(R) is a Hitchin representation if it may be 
continuously deformed to a d-Fuchsian representation. The Hitchin component Hd(S) is 
the component of the space of reductive representations up to conjugacy:

Homred(π1(S),PSLd(R))/PGLd(R)

consisting of (conjugacy classes of) Hitchin representations. In analogy with Teichmüller 
space T (S) = H2(S), Hitchin proved that Hd(S) is a real analytic manifold diffeomorphic 
to a cell.

Theorem 2.1. (Hitchin [18]) If S is a closed orientable surface of genus g � 2 and d � 2, 
then Hd(S) is a real analytic manifold diffeomorphic to R(d2−1)(2g−2).

The Fuchsian locus is the subset of Hd(S) consisting of d-Fuchsian representations. 
It is naturally identified with T (S).

2.2. Real-split matrices and proximality

If A ∈ SLd(R) is real-split, i.e. diagonalizable over R, we may order the eigenvalues 
{λi(A)}di=1 so that

|λ1(A)| � |λ2(A)| � · · · |λd−1(A)| � |λd(A)|.

Let {ei(A)}di=1 be a basis for Rd so that ei(A) is an eigenvector with eigenvalue λi(A) and 
let ei(A) denote the linear functional so that 〈ei(A)|ei(A)〉 = 1 and 〈ei(A)|ej(A)〉 = 0 if 
i �= j. Let pi(A) denote the projection onto 〈ei(A)〉 parallel to the hyperplane spanned 
by the other d − 1 basis elements. Then,

pi(A)(v) = 〈ei(A) | v〉 ei(A)

and we may write

A =
d∑

i=1
λi(A)pi(A).

We say that A is k-proximal if

|λ1(A)| > |λ2(A)| > . . . |λk(A)| > |λk+1(A)|
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and we say that A is purely loxodromic if it is (d − 1)-proximal, in which case it is 
diagonalizable over R with eigenvalues of distinct modulus. If A is k-proximal, then, 
for all i = 1, . . . , k, pi(A) is well-defined and ei(A) is well-defined up to scalar mul-
tiplication. Moreover, if A is purely loxodromic pi(A) is well-defined and ei(A) and 
ei(A) are well-defined up to scalar multiplication for all i. If A ∈ PSLd(R), we say 
that A is purely loxodromic if any lift of A to an element of SLd(R) is purely loxo-
dromic.

2.3. Transverse flags and associated bases

A flag for Rd is a nested family

f = (f1, f2, . . . , fd−1)

of vector subspaces of Rd where f i has dimension i and f i ⊂ f i+1 for each i. Let Fd

denote the space of all flags for Rd. An n-tuple (f1, . . . , fn) ∈ Fn
d is transverse if

fd1
1 ⊕ fd2

2 ⊕ . . .⊕ fdn
n = Rd

for any partition {di}i∈{1,...,n} of d. Let F (n)
d be the set of transverse n-tuples of flags, 

and note that F (n)
d is an open dense subset of Fn

d .
Two transverse flags (a, b) determine a decomposition of Rd as sum of lines 

{Li(a, b)}di=1 where

Li(a, b) = ai ∩ bd−i+1

for all i. A basis εab = {ei} for Rd is consistent with (a, b) ∈ F (2)
d if ei ∈ Li(a, b) for all i, 

or, equivalently, if

aj = 〈e1, . . . , ej〉 and bj = 〈ed, . . . , ed−j+1〉

for all j. In particular, the choice of basis is well-defined up to scalar multiplication of 
basis elements.

2.4. Limit maps

Labourie [20] associates a limit map from ∂∞π1(S) into Fd to every Hitchin represen-
tation. This map encodes many crucial properties of the representation.

Theorem 2.2. (Labourie [20]) If ρ ∈ Hd(S), then there exists a unique continuous 
ρ-equivariant map ξρ : ∂∞π1(S) → Fd, such that:
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(1) (Proximality) If γ ∈ π1(S) − {1}, then ρ(γ) is purely loxodromic and

ξiρ(γ+) = 〈e1(ρ(γ)), . . . , ei(ρ(γ))〉

for all i, where γ+ ∈ ∂∞π1(S) is the attracting fixed point of γ.
(2) (Hyperconvexity) If x1, . . . , xk ∈ ∂∞π1(S) are distinct and m1 + . . . + mk = d, then

ξm1(x1) ⊕ . . .⊕ ξmj (xj) ⊕ . . .⊕ ξmk(xk) = Rd.

Notice that if γ ∈ π1(S) −{1} and γ± ∈ ∂∞π1(S) are its attracting and repelling fixed 
points, then ρ(γ) is diagonal with respect to any basis consistent with (ξρ(γ+), ξρ(γ−)). 
Moreover, if σ is in the Fuchsian locus, then σ(γ) has a lift to SLd(R) all of whose 
eigenvalues are positive. Therefore, if ρ ∈ Hd(S), then ρ(γ) has a lift to SLd(R) with 
positive eigenvalues and we define

λ1(ρ(γ)) > λ2(ρ(γ)) > · · · > λd(ρ(γ)) > 0

to be the eigenvalues of this specific lift.
It will also be useful to note that any Hitchin representation ρ : π1(S) → PSLd(R)

can be lifted to a representation ρ̃ : π1(S) → SLd(R). Moreover, Hitchin [18, Section 10]
observed that every Hitchin component lifts to a component of Homred(π1(S), SLd(R))/
SLd(R).

2.5. Other Lie groups and other length functions

More generally, if G is a split, real simple adjoint Lie group, Hitchin [18] studies the 
component

H(S,G) ⊂ Homred(π1(S),G)/G

which contains the composition of a Fuchsian representation into PSL2(R) with an ir-
reducible representation of PSL2(R) into G and shows that it is an analytic manifold 
diffeomorphic to R(2g−2)dim(G).

If ρ ∈ Hd(S), then we define the contragredient representation ρ∗ ∈ Hd(S) by ρ∗(γ) =
ρ(γ−1)T for all γ ∈ π1(S). The contragredient involution of Hd(S) takes ρ to ρ∗.

We define the self dual Hitchin representations – and accordingly the self dual Hitchin 
component SHd(S) – to be the fixed points of the contragredient involution. Since the 
contragredient involution is an isometry of the pressure metric (see Proposition 8.3), 
SHd(S) is a totally geodesic submanifold of Hd(S).

Observe then that if ρ is a self dual Hitchin representation and γ ∈ π1(S), then the 
eigenvalues λ1(ρ(γ)), . . . , λd(ρ(γ)) satisfy λ−1

i (ρ(γ)) = λd−i+1(ρ(γ)) for all i. On the 
other hand, Theorem 1.2 in [6] implies that if λ−1

1 (ρ(γ)) = λd(ρ(γ)) for all γ, then ρ is 
conjugate to its contragredient ρ∗. Notice that the contragredient involution fixes each 
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point in H(S, PSp(2d, R)), H(S, PSO(d, d + 1)), and H(S, G2,0) considered as subsets of 
H(S, PSL(2d, R)), H(S, PSL(2d + 1, R)), and H(S, PSL(7, R)) respectively. Conversely, 
a self dual representation, being conjugate to its contragredient, is not Zariski dense, 
hence belongs to such a subset by a result of Guichard [16]. In particular, SH2d(S) =
H(S, PSp(2d, R)) and SH2d+1(S) = H(S, PSO(d, d + 1)).

In our work on isometries of the intersection function, it will be useful to consider the 
Hilbert length LH

γ (ρ) of ρ(γ) when γ ∈ π1(S) and ρ ∈ Hd(S), where

LH
γ (ρ) := log λ1(ρ(γ)) − log λd(ρ(γ)) ,

and similarly the Hilbert length spectrum as a function on free homotopy classes.1 Notice 
that LH

γ (ρ) = LH
γ−1(ρ) = LH

γ (ρ∗). One readily observes that a representation is self dual 
if and only if LH

γ (ρ) = 2Lγ(ρ) for all non-trivial γ ∈ π1(S).

3. Transverse bases

In this section, we prove a strong transversality property for ordered quadruples of 
flags in the limit curve of a Hitchin representation, which we regard as a generalization 
of the hyperconvexity property established by Labourie [20] (see Theorem 2.2). (Recall 
that any pair (a, b) of transverse flags determines a decomposition of Rd into a sum of d
lines L1(a, b) ⊕ · · · ⊕ Ld(a, b) where Li(a, b) = ai ∩ bd−i+1.)

Theorem 1.6. Let ρ be a Hitchin representation of dimension d and let (a, x, y, b) be four 
cyclically ordered points in the limit curve of ρ, then any d lines in

{L1(a, b), . . . , Ld(a, b), L1(x, y), . . . , Ld(x, y)}

are in general position.

The proof of Theorem 1.6 relies on the theory of positivity developed by Lusztig [23]
and applied to representations of surface groups by Fock and Goncharov [13]. It will 
follow from a more general result for positive quadruples of flags, see Theorem 3.6.

Remark: When ρ ∈ H3(S), there exists a strictly convex domain Ωρ in RP2 with C1

boundary so that ρ(π1(S)) acts properly discontinuously and cocompactly on Ωρ, see 
Benoist [1] and Choi-Goldman [9]. If ξρ is the limit map of ρ, then ξ1

ρ identifies ∂∞π1(S)
with ∂Ωρ, while ξ2

ρ(z) is the plane spanned by the (projective) tangent line to ∂Ωρ at 
ξ1
ρ(z). In this case, Theorem 1.6 is an immediate consequence of the strict convexity of 

Ωρ, since if x and y lie in the limit curve, then L1(x, y) = x1, L3(x, y) = y1 and L2(x, y)
is the intersection of the tangent lines to Ωρ at x1 and y1. Moreover, one easily observes 

1 This is called the Hilbert length, since when d = 3 it is the length of the closed geodesic in the homotopy 
class of γ in the Hilbert metric on the strictly convex real projective structure on S with holonomy ρ, see, 
for example, Benoist [1, Proposition 5.1].
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that the analogue of Theorem 1.6 does not hold for cyclically ordered quadruples of the 
form (a, x, b, y).

3.1. Components of positivity

Given a flag a, we define the Schubert cell Ba ⊂ Fd to be the set of all flags transverse 
to a. Let Ua be the group of unipotent elements in the stabilizer of a, i.e. the set of 
unipotent upper triangular matrices with respect to a basis {ei} consistent with a. If 
b ∈ Ba, we can assume that {ei} is consistent with (a, b), so it is apparent that the 
stabilizer of b in Ua is trivial. The lemma below follows easily.

Lemma 3.1. If b ∈ Ba, then Ba = Ua(b). Moreover, the map

hb : Ua → Ba

defined by hb(u) = u(b) is a diffeomorphism.

Suppose that (a, b) ∈ F (2)
d and εab is a basis consistent with the pair (a, b). Recall 

that A ∈ SLd(R) is totally positive with respect to εab , if every minor in its matrix with 
respect to the basis εab is positive. Similarly, we say that A ∈ SLd(R) is totally non-
negative with respect to εab , if every minor in its matrix with respect to the basis εab
is non-negative. Let U(εab )�0 ⊂ Ua be the set of totally non-negative unipotent upper 
triangular matrices with respect to εab . We say that a minor is an upper minor with 
respect to εab if it is non-zero for some element of U(εab )�0. We then let U(εab )>0 be the 
subset of U(εab )�0 consisting of elements all of whose upper minors with respect to εab
are positive. Moreover, let Δ(εab )>0 be the group of matrices which are diagonalizable 
with respect to εab with positive eigenvalues. Notice that although U(εab )>0 and U(εab )�0
depend on the choice of basis εab , Δ(εab )>0 depends only on the pair (a, b). Lusztig [23]
proves that

Lemma 3.2. (Lusztig [23, Sec. 2.12, Sec. 5.10]) If (a, b) ∈ F (2)
d and εab is a basis consistent 

with the pair (a, b), then

U(εab )�0U(εab )>0 ⊂ U(εab )>0 and U(εab )>0 = U(εab )�0 ⊂ Ua.

If i �= j and t ∈ R, the elementary Jacobi matrix Jij(t) with respect to εab = {ei} is 
the matrix such that Jij(t) = ej + tei and Jij(t)(ek) = ek if k �= j. If i < j and t > 0, 
then Jij(t) ∈ U(εab )�0. Moreover, U(εab )�0 is generated by elementary Jacobi matrices 
of this form (see, for example, [14, Thm. 12]). So,

(1) the semigroup U(εab )�0 is connected, and
(2) if g ∈ Δ(εab ), then gU(εab )>0g

−1 = U(εab )>0.
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We define the component of positivity for εab as

V (εab ) := U(εab )>0(b).

Lusztig [23, Thm. 8.14] (see also Lusztig [24, Lem. 2.2]) identifies V (εab ) with a com-
ponent of the intersection Ba ∩Bb of two opposite Schubert cells.

Lemma 3.3. (Lusztig [23, Thm. 8.14]) If (a, b) ∈ F (2)
d and εab is a basis consistent with 

the pair (a, b), then V (εab ) is a connected component of Ba ∩Bb.

3.2. Positive configurations of flags

We now recall the theory of positive configurations of flags as developed by Fock and 
Goncharov [13].

A triple (a, x, b) ∈ F (3)
d is positive with respect to a basis εab consistent with (a, b) if 

x = u(b) for some u ∈ U(εab )>0. If x ∈ V (εab ), we define

V (a, x, b) = V (εab )

and notice that V (a, x, b) is the component of Ba∩Bb which contains x. A triple (a, x, b) ∈
F (3)

d is then positive if it is positive with respect to some basis εab consistent with (a, b).
More generally, a (n + 2)-tuple (a, xn, . . . , x1, b) ∈ F (n+2)

d of flags is positive if there 
exist a basis εab consistent with (a, b) and ui ∈ U(εab )>0 so that xp = u1 · · ·up(b) for all 
p. By construction, the set of (n + 2)-tuples of flags is connected. Since U(εab )>0 is a 
semi-group, (a, xi, b) is a positive triple for all i and, more generally, (a, xi1 , . . . , xik , b)
is a positive (k + 2)-tuple whenever 1 � ii < · · · < ik � n.

Fock and Goncharov showed that the positivity of a n-tuple is invariant under the 
action of the dihedral group on n elements.

Proposition 3.4. (Fock-Goncharov [13, Thm. 1.2]) If (a1, . . . , an) is a positive n-tuple of 
flags in Fd, then (a2, a3, . . . , an, a1) and (an, an−1, . . . , a1) are both positive as well.

As a consequence, we see that every sub k-tuple of a positive n-tuple is itself positive.

Corollary 3.5. If (a1, . . . , an) is a positive n-tuple of flags in Fd and 1 � i1 < i2 < · · · <
ik � n, then (ai1 , ai2 , . . . , aik) is positive.

Proof. It suffices to prove that every sub (n −1)-tuple of a positive n-tuple is positive. By 
Proposition 3.4, we may assume that the sub (n − 1)-tuple has the form (a1, a3, . . . , an)
and we have already seen that this (n − 1)-tuple is positive. �

The main result of the section can now be formulated more generally as a result about 
positive quadruples. Its proof will be completed in Section 3.7.



M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901 13
Theorem 3.6. [Transverse bases for quadruples] Let (a, x, y, b) be a positive 
quadruple in Fd, then any d lines in

{L1(a, b), . . . , Ld(a, b), L1(x, y), . . . , Ld(x, y)}

are in general position.

3.3. Positive maps

If Σ is a cyclically ordered set with at least 4 elements, a map γ : Σ → Fd is said 
to be positive if whenever (z1, z2, z3, z4) is an ordered quadruple in Σ, then its image 
(γ(z1), γ(z2), γ(z3), γ(z4)) is a positive quadruple in F (4)

d .
For example, given an irreducible representation

τd : PSL2(R) → PSLd(R)

the τd-equivariant Veronese embedding

ντ : ∂H2 = P1(R) → Fd

(where ντ takes the attracting fixed point of g ∈ PSL2(R) to the attracting fixed point 
of τd(g)) is a positive map. More generally, Fock and Goncharov, see also Labourie-
McShane [21, Appendix B], showed that the limit map of a Hitchin representation is 
positive.

Theorem 3.7. (Fock-Goncharov [13, Thm 1.15]) If ρ ∈ Hd(S), then the associated limit 
map ξρ : ∂∞π1(S) → Fd is positive.

Notice that Theorem 1.6 follows immediately from Theorems 3.6 and 3.7.

We observe that one may detect the positivity of a n-tuple using only quadruples, 
which immediately implies that positive maps take cyclically ordered subsets to positive 
configurations.

Lemma 3.8. If n � 2, then an (n + 2)-tuple (a, xn, . . . , x1, b) is positive if and only if 
(a, xi+1, xi, b) is positive for all i = 1, . . . , n − 1.

Proof. Corollary 3.5 implies that if (a, xn, . . . , x1, b) is positive, then (a, xi+1, xi, b) is 
positive for all i.

Now suppose that (a, xi+1, xi, b) is positive for all i = 1, . . . , n − 1. Since (a, x2, x1, b)
is positive, there exists u1, u2 ∈ U(εab )>0 so that x1 = u1(b) and x2 = u1u2(b). If we 
assume that there exists ui ∈ U(εab )>0, for all i � k < n, so that xp = u1 · · ·up(b) for 
all p � k, then, since (a, xk+1, xk, b) is positive, there exists uk+1, vk ∈ U(εab )>0 such 
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that xk+1 = vkuk+1(b) and xk = vk(b). However, Lemma 3.1 implies that vk = u1 · · ·uk. 
Iteratively applying this argument, we see that (a, xn, . . . , x1, b) is positive. �
Corollary 3.9. If Σ is a cyclically ordered set, f : Σ → Fd is a positive map and 
(a1, . . . , an) is a cyclically ordered n-tuple in Σ, then (f(a1), f(a2), f(a3), . . . , f(an)) is 
a positive n-tuple in Fd.

The following result allows one to simplify the verification that a map of a finite set 
into Fd is positive, see also Section 5.11 in Fock-Goncharov [13]

Proposition 3.10. Let P be a finite set in ∂∞H2 and T be an ideal triangulation of the 
convex polygon spanned by P . A map f : P → Fd is positive if whenever (x, y, z, w) are 
the (cyclically ordered) vertices of two ideal triangles in T which share an edge, then 
(f(x), f(y), f(z), f(w)) is a positive quadruple.

Proof. Suppose T ′ is obtained from T by replacing an internal edge of T by an edge 
joining the opposite vertices of the adjoining triangles. In this case, we say that T ′ is 
obtained from T by performing an elementary move. Label the vertices of the original 
edge by a and b and the vertices of the new edge by x and y, so that the vertices occur 
in the order (a, x, b, y) in ∂∞H2. If the edge (y, a) abuts another triangle with additional 
vertex z, then (a, x, y, z) is a cyclically ordered collection of points in P which are the 
vertices of two ideal triangles in T ′ which share an edge. By our original assumption on 
T , (f(a), f(x), f(b), f(y)) and (f(a), f(b), f(y), f(z)) are positive, so, by Proposition 3.4, 
(f(y), f(a), f(x), f(b)) and (f(y), f(z), f(a), f(b)) are positive. Lemma 3.8 then implies 
that (f(y), f(z), f(a), f(x), f(b)) is positive. One may similarly check that all the images 
of cyclically ordered vertices of two ideal triangles which share an edge in T ′ have positive 
image. Since any two ideal triangulations can be joined by a sequence of triangulations so 
that consecutive triangulations differ by an elementary move, any ordered sub-quadruple 
of P has positive image. Therefore, f is a positive map. �
3.4. Complementary components of positivity

If (a, b) ∈ F (2)
d and εab = {ei} is a basis consistent with (a, b), then one obtains a com-

plementary basis σ(εab ) = {(−1)iei} which is also consistent with (a, b). We first observe 
that for a positive sextuple (x, y, a, u, v, b), then the components of positivity for (a, b)
containing {u, v} and {x, y} are associated to complementary bases. The proof proceeds 
by first checking the claim for configurations in the image of a Veronese embedding and 
then applying a continuity argument.

Lemma 3.11. If (x, y, a, u, v, b) is a positive sextuple of flags and εab is a basis consistent 
with (a, b) so that V (εab ) contains {u, v}, then V (σ(εab )) contains {x, y}.
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Proof. Consider the irreducible representation τd : PSL2(R) → PSLd(R) taking matrices 
diagonal in the standard basis for R2 to matrices diagonal with respect to εab . This gives 
rise to a Veronese embedding ντ : ∂H2 = S1 → Fd taking ∞ to a and 0 to b.

The involution of Fd induced by conjugating by the diagonal matrix D, in the basis 
εab , with entries ((−1)i) interchanges the components of ντ (S1) − {a, b} and interchanges 
V (εab ) and V (σ(εab )). Therefore, our result holds when x, y, u and v lie in the image of 
ντ .

Since ντ is positive and the set of positive sextuples is connected, there is a family of 
positive maps ξt : {x, y, a, u, v, b} → Fd so that the image of ξ0 lies on the image of the 
Veronese embedding and ξ1 = Id. Since PSLd(R) acts transitively on space of pairs of 
transverse flags, we may assume that ξt(a) = a and ξt(b) = b for all t. Notice that each of 
ξt({x, y}) and ξt({u, v}) lies in a component of Ba∩Bb for all t. Since ξ1({u, v}) ⊂ V (εab ), 
ξt({u, v}) ⊂ V (εab ) for all t. Since ξ0({u, v}) ⊂ V (εab ) and ξ0(x, y, a, u, v, b) lies in the 
image of an Veronese embedding, ξ0({x, y}) ⊂ V (σ(εab )), which in turn implies that 
ξt({x, y}) ⊂ V (σ(εab )) for all t. �

We next observe that the closures of complementary components of positivity intersect 
in at most one point within an associated Schubert cell.

Proposition 3.12. If (a, b) ∈ F (2)
d and εab is a basis consistent with (a, b), then

Ba ∩ V (εab ) ∩ V (σ(εab )) = {b}.

Proof. By Lemma 3.1,

V (εab ) = hb(U(εab )>0) ⊂ hb(U(εab )�0) ⊂ hb(Ua) = Ba

and hb(U(εab )�0) is a closed subset of Ba, since hb is a diffeomorphism. So

Ba ∩ V (εab ) ⊂ hb(U(εab )�0) and Ba ∩ V (σ(εab )) ⊂ hb(U(σ(εab ))�0).

Thus, again since hb is a diffeomorphism,

Ba ∩ V (εab ) ∩ V (σ(εab )) ⊂ hb(U(εab )�0) ∩ hb (U(σ(εab ))�0)

= hb (U(εab )�0 ∩ U(σ(εab ))�0)

= (U(εab )�0 ∩ U(σ(εab ))�0) (b)

So Proposition 3.12 follows from the following lemma:

Lemma 3.13.

U(εab )�0 ∩ U(σ(εab ))�0 = {I}.
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Proof. Let A = (aij) ∈ U(εab )�0 ∩ U(σ(εab ))�0 be written with respect to the basis εab . 
Notice that if we let aij be the matrix coefficients for A with respect to the basis σ(εab ), 
then aij = (−1)i+jaij . It follows immediately that aij = 0 if i + j is odd.

If A �= I, let aij > 0 be a non-zero off-diagonal term which is closest to the diagonal, 
i.e. alj = 0 if l �= j and l > i and ail = 0 if l �= i and l < j. Then, by the above, j �= i +1. 
If l ∈ (i, j), we consider the minor[

ail aij
all alj

]
=
[
0 aij
1 0

]
which has determinant −aij , so contradicts the fact that A is totally non-negative. �
3.5. Nesting of components of positivity

We will need a strict containment property for components of positivity associated to 
positive quintuples.

Proposition 3.14. If (a, x, z, y, b) is a positive quintuple in Fd, then

V (x, z, y) ⊂ V (a, z, b).

We begin by establishing nesting properties for components of positivity associated 
to positive quadruples.

Lemma 3.15. If (a, x, y, b) is a positive quadruple in Fd, then

V (x, y, b) ⊂ V (a, y, b) and V (a, x, y) ⊂ V (a, x, b)

Proof. Since (a, x, y, b) is a positive quadruple, there exists a basis εab for (a, b) and 
u, v ∈ U(εab )>0 so that y = u(b) and x = u(v(b)). Since U(εab )>0 is a semi-group, uv ∈
U(εab )>0 and x, y ∈ V (εab ) = U(εab )>0(b).

Notice that εay = u(εab ) = {u(ei)} is a basis consistent with (a, y) since u(a) = a, 
u(b) = y and 〈ei〉 = ai ∩ bd−i+1, so

〈u(ei)〉 = u(ai) ∩ u(bd−i+1) = ai ∩ yd−i+1.

Let W = uU(εab )>0u
−1, so W = U(εay)>0. Therefore,

V (εay) = W (y) = uU(εab )>0(u−1(y)) = (uU(εab )>0) (b) ⊂ U(εab )>0(b) = V (εab )

where the inclusion follows from the fact that U(εab )>0 is a semi-group and u ∈ U(εab )>0. 
Moreover,

x ∈ V (εay) = (uU(εab )>0) (b) ⊂ V (εab )
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since uv ∈ uU(εab )>0 and x = u(v(b)), so

V (a, x, y) = V (εay) ⊂ V (εab ) = V (a, x, b).

Since (b, y, x, a) is also a positive quadruple, the same argument shows that 
V (b, y, x) ⊂ V (b, y, a). Since V (b, y, x) = V (x, y, b) and V (b, y, a) = V (a, y, b), we con-
clude that

V (x, y, b) ⊂ V (a, y, b). �
We now analyze the limiting behavior of sequences of components of positivity.

Lemma 3.16. Let {cn} and {zn} be sequences of flags so that to {cn} converges to a 
flag b and (cn, zn, b) is a positive triple of flags for all n. Then the Hausdorff limit of 
{V (cn, zn, b)} is the singleton {b}.

Proof. We note that we can choose flags y1, a and y0 such that (y1, a, y0, cn, zn, b) is a 
positive sextuple of flags. Since (a, cn, zn, b) and (cn, zn, b, a) are positive, Lemma 3.15
implies that

V (cn, zn, b) ⊂ V (a, zn, b) ∩ V (cn, zn, a)

for all n, so

V (cn, zn, b) ⊂ V (a, zn, b) ∩ V (cn, zn, a).

After extracting a subsequence, we may assume that 
{
V (cn, zn, b)

}
converges to a 

Hausdorff limit H. It is enough to prove that H = {b}. Notice that, since each V (cn, zn, b)
is connected, H must be connected.

Notice that, for all n, V (a, zn, b) = V (a, y0, b), since (a, y0, zn, b) is positive, and 
V (cn, zn, a) = V (cn, y1, a), since (cn, zn, y1, a) is positive. Since {Bcn} converges to Bc, {
V (cn, zn, a)

}
=
{
V (cn, y1, a)

}
converges to V (b, y1, a). Therefore,

{b} ⊂ H ⊂ V (a, y0, b) ∩ V (b, y1, a).

However, Lemma 3.11 and Proposition 3.12 together imply that

Ba ∩ V (a, y0, b) ∩ V (b, y1, a) = {b}.

Since Ba is an open neighborhood of b and H is connected, we conclude that H = {b}. �
Proof of Proposition 3.14. We note that if (a, xn, . . . , x1, b) is positive with respect to 
the basis εab with xn = vb for v ∈ U(εab )>0, if u ∈ U(εab )>0 then (a, vu(x1), xn, . . . , x1, b)
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is positive. Since positivity is invariant under cyclic permutations, we may add flags in 
any position to a positive n-tuple to obtain a positive (n + 1)-tuple.

Choose c and e so that (a, c, x, z, y, e, b) is positive and let g be an element in Δ(εce)>0. 
We observe that (a, c, g(y), g(z), e, b) is positive.

Lemma 3.17. If (a, c, x, z, e, b) is a positive sextuple in Fd and g ∈ Δ(εce)>0, then 
(a, c, g(x), g(z), e, b) is positive.

Proof. Identify (a, c, g(x), g(z), e, b) with the cyclically ordered vertices of an ideal 
hexagon in H2 and consider the triangulation T all of whose internal edges have an 
endpoint at e. Proposition 3.10 implies that it suffices to check that (c, g(x), g(z), e), 
(c, g(x), e, a), and (a, c, e, b) are positive quadruples, to guarantee that (a,c, g(x), g(z),e, b)
is positive.

Since (c, x, z, e) is positive, there exists u, v ∈ U(εce)>0 so that x = vu(e) and z =
v(e). If we let u′ = gug−1 and v′ = gvg−1, then u′, v′ ∈ U(εce)>0 (see property (2) in 
Section 3.1). One checks that

v′u′(e) = (gvg−1)(gug−1) = g(vu)(g−1(e)) = g(vu(e)) = g(x), and
v′(e) = (gvg−1)(e) = gv(g−1(e)) = g(v(e)) = g(z),

so (c, g(x), g(z), e) is a positive quadruple.
Since (c, x, e, a) is a positive quadruple, there exists u, v ∈ U(εca)>0 so that x = vu(a)

and e = v(a). Notice that v(εca) = εce, so v−1gv ∈ Δ(εca), which implies that u′ =
(v−1gv)u(v−1gv)−1 ∈ U(εca)>0. Notice that

g(x) = gvu(a) = v(v−1gv)u(a) = v(v−1gv)u(v−1gv)−1(a) = vu′(a) and e = v(a),

so (c, g(x), e, a) is positive. Since we already know that (a, c, e, b) is positive, this com-
pletes the proof. �

Since (x, z, y, e) and (c, x, z, e) are positive, Lemma 3.15 implies that

V (x, z, y) ⊂ V (x, z, e) ⊂ V (c, z, e).

We may further choose g so that e is an attractive point, in which case, its basin of 
attraction is Bc. In particular, since x, z ∈ V (c, z, e) ⊂ Bc,

lim
n→∞

gn(x) = lim
n→∞

gn(z) = e.

Proposition 3.16 and Lemma 3.17 then imply that{
V (gn(x), gn(z), e)

}
−→ {e},

as n → ∞. Since V (x, z, y) ⊂ V (x, z, e),
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V (gn(x), gn(z), gn(y)) = gn(V (x, z, y) ⊂ gn(V (x, z, e)) = V (gn(x), gn(z), e),

so {
V (gn(x), gn(z), gn(y))

}
−→ {e}.

Since Bc contains a neighborhood of e, we see that

V (gn(x), gn(z), gn(y)) ⊂ Bc,

for all large enough n. So,

V (x, z, y) = g−n
(
V (gn(x), gn(z), gn(y))

)
⊂ g−n(Bc) = Bc.

Symmetric arguments show that

V (x, z, y) ⊂ Be

So, V (x, z, y) is a connected subset of Bc ∩Be which contains z. Therefore,

V (x, z, y) ⊂ V (c, z, e).

Since (a, c, z, e) and (a, z, e, b) are positive, Lemma 3.15 gives that

V (c, z, e) ⊂ V (a, z, e) ⊂ V (a, z, b)

which completes the proof. �
3.6. Rearrangements of flags

Given a pair (x, y) of transverse flags in Fd, one obtains a decomposition of Rd into 
lines {Li(x, y)}. By rearranging the ordering of the lines, one obtains a collection of flags 
including x and y. Formally, if P is a permutation of {1, . . . , d}, then one obtains flags 
F0(P (x, y)) and F1(P (x, y)) given by

F0(P (x, y))r = 〈LP (1)(x, y), . . . , LP (r)(x, y)〉

and

F1(P (x, y))r = 〈LP (d)(x, y), . . . , LP (d−r+1)(x, y)〉

for all r.
We will see that if (a, x, y, b) is positive, then (a, F1(P (x, y)), b) is also positive. We 

begin by considering the case where P is a transposition.



20 M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901
Lemma 3.18. If (x, z, y, ) is a positive triple in Fd, i < j and Pi,j is a transposition 
interchanging i and j, then

F1(Pi,j(x, y)) ∈ V (x, z, y)

In particular, if (a, x, z, y, b) is a positive quintuple in Fd, then F1(Pi,j(x, y)) ∈ V (a, z, b).

Proof. Let εxy be a basis for (x, y) so that V (x, z, y) = V (εxy) and let εxy = {ei}. Let 
Jij(t) be the elementary Jacobi matrix with respect to {ei}, i.e. Jij(t)(ej) = ej + tei and 
Jij(t)(ek) = ek if k �= j. Since

yd−k = 〈ek+1, . . . , ed〉 ,

we see that

Jij(t)(yd−k) = 〈ek+1, . . . , ei, . . . , ej + tei, . . . , en〉 = yd−k = F1(Pi,j(x, y))d−k

for all k < i,

Jij(t)(yd−k) = 〈ek+1, . . . , ed〉 = yd−k = F1(Pi,j(x, y))d−k

for all k � j, and

Jij(t)(yd−k) = 〈ek+1, . . . , ej + tei, . . . , ed〉

for all i � k < j. Therefore,

lim
t→∞

Jij(t)(yd−k) = 〈ek+1, . . . , ej−1, ei, ej+1, . . . , ed〉 = F1(Pi,j(x, y))d−k,

for all i � k < j, so

lim
t→∞

Jij(t)(y) = F1(Pi,j(x, y)).

Since Jij(t) ∈ U(εxy)�0 for all t > 0 and U(εxy)�0U(εxy)>0 ⊂ U(εxy)>0, by Lemma 3.2, 
Jij(t)(y) ∈ V (x, z, y) for all t > 0, so F1(Pi,j(x, y)) ∈ V (x, z, y). Lemma 3.14 implies 
that V (x, z, y) ⊂ V (a, z, b), so F1(Pi,j(x, y)) ∈ V (a, z, b). �

With the help of an elementary group-theoretic lemma, we may generalize the argu-
ment above to handle all permutations.

Lemma 3.19. If (a, x, z, y, b) is a positive quintuple in Fd and P is a permutation of 
{1, . . . , d}, then

F1(P (x, y)) ∈ V (x, z, y) ⊂ V (a, z, b).
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Proof. Let εxy be a basis for (x, y) so that V (x, z, y) = V (εxy) and let εxy = {ei}. Suppose 
that Q is a permutation such that

F1(Q(x, y)) ∈ V (x, z, y) ⊆ V (a, z, b).

We first observe, as in the proof of Lemma 3.18, that if n > m, then

lim
t→∞

Jmn(t)F1(Q(x, y)) = F1(Q̂(x, y))

where Q̂ = Q if Q−1(m) > Q−1(n) and Q̂ = Pm,nQ otherwise. Since Jmn(t) ∈ U(εxy)�0
if t > 0 and U(εxy)�0U(εxy)>0 ⊂ U(εxy)>0,

Jmn(t)(V (x, z, y)) ⊂ V (x, z, y) ,

for all t > 0, which implies that

Jmn(t)
(
V (x, z, y)

)
⊂ V (x, z, y)

for all t > 0. Therefore,

F1(Q̂(x, y)) ∈ V (x, z, y) ⊆ V (a, z, b).

We use the following elementary combinatorial lemma.

Lemma 3.20. If P is a permutation of {1, . . . , d}, then we may write

P = Pik,jk · · ·Pi1,ji .

So that il < jl for all l and moreover

Q−1
l−1(il) < Q−1

l−1(jl) ,

where Ql−1 := Pil−1,jl−1 · · ·Pi1,j1 .

We now complete the proof using Lemma 3.20. Let P = Pik,jk · · ·Pi1,ji as in 
Lemma 3.20. Lemma 3.18 implies that

F1(Q1(x, y)) ∈ V (x, z, y) ⊆ V (a, z, b)

and we may iteratively apply the observation above to conclude that

F1(Ql(x, y)) ∈ V (x, z, y) ⊆ V (a, z, b)

for all l, which implies that
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F1(P (x, y)) ∈ V (x, z, y) ⊆ V (a, z, b)

which completes the proof of Lemma 3.19. �
Proof of Lemma 3.20. We proceed by induction on d. So assume our claim hold for 
permutations of {1, . . . , d − 1}.

Let r = P−1(1) and, if r �= 1, let

P1 = P1,rP1,r−1 · · ·P1,2

and let P1 = id if r = 1. Notice that P1 has the desired form, P−1
1 (1) = r and if 

m, n ∈ {1, . . . , d} − {r} and m < n, then P−1
1 (m) < P−1

1 (n). Let P̂2 be the restriction 
of PP−1

1 to {2, . . . , d}. By our inductive claim, P̂2 = P̂ik,jk · · · P̂i1,ji where il < jl for all 
l and if Q̂l−1 := P̂il−1jl−1 · · · P̂i1j1 , then Q̂−1

l−1(il) < Q̂−1
l−1(jl). One may extend each P̂il,jl

to a transposition Pi1,jl of {1, . . . , d} by letting 1 be taken to itself. We then note that

P = (Pik,jk · · ·Pi1,ji)P1,rP1,r−1 · · ·P1,2

has the desired form. �
Remark. Notice that Lemma 3.18 is enough to prove Theorem 3.6 in the case that you 
choose exactly one line from {Li(x, y)} and d − 1 lines from amongst {Li(a, b)}. (If we 
choose z so that (a, x, z, y, b) is an positive quintuple of flags, Lemma 3.18 implies that 
F1(Pj,d(x, y)) ∈ V (a, z, b), so (a, F1(Pj,d(x, y)), b) is a transverse triple of flags. So, for 
any j and k, ak−1⊕F1(Pj,d(x, y))1⊕ bd−k = Rd, which is enough to establish the special 
case of Theorem 3.6.) This simple case is enough to prove all the results in section 4. 
The full statement is only used in the proof of Lemma 6.3, and this use of the general 
result may be replaced by an application of Labourie’s Property H, see [20].

3.7. Transverse bases for quadruples

We now restate and prove Theorem 3.6.
Theorem 3.6 Let (a, x, y, b) be a positive quadruple in Fd, then any d lines in

{L1(a, b), . . . , Ld(a, b), L1(x, y), . . . , Ld(x, y)}

are in general position.

Proof. If

I ∈ I = {(i1, . . . , ik) ∈ Zk | 1 � i1 < · · · < ik � d}.
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Let

eI(a, b) = ei1(a, b) ∧ · · · ∧ eik(a, b).

Then our claim is equivalent to the claim that eI(a, b) ∧ eJ(x, y) �= 0 if I, J ∈ I and 
|I| + |J | = d (where |(i1, . . . , ik)| = k).

Let A be the matrix with coefficients Ai
j = 〈ei(a, b)|ej(x, y)〉. If I, K ∈ I and |I| = |K|, 

then let AI
K be the submatrix of A given by the intersection of the rows with labels in 

I and the columns with labels in K.
If I, J ∈ I and |I| + |J | = d, then, since

ej(x, y) =
d∑

i=1
Ai

jei(a, b),

we see that

eI(a, b) ∧ eJ(x, y) = ± det(AD−I
J )eD(a, b)

where D = (1, 2, . . . , d). So, it suffices to prove that all the minors of A are non-zero. 
Notice that since our bases are well-defined up to (non-zero) scalar multiplication of the 
elements, the fact that the minors are non-zero is independent of our choice of bases.

We first show that all initial minors are non-zero. A square submatrix AK
J is called 

initial if both J and K are contiguous blocks in D and J ∪K contains 1, i.e. it is square 
submatrix which borders the first column or row. An initial minor is the determinant of 
an initial square submatrix.

If AD−I
J is initial and J contains 1, then

J = (1, . . . , l) and I = (1, 2, . . . , r, d− s + 1, d− s + 2, . . . , d)

where r + s + l = d. (Notice that either r or s may be 0.) Since (a, b, x) ∈ F (3)
d ,

ar ⊕ bs ⊕ xl = Rd,

so

eI(a, b) ∧ eJ(x, y) �= 0

which implies that det(AD−I
J ) �= 0.

If D − I contains a 1 and J does not contain a 1, then

I = (l + 1, l + 2, . . . , d)

D − I = (1, . . . , l) ,

J = (j + 1, j + 2, . . . , j + l) ,
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where j, l � 1 and j + l � d. Let P be any permutation such that

F1(P (x, y))l = 〈ej+1(x, y), . . . , ej+l(x, y)〉 .

Then, by Lemma 3.19, (a, F1(P (x, y)), b) is a transverse triple of flags. It follows that

bd−l ⊕ F1(P (x, y))l = Rd,

and hence that

eI(a, b) ∧ eJ(x, y) �= 0,

so again det(AD−I
J ) �= 0. Therefore we have shown that all the initial minors of A are 

non-zero.
We claim that if ξ0 = ντ is the Veronese embedding with respect to an irreducible 

representation τd and (a0, x0, y0, b0) is an ordered quadruple in ξ0(P1(R)), then one may 
choose bases {ei(a0, b0)} and {ei(x0, y0}} so that all the initial minors of the associated 
matrix A0 are positive. We may assume that a0 = ξ0(∞), x0 = ξ0(t), y0 = ξ0(1) and 
b0 = ξ0(0) where t > 1. Observe that one can choose bases {ei(0, ∞)} and {ei(1, t)} for 
R2 so that M0 =

(
〈ei(0, 1)|ej(1, t)〉

)
is totally positive. If we choose the bases

{ei(a0, b0) = e1(0,∞)d−ie2(0,∞)i−1} and {ei(x0, y0) = e1(1, t)d−ie2(1, t)i−1}

for Rd, then A0 = τd(M0). The claim then follows from the fact that the image under 
τd of a totally positive matrix in PSL2(R) is totally positive in PSLd(R), see [13, Prop. 
5.7].

We can now continuously deform (a, x, y, b) = (a1, x1, y1, b1), through positive quadru-
ples (at, xt, yt, bt), to a positive quadruple (a0, x0, y0, b0) in the image of ξ0 = ντ . One 
may then continuously choose bases {ei(at, bt)} and {ei(xt, yt)} beginning at {ei(a0, b0)}
and {ei(x0, y0} and terminating at bases {ei(a, b)} and {ei(x, y)} which we may assume 
are the bases used above. One gets associated matrices {At} interpolating between A0
and A. Since the initial minors of At are non-zero for all t and positive for t = 0, we see 
that the initial minors of A must be positive.

Gasca and Pena [15, Thm. 4.1] (see also Fomin-Zelevinsky [14, Thm. 9]) proved that 
a matrix is totally positive if and only if all its initial minors are positive. Therefore, 
A is totally positive, so all its minors are positive, hence non-zero, which completes the 
proof. �
4. Correlation functions for Hitchin representations

We define correlation functions which offer measures of the transversality of bases 
associated to images of collections of elements in π1(S). The results of the previous section 
can be used to give conditions guaranteeing that many of these correlation functions 
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are non-zero. We then observe that, if we restrict to certain 3-generator subgroups of 
π1(S), then the restriction of the Hitchin representation function to the subgroup is 
determined, up to conjugation, by correlation functions associated to the generators and 
the eigenvalues of the images of the generators.

If {α1, . . . , αn} is a collection of non-trivial elements of π1(S), ij ∈ {0, 1, . . . , d} for 
all 1 � j � n, and ρ ∈ Hd(S), we define the correlation function2

Ti1,...,in(α1, . . . , αn)(ρ) := Tr

⎛⎝ n∏
j=1

pij (ρ(αj))

⎞⎠ ,

where we adopt the convention that

p0(ρ(α)) = ρ(α).

Notice that if all the indices are non-zero, then Ti1,...,in(α1, . . . , αn)(ρ) is well-defined, 
while if some indices are allowed to be zero, Ti1,...,in(α1, . . . , αn)(ρ) is only well-defined 
up to sign. These correlations functions are somewhat more general than the correlation 
functions defined in the introduction as we allow terms which are not projection matrices.

4.1. Nontriviality of correlation functions

We say that a collection {α1, . . . , αn} of non-trivial elements of π1(S) has non-
intersecting axes if whenever i �= j, (αi)+ and (αi)− lie in the same component of 
∂∞π1(S) − {(αj)+, (αj)−}. Notice that {α1, . . . , αn} have non-intersecting axes when-
ever they are represented by mutually disjoint and non-parallel simple closed curves on 
S.

Theorem 1.6 has the following immediate consequence.

Corollary 4.1. If ρ ∈ Hd(S), α, β ∈ π1(S) −{1} and α and β have non-intersecting axes, 
then any d elements of

{e1(ρ(α)), . . . , ed(ρ(α)), e1(ρ(β)), . . . , ed(ρ(β))}

span Rd. In particular,

〈ei(ρ(α))|ej(ρ(β))〉 �= 0.

One can use Corollary 4.1 to establish that a variety of correlation functions are 
non-zero. Notice that the assumptions of Lemma 4.2 will be satisfied whenever α is 

2 The name “correlation function” does not bear any physical meaning here and just reflects the fact that 
the correlation function between eigenvalues of quantum observables is the trace of products of projections 
on the corresponding eigenspaces.
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represented by a simple curve and α and γ are co-prime, i.e. αn �= γm for any m, n ∈
Z − {0}.

Lemma 4.2. If ρ ∈ Hd(S), α, γ ∈ π1(S) − {1}, α and γαγ−1 have non-intersecting axes, 
and i ∈ {1, . . . , d}, then

Ti,0(α, γ)(ρ) = Tr (pi(ρ(α))ρ(γ)) �= 0.

Proof. Since

Tr(pi(ρ(α))ρ(γ)) = 〈ei(ρ(α))|ρ(γ)(ei(ρ(α)))〉 = 〈ei(ρ(α))|ei(ρ(γαγ−1))〉 ,

the lemma follows immediately from Corollary 4.1 �
The next result deals with correlation functions which naturally arise when studying 

configurations of elements of π1(S) used in the proof of Theorem 1.1, see Fig. 1.

Proposition 4.3. Suppose that ρ ∈ Hd(S), α, β, δ ∈ π1(S) − {1} have non-intersecting 
axes, and i, j, k ∈ {1, . . . , d}. Then
(1)

Tij(α, β)(ρ) = Tr(pi(ρ(α))pj(ρ(β))) �= 0,

and
(2)

Ti,j,k(α, β, δ)(ρ) = Tr(pi(ρ(α))pj(ρ(β))pk(ρ(δ))) �= 0.

Moreover, if γ ∈ π1(S) − {1} and β and γδγ−1 have non-intersecting axes, then
(3)

Ti,0,j(β, γ, δ)(ρ) = Tr(pi(ρ(β))ρ(γ)pj(ρ(δ))) �= 0,

and
(4)

Ti,j,0,k(α, β, γ, δ)(ρ) = Tj,0,k(β, γ, δ)(ρ)
(

Ti,j,k(α, β, δ)(ρ)
Tj,k(β, δ)(ρ)

)
�= 0.

Proof. Notice that

Tr(pi(ρ(α))pj(ρ(β))) = 〈ei(ρ(α))|ej(ρ(β))〉 〈ej(ρ(β))|ei(ρ(α))〉
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for all i and j. Both of the terms on the right-hand side are non-zero, by Corollary 4.1, 
so

Tij(α, β)(ρ) = Tr(pi(ρ(α))pj(ρ(β))) �= 0.

Similarly,

Ti,j,k(α, β, δ)(ρ) = 〈ei(ρ(α))|ej(ρ(β))〉 〈ej(ρ(β))|ek(ρ(δ))〉 〈ek(ρ(δ))|ei(ρ(α))〉

and Corollary 4.1 guarantees that each of the terms on the right hand side is non-zero, 
so (1) and (2) hold.

Since

Tr(pi(ρ(β))ρ(γ)pj(ρ(δ))) = 〈ei(ρ(β))|ρ(γ)(ej(ρ(δ)))〉 〈ej(ρ(δ))|ei(ρ(β))〉
= 〈ei(ρ(β))|ej(ρ(γδγ−1))〉 〈ej(ρ(δ))|ei(ρ(β))〉

Corollary 4.1 again guarantees that each of the terms on the right hand side is non-zero, 
so (3) holds.

Recall that if P, Q, A ∈ SLd(R) and P and Q are projections onto lines, then

PAQ = Tr(PAQ)
Tr(PQ) PQ

if Tr(PQ) �= 0. (Suppose that P projects onto the line 〈v〉 with kernel the hyperplane 
V and Q project onto the line 〈w〉 with kernel the hyperplane W , then both PAQ and 
PQ map onto the line 〈v〉 and have W in their kernel and are therefore multiples of one 
another. The ratio of the traces detects this multiple.)

So, since Tr(pj(ρ(β))pk(ρ(δ)) �= 0,

pj(ρ(β))ρ(γ)pk(ρ(δ)) =
(

Tr(pj(ρ(β))ρ(γ)pk(ρ(δ)))
Tr(pj(ρ(β))pk(ρ(δ)))

)
pj(ρ(β))pk(ρ(δ)).

Therefore,

Ti,j,0,k(α, β, γ, δ)(ρ) = Tr(pi(ρ(α))pj(ρ(β))ρ(γ)pk(ρ(δ)))

= Tr
(
pi(ρ(α))

(
Tr(pj(ρ(β))ρ(γ)pk(ρ(δ))

Tr(pj(ρ(β))pk(ρ(δ))

)
pj(ρ(β))pk(ρ(δ))

)
= Tr(pj(ρ(β))ρ(γ)pk(ρ(δ))

(
Tr(pi(ρ(α))pj(ρ(β))pk(ρ(δ))

Tr(pj(ρ(β))pk(ρ(δ))

)
= Tj,0,k(β, γ, δ)(ρ)

(
Ti,j,k(α, β, δ)(ρ)

Tj,k(β, δ)(ρ)

)
.

Since all the terms on the right hand side have already been proven to be non-zero, the 
entire expression is non-zero, which completes the proof of (4). �
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4.2. Correlation functions and eigenvalues rigidity

We now observe that correlation functions and eigenvalues of images of elements 
determine the restriction of a Hitchin representation up to conjugation. Theorem 1.5 is 
a special case of Theorem 4.4.

Theorem 4.4. Suppose that ρ, σ ∈ Hd(S) and α, β, δ ∈ π1(S) −{1} have non-intersecting 
axes. If

(1) λi(ρ(η)) = λi(σ(η)) for any η ∈ {α, β, δ} and any i ∈ {1, . . . , d}, and
(2) for all i, j, k in {1, . . . , d}

Ti,j,k(α, β, δ)
Tj,k(β, δ)

(ρ) = Ti,j,k(α, β, δ)
Tj,k(β, δ)

(σ),

then ρ and σ are conjugate, in PGLd(R), on the subgroup 〈α, β, δ〉 of π1(S) generated by 
α, β and δ.

Proof. We will work in lifts of the restrictions of ρ and σ to 〈α, β, δ〉 so that the images 
of α, β and δ all have positive eigenvalues. We will abuse notation by referring to these 
lifts by simply ρ and σ. With this convention, λi(ρ(η)) = λi(σ(η)) for all i and any 
η ∈ {α, β, δ}. It suffices to prove that these lifts are conjugate in GLd(R).

Let ai = ei(ρ(α)), ai = ei(ρ(α)), bj = ej(ρ(β)), bj = ej(ρ(β)), dk = ek(ρ(δ)) and 
dk = ek(ρ(δ)) for all i, j, k. Similarly let âi = ei(σ(α)), âi = ei(σ(α)), b̂j = ej(σ(β)), 
b̂j = ej(σ(β)), d̂k = ek(σ(δ)) and d̂k = ek(σ(δ)) for all i, j, k. With this notation,

Ti,j,k(α, β, δ)(ρ)
Tj,k(β, δ)(ρ)

= 〈ai|bj〉 〈bj |dk〉 〈dk|ai〉
〈bj |dk〉 〈dk|bj〉

= 〈ai|bj〉 〈dk|ai〉
〈dk|bj〉

and

Ti,j,k(α, β, δ)(σ)
Tj,k(β, δ)(σ) = 〈âi|b̂j〉 〈d̂k|âi〉

〈d̂k|b̂j〉
,

so, by assumption,

〈ai|bj〉 〈dk|ai〉
〈dk|bj〉

= 〈âi|b̂j〉 〈d̂k|âi〉
〈d̂k|b̂j〉

(1)

We may conjugate σ and choose ai, âi, b1 and ̂b1 so that ai = âi for all i (so ai = âi for 
all i), b1 = b̂1 and 〈ai|b1〉 = 1 for all i. (Notice that this is possible since, by Corollary 4.1, 
b1 does not lie in any of the coordinate hyperplanes of the basis {ai} and similarly b̂1
does not lie in any of the coordinate hyperplanes of the basis {âi} = {ai}.) Therefore, 
since λi(ρ(α)) = λi(σ(α)) for all i, we see that ρ(α) = σ(α).
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Corollary 4.1 also assures us that 〈dk|b1〉 and 〈d̂k|b̂1〉 are non-zero, so we may addi-
tionally choose {dk} and {d̂k} so that 〈dk|b1〉 = 1 and 〈d̂k|b̂1〉 = 1 for all k. Therefore, 
taking j = 1 in Equation (1), we see that

〈dk|ai〉 = 〈d̂k|âi〉 = 〈d̂k|ai〉

for all i and k. It follows that dk = d̂k for all k, which implies that dk = d̂k for all k. 
Again, since λi(ρ(δ)) = λi(σ(δ)) for all i, we see that ρ(δ) = σ(δ).

Equation (1) then reduces to

〈ai|bj〉
〈dk|bj〉

= 〈âi|b̂j〉
〈d̂k|b̂j〉

= 〈ai|b̂j〉
〈dk|b̂j〉

.

We may assume, again applying Corollary 4.1, that {bj} and {b̂j} have been chosen so 
that

〈a1|bj〉 = 〈a1|b̂j〉 = 1

for all j, so, by considering the above equation with i = 1, we see that

〈dk|bj〉 = 〈dk|b̂j〉

for all j and k, which implies that bj = b̂j for all j, and, again since eigenvalues agree, 
we may conclude that ρ(β) = σ(β), which completes the proof. �
5. Asymptotic expansion of spectral radii

In this section we establish a useful asymptotic expansion for the spectral radii of 
families of matrices of the form AnB.

Lemma 5.1. Suppose that A, B ∈ SLd(R) and that A is real-split and 2-proximal. If (bij)
is the matrix of B with respect to {ei(A)}di=1 and b11, b12, and b21 are non-zero, then

λ1(AnB)
λ1(A)n = b11 + b12b

2
1

b11

(
λ2(A)
λ1(A)

)n

+ o

((
λ2(A)
λ1(A)

)n)
.

We begin by showing that the spectral radius is governed by an analytic function.

Lemma 5.2. Suppose that A, B ∈ SLd(R) and that A is real-split and proximal. If (bij) is 
the matrix of B with respect to {ei(A)}di=1 and b11 is non-zero, then there exists an open 
neighborhood V ⊆ Rd−1 of the origin and an analytic function f : V → R such that, for 
all sufficiently large n,
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λ1(AnB)
λ1(A)n = f(zn1 , . . . , znd−1)

where zi = λi+1(A)
λ1(A) for all i.

Moreover, there exists an analytic function X : V → Rd such that X(zn1 , . . . , znd−1) is 
an eigenvector of AnB with eigenvalue λ1(AnB) for all sufficiently large n.

Proof. The proof is based on the following elementary fact from linear algebra. A proof 
in the case that U is one-dimensional is given explicitly in Lax [22, Section 9, Theorem 
8] but the proof clearly generalizes to our setting.

Lemma 5.3. Suppose that {M(u)}u∈U is analytically varying family of d× d matrices, 
where U is an open neighborhood of 0 in Rn. If M(0) has a simple real eigenvalue λ0 �= 0
with associated unit eigenvector X0, then there exists an open sub-neighborhood V ⊆ U

of 0 and analytic functions f : V → R, and X : V → Rd such that f(0) = λ0, X(0) = X0

and f(v) is a simple eigenvalue of M(v) with eigenvector X(v) for all v ∈ V .

Let U = Rd−1 and, for all u ∈ U , let D(u) be the diagonal matrix, with respect 
to {ei(A)}, with entries (1, u1, . . . , ud−1) and let M(u) = D(u)B for all u ∈ U . Then 
M(0) has b11 as its only non-zero eigenvalue with associated unit eigenvector e1. So we 
may apply Lemma 5.3 with λ0 = b11 and X(0) = e1. Let V be the open neighbor-
hood and f : V → R and X : V → Rd be the analytic functions provided by that 
lemma. Further, as M(0) has only one non-zero eigenvalue, we can choose V such that 
the eigenvalue f(u) is the maximum modulus eigenvalue of M(u). For sufficiently large 
n, (zn1 , . . . , znd−1) ∈ V , and AnB

λ1(A)n = M(zn1 , . . . , znd−1). So, for all sufficiently large n, 
f(zn1 , . . . , znd−1) is the eigenvalue of maximal modulus of AnB/λ1(A)n with associated 
eigenvector X(zn1 , . . . , znd−1). �
Proof of Lemma 5.1. Since A is 2-proximal,

|λ1(A)| > |λ2(A)| � λ3(A)| . . . � λd(A)|.

Let f : V → R be the function provided by Lemma 5.2. If zi = λi+1(A)/λ1(A), then 
(zn1 , . . . , znd−1) ∈ V , so

λ1(AnB)
λ1(A)n = f

(
zn1 , . . . , z

n
d−1
)

for all large enough n. Since f is analytic

f(u1, . . . , ud−1) = f(0) +
d−1∑ ∂f

∂ui
(0)ui + O(uiuj).
i=1



M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901 31
If

g(s) = f(s, 0, . . . , 0) = λ1(D(1, s, 0, . . . , 0)B) = λ1

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

b11 b12 b13 . . . b1d
sb21 sb22 sb23 . . . sb2d
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

= λ1

([
b11 b12
sb21 sb22

])
,

then we see, by examining the characteristic equation, that

g(s)2 − (b11 + sb22)g(s) + s(b11b22 − b12b
2
1) = 0

Differentiating and applying the fact that g(0) = f(0) = b11 yields

0 = 2g(0)g′(0) − b11g
′(0) − b22g(0) + (b11b22 − b12b

2
1) = b11g

′(0) − b12b
2
1,

so

∂f

∂u1
(0) = g′(0) = b12b

2
1

b11
.

Since |zi| < |z1| for all i � 2,

λ1(AnB)
λ1(A)n = f

(
zn1 , . . . , z

n
d−1
)

= f(0) +
d−1∑
i=1

∂f

∂ui
(0)zni + o(zn1 )

= b11 + b12b
2
1

b11
zn1 + o (zn1 ) . �

6. Simple lengths and traces

We show that two Hitchin representations have the same simple non-separating length 
spectrum if and only if they have the same simple non-separating trace spectrum. More-
over, in either case all eigenvalues of images of simple non-separating curves agree up to 
sign.

Theorem 6.1. If ρ ∈ Hd1(S) and σ ∈ Hd2(S), then | Tr(ρ(α))| = | Tr(σ(α))| for 
any α ∈ π1(S) represented by a simple non-separating curve on S if and only if 
Lα(ρ) = Lα(σ) for any α ∈ π1(S) represented by a simple non-separating curve on S. In 
either case, d1 = d2, and λi(ρ(α)) = λi(σ(α)) for all i and any α ∈ π1(S) represented 
by a simple non-separating curve on S.
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Theorem 6.1 follows immediately from Lemma 6.2, which shows that one can detect 
the length of a curve from the traces of a related family of curves, and Lemma 6.3, which 
obtains information about traces and eigenvalues from information about length. (Notice 
that every non-separating curve on S has geometric intersection number one with some 
other non-separating curve on S.)

Lemma 6.2. Suppose that α and β are represented by simple based loops on S which 
intersect only at the basepoint and have geometric intersection one. If ρ ∈ Hd1(S), σ ∈
Hd2(S) and | Tr(ρ(αnβ))| = | Tr(σ(αnβ))| for all n, then d1 = d2 and Lα(ρ) = Lα(σ). 
Moreover, λi(ρ(α)) = λi(σ(α)) for all i.

Proof. We assume that d1 � d2. It suffices to prove our lemma for lifts of the restriction 
of ρ and σ to 〈α, β〉 so that the all the eigenvalues of the images of α are positive. We 
will abuse notation by calling these lifts ρ and σ.

Since Tr(ρ(αnβ)) = ε(n) Tr(σ(αnβ)) for all n, where ε(n) ∈ {±1}, we may expand to 
see that

d1∑
i=1

λn
i (ρ(α)) Tr(pi(ρ(α))ρ(β)) = ε(n)

d2∑
i=1

λn
i (σ(α)) Tr(pi(σ(α))σ(β))

for all n. Lemma 4.2 implies that Tr(pi(ρ(α))ρ(β)) and Tr(pi(σ(α))σ(β)) are non-zero 
for all i. There exists an infinite subsequence {nk} of integers, so that ε(nk) = ε is 
constant. Passing to limits as n → ∞, and comparing the leading terms in descending 
order, we see that λi(ρ(α)) = λi(σ(α)) if 1 � i � d1. In particular, Lα(ρ) = Lα(σ). If 
d1 < d2, then

Πd1
i=1λi(ρ(α)) = Πd2

i=1λi(σ(α)) = 1

which is impossible, since λi(ρ(α)) = λi(σ(α)) if 1 � i � d1 and

λi(σ(α)) � λd1(σ(α)) = λd1(ρ(α)) < 1

if d1 < i � d2. Therefore d1 = d2. �
Lemma 6.3. Suppose that γ and δ are represented by simple based loops on S which 
intersect only at the basepoint and have geometric intersection one. If ρ ∈ Hd1(S), σ ∈
Hd2(S) and Lα(ρ) = Lα(σ) whenever α ∈ 〈γ, δ〉 is represented by a simple non-separating 
based loop, then d1 = d2, | Tr(ρ(α))| = | Tr(σ(α))| and λi(ρ(α)) = λi(σ(α)) for all i
whenever α ∈ 〈γ, δ〉 is represented by a simple non-separating based loop.

Proof. We assume that d1 � d2. If α ∈ 〈γ, δ〉 is represented by a simple, non-separating 
based loop, then there exists β ∈ 〈γ, δ〉 so that β is represented by a simple based loop 
which intersects α only at the basepoint and α and β have geometric intersection one, 
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so αnβ is simple and non-separating for all n. It again suffices to prove our lemma for 
lifts of the restriction of ρ and σ to 〈α, β〉 so that the all the eigenvalues of the images 
of α are positive.

Let A = ρ(α), B = ρ(β), Â = σ(α), and B̂ = σ(β). Let λi = λi(A) and λ̂i = λi(Â). 
Let ei = ei(A) and êi = ei(Â) and let (bij) be the matrix of B with respect to {ei}d1

i=1
and (b̂ij) be the matrix of B̂ with respect to {êi}d2

i=1. Let Ω = e1 ∧ e2 ∧ . . . ∧ ed1 �= 0 be 
the volume form associated to the basis {e1}d1

i=1 for Rd1 .
We begin by showing that λ2 = λ̂2. Notice that A and AnB are real-split and 2-

proximal for all n. We need the result of the following lemma to be able to apply 
Lemma 5.1.

Lemma 6.4. Suppose that α and β are represented by simple based loops on S which 
intersect only at the basepoint and have geometric intersection one. If ρ ∈ Hd(S) and 
B = (bji ) is a matrix representing ρ(β) in the basis {ei(ρ(α)}, then b11, b12, and b21 are all 
non-zero.

Proof. Notice that B(e1) ∧ (e2 ∧ . . . ∧ ed) = b11Ω. So, if b11 = 0, then B(e1), which is a 
non-trivial multiple of e1(ρ(βαβ−1)), lies in the hyperplane spanned by {e2, . . . , ed} =
{e2(ρ(α)), . . . , ed(ρ(α)}, which contradicts Corollary 4.1 (and also hyperconvexity). No-
tice that the fixed points of βαβ−1 must lie in the same component of ξρ(S1) −{α+, α−}, 
since α is simple. Therefore, b11 �= 0.

Similarly, B(e1) ∧ (e1 ∧ e3 ∧ . . .∧ ed) = −b21Ω. So, if b21 = 0, then e1(ρ(βαβ−1)), lies in 
the hyperplane spanned by {e1(ρ(α)), e3(ρ(α)), . . . , ed(ρ(α))}, which again contradicts 
Corollary 4.1. Therefore, b21 �= 0.

Moreover, B(e2) ∧ (e2 ∧ e3 ∧ . . . ∧ ed) = b12Ω. So, if b12 = 0, then e2(ρ(βαβ−1)), lies 
in the hyperplane spanned by {e1(ρ(α)), e3(ρ(α), . . . , ed(ρ(α)}, which again contradicts 
Corollary 4.1. Thus, b12 �= 0. �

By assumption |λ1(AnB)| = |λ1(ÂnB̂)| for all n. Lemma 5.1 then implies that

∣∣∣∣b11 + b12b
2
1

b11

(
λ2

λ1

)n

+ o

((
λ2

λ1

)n)∣∣∣∣ =
∣∣∣∣∣b̂11 + b̂12b̂

2
1

b̂11

(
λ̂2

λ̂1

)n

+ o

((
λ̂2

λ̂1

)n)∣∣∣∣∣ ,
so |b11| = |b̂11|. Comparing the second order terms, we see that

λ2

λ1
= λ̂2

λ̂1
.

Since, by assumption, λ1 = λ̂1, we see that λ2 = λ̂2.
We now assume that for some k = 2, . . . , d1 − 1, λi(ρ(β)) = λi(σ(β)) for all i � k

whenever β ∈ 〈γ, δ〉 is represented by a simple, non-separating based loop. We will prove 
that this implies that λi(ρ(β)) = λi(σ(β)) for all i � k + 1 whenever β ∈ 〈γ, δ〉 is 
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represented by a simple, non-separating based loop. Applying this iteratively will allow 
us to complete the proof.

Let Ek(ρ) be the kth-exterior product representation. If α ∈ 〈γ, δ〉 is represented by a 
simple non-separating based loop, we again choose β ∈ 〈γ, δ〉 so that β is represented by 
a simple based loop which intersects α only at the basepoint and α and β have geometric 
intersection one. We adapt the notations and conventions from the second paragraph of 
the proof.

Let C = Ek(ρ)(α), D = Ek(ρ)(β), Ĉ = Ek(σ)(α) and D̂ = Ek(σ)(β). Notice 
that C is diagonal with respect to the basis {ei(C)} given by all k-fold wedge prod-
ucts of {e1, . . . , ed} where ei = ei(A) for all i. In particular, λ1(C) = λ1(A) · · ·λk(A), 
λ2(C) = λ1(A) · · ·λk−1(A)λk+1(A), e1(C) = e1(A) ∧ · · · ∧ ek(A) and e2(C) = e1(A) ∧
· · · ∧ ek−1(A) ∧ ek+1(A). Since λ3(C) is given by either λ1(A) · · ·λk−1(A)λk+2(A) or 
λ1(A) · · ·λk−2(A)λk(A)λk+1(A), C is 2-proximal. Similarly, Ĉ, CDn and ĈD̂n are real-
split and 2-proximal for all n.

Let (dij) be the matrix for D in the basis {ei}. We define êi and (d̂ij) completely 
analogously. Notice that D(e1 ∧ e2 ∧ . . . ∧ ek) ∧ (ek+1 ∧ . . . ∧ ed1) = d1

1Ω. So, if d1
1 = 0, 

then

B(ξkρ (α+)) ⊕ ξn−k
ρ (α−) = ξkρ (β(α+)) ⊕ ξn−k

ρ (α−) �= Rd1 ,

which would contradict the hyperconvexity of ξρ. Therefore, d1
1 �= 0.

Furthermore, D(e1 ∧ e2 ∧ . . .∧ ek) ∧ (ek ∧ ek+2 ∧ . . .∧ ed1) = −d2
1Ω. So, if d2

1 = 0, then{
L1(ρ(βαβ−1)), . . . , Lk(ρ(βαβ−1)), Lk(ρ(α)), Lk+2(ρ(α)), . . . , Ld1(ρ(α))

}
does not span Rd1 , which contradicts Corollary 4.1. Therefore, d2

1 �= 0
Similarly, D(e1 ∧ e2 ∧ . . .∧ ek−1 ∧ ek+1) ∧ (ek+1 ∧ ek+2 ∧ . . .∧ ed1) = d1

2Ω. So, if d1
2 = 0, 

then{
L1(ρ(βαβ−1)), . . . , Lk−1(ρ(βαβ−1)), Lk+1(ρ(βαβ−1)), Lk+1(ρ(α)), . . . , Ld1(ρ(α))

}
does not span Rd1 , which contradicts Corollary 4.1. Thus d1

2 �= 0.
Analogous arguments imply that d̂1

1, d̂2
1 and d̂1

2 are all non-zero. Moreover, by our 
iterative assumption

|λ1(CnD)| = |λ1(AnB) · · ·λk(AnB)| = |λ1(ÂnB̂) · · ·λk(ÂnB̂)| = |λ1(ĈnD̂)|

for all n. We may again apply Lemma 5.1 to conclude that

λk+1

λk
=
∣∣∣∣λ2(C)
λ1(C)

∣∣∣∣ =
∣∣∣∣∣λ2(Ĉ)
λ1(Ĉ)

∣∣∣∣∣ = λ̂k+1

λ̂k

.

Since, by our inductive assumption, λk = λ̂k, we conclude that λk+1 = λ̂k+1. Therefore, 
after iteratively applying our argument, we conclude that λi(ρ(α)) = λi(σ(α)) for all 
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Fig. 1. Curves α, β, γ, δ.

1 � i � d1. As in the proof of Lemma 6.2 it follows that d1 = d2. Therefore, | Tr(ρ(α))| =
| Tr(σ(α))|. �
7. Simple length rigidity

We are now ready to establish our main results on simple length and simple trace 
rigidity. We begin by studying configurations of curves in the form pictured in Fig. 1.

Theorem 7.1. Suppose that F is an essential, connected subsurface of S, and that 
α, β, δ ∈ π1(F ) − {1} are represented by based simple loops in F which intersect only 
at the basepoint, and are freely homotopic to a collection of mutually disjoint and non-
parallel, non-separating closed curves in F which do not bound a pair of pants in F . If 
ρ, σ ∈ Hd(S) and | Tr(ρ(η))| = | Tr(σ(η))| whenever η ∈ π1(S) is represented by a simple 
closed curve in F , then ρ and σ are conjugate, in PGLd(R), on the subgroup < α, β, δ >

of π1(S).

Proof. We first show that we can replace α, β and δ with based loops in F , configured 
as in Fig. 1, which generate the same subgroup of π1(S). We then show that if α, β, γ
and δ have the form in Fig. 1, then ρ and σ are conjugate on 〈α, β, δ〉.

Lemma 7.2. Suppose that F is an essential, connected subsurface of S, and that α, β, δ ∈
π1(F ) − {1} are represented by based simple loops in F which intersect only at the base-
point, and are freely homotopic to a collection of mutually disjoint and non-parallel, 
non-separating closed curves in F which do not bound a pair of pants in F . Then there 
exist based loops α̂, β̂, γ̂ and δ̂ in F which intersect only at the basepoint so that α̂, β̂
and δ̂ are freely homotopic to a collection of mutually disjoint and non-parallel, non-
separating closed curves, each has geometric intersection one with γ̂ and

〈α̂, β̂, δ̂〉 = 〈α, β, δ〉 .

Proof. We first assume one of the curves, say β, has the property that the other two 
curves lie on opposite sides of β, i.e. there exists a regular neighborhood N of β, so that 
α intersects only one component of N − β and δ only intersects the other (see Fig. 2). 
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Fig. 2. A regular neighborhood of α ∪ β ∪ δ when β locally separates α and δ.

(Notice that since the curves intersect exactly once and can be homotoped to be disjoint, 
α and δ each intersect exactly one component of N −{β}, if N is chosen small enough.)

Let F1 be a regular neighborhood of T = α ∪ β ∪ δ. Then F1 is a four-holed sphere 
and each component of F1 − T is an annulus. We label the boundary components A, D, 
J and K, where A is parallel to α, D is parallel to δ, J is parallel to the based loop βαε1

and K is parallel to the based loop βδε2 for some ε1, ε2 ∈ {±1}.
If A and D lie in the boundary of the same component of F − F1, then one may 

extend an arc in F − F1 joining A to D to a closed curve γ̂ which intersects T only at 
the basepoint and intersects each of α, β and δ with geometric intersection one. In this 
case, we simply take α̂ = α, β̂ = β and δ̂ = δ. We assume from now on that A and D do 
not lie in the same boundary component of F − F1.

Since α is non-separating, A must lie in the boundary of a component G of F − F1
which also has either J or K in its boundary. If the boundary of G contains J but not 
K, then β would separate F which would contradict our assumptions, so the boundary 
of G must contain K. (Recall that by assumption, the boundary of G cannot contain 
D.)

We may then extend an arc in G joining A to K to a closed curve γ̂ which intersects 
T only at the basepoint and has geometric intersection one with α, β and K. Moreover, 
we may choose a based loop δ̂ in the (based) homotopy class of βδε2 which intersects α, 
β and γ̂ only at the basepoint. In this case, let α̂ = α and β = β̂. A, β and K are simple, 
disjoint non-separating curves freely homotopic to α̂, β̂ and δ̂. If K is parallel to A, then 
disjoint representative of α, β and δ would bound a pair of pants, which is disallowed. 
Moreover, since K is homotopic to βδε2 and β and δ are non-parallel simple closed curves, 
K cannot be parallel to β or δ. Since A and β are non-parallel, by assumption, A, β and 
K are mutually non-parallel as required.

We may now assume that if ν ∈ {α, β, δ}, then there is a regular neighborhood 
of ν, so that the other two based loops only intersect one component of the regular 
neighborhood. Let F1 be a regular neighborhood of T . Again, F1 is a four-holed sphere 
and each component of F1 − T is an annulus. We label the components of the boundary 
of F1 by A, B, D and E, where A is parallel to α, B is parallel to β, and D is parallel 
to δ (see Fig. 3). Since α is non-separating in F , there exists a component G of F − F1
whose boundary contains A and at least one other component of the boundary of F1. 
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Fig. 3. A regular neighborhood of α ∪ β ∪ δ when no curve locally separates.

If the boundary of G contains B, then one may extend an arc in G joining A to B to 
a curve γ̂ which intersects T only at the basepoint and has geometric intersection one 
with α and β and geometric intersection zero with δ. Let δ̂ be a simple based loop in F1

in the (based) homotopy class of αδε for some ε ∈ {±1} which intersects γ̂ and T only 
at the basepoint. Since δ̂ has algebraic intersection ±1 with γ̂, it must have geometric 
intersection one with γ̂. Let α̂ = α and β̂ = β, then α̂, β̂ and δ̂ are freely homotopic to 
the collection {A, B, ̂δ} of mutually disjoint, non-separating curves. Notice that A and 
B are non-parallel by our original assumption, while if δ̂ is parallel to A or B, then 
our original collection of curves would be freely homotopic to the boundary of a pair of 
pants, contradicting our original assumption. Therefore, A, B and δ̂ are non-parallel as 
required.

If the boundary of G, contains D, then we may perform the same procedure reversing 
the roles of β and δ. Therefore, we may assume that the boundary of G contains both 
A and E, but not B or D. Since β is non-separating and B is not in the boundary of G, 
there must be another component H of F −F1 which has both B and D in its boundary. 
We then simply repeat the procedure above to construct a curve γ̂ which intersects T
only at the basepoint which has geometric intersection one with β and δ and geometric 
intersection zero with α. We then let α̂ be a simple based loop in F1 intersecting γ̂ only 
at the basepoint, in the based homotopy class of βαε for some ε ∈ {±1}, which has 
geometric intersection one with γ̂. Letting β̂ = β and δ̂ = δ, we may complete the proof 
as in the previous paragraph. �

Notice that we may always re-order the curves produced by Lemma 7.2 so that 
α̂pβ̂qγ̂δ̂r is represented by a simple non-separating curve in F for all p, q, r ∈ Z. More-
over, our assumptions imply that α̂, β̂ and δ̂ have non-intersecting axes and that β̂ and 
γ̂β̂γ̂−1 have non-intersecting axes. Theorem 7.1 will then follow from the following result.

Proposition 7.3. Suppose that α, β, γ, δ ∈ π1(S) − {1}, α, β and δ have non-intersecting 
axes and that β and γβγ−1 have non-intersecting axes. If ρ, σ ∈ Hd(S) and
| Tr(ρ(αpβqγδr))| = | Tr(σ(αpβqγδr))| for all p, q, r ∈ Z, then ρ and σ are conjugate, in 
PGLd(R), on the subgroup < α, β, δ > of π1(S).
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Proof. We may apply Lemma 6.2 to the pairs (α, γ), (β, γ) and (δ, γ) to conclude that 
λi(ρ(η)) = λi(σ(η)) for all i and any η ∈ {α, β, δ}. (Notice, for example, that for the 
pair (α, γ) our assumptions imply that | Tr(ρ(αnγ))| = | Tr(σ(αnγ))| for all n, so the 
assumptions of Lemma 6.2 are satisfied.)

Combining the expansions

ρ(α) =
d∑

i=1
λi(ρ(α))pi(ρ(α)) and σ(α) =

d∑
i=1

λi(σ(α))pi(σ(α))

with our assumption that | Tr(ρ(αpβqγδr))| = | Tr(σ(αpβqγδr))| for all p, q, r ∈ Z, we 
see that

d∑
i=1

λp
i (ρ(α)) Tr (pi(ρ(α))ρ(βqγδr)) = ±

d∑
i=1

λp
i (σ(α)) Tr (pi(σ(α))σ(βqγδr))

for all p, q, r ∈ N. Since ρ(α) and σ(α) are purely loxodromic and λi(ρ(α)) = λi(σ(α))
for all i, we may fix q and r, let p tend to +∞ and consider terms of the same order to 
conclude that

Tr (pi(ρ(α))ρ(βqγδr)) = ±Tr (pi(σ(α))σ(βqγδr)) (2)

for all i ∈ {1, . . . , d} and all q, r ∈ N. Similarly, we expand Equation (2) to see that, for 
all i,

d∑
j=1

λq
j(ρ(β)) Tr (pi(ρ(α))pj(ρ(β))ρ(γδr)) = ±

d∑
j=1

λq
j(σ(β)) Tr (pi(σ(α))pj(σ(β))σ(γδr))

and consider terms of the same order as q → +∞ to conclude that

Tr (pi(ρ(α))pj(ρ(β))ρ(γδr)) = ±Tr (pi(σ(α))pi(σ(β))σ(γδr))

for all i, j ∈ {1, . . . , d} and r ∈ N. Expanding this last equation and letting r tend to 
+∞, we finally conclude that

Tr(pi(ρ(α))pj(ρ(β))ρ(γ)pk(ρ(δ))) = ±Tr(pi(σ(α))pj(σ(β))σ(γ)pk(σ(δ)))

for all i, j, k ∈ {1, . . . , d}, i.e.

Ti,j,0,k(α, β, γ, δ)(ρ) = ±Ti,j,0,k(α, β, γ, δ)(σ) (3)

for all i, j, k ∈ {1, . . . , d}.
We similarly expand the equation

Tr(ρ(βqγδr)) = ±Tr(σ(βqγδr))
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to see that

Tj,0,k(β, γ, δ)(ρ) = ±Tj,0,k(β, γ, δ)(σ) (4)

for all j and k.
Recall, from part (4) of Proposition 4.3, that

Ti,j,0,k(α, β, γ, δ)(ρ) = Tj,0,k(β, γ, δ)(ρ)
(

Ti,j,k(α, β, δ)(ρ)
Tj,k(β, δ)(ρ)

)
�= 0

for all ρ ∈ Hd(S) and i, j, k ∈ {1, . . . , d}, so we may conclude from Equations (3) and 
(4) that

Ti,j,k(α, β, δ)(ρ)
Tj,k(β, δ)(ρ)

= ±Ti,j,k(α, β, δ)(σ)
Tj,k(β, δ)(σ)

for all i, j, k ∈ {1, . . . , d}.
We may join ρ to σ by a path {ρt} of Hitchin representations. So, since Ti,j,k(α,β,δ)(ρt)

Tj,k(β,δ)(ρt)
is non-zero for all t, again by Proposition 4.3, and varies continuously, it follows that

Ti,j,k(α, β, δ)(ρ)
Tj,k(β, δ)(ρ)

= Ti,j,k(α, β, δ)(σ)
Tj,k(β, δ)(σ)

for all i, j, k ∈ {1, . . . , d}. Therefore, since we have already seen that λi(ρ(η)) = λi(σ(η))
for all i if η ∈ {α, β, γ}, Theorem 4.4 implies that ρ and σ are conjugate, in PGLd(R), 
on the subgroup < α, β, δ > of π1(S). �

We are now ready to establish that the restriction of the marked trace spectrum to 
the simple non-separating curves determines a Hitchin representation.

Theorem 7.4. Let S be a closed orientable surface of genus g � 3. If ρ ∈ Hd1(S), σ ∈
Hd2(S) and | Tr(ρ(α))| = | Tr(σ(α))| whenever α ∈ π1(S) is represented by a simple non-
separating curve, then d1 = d2 and ρ = σ.

Proof. Notice that Theorem 6.1 immediately implies that d1 = d2, so we may assume 
that d = d1 = d2. Consider the standard generating set

S = {α1, β1, . . . , αg, βg}

for π1(S) so that 
∏g

i=1[αi, βi] = 1, each generator is represented by a based loop, and 
any two such based loops intersect only at the basepoint.

Notice that the generators are freely homotopic to simple, non-separating closed curves 
so that the representative of αi is disjoint from the representative of every other generator 
except βi and that the representative of βi is disjoint from the representative of every 
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other generator except αi. Moreover, no three of the representatives which are disjoint 
bound a pair of pants. Therefore, Theorem 7.1 implies that we may assume that ρ and 
σ agree on < α1, α2, α3 >.

If η ∈ S − {α1, α2, β1, β2}, then Theorem 7.1 implies that there exists C ∈ PGLd(R)
so that ρ and CσC−1 agree on < α1, α2, η >. Since ρ and σ agree on α1 and α2, the 
following lemma, which we memorialize for repeated use later in the paper, assures that 
C = I, so ρ(η) = σ(η).

Lemma 7.5. Suppose that S is a closed surface of genus at least two, ρ : π1(S) → PSLd(R)
and σ : π1(S) → PSLd(R) are Hitchin representations, and there exists a subgroup H of 
π1(S) and C ∈ PSLd(R) so that ρ|H = Cσ|HC−1. If there exists ν1, ν2 ∈ H with non-
intersecting axes, so that ρ(ν1) = σ(ν1) and ρ(ν2) = σ(ν2), then C = I, so ρ|H = σ|H .

Proof. Since ρ and σ agree on ν1 and ν2, C must commute with ρ(ν1) and ρ(ν2). Thus C
is diagonalizable over R with respect to both {ei(ρ(ν1))} and {ei(ρ(ν2)}. If C �= I, then 
Rd admits a non-trivial decomposition into eigenspaces of C with distinct eigenvalues. 
Any such eigenspace W is spanned by a sub-collection of {ei(ρ(ν1))} and by a sub-
collection of {ej(ρ(ν2))}. In particular, some ei(ρ(ν1)) is in the subspace spanned by a 
subcollection of {ej(ρ(ν2))}. Since ν1 and ν2 have non-intersecting axes, this contradicts 
Corollary 4.1. Therefore, C = I. �

In order to prove that ρ(β1) = σ(β1), we similarly apply Theorem 7.1 and Lemma 7.5
to the elements α2, α3 and β1, while to prove that ρ(β2) = σ(β2) we consider the elements 
α1, α3 and β2. Since we have established that ρ and σ agree on every element in the 
generating set S, we conclude that ρ = σ. �

Marked simple length rigidity, Theorem 1.1, is an immediate consequence of Theo-
rems 7.4 and 6.1.

We may further use the Noetherian property of polynomial rings to prove the fi-
nal statement in Theorem 1.2, which asserts that Hitchin representations of the same 
dimension are determined by the traces of a finite set of simple non-separating curves.

Proof of Theorem 1.2. We consider the affine algebraic variety

V (S) = Hom(π1(S),SLd(R)) × Hom(π1(S),SLd(R)).

Let {γi}∞i=1 ⊂ π1(S) be an ordering of the collection of (conjugacy classes of) elements 
of π1(S) which are represented by simple, non-separating curves, and define, for each n,

Vn(S) = {(ρ, σ) ∈ V (S) | Tr(ρ(γi)) = Tr(σ(γi)) if i � n}

and let
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V∞ =
∞⋂

n=1
Vn.

Then each Vn(S) is a subvariety of V (S) and by the Noetherian property of polynomial 
rings, there exists N so that VN = V∞. We define Ld(S) = {γi}Ni=1.

There exists a component H̃d(S) of Hom(π1(S), SLd(R)) consisting of lifts of Hitchin 
representations so that Hd(S) is identified with the quotient of H̃d(S) by SLd(R), see 
Hitchin [18]. Since traces of elements in images of (lifts of) Hitchin representations are 
non-zero, for all γ ∈ π1(S), Tr(ν(γ)) is either positive for all ν ∈ H̃d(S) or negative for all 
ν ∈ H̃d(S), for all γ ∈ π1(S). Therefore, if the marked trace spectra of ρ, σ ∈ Hd(S) agree 
on Ld(S), they admit lifts ρ̃ and σ̃ in H̃d(S) so that (ρ̃, ̃σ) ∈ VN . Since VN = V∞, the 
marked trace spectra of ρ and σ agree on all simple, non-separating curves. Therefore, 
by Theorem 7.4, ρ = σ ∈ Hd(S). �
Remark. The set Ld(S) contains at least dim(Hd(S)) = −χ(S)(d2 − 1) curves, but our 
methods do not provide any upper bound on the size of Ld(S).

8. Isometries of intersection

In this section, we investigate isometries of the intersection function which is used to 
construct the pressure metric on the Hitchin component. Our main tool will be Bonahon’s 
theory of geodesic currents and his reinterpretation of Thurston’s compactification of 
Teichmüller space in this language, see Bonahon [2].

8.1. Intersection and the pressure metric

Given ρ ∈ Hd(S), let

RT (ρ) = {[γ] ∈ [π1(S)] | Lγ(ρ) � T}

be the set of conjugacy classes of elements of π1(S) whose images have length at most 
T . One may then define the entropy

h(ρ) = lim
T→∞

log(#RT (ρ))
T

.

Given ρ, σ ∈ Hd(S), their intersection is given by

I(ρ, σ) = lim
T→∞

1
#RT (ρ)

∑
[γ]∈RT (ρ)

Lγ(σ)
Lγ(ρ) ,

and their renormalized intersection is given by

J(ρ, σ) = h(σ)
I(ρ, σ).
h(ρ)



42 M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901
One may show that all the quantities above give rise to analytic functions.

Theorem 8.1. (Bridgeman–Canary–Labourie–Sambarino [6, Thm. 1.3]) If S is a closed 
surface of genus greater than 1, the entropy h, the intersection I, and renormalized 
intersection J are analytic functions on Hd(S), Hd(S) × Hd(S) and Hd(S) × Hd(S)
respectively.

Let Jρ : Hd(S) → R be defined by Jρ(σ) = J(ρ, σ). The analytic function Jρ has a 
minimum at ρ (see [6, Thm. 1.1]) and hence its Hessian gives rise to an non-negative 
quadratic form on Tρ(Hd(S)), called the pressure metric. Bridgeman, Canary, Labourie 
and Sambarino proved that the resulting quadratic form is positive definite. A result of 
Wolpert [33] implies that the restriction of the pressure metric to the Fuchsian locus is 
a multiple of the classical Weil-Petersson metric. (See [7] for a survey of this theory.)

Theorem 8.2. (Bridgeman–Canary–Labourie–Sambarino [6, Cor. 1.6]) If S is a closed 
surface of genus greater than 1, the pressure metric is a mapping class group invari-
ant, analytic, Riemannian metric on Hd(S) whose restriction to the Fuchsian locus is a 
multiple of the Weil-Petersson metric.

Recall that a diffeomorphism f : Hd(S) → Hd(S) is said to be an isometry of in-
tersection if I(f(ρ), f(σ)) = I(ρ, σ) for all ρ, σ ∈ Hd(S). Let IsomI(Hd(S)) denote the 
group of isometries of I. Notice that, by construction, the extended mapping class group 
Mod(S) is a subgroup of IsomI(Hd(S)). (The extended mapping class group Mod(S)
can be identified with the group Out(π1(S)) of outer automorphisms of π1(S) and acts 
naturally on Hd(S) by pre-composition.)

The entire discussion of intersection, renormalized intersection and the pressure metric 
restricts to H(S, G) when G is PSp(2d, R), PSO(d, d + 1), or G2,0.

8.2. Basic properties

We first show that isometries of intersection preserve entropy and hence preserve 
renormalized intersection, so are isometries of the pressure metric.

Proposition 8.3. If S is a closed orientable surface of genus greater than 1, G is PSLd(R), 
PSp(2d, R), PSO(d, d + 1), or G2,0 and f : H(S,G) → H(S,G) is an isometry of inter-
section I, then h(ρ) = h(f(ρ)) for all ρ ∈ H(S,G). Therefore, J(f(ρ), f(σ)) = J(ρ, σ) for 
all ρ, σ ∈ H(S, G), and f is an isometry of H(S, G) with respect to the pressure metric.

Proof. Suppose that ρ ∈ H(S, G), v ∈ Tρ(H(S, G)) and v = d
dt

∣∣
t=0 ρt =•

ρ0 for a smooth 
path {ρt}t∈(−1,1) in Hd(S). Then,

Iρ(ρt) = I(ρ, ρt) = I(f(ρ), f(ρ(t)) = If(ρ)(f(ρt)),
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so

DIρ(v) = DIf(ρ)(Dfρ(v)).

Since Jρ has a minimum at ρ, DJρ(v) = 0, so

DJρ(v) = Dhρ(v)
h(ρ) Iρ(ρ) + h(ρ)

h(ρ)DIρ(v) = Dhρ(v)
h(ρ) + DIρ(v) = 0

which implies that

DIρ(v) = −Dhρ(v)
h(ρ) = −D(log h)(v).

Thus, for all ρ ∈ H(S, G) and v ∈ Tρ(H(S, G))

D(log h)(v) = D(log(h ◦ f))(v),

so (h ◦ f)/h is constant, since H(S, G) is a connected manifold. If (h ◦ f)/h = c �= 1 then 
either h ◦ fn or h ◦ f−n grows to infinity with n. However, since h is a bounded positive 
function, it must be the case that c = 1 and h ◦ f = h.

It follows, by the definition of renormalized intersection, that f preserves renormal-
ized intersection. Since the pressure metric is obtained by considering the Hessian of 
renormalized intersection, f is also an isometry of H(S, G) with respect to the pressure 
metric. �

Potrie and Sambarino [29] proved that the entropy function achieves its maximum 
exactly on the Fuchsian locus, so we have the following immediate corollary.

Corollary 8.4. If S is a closed orientable surface of genus greater than 1, G is PSLd(R), 
PSp(2d, R), PSO(d, d + 1), or G2,0 and f : H(S, G) → H(S, G) is an isometry of inter-
section I, then f preserves the Fuchsian locus.

8.3. Geodesic currents

We identify S with a fixed hyperbolic surface H2/Γ, which in turn identifies π1(S) with 
Γ and ∂∞π1(S) with ∂∞H2. One can identify the space G(H2) of unoriented geodesics 
in H2 with (∂∞H2 × ∂∞H2 − Δ)/Z2, where Δ is the diagonal in ∂∞H2 × ∂∞H2 and 
Z2 acts by interchanging coordinates. A geodesic current on S is a Γ-invariant Borel 
measure on G(H2) and C(S) is the space of geodesic currents on S, endowed with the 
weak∗ topology.

If α is a closed geodesic on S, one obtains a geodesic current δα by taking the sum of 
the Dirac measures on the pre-images of α. The set of currents which are scalar multiples 
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of closed geodesics is dense in C(S), see Bonahon [2, Proposition 2]. If ρ ∈ T (S) = H2(S)
has associated limit map ξρ : ∂π1(S) → ∂H2, one defines the Liouville measure of ρ by

mρ([a, b] × [c, d]) =

∣∣∣∣∣log
(
ξρ(a) − ξρ(c)

)(
ξρ(b) − ξρ(d)

)(
ξρ(a) − ξρ(d)

)(
ξρ(b) − ξρ(c)

) ∣∣∣∣∣ .
Theorem 8.5. (Bonahon [2, Propositions 3, 14, 15]) Let S be a closed oriented surface of 
genus g � 2 and ρ ∈ T (S) = H2(S). Then there exist continuous functions �ρ : C(S) → R

and i : C(S) ×C(S) → R which are linear on rays such that if α and β are closed geodesics, 
then

i(mρ, δα) = �ρ(α), i(mρ,mρ) = π2|χ(S)|,

and i(α, β) is the geometric intersection between α and β.

Moreover, Bonahon defines an embedding

Q : T (S) → PC(S)

of Teichmüller space into the space of projective classes of geodesic currents given by 
Q(ρ) = [mρ]. Bonahon shows that the closure of Q(T (S)) is homeomorphic to a closed 
ball of dimension 6g−6, and the boundary of Q(T (S)) is the space PML(S) of projective 
classes of measured laminations. (Recall that a measured lamination may be defined to 
be a geodesic current of self-intersection 0.) In particular, the geodesic current associated 
to any simple closed curve lies in the boundary of Q(T (S)). Moreover, Bonahon [2, The-
orem 18] shows that this compactification of Teichmüller space agrees with Thurston’s 
compactification.

8.4. Length functions for Hitchin representations

If ρ ∈ Hd(S), then there is a Hölder function fρ : T 1S → R+ such that if α is a closed 
oriented geodesic on S = H2/Γ, then

∫
α

fρ dt = Lα(ρ)

where dt is the Lebesgue measure along α ⊂ T 1(S), see [6, Prop. 4.1] or Sambarino [31, 
Sec. 5]. Given μ ∈ C(S), one may define a Γ-invariant measure μ̃ on T1H2 which has the 
local form μ × dt where dt is Lebesgue measure along the flow lines of T1H2 (which are 
oriented geodesics in H2), so μ̃ descends to a measure μ̂ on T 1(S). One may then define 
a length function �ρ : C(S) → R by letting



M. Bridgeman et al. / Advances in Mathematics 360 (2020) 106901 45
�ρ(μ) =
∫

T 1(S)

fρ dμ̂.

Notice that if α is a simple closed geodesic on S, then

�ρ(δα) = LH
α (ρ) = Lα(ρ) + Lα−1(ρ)

since δ̂α is Dirac measure support on the closed orbits of geodesics associated to α and 
α−1. Moreover, by the definition of the weak∗ topology, �ρ is clearly continuous, since 
T 1S is compact.

Recall that (see Bowen [3] or Margulis [26]) if σ ∈ T (S) = H2(S) then the Liouville 
current satisfies

mσ

�σ(mσ) = lim
T→∞

1
#RT (σ)

∑
RT (σ)

δα
�σ(δα) = lim

T→∞

1
#RT (σ)

∑
RT (σ)

δα
2Lα(σ) .

Since τd multiplies the logarithm of the spectral radius by d − 1, if ρ ∈ Hd(S), then

�ρ(mσ)
�σ(mσ) = lim

T→∞

1
#RT (σ)

∑
RT (σ)

LH
α (ρ)

2Lα(σ)

= (d− 1) lim
T→∞

1
#R(d−1)T (τd ◦ σ)

∑
R(d−1)T (τd◦σ)

Lα(ρ)
Lα(τd ◦ σ)

= (d− 1) I(τd ◦ σ, ρ).

Here we use the fact that, since σ ∈ T (S), Lα(σ) = Lα−1(σ), so

LH
α (ρ)

2Lα(σ) +
LH
α−1(ρ)

2Lα−1(σ) = Lα(ρ)
Lα(σ) + Lα−1(ρ)

Lα−1(σ)

for all α ∈ π1(S).

8.5. Isometries of intersection and the simple Hilbert length spectrum

We next observe that any isometry of intersection preserves the simple marked Hilbert 
length spectrum.

Proposition 8.6. If S is a closed surface of genus g � 2, G = PSLd(R), PSp(2d, R), 
PSO(d, d + 1), or G2,0 and f : H(S, G) → H(S, G) is an isometry of intersection, then 
there exists an element φ of the extended mapping class group so that if ρ ∈ H(S, G), 
then ρ and f ◦ φ(ρ) have the same simple marked Hilbert length spectrum.

Proof. Recall, from Corollary 8.4, that f preserves the Fuchsian locus. Since any isometry 
of T (S) with the Weil-Petersson metric agrees with an element of the extended mapping 
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class group, by a result of Masur-Wolf [27], and the restriction of the pressure metric 
to the Fuchsian locus is a multiple of the Weil-Petersson metric, the restriction of f
to the Fuchsian locus agrees with the action of an element φ of the extended mapping 
class group. We can thus consider f̂ = f ◦ φ−1, which is an isometry of the intersection 
function that fixes the Fuchsian locus.

If α ∈ π1(S) is represented by a simple curve, we may choose a sequence {σn} in T (S)
such that {Q(σn)} converges to [δα] ∈ PC(S), so there exists a sequence {cn} of real 
numbers so that lim cn = +∞ and

lim mσn

cn
= δα.

Therefore, if ρ ∈ H(S, G) ⊂ Hd(S), then

LH
α (ρ) = �ρ(δα) = lim �ρ

(
mσn

cn

)
= lim

(
(d− 1)�σn

(mσn
)

cn
I(τd ◦ σn, ρ)

)
.

By Theorem 8.5, as σn ∈ T (S), then �σn
(mσn

) = i(mσn
, mσn

) = π2|χ(S)|. If ρ ∈ H(S, G)
and α ∈ π1(S), then since I(τd ◦ σn, ρ) = I(τd ◦ σn, f̂(ρ)) for all n, LH

α (ρ) = LH
α (f̂(ρ)). 

Therefore, ρ and f̂(ρ) have the same simple marked Hilbert length spectrum. �
Recall that if ρ lies in H(S, G) and G is PSp(2d, R), PSO(d, d +1) or G2,0, then LH

α (ρ) =
2Lα(ρ) for all α ∈ π1(S). Therefore, we may combine Theorem 1.1 and Proposition 8.6
to obtain:

Corollary 8.7. If S is a closed surface of genus g � 3, then any isometry of the intersec-
tion I on H(S, PSp(2d, R)), H(S, PSO(d, d + 1)), or H(S, G2,0) agrees with an element 
of the extended mapping class group.

Notice that Corollary 8.7 is a generalization of Theorem 1.3 which was stated in the 
introduction, since it also covers H(S, G2,0).

9. Hilbert length rigidity

Proposition 8.6 suggests the following potential generalization of our main simple 
length rigidity result.

Conjecture: If ρ, σ ∈ Hd(S) have the same marked simple Hilbert length spectrum then 
they either agree or differ by the contragredient involution.

We establish this conjecture when d = 3.

Theorem 9.1. If S is a closed orientable surface of genus greater than 2, ρ, σ ∈ H3(S)
and LH

α (ρ) = LH
α (σ) for any α ∈ π1(S) which is represented by a simple non-separating 

curve, then ρ = σ or ρ = σ∗.
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The classification of the isometries of intersection on H3(S), Theorem 1.4, is an im-
mediate consequence of Theorem 9.1 and Proposition 8.6.

Proof. Notice that PSL3(R) = SL3(R) and that if γ ∈ π1(S), then all the eigenvalues of 
ρ(γ) are positive, since eigenvalues vary continuously over H3(S) and are positive on the 
Fuchsian locus. In particular, if LH

α (ρ) = LH
α (σ), then

λ1(ρ(α))
λ3(ρ(α)) = λ1(σ(α))

λ3(σ(α)) > 1.

We first show that for individual elements the traces and eigenvalues either agree or 
are consistent with the contragredient involution.

Lemma 9.2. If α and β are represented by simple, non-separating based loops on S which 
intersect only at the basepoint and have geometric intersection one, and LH

αnβ(ρ) =
LH
αnβ(σ) for all n, then either

(1 λi(ρ(α)) = λi(σ(α)) for all i, so Tr(ρ(α)) = Tr(σ(α)), or
(2) λi(ρ(α)) = λi(σ(α−1)) = λi(σ∗(α)) for all i, so Tr(ρ(α)) = Tr(σ∗(α)).

Proof. As in the proof of Lemma 6.3, let A = ρ(α), B = ρ(β) and AnB = ρ(αnβ)
and λi(n) = λi(AnB). Similarly, let Â = σ(α), B̂ = σ(β) and ÂnB̂ = σ(αnβ) and let 
λ̂i(n) = λi(ÂnB̂). If (bij) is the matrix of B with respect to the basis {ei(A)}, then, b11, 
b12, and b21 are all non-zero by Lemma 6.4, so Lemma 5.1 implies that

λ1(n)
λn

1
= b11 + b12b

2
1

b11

(
λ2

λ1

)n

+ o

((
λ2

λ1

)n)
where λi = λi(A). Similarly, applying Lemma 5.1 to ρ∗ and noting that λ−1

i (ρ∗(γ)) =
λ4−i(ρ(γ)) for all γ ∈ π1(S), gives that

λn
3

λ3(n) = d1
1 + d1

2d
2
1

d1
1

(
λ3

λ2

)n

+ o

((
λ3

λ2

)n)
where (dij) is the matrix of (B−1)T in the basis {ei((A−1)T )}.

Taking the product of the previous two equations gives(
λ1(n)
λ3(n)

) (
λ3

λ1

)n

=b11d
1
1 + d1

1b
1
2b

2
1

b11

(
λ2

λ1

)n

+ b11d
1
2d

2
1

d1
1

(
λ3

λ2

)n

+ o

((
λ3

λ2

)n)
+ o

((
λ2

λ1

)n)
.

(5)

One obtains an analogous equality for σ, and since the left hand sides are equal by 
assumption, we see that
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b11d
1
1 + d1

1b
1
2b

2
1

b11

(
λ2

λ1

)n

+ b11d
1
2d

2
1

d1
1

(
λ3

λ2

)n

+ o

((
λ3

λ2

)n)
+ o

((
λ2

λ1

)n)

=b̂11d̂
1
1 + d̂1

1b̂
1
2b̂

2
1

b̂11

(
λ̂2

λ̂1

)n

+ b̂11d̂
1
2d̂

2
1

d̂1
1

(
λ̂3

λ̂2

)n

+ o

((
λ̂3

λ̂2

)n)
+ o

((
λ̂2

λ̂1

)n)
(6)

where λ̂i = λi(Â) and (b̂ij) and (d̂ij) are the matrix representatives of B̂ and (B̂−1)T

with respect to the bases {ei(Â)} and {ei((A−1)T )} respectively. Since lim λn
i+1
λn
i

= 0 and 

lim λ̂n
i+1

λ̂n
i

= 0 for i = 1, 2, we see that b11d1
1 = b̂11d̂

1
1.

Lemma 6.4 implies that all the coefficients in Equation (6) are non-zero. We further 
show that they are all positive.

Lemma 9.3. Suppose that α and β are represented by simple based loops on S which 
intersect only at the basepoint and have geometric intersection one. If ρ ∈ H3(S) and 
B = (bji ) is a matrix representing ρ(β) in the basis {ei(ρ(α)}, then b11 and b12b

2
1 are 

positive.

Proof. We may normalize ρ so that {ei(ρ(α)} is the standard basis for R3. The coef-
ficients b11, b12 and b21 give non-zero functions on H3(S), so have well-defined signs. If 
σ0 = τ3 ◦ ρ0 lies in the Fuchsian locus, then we may assume that

σ0(α) = τ3

([
λ 0
0 λ−1

])
=

⎡⎣λ2 0 0
0 1 0
0 0 λ−2

⎤⎦
σ0(β) = τ3

([
a b
c d

])
=

⎡⎣ a2 ab b2

2ac ad + bc 2bd
c2 cd d2

⎤⎦
Since α and β intersect essentially, the fixed points z1 and z2 of z → az+b

cz+d lie on opposite 

sides of 0 in R̂ = ∂∞H2. Since z1 and z2 are the roots of cz2 + (d − a)z − b = 0, we see 
that bc = −z1z2 > 0, so bc > 0. Therefore, b11(σ0) = a2 > 0 and b21b

1
2(σ0) = 2a2bc > 0. It 

follows that b11 and b21b
1
2 are positive on all of H3(S). �

Notice that λ3
λ2

= λ2
λ1

(ρ(α−1)) and λ̂3
λ̂2

= λ2
λ1

(σ(α−1)). Then, by considering the second 
order terms in Equation (6), we see that there exists ε1, ε2 ∈ {±1} such that

λ2

λ1
(ρ(αε1)) = λ2

λ1
(σ(αε2)).

Since we have assumed that

λ3

λ1
(ρ(αε1)) = LH

αε1 (ρ) = LH
αε1 (σ) = LH

αε2 (σ) = λ3

λ1
(σ(αε2))

and
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(λ1λ2λ3)(ρ(αε1)) = (λ1λ2λ3)(σ(αε2)) = 1,

we see that (λ1(ρ(αε1))3 = (λ1(σ(αε2))3, so λ1(ρ(αε1)) = λ1(σ(αε2)), hence λi(ρ(αε1)) =
λi(σ(αε2)) for all i. If ε1 = ε2, then we are in case (1), while if ε1 = −ε2 we are in case 
(2). �

We next show that if Tr(ρ(α)) = Tr(σ(α)) and Tr(ρ(α)) �= Tr(σ∗(α)), then we may 
control the traces of images of simple based loops having geometric intersection one with 
α.

Lemma 9.4. Suppose that S is a closed orientable surface of genus greater than 1, 
ρ, σ ∈ H3(S) and LH

γ (ρ) = LH
γ (σ) for any γ ∈ π1(S) which is represented by a sim-

ple, non-separating curve. If α ∈ π1(S) is represented by a simple, non-separating based 
loop,

Tr(ρ(α)) = Tr(σ(α)) and Tr(ρ(α)) �= Tr(σ∗(α))

and β ∈ π1(S) is represented by a simple non-separating based loop intersecting α only at 
the basepoint and having geometric intersection one with α, then Tr(ρ(β)) = Tr(σ(β)).

Proof. We adopt the notation of Lemma 9.2, and notice that Lemma 9.2 implies that
λi = λi(ρ(α)) = λi(σ(α)) = λ̂i for all i.

If there is an infinite sequence {nk} of positive numbers such that Tr(ρ(αnkβ)) =
Tr(σ(αnkβ)), then,

λnk
1 b11 + λnk

2 b22 + λnk
3 b33 = λnk

1 b̂11 + λnk
2 b̂22 + λ̂nk

3 b̂33

for all nk. So, by considering the leading terms, we see that b11 = b̂11. Considering the 
remaining terms, we conclude that b22 = b̂22 and b33 = b̂33, so Tr(ρ(β)) = Tr(σ(β)).

If not, then, by Lemma 9.2, Tr(ρ(αnβ)) = Tr(σ∗(αnβ)) for all sufficiently large n, so

λn
1 b

1
1 + λn

2 b
2
2 + λn

3 b
3
3 = λ−n

3 d̂1
1 + λ−n

2 d̂2
2 + λ−n

1 d̂3
3

for all sufficiently large n. Since b11 �= 0 and d̂1
1 �= 0, we conclude, by considering leading 

terms, that λ1 = λ−1
3 , so λ2 = 1. However, this implies that λi(ρ(α)) = λi(σ∗(α−1)) for 

all i, so Tr(ρ(α)) = Tr(σ∗(α)), which contradicts our assumptions. �
If Tr(ρ(α)) = Tr(σ(α)) for any α represented by a simple non-separating curve, then 

Theorem 1.2 implies that ρ = σ. Similarly, if Tr(ρ(α)) = Tr(σ∗(α)) for any α represented 
by a simple non-separating curve, then Theorem 1.2 implies that ρ = σ∗. Therefore, we 
may assume that there exists a simple non-separating based loop α so that Tr(ρ(α)) =
Tr(σ(α)) and Tr(ρ(α)) �= Tr(σ∗(α)).
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Fig. 4. The curves α1, α2, α2α3 and γ on a surface of genus 3.

Let β be a simple, non-separating based loop intersecting α only at the basepoint 
which has geometric intersection one with β. Since Tr(ρ(α)) �= Tr(σ∗(α)) and Tr(ρ(β))
and Tr(σ(β)) are non-zero, there exists n so that Tr(ρ(αnβ)) �= Tr(σ∗(αnβ)). Moreover, 
Lemma 9.4 implies that Tr(ρ(αnβ)) = Tr(σ(αnβ)). Extend α, αnβ to a standard set of 
generators S = {α1, β1, . . . , αg, βg} so that α = α1 and αnβ = β1.

The remainder of the proof now mimics the proof of Theorem 1.2. Notice that for the 
standard generators, if j > i > 1, then αiαj and αiβ

−1
j can, and for the remainder of the 

proof will be, represented by simple non-separating based loops which intersect α1 and αi

only at the basepoint, with geometric intersection zero. There exists a based loop γ which 
intersects each curve in the collection {α1, α2, α2α3, . . . , α2αg, α2β

−1
3 , . . . , α2β

−1
g } only 

at the basepoint and with geometric intersection one, see Fig. 4. Moreover, if η is either 
α2αi or α2β

−1
i , with i � 3, then every curve of the form ηpαq

2γα
r
1 is freely homotopic 

to a simple based loop, in the based homotopy class of αr
1η

pαq
2γ, which has geometric 

intersection one with α1 and intersects α1 only at the basepoint. It then follows from 
Lemma 9.4 that

Tr(ρ(ηpαq
2γα

r
1)) = Tr(σ(ηpαq

2γα
r
1))

for all p, q, r ∈ Z. Proposition 7.3 then implies that ρ and σ are conjugate on 〈η, α2, α1〉. 
In particular, we may assume that ρ and σ agree on 〈α1, α2, α3〉 = 〈α2α3, α2, α1〉. If 
η = α2αi, with i � 4, then, since ρ and σ agree on 〈α1, α2, α3〉 and are conjugate on 
〈η, α2, α1〉, Lemma 7.5 implies that they agree on η and hence on α−1

2 η = αi. Similarly, 
if η = α2β

−1
i , with i � 3, we can use Lemma 7.5 to show that ρ and η agree on η and 

hence on βi.
It remains to check that ρ and σ agree on β1 and β2. Recall that there exists a 

homeomorphism h : S → S so that h ◦ αi = βi and h ◦ βi = αi. Then ρ̂ = ρ ◦ h∗
and σ̂ = σ ◦h∗ are Hitchin representations. The above argument shows that ρ̂ and σ̂ are 
conjugate on 〈α1, α2, α3, β3〉, which implies that ρ and σ are conjugate on 〈β1, β2, β3, α3〉. 
Since ρ and σ agree on α3 and on β3α3β

−1
3 (which have non-intersecting axes), Lemma 7.5

implies that ρ and σ agree on β1 and β2, which completes the proof. �
10. Infinitesmal simple length rigidity

In this section, we prove that the differentials of simple length functions generate the 
cotangent space of a Hitchin component. In earlier work [6, Prop. 10.3] we showed that 
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the differentials of all length functions generate the cotangent space, and that result 
played a key role in the proof that the pressure metric on the Hitchin component is 
non-degenerate.

Proposition 10.1. Suppose that S is a closed orientable surface of genus greater than 2 
and ρ ∈ Hd(S). If v ∈ Tρ(Hd(S)) and DLα(v) = 0 for every simple non-separating curve 
α, then v = 0.

Moreover, if D Trα(v) = 0 for every simple non-separating curve α, then v = 0.

Proof. We recall that there exists a component H̃d(S) of Hom(π1(S), SLd(R)) which is 
an analytic manifold, so that the projection map π : H̃d(S) → Hd(S) is real analytic and 
is obtained by quotienting out by the action of SLd(R) by conjugation, see Hitchin [18]. 
Any smooth path in Hd(S) lifts to a smooth path in H̃d(S). The real-valued functions T̃rα
and λ̃i,α on H̃d(S) given by T̃rα(ρ̃) = Tr(ρ̃(α)) and λ̃i,α(ρ̃) = λi(ρ̃(α)) are analytic and 
SLd(R)-invariant, so descend to real analytic functions Trα and λi,α on Hd(S). (Notice 
that if we chose a different component of Hom(π1(S), SLd(R)) as H̃d(S), then Trα and 
λi,α could differ up to sign.)

The proof of Proposition 10.1 has the same basic structure as the proof of our simple 
length rigidity result. We first establish an infinitesimal version of Theorem 6.1.

Lemma 10.2. If S is a closed orientable surface of genus more than 1, ρ ∈ Hd(S) and 
v ∈ THd(S) then DLα(v) = 0 for every simple non-separating curve α if and only if 
D Trα(v) = 0 for every simple non-separating curve α. In both cases Dλi,α(v) = 0 for 
all i.

Proof. Let {ρt}t∈(−1,1) be an analytic path in H̃d(S) such that if •ρ0 = d
dt
∣∣
t=0ρt then 

dπ(•ρ0) = v.
First assume that DLα(v) = 0 for every simple non-separating curve α. Choose a 

simple based loop β which intersects α only at the basepoint and has geometric in-
tersection one with α. Let A(t) = ρt(α), B(t) = ρt(β) and λi(t) = λi,α(ρt). Let 
λ(n, t) = |λ1(A(t)nB(t))| and notice that our assumptions imply that

•
λ(n, 0) = d

dt

∣∣∣
t=0

λ(n, t) = 0

for all n. Let (bij(t)) be the matrix representative of B(t) in the basis {ei(A(t))} and 
notice that we may choose {ei(A(t))} to vary analytically, so that the coefficients (bij(t))
vary analytically.

If v ∈ Rd−1, let D(v) ∈ SLd(R) be chosen so that its matrix is diagonal with respect 
to the basis {ei(A(t))} with diagonal entries (1, v1, . . . , vd−1), then M(v, t) = D(v)B(t)
depends analytically on v and t. Notice that M(�0, 0) has a simple eigenvalue b11(0) with 
eigenvector e1. By Lemma 5.3 there exists an open neighborhood V of the origin in 
Rd−1 ×R and an analytic function F : V → R so that
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λ1(M(v, t)) = F (v, t).

Since

A(t)nB(t)
λ1(t)n

= M

((
λ2(t)
λ1(t)

)n

, . . . ,

(
λd(t)
λ1(t)

)n

, t

)
and ((

λ2(t)
λ1(t)

)n

, . . . ,

(
λd(t)
λ1(t)

)n

, t

)
∈ V,

for all sufficiently large n and t sufficiently close to 0,

λ(n, t)
λ1(t)n

= λ1(An(t)B(t))
λ1(t)n

= λ1

(
An(t)B(t)
λ1(t)n

)
= F

((
λ2(t)
λ1(t)

)n

, . . . ,

(
λd(t)
λ1(t)

)n

, t

)
.

Letting ui(t) = λi+1(t)
λ1(t) , we see that

λ(n, t) = λ1(t)nF (u1(t)n, . . . , ud−1(t)n, t) .

Since 
•
λ1(0) = 0 and 

•
λ(n, 0) = 0,

d
dt

∣∣∣
t=0

F (u1(t)n, . . . , ud−1(t)n, t) = 0

for all large enough n. Therefore,

∂F

∂t
(u1(0)n, . . . , ud−1(0)n, 0)+

d−1∑
i=1

∂F

∂vi
(u1(0)n, . . . , ud−1(0)n, 0)nui(0)n−1 •

ui(0) = 0, (7)

for all large enough n, so

∂F

∂t
(0, . . . , 0, 0) = 0.

Moreover, since ∂F∂t is analytic,

∂F

∂t
(u1(0)n, . . . , ud−1(0))n, 0) =

d−1∑
i=1

(
∂2F

∂vi∂t
(�0, 0)ui(0)n + o(ui(0)n)

)
so, since 1 > |u1(0)| > |ui(0)| > 0 for all i � 2,

lim
n→∞

1
nu1(0)n−1

∂F

∂t
(u1(0)n, . . . , ud−1(0))n, 0)

= lim
n→∞

d−1∑
i=1

ui(0)n

nu1(0)n−1

(
∂2F

∂vi∂t
(0, . . . , 0, 0)

)
= 0
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Equation (7) then implies that

lim
n→∞

1
nu1(0)n−1

(
d−1∑
i=1

∂F

∂vi
(u1(0)n, . . . , ud−1(0))n, 0)nui(0)n−1 •

ui(0)
)

= ∂F

∂v1
(0, . . . , 0, 0) •

u1(0) = 0

As in the proof of Lemma 5.1, we calculate that

∂F

∂v1
(0, . . . , 0, 0) = d

ds

∣∣∣
s=0

F (s, 0, . . . , 0) = d
ds

∣∣∣
s=0

λ1 (D(1, s, 0, . . . , 0)B(0))

= d
ds

∣∣∣
s=0

λ1

([
b11(0) b12(0)
sb21(0) sb22(0)

])
,

so

∂F

∂v1
(�0, 0) = b12(0)b21(0)

b11(0) .

Lemma 6.4 implies that b11(0), b12(0) and b21(0) are non-zero, so ∂F∂v1
(0, . . . , 0, 0) �= 0. There-

fore, •u1(0) = 0 and, since 
•
λ1(0) = 0, we have

0 =•
u1(0) = d

dt

∣∣∣∣∣
t=0

(
λ2(t)
λ1(t)

)
=

•
λ2(0)λ1(0)− •

λ1(0)λ2(0)
λ1(0)2 =

•
λ2(0)
λ1(0) ,

so 
•
λ2(0) = 0.
We may iteratively consider the 1-parameter families of representations given by 

{Ek(ρt)} and apply the same analysis to conclude that •λi,α(0) = 0 for all i, and thus 
that DTrα(v) = 0.

Now assume that DTrα(v) = 0 for every α ∈ π1(S) represented by a simple non-
separating curve. Given a simple, non-separating curve α represented by a simple based 
loop, we again choose a simple based loop β which intersects α only at the basepoint 
and has geometric intersection one with α. Notice that

Tr(ρt(αnβ)) =
d∑

i=1
λn
i (ρt(α)) Tr(pi(ρt(α))ρt(β)) =

d∑
i=1

hi(t)λn
i (t),

where hi(t) = Tr(pi(ρt(α))ρt(β)) �= 0 for all t. Differentiating, and noting that 
DTrαnβ(v) = 0 for all n, we see that

0 =
d∑ •

hi(0)λn
i (0) + nhi(0) •

λi(0)λi(0)n−1
i=1
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for all n. Since hi(0) �= 0 and λi(0) �= 0, it must be that •h1(0) = 0 and 
•
λ1(0) = 0, so 

DLα(v) = 0. �
We next generalize the proof of Theorem 7.1 to obtain a criterion guaranteeing that 

v is infinitesmally trivial on its restriction to certain 3-generator subgroups.

Lemma 10.3. Suppose that ρ ∈ Hd(S), v ∈ Tρ(Hd(S)) and DLη(v) = 0 for every simple 
non-separating curve η on S. If α, β, δ ∈ π1(S) are represented by simple based loops 
which intersect only at the basepoint, and are freely homotopic to a collection of mutually 
disjoint and non-parallel, non-separating closed curves which do not bound a pair of pants 
in S, and {ρt} is a path in H̃d(S) so that Dπ(•ρ0) = v, then there exists a path {Ct} in 
SLd(R), so that C0 = I and if η ∈ 〈α, β, δ〉, then

d
dt

∣∣∣
t=0

(Ctρt(η)C−1
t ) = 0 ∈ sl(n,R).

Proof. Lemma 7.2 guarantees that there exist based loops α̂, β̂, γ and δ̂ as in Fig. 1, 
which intersect only at the basepoint, so that α̂, β̂ and δ̂ are freely homotopic to a 
collection of mutually disjoint, non-parallel, non-separating curves and γ has geometric 
intersection one with each such that

〈α, β, δ〉 = 〈α̂, β̂, δ̂〉 .

We may thus assume that α, β and δ already have this form.
We may also, by possibly re-ordering α, β and δ, assume that αpβqγδr is represented 

by a simple non-separating curve for all p, q, r ∈ Z. We next generalize the proof of 
Proposition 7.3 to show that D

(
Ti,j,k(α,β,δ)

Tj,k(β,δ)

)
(v) = 0 for all i, j and k.

Recall that

Tr(ρ(αpβqγδr)) =
d∑

i=1
λi,α(ρ)p Tr (pi(ρ(α))ρ(βqγδr)) .

Differentiating and noting that, by Lemma 10.2, D Trαpβqγδr (v) = 0 for all p, q and r
and Dλi,α(v) = 0 for all i, one sees that

d∑
i=1

λi,α(ρ)pDTi,0(α, βqγδr)(v) = 0

for all p. By examining terms of different orders and taking limits, we see that

DTi,0(α, βqγδr)(v) = 0

for all i, q and r. Repeating, as in the proof of Proposition 7.3, we find that
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DTi,j,0,k(α, β, γ, δ)(v) = 0

for all i, j, and k. Similarly, by considering βqγδr, we see that

DTj,0,k(β, γ, δ)(v) = 0

for all j and k.
Recall, from part (4) of Proposition 4.3, that

Ti,j,0,k(α, β, γ, δ)(ρ) = Tj,0,k(β, γ, δ)(ρ)
(

Ti,j,k(α, β, δ)(ρ)
Tj,k(β, δ)(ρ)

)
�= 0

for all i, j and k. Since we have established that the two leftmost terms in this expression 
are non-zero and have derivative 0 in the direction v, we conclude that

D
(

Ti,j,k(α, β, δ)
Tj,k(β, δ)

)
(v) = 0

for all i, j and k.
Let ai(t) = ei(ρt(α)), ai(t) = ei(ρt(α)), bj(t) = ej(ρt(β)), bj(t) = ej(ρt(β)), dk(t) =

ek(ρt(δ)) and dk(t) = ek(ρt(δ)) for all i, j, k. We will assume throughout, by replacing 
{ρt} by {CtρtC

−1
t } where {Ct} is a path in SLd(R) so that C0 = I, that ai(t) are constant 

as functions of t for all i, b1(t) is constant as a function of t, and by scaling the bases, that 
〈ai(t)|b1(t)〉 = 1 for all i and t, 〈a1(t)|bj(t)〉 = 1 for all j and t, and 〈dk(t)|b1(t)〉 = 1 for all 
k and t. Since ai(t) is constant and d

dt
∣∣
t=0λi,α(ρt) = 0, by Lemma 10.2, d

dt
∣∣
t=0ρt(α) = 0.

Recall, from Proposition 4.3, that

Ti,j,k(α, β, δ)(ρt)
Tj,k(β, δ)(ρt)

= 〈ai(t)|bj(t)〉 〈dk(t)|ai(t)〉
〈dk(t)|bj(t)〉

. (8)

By considering Equation (8) when j = 1, we see that

Ti,1,k(α, β, δ)(ρt)
T1,k(β, δ)(ρt)

= 〈dk(t)|ai(t)〉 ,

so, since the left-hand side has derivative 0 at 0 and ai(t) is constant for all i,

d
dt

∣∣∣
t=0

(
〈dk(t)|ai(t)〉

)
= 〈

•
dk(0)|ai(0)〉 = 0

for all i and k. Therefore, 
•
dk(0) = 0 for all k, so 

•
dk = 0 for all k. Since we also know, 

from Lemma 10.2, that d
dt
∣∣
t=0λi,δ(ρt) = 0 for all t, it follows that d

dt
∣∣
t=0ρt(δ) = 0.

Considering Equation (8) when i = 1, one obtains

T1,j,k(α, β, δ)(ρt) = 〈a1(t)|bj(t)〉 〈dk(t)|a1(t)〉
k

= 〈dk(t)|a1(t)〉
k

.
Tj,k(β, δ)(ρt) 〈d (t)|bj(t)〉 〈d (t)|bj(t)〉
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Since the derivative of the left hand side is 0 at 0, a1(t) is constant, and 
•
dk(0) = 0 for 

all k, we see that

〈dk(0)|a1(0)〉
〈dk(0)|bj(0)〉2

〈dk(0)| •
bj(0)〉 = 0,

so 〈dk| •
bj(0)〉 = 0 for all j and k, so 

•
bj(0) = 0 for all j. We may then argue, just as 

before, that d
dt
∣∣
t=0ρt(β) = 0. Therefore, d

dt
∣∣
t=0ρt(η) = 0 for all η ∈ 〈α, β, δ〉. �

We are now ready to complete the proof of Proposition 10.1. Let S = {α1, β1, . . . ,
αg, βg} be a standard generating set for π1(S). By Lemma 10.3, we may choose an 
analytic family {ρt} in Hom(π1(S), PSLd(R)) so that dπ(•ρ0) = v and d

dt
∣∣
t=0ρt(γ) = 0

for all η ∈ 〈α1, α2, α3〉.
For any δ ∈ S − {α1, α2, α3, β1, β2}, we may apply Lemma 10.3 to the triple 

{α1, α2, η} to show that there exists a family {Ct} in PSLd(R) so that C0 = I and 
d
dt
∣∣
t=0(Ctρt(γ)C−1

t ) = 0 for all γ ∈ 〈α1, α2, δ〉. In particular,

•
C0ρ0(αi)C−1

0 − C0ρ0(αi)
•
C0 + C0

(
d
dt

∣∣∣
t=0

ρt(αi)
)
C−1

0 = •
C0ρ0(αi) − ρ0(αi)

•
C0 = 0,

so [ •C0, ρ0(αi)] = 0 for i = 1, 2. Thus, •
C0 is diagonalizable over R with respect to both 

{ei(ρ0(α1))} and {ei(ρ0(α2)}.
If •C0 �= 0, then Rd admits a non-trivial decomposition into eigenspaces of •C0 with dis-

tinct eigenvalues. Any such eigenspace W is spanned by a sub-collection of {ei(ρ0(α1))}
and by a sub-collection of {ej(ρ0(α2))}. In particular, some ei(ρ0(α1)) is in the sub-
space spanned by a subcollection of {ej(ρ0(α2))}. Since α1 and α2 are disjoint curves, 
this contradicts Theorem 1.6. Therefore, •

C0 = 0.
Since 

•
C0 = 0 and d

dt
∣∣
t=0(Ctρt(δ)C−1

t ) = 0, we calculate that

•
C0ρ0(δ)C−1

0 − C0ρ0(δ)
•
C0 + C0

(
d
dt

∣∣∣
t=0

ρt(δ)
)
C−1

0 = d
dt

∣∣∣
t=0

ρt(δ) = 0.

By considering the subgroups 〈α2, α3, β1〉 and 〈α1, α3, β2〉, we similarly show that

d
dt

∣∣∣
t=0

ρt(β1) = 0 and d
dt

∣∣∣
t=0

ρt(β2) = 0

Since d
dt
∣∣
t=0ρt(η) = 0 for all η ∈ S,

•
ρ0 = 0 ∈ TH̃d(S).

Therefore, v = Dπ
(•
ρ0
)

= 0 as claimed. �
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11. Hitchin representations for surfaces with boundary

In this section, we observe that our main simple length rigidity result extends to 
Hitchin representations of most compact surfaces with boundary.

If S is a compact surface with boundary, we say that a representation ρ : π1(S) →
PSLd(R) is a Hitchin representation if ρ is the restriction of a Hitchin representation ρ̂
of π1(DS) into PSLd(R), where DS is the double of S. Labourie and McShane [21, Sec-
tion 9] show that this is equivalent to assuming that ρ is deformable to the composition 
of a convex cocompact Fuchsian uniformization of S and the irreducible representation 
through representations so that the image of every peripheral element is purely lox-
odromic. (Recall that a non-trivial element of π1(S) is peripheral if it is represented 
by a curve in ∂S.) Fock and Goncharov [13] refer to such representations as positive 
representations.

Theorem 11.1. Suppose that S is a compact, orientable surface of genus g > 0 with 
p > 0 boundary components, and (g, p) is not (1, 1) or (1, 2). If ρ and σ are two Hitchin 
representations of π1(S) of dimension d and Lρ(α) = Lσ(α) for any α represented by a 
simple non-separating curve on S, then ρ and σ are conjugate in PGLd(R).

Notice that our techniques don’t apply to punctured spheres, since they contain no 
simple non-separating curves. In the remaining excluded cases, there are no configura-
tions of three non-parallel simple non-separating closed curves which do not bound a 
pair of pants.

Proof. We choose a generating set

S = {α1, β1, . . . αg, βg, δ1, . . . , δp−1}

represented by simple, non-separating based loops which intersect only at the basepoint 
so that {α1, β1, . . . , αg, βg} is a standard generating set for the surface of genus g obtained 
by capping each boundary component of S with a disk, each δi has geometric intersection 
one with β1 and zero with every other generator, as in Fig. 5. Notice that any collection 
of 3 based loops in S which have geometric intersection zero with each other are freely 
homotopic to a mutually disjoint, non-parallel collection of simple closed curves which 
do not bound a pair of pants.

Throughout the proof we identify S with a subsurface of DS and apply our earlier 
results to the representations ρ̂ and σ̂ of π1(DS). Lemma 6.3 implies that if η ∈ π1(S)
is represented by a simple non-separating curve on S, then | Tr(ρ(η))| = | Tr(σ(η))| and 
λi(ρ(η)) = λi(σ(η)) for all i.

If g � 3, the proof of Theorem 1.2 generalizes rather immediately. We first apply 
Theorem 7.1 to ρ̂ and σ̂, to see that we may assume, after conjugation in PGLd(R), 
that ρ and δ agree on 〈α1, α2, α3〉. If η ∈ S − {α1, α2, β1, β2}, we may again apply 
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Fig. 5. Our generators on a surface with genus 2 and 3 boundary components.

Theorem 7.1 to show that ρ and σ are conjugate on 〈α1, α2, η〉. Since ρ̂ and σ̂ agree on 
α1 and α2, Lemma 7.5 implies that ρ and σ agree on 〈α1, α2, η〉. We then consider the 
triples {α2, α3, β1} and {α1, α3, β2} to show that ρ and σ agree on β1 and β2, and hence 
that ρ = σ.

If g = 2 and p � 2, we again use Theorem 7.1 to show that we may conjugate ρ and 
σ so that they agree on 〈α1, α2, δ1〉. If i � 2, we may again apply Theorem 7.1 to show 
that ρ and σ are conjugate on 〈α1, α2, δi〉 and then Lemma 7.5 to show that ρ and σ
agree on 〈α1, α2, δi〉. We consider the triple {α1, δ1, β2} to show that ρ and σ agree on 
β2. Therefore, ρ and σ agree on S − {β1}. Recall that there exists a homeomorphism 
h : S → S such that h ◦ αi = βi and h ◦ βi = αi. The above argument implies that the 
Hitchin representations ρ ◦ h∗ and σ ◦ h∗ are conjugate on 〈α1, α2, β2〉 and hence that 
ρ and σ are conjugate on 〈β1, β2, α2〉. Since ρ and σ agree on β2 and α2, Lemma 7.5
implies that they agree on β1. So, we conclude that ρ = σ.

If g = 1 and p � 3, then S = {α1, β1, δ1, . . . , δp−1}. We first apply Theorem 7.1 to 
show that we may conjugate ρ and σ so that they agree on 〈α1, δ1, δ2〉. If i � 3, we may 
consider the triple {α1, δ1, δi} to see that ρ and σ agree on δi. It remains to check that 
ρ and σ agree on β1.

Let δ̂i be as in Fig. 6, so that if S ′ = {α1, β1, ̂δ1, . . . , ̂δp−1}, then the based loops in S ′

intersect only at the basepoint and each δ̂i has geometric intersection one with α1 and 
has geometric intersection zero with every other element of S ′. Notice that α1δi = δ̂iβ1
and let ui = α1δi. Then, ρ and σ agree on the subgroup 〈α1, u1, . . . , up−1〉. We may apply 
the same argument as above to show that ρ and σ are conjugate on 〈β1, δ̂1, . . . , δ̂p−1〉. 
Since this subgroup contains u1 and u2, ρ and σ agree on u1 and u2, and u1 and u2 have 
non-intersecting axes in π1(DS), Lemma 7.5, applied to ρ̂ and σ̂, implies that ρ and σ
agree on 〈β1, δ̂1, . . . , δ̂p−1〉 and hence on β1, so ρ = σ.

If g = 2 and p = 1, then S = {α1, β1, α2, β2}. We will consider the based loops α̂i

and β̂i as in Fig. 7. As the based loops {α1, α2, α̂1} are freely homotopic to a mutually 
disjoint, non-parallel collection of simple, non-separating curves which do not bound a 
pair of pants, Theorem 7.1 implies that we may assume that ρ and σ agree on 〈α1, α2, α̂1〉. 
Similarly, the representations are conjugate on 〈α1, α2, α̂2〉, and since they already agree 
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Fig. 6. Curves on a surface of type (1, p) for p � 3.

Fig. 7. Genus 2 with 1 puncture.

on 〈α1, α2, α̂1〉 and α1 and α2 have non-intersecting axes, Lemma 7.5 implies that they 
agree on 〈α1, α2, α̂1, α̂2〉. Next, by considering the triples {α1, β2, α̂1} and {α1, β2, β̂2}, 
we see that ρ and σ are conjugate on 〈α1, β2, α̂1, β̂2〉. Since ρ and σ agree on α1 and 
α̂1, they agree on 〈α1, β2, α̂1, β̂2〉. By similarly considering the triples {α2, β1, α̂2} and 
{α2, β1, β̂1}, we show that ρ and σ agree on β1. Since we have shown that, after an initial 
conjugation, ρ and σ agree on each generator, we have completed the proof in the case 
that (g, p) = (2, 1). �

We similarly obtain the analogue of our Simple Trace Rigidity Theorem in this setting.

Theorem 11.2. Suppose that S is a compact, orientable surface of genus g > 0 with 
p > 0 boundary components and (g, p) is not (1, 1) or (1, 2). Then, for all d � 2, there 
exists a finite collection Ld(S) of elements of π1(S) which are represented by simple 
non-separating curves, such that if ρ and σ are two Hitchin representations of π1(S) of 
dimension d and | Tr(ρ(η))| = | Tr(σ(η))| for any η ∈ Ld(S), then ρ and σ are conjugate 
in PGLd(R).
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