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Abstract. We discuss how one uses the thermodynamic formalism to produce metrics
on higher Teichmiiller spaces. Our higher Teichmiiller spaces will be spaces of Anosov
representations of a word-hyperbolic group into a semi-simple Lie group. We begin by
discussing our construction in the classical setting of the Teichmiiller space of a closed
orientable surface of genus at least 2, then we explain the construction for Hitchin
components and finally we treat the general case. This paper surveys results of Bridgeman,
Canary, Labourie and Sambarino, The pressure metric for Anosov representations, and
discusses questions and open problems which arise.
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1. Introduction

We discuss how one uses the thermodynamic formalism to produce metrics on
higher Teichmiiller spaces. Our higher Teichmiiller spaces will be spaces of Anosov
representations of a word hyperbolic group into a semi-simple Lie group. To each such
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representation we associate an Anosov flow encoding eigenvalue information, and the
thermodynamic formalism gives us a way to measure the difference between two such
flows. This difference gives rise to an analytic semi-norm, which in many cases turns
out to be a Riemannian metric, called the pressure metric. This paper surveys results of
Bridgeman et al [17] and discusses questions and open problems which arise.

We begin by discussing our construction in the classical setting of the Teichmiiller space
of a closed orientable surface of genus at least 2. In this setting, our construction agrees
with Thurston’s Riemannian metric, as re-interpreted by Bonahon [8] using geodesic
currents and McMullen [60] using the thermodynamic formalism. Wolpert [87] showed
that Thurston’s metric is a multiple of the Weil-Petersson metric. The key difference
between our approach and McMullen’s is that we work directly with the geodesic flow of
the surface, rather than with a Bowen-Series coding of the action of the group on the limit
set. Since such a coding is not known to exist for every hyperbolic group, this approach
will be crucial to generalizing our results to the setting of all hyperbolic groups.

We next discuss the construction of the pressure metric in the simplest new situation:
the Hitchin component of representations of a surface group into PSLy(R). This setting
offers the cleanest results and also several simplifications of the general proof. Given a
Hitchin representation, inspired by earlier work of Sambarino [72], we construct a metric
Anosov flow, which we call the geodesic flow of the representation, whose periods record
the spectral radii of the elements in the image. We obtain a mapping class group invariant
Riemannian metric on a Hitchin component whose restriction to the Fuchsian locus is a
multiple of the Weil-Petersson metric.

We hope that the discussion of the pressure metric in these two simpler settings will
provide motivation and intuition for the general construction. In §6 we discuss the more
general settings studied in [17] with some comments on the additional difficulties which
must be overcome. We finish with a discussion of open problems.

2. The thermodynamic formalism

The thermodynamic formalism was introduced by Bowen and Ruelle [10, 12, 70] as a tool
to study the ergodic theory of Anosov flows and diffeomorphisms. It was further developed
by Parry and Pollicott, their monograph [64] is a standard reference for the material
covered here. McMullen [60] introduced the pressure form as a tool for constructing
metrics on spaces which may be mapped into Holder potentials over a shift-space. We
will give a quick summary of the basic facts we will need, but we encourage the reader to
consult the original references and the more complete discussion and references in [17].

We recall that a smooth flow ¢ = (¢; : X — X);cr on a compact Riemannian manifold
is said to be Anosov if there is a flow-invariant splitting 7X = E* @ Eq @ E" where E
is a line bundle parallel to the flow and if > 0, then d¢; is exponentially contracting on
E. and d¢_; is exponentially contracting on E_. We will always assume that our Anosov
flows are topologically transitive (i.e. have a dense orbit). It is a celebrated theorem of
Anosov (see [47, Theorem 17.5.1]) that the geodesic flow of a closed hyperbolic surface,
and more generally of a closed negatively curved manifold, is a topologically transitive
Anosov flow.
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2.1. Entropy, pressure and orbit-equivalence. Let ¢ be a topologically transitive
Anosov flow on a compact Riemannian manifold X. If a is a ¢-periodic orbit, denote
by £(a) its period and let

R7 = {a closed orbit | £(a) < T}.

Then, following Bowen [9], we may define the tropological entropy of ¢ to be the
exponential growth rate of the number of periodic orbits whose periods are at most 7,
ie.
log #R
h(¢) = lim sup OgT L

T—o00

Moreover, if g : X — R is Holder and a is a closed orbit, let

L(a)
bg(a) = /0 8(¢s(x)) ds,

where x is any point on a. Then, following Bowen and Ruelle [12], we may define the
topological pressure of g (or simply pressure) by

_ — lim sup - egm))
P(s) =P(9. g) = limsup - log(ag e's@ ).
Note that P(g) only depends on the periods of g, i.e. the collection of numbers {£,(a)}.
LivSic provides a pointwise relation for two functions having the same periods: two
Holder functions f, g : X — R are Livsic cohomologous if there exists a Holder function
V : X — R, which is C! in the direction of the flow ¢, such that
fx) —gx)= ai V(e (x)). ey
Ii=o
Livsic [53] proved the following fundamental result.

THEOREM 2.1. (Livsic [53]) If ¢ is a topologically transitive Anosov flow and g : X — R
is a Holder function such that £g4(a) =0 for every closed orbit a, then g is Livsic
cohomologous to 0.

Given a positive Holder function f : X — (0, co) one may define a reparametrization
of the flow so that its ‘speed’ at a point x is multiplied by f(x). More formally, let

t
p(e, 1) = /0 F@y(x)) ds,

and define ¢/ = (qﬁif : X = X);er so that d)lf}(x’l)(x) = ¢¢(x). In particular, if a is a
¢-closed orbit then a is also a closed orbit of the flow ¢/ with period ¢ r(a).

A Holder orbit equivalence between two flows is a Holder homeomorphism that sends
orbits to orbits. If, moreover, it preserves time, it is called a Holder conjugacy. In particular,
the identity map is a Holder orbit equivalence from ¢ to ¢/ when f is a positive Holder
function. (In our setting, the inverse of any Holder orbit equivalence is also a Holder orbit
equivalence, but we will not need this fact.)

Livsic’s theorem implies that two positive Holder functions are Liv§ic cohomologous
if and only if the periods of ¢/ and ¢¢ agree. If this is the case, the function V in
equation (1) provides a Holder conjugacy between ¢/ and $%. Moreover, one has the
following standard consequence of Livsic’s theorem (see Sambarino [73, Lemma 2.11]).
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LEMMA 2.2. If ¢ is a topologically transitive, Anosov flow and there exists Holder orbit
equivalence to a Holder-continuous flow v, then there exists a Holder function f : X —
(0, 00) such that  is Holder conjugate to ¢ .

The flow ¢/ remains topologically transitive and is again Anosov but in a metric sense.
More specifically, ¢/ is a Smale flow in the sense of Pollicott [66]. Pollicott shows that all
the results we rely on in the ensuing discussion generalize to the setting of Smale flows,
which we will refer to as metric Anosov flows. Hence, we may define the topological

entropy of ¢/ as
log #R
h(f) = lim sup 2EFRT)
T—o0 T
where Ry (f) = {a closed orbit | £ (a) < T}. We recall the following standard lemma

which relates pressure and entropy.

LEMMA 2.3. (See Sambarino [72, Lemma 2.4]) If ¢ is a topologically transitive Anosov
flowand f : X — (0, 0o) is Holder, then P(—hf) = 0 if and only if h = h(f).

Ruelle [70, Corollary 7.10] (see also Parry and Pollicott [64, Proposition 4.7]) proved
that the pressure function P(g) is a real analytic function of the Holder function g.
It follows from Lemma 2.3 and the Implicit Function Theorem that entropy varies
analytically in f. Ruelle [71] used a similar observation to show that the Hausdorff
dimension of a quasi-Fuchsian Kleinian group varies analytically on quasi-Fuchsian space.

Ruelle [70] also showed that P is a convex function and thus if f, g : X — R are Holder
functions,

2
o P(f +1tg)>0.
t=0
Consider the space
P(X)={P: X — R Holder | P(®) = 0}

of pressure zero Holder functions on X. It follows immediately from the definition above
that the pressure function P is constant on LivS§ic cohomology classes, so it is natural to
consider the space

H(X) = P(X)/ ~

of LivSic cohomology classes of pressure zero functions.

McMullen [60] defined a pressure semi-norm on the tangent space of the space of
pressure zero Holder functions on a shift space. Similarly, we define a pressure semi-norm
on T#P(X), by letting

92 —1
2 _ (2
lsllp = ( o |_ PV T ’g)) (8/8t|z=oP(f + tf))

for all g € T¢P(X) =ker D¢P. (Formally, one should consider the space P%(X) of a-
Holder pressure zero functions for some « > 0. In all our applications, we will consider
embeddings of analytic manifolds into P(X) such that every point has a neighborhood
which maps into P“(X) for some o > 0. We will consistently suppress this technical
detail.)
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One obtains the following characterization of degenerate vectors, due to Ruelle, and
Parry and Pollicott.

THEOREM 2.4. (Ruelle [70], see also Parry and Pollicott [64, Proposition 4.12]) Let ¢ be
a topologically transitive Anosov flow and consider g € TP(X). Then, ||gllp =0 if and
only if g is LivSic cohomologous to zero, i.e. £g4(a) = 0 for every closed orbit a.

We make use of the following nearly immediate corollary of this characterization (see
the proof of [17, Lemma 9.3]).

COROLLARY 2.5. Let ¢ be a topologically transitive Anosov flow. Suppose that
{ft}ie=1,1) : X = (0, 00) is a smooth one parameter family of Holder functions. Consider
®:(—1, 1) > P(X) defined by ©(t) = —h(f;) fi. Then ||d>0||p = 0 if and only if

a
Fra h(f)ts(a) =0

for every closed orbit a of ¢.

2.2. Intersection and pressure form. Inspired by Bonahon’s [8] intersection number,
we define the intersection number I of two positive Holder functions f1, f» : X — (0, oo)
by

Ly, (a)

I(f1, f2) = lim @

1
T—oo #R7(f1)

aeRr (f1)

and their renormalized intersection number by

h(f2)

h(f1)
Bowen’s equidistribution theorem on periodic orbits [9] implies that I, and hence J, are
well defined (see [17, §3.4]). One may use the analyticity of the pressure function and
results of Parry and Pollicott [64] and Ruelle [70] to check that they are analytic functions.

J(f1, )=

I(f1, f2).

PROPOSITION 2.6. [17, Proposition 3.12] Let ¢ be a topologically transitive Anosov flow
and let { fiYuem and {gu}uem be two analytic families of positive Holder functions on X.
Then h( f,) varies analytically over M and I(f,, gu) and J(fy, gu) vary analytically over
M x M.

The seminal work of Bowen and Ruelle [12] may be used to derive the following crucial
rigidity property for the renormalized intersection number.

PROPOSITION 2.7. [17, Proposition 3.8] If ¢ is a topologically transitive Anosov flow on
X and f and g are positive Holder functions on X, then

J(fie) =z 1.
Moreover, J(f, g) = lifand only if h(f) f and h(g)g are Livsic cohomologous.

If { fu}uem is an analytic family of positive Holder functions on X, then, for all u € M,
we consider the function
Ju:M—>R
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given by J,, (v) = J(u, v) for all v € M. Proposition 2.7 implies that the Hessian of J,, gives
a non-negative bilinear form on 7, M. Lemma 2.3 allows us to define a thermodynamic
mapping

d:M— P(X)
by letting ®(u) = —h(f,) fu The following important, but fairly simple, result shows that
this bilinear form is the pullback of the pressure form.

PROPOSITION 2.8. [17, Proposition 3.11] Let ¢ be a topologically transitive Anosov flow.
If {fi}te(=1,1) is a smooth one parameter family of positive Holder functions on X and
O :(—1,1) = P(X) is given by ®(t) = —h(f;) f;, then

2

b3 = L
Ibollp = =

J(fo, f0)-
=0

=

3. Basic strategy

Our basic strategy is inspired by McMullen’s [60] re-interpretation of Thurston’s
Riemannian metric on Teichmiiller space and its generalization to quasi-Fuchsian space
by Bridgeman [14].

We consider a family {p, : I' — G},cm of (conjugacy classes of) representations of a
word hyperbolic group I' into a semi-simple Lie group G parametrized by an analytic
manifold M. We recall that Gromov [36] associated a geodesic flow ¢ = {¢; : Ur —
Ur}ser to a hyperbolic group I' which agrees with the geodesic flow on 7! X in the case
when I' is the fundamental group of a negatively curved manifold X (see §6 for details).

In our two basic examples I' = 71 (S) where S is a closed, oriented surface of genus
at least 2, and the flow ¢ is the geodesic flow on a hyperbolic surface homeomorphic to
S. The first example will be the classical Teichmiiller space T (S) of hyperbolic structures
on §, where G = PSL,(R) and M = T (S). The second is the Hitchin component H;(S),
where G = PSL4(R) and M = H4(S).

Step 1. Associate to each representation p, a topologically transitive metric Anosov flow
¢” which is Holder orbit equivalent to the geodesic flow ¢ of I' so that the period of the
orbit associated to y € I is the ‘length’ of p(y).

In the case of T (S), ¢” will be the geodesic flow of the surface X, = H2/p(S). In the
case of a Hitchin component, we will construct a geodesic flow and our notion of length
will be the logarithm of the spectral radius.

If u € M, Lemma 2.2 provides a positive Holder function f, : Ur — R, well defined
up to Livic cohomology, such that ¢* is Holder conjugate to ¢f«.

Step 2. Define a thermodynamic mapping ® : M — H(Ur) by letting ® (1) = [—h(fy) ful
and prove that it has locally analytic lifts, i.e. if u € M, then there exists a neighborhood
U of u in M and an analytic map O:U - P(Ur) which is a lift of ®|y.

‘We may also define a renormalized intersection number on M x M, by letting J(u, v) =
J(Sus fo)-

Step 3. Define a pressure form on M by pulling back the pressure from on P(Ur) by (the
lifts of) ®.
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Lemma 2.8 allows us to reinterpret the pullback of the pressure form as the Hessian of
the renormalized intersection number function.

Step 4. Prove, using Corollary 2.5, that the resulting pressure form is non-degenerate so
gives rise to an analytic Riemannian metric on M.

Step 4 can fail in certain situations. For example, Bridgeman’s pressure metric on
quasi-Fuchsian space [14] is degenerate exactly on the set of pure bending vectors on
the Fuchsian locus. However, Bridgeman’s pressure metric still gives rise to a path metric.

3.1. Historical remarks. Thurston’s constructed a Riemannian metric which he
describes as the ‘Hessian of the length of a random geodesic.” Wolpert’s formulation [87]
of this construction agrees with the Hessian of the intersection number of the geodesic
flows. From this viewpoint, one regards I(p, ), as the length in X, of a random unit
length geodesic on X ,. If one considers a sequence {y,} of closed geodesics on X, which
are becoming equidistributed (in the sense that {y, /(£,(y,))} converges, in the space of
geodesic currents on S, to the Liouville current v, of X,), then

Eﬂ(Vn)

1(f,. f,) =lim RO

Bonahon [8] reinterprets this to say that

I(f,o’ fn) = i(‘),m Vn)y

where i is the geometric intersection pairing on the space of geodesic currents.

Bridgeman and Taylor [18] used Patterson—Sullivan theory to show that the Hessian of
the renormalized intersection number is a non-negative form on the quasi-Fuchsian case.
McMullen [60] then introduced the use of the techniques of thermodynamic formalism
to interpret both of these metrics as pullbacks of the pressure metric on the space of
suspension flows on the shift space associated to the Bowen-Series coding. Bridgeman [14]
then showed that the resulting pressure form on quasi-Fuchsian space is degenerate exactly
on the set of pure bending vectors on the Fuchsian locus.

4. The pressure metric for Teichmiiller space
In this section, we survey the construction of the pressure metric for the Teichmiiller space
T(S) of a closed oriented surface S of genus g > 2.

We recall that 7 (S) may be defined as the unique connected component of

Hom(rr; (S), PSL2(R))/PGL2(R)

which consists of discrete and faithful representations. If p € 7(S), then one obtains a
hyperbolic surface X, = H2/p(1(S)) by regarding PSL; (R) as the space of orientation-
preserving isometries of the hyperbolic plane H?.

4.1. Basic facts. It is useful to isolate the facts that will make the construction much
simpler in this case. All of these facts will fail even in the setting of the Hitchin component.
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(1) The space T'H? is canonically identified with the space of ordered triplets on the
visual boundary 8OOH2,

(BoHH® = {(x, y. 2) € (BocHD 1 x < y < 2},

where < is defined by a given orientation on the topological circle dsH?, and
(x, y, z) is identified with the unit tangent vector to the geodesic L joining x to z
at the point which is the orthogonal projection of y to L.

(2) The surface X, is closed (since it is a surface homotopy equivalent to a closed
surface). In fact, by Baer’s theorem, it is diffeomorphic to S. The geodesic flow
¢” onTIX o 1s thus a topologically transitive Anosov flow on a closed manifold.

(3) The topological entropy h(p) of ¢ is equal to 1 (in particular, constant).

Fact (1) is quite straight-forward: if (p, v) € T!H2, denote by v € dooH? the limit at
+o00 of the geodesic ray starting at (p, v), then the identification is

(P, V) = (—V)o, (V) oo, Voo)

where iv € T'H? is such that the base {v, iv} is orthogonal and oriented.

Fact (3) is a standard consequence of the fact, due to Manning [56], that the entropy
of the geodesic flow of a negatively curved manifold agrees with the exponential rate of
volume growth of a ball of radius 7 in its universal cover. In this setting, the universal
cover is always H? so the entropy is always 1.

4.1.1. Conventions. For the remainder of the section we fix pp € 7 (S) and identify S
with X ,;. We then obtain an identification of 3071 (S) with 9ooHZ and of T1S with T! X pp-
Let ¢ = ¢*0 be the geodesic flow on S.

It will be useful to choose an analytic lift s : 7(S) — Hom(m(S), PSL>(R)). In order
to do so, we pick non-commuting elements « and § in 71 (S) and choose a representative
o = s([p]) of [p] such that p(«) has attracting fixed point 400 € 9ooH? and repelling fixed
point 0, while p(8) has attracting fixed point 1. From now on, we will implicitly identify
T (S) with s(7(S)). This choice will allow us to define our thermodynamic mapping into
the space P(T'S) of pressure zero Holder functions on T'S, rather than just into the space
H(T'S) of Livsic cohomology classes of pressure zero Holder functions on X.

4.2. Analytic variation of limit maps. It is well known that any two Fuchsian
representations are conjugate by a unique Holder map.

PROPOSITION 4.1. If p,n € T(S), then there is a unique (p, n)-equivariant Holder
homeomorphism &, ;, 9o H? — d5H2. Moreover; &,y varies analytically in 1.

Proof. By fact (2), there exists a diffeomorphism 4 : X, — X, in the homotopy class
determined by 1o p~!. Choose a (p, n)-equivariant lift h:H? — H? of h. Since h is
quasi-conformal, classical results in complex analysis (see Ahlfors and Beurling [1]),
imply that h extends to a quasi-symmetric map &, , : 9o H? — 85oH?2. In particular, &pn
is a Holder homeomorphism. Since A is (p, n)-equivariant, so is &. The resulting map is
unique, since, by equivariance, if y € m1(S), then &, ;, must take the attracting fixed point
of p(y) to the attracting fixed point of 1(y).
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A more modern approach to the existence of &, ; uses the fact that H? is a proper
Gromov-hyperbolic metric space with boundary 9o H? and that quasi-isometries of proper
Gromov-hyperbolic metric spaces extend to Holder homeomorphisms of their boundary.
Since 4 is a bi-Lipschitz homeomorphism, it lifts to a bi-Lipschitz homeomorphism of H2.
In particular, / is a quasi-isometry of HZ.

It is a classical result in Teichmiiller theory that &, , varies analytically in . A more
modern, but still complex analytic, approach uses holomomorphic motions and is sketched
by McMullen [60, §2]. One allows 7 to vary over the space Q F'(S) of (conjugacy classes
of) convex cocompact (i.e. quasi-Fuchsian) representations of 771 (S) into PSL; (C). (Recall
that Q F(S) is an open neighborhood of 7 (S) in the PSL; (C)-character variety of 71 (S).)
If n € QF(S), there is a (p, n)-equivariant embedding &, , : dooH? — C whose image is
the limit set of n(w((S)). If z € 9ooH2 is a fixed point of a non-trivial element p(y), then
&p,5(2) varies holomorphically in 7. Slodkowski’s generalized Lambda lemma [76] then
implies that &, ,, varies complex analytically as n varies over Q F(S), and hence varies real
analytically as 7 varies over 7 (S).

One may also prove analyticity by using techniques of Hirsch et al [40] as discussed in
the next section. O

4.3. The thermodynamic mapping. The next proposition allows us to construct the
thermodynamic mapping we use to define the pressure metric.

PROPOSITION 4.2. For every n€T(S), there exists a positive Hélder function
fn :TLS — (0, 00) such that
/ fn = gn(V)
(v]

forall y € m1(S). Moreover, f, varies analytically in .

Proof. Let &, , be the (pg, n)-equivariant map provided by Proposition 4.1. The
identification of T'H? with 9s.71(S)® gives a (pop, n)-equivariant Holder homeo-
morphism & : T'H? — T!H? defined by

6()C, y7 Z) = (épo,?’](x)7 E,Oo,n(y)v Epo,n(z))'

Since ¢ is a (pp, n)-equivariant map sending geodesics to geodesics, the quotient
o:TIs > Tlx » is a Holder orbit equivalence between the geodesic flows ¢ = ¢ and
¢". Lemma 2.2 gives the existence of a function f;, but in order to establish the analytic
variation we give an explicit construction.

Ifa, b, ¢, d € 3,0H?, then the signed-distance between the orthogonal projections of b
and ¢ onto the geodesic with endpoints a and b is log | B(a, b, c, d)| where

(a—c)a—d)

B(a, b, c,d) =
b—-d)b—c)

is the cross-ratio. Let

Kp,n((x» y,2), 1) = 10g(B(§p0,n(x)y gpo,n(z)» é‘_po,n()’)» Epo,n(ut(xs ¥, 2)))
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where u; is determined by ¢f°(x, v,2)=(x,u(x,y,2),z). We average K, , over
intervals of length one in the flow to obtain
1
K,l,o,,,((x, y,2),1) :/o Koo, (X, ¥, 2), t +5)ds.
Then

K gy (G, ¥, 2), 1)
=0

ad
fn(xv ) Z)_ E

is Holder and varies analytically in 7.
One may also prove the analyticity of the reparametrizations in this setting using the
techniques of Katok et al [48]. O

Since h(¢") = h(f;) =1, by fact (3) in §4.1, Lemma 2.3 implies that P(—f;) =0,
where P is the pressure function associated to the geodesic flow ¢ on our base surface
S = Xp,. Hence, Proposition 4.2 provides an analytic map ® : 7(S5) — P(TLS) from the
Teichmiiller space 7 (S) to the space P(T!S) of pressure zero functions on the unit tangent
bundle T'S, given by

®(n) =—1, n-
We call @ the thermodynamic mapping. We note that ® depends on our choice of
0o € T(S) and on the lift s : 7(S) — Hom(;(S), PSLy(R)).

4.4. The pressure metric. We may then define a pressure form on 7 (S) by pulling back
the pressure form on P(TLS). Explicitly, if {n;};e(~1,1) is an analytic path in 7(S), then
we define

liiollp = ld® o).
Proposition 2.8 will allow us to identify the pressure form with the Hessian of the
intersection number I.

THEOREM 4.3. (Thurston and Wolpert [87], McMullen [60]) The pressure form is an
analytic Riemannian metric on T (S) which is invariant under the mapping class group
and independent of the reference metric py. Moreover, the resulting pressure metric is a
constant multiple of the Weil—-Petersson metric on T (S).

Proof. We first show that the pressure form is non-degenerate, so gives rise to a
Riemannian metric. Consider an analytic path {n;}—1,1) C T(S). If |[d® (70)|lp = O, then
Lemma 2.5 implies that if y € 71(S), then

0

— £ =0. 2

| )
However, there exist 6g — 5 elements {y1, . . ., ¥6g—5} of w1 (S), so that the mapping from

T(S) into R85 given by taking p to (Ep(yi))?il_s is a real analytic embedding (see
Schmutz [74]). Therefore, since 9/0t|;=o¢y, (y;) =0 for all i, we conclude that 79 = 0.
Therefore, the pressure form is non-degenerate.
If p, n € T(S), the intersection number
. 1 ls(y)
o, m) =Lfp, f) = lim — " :
T—o0 #R7(p) b 1eRe (o) Lo (y)
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where £, (y) is the translation length of p(y) and R (p) is the collection of conjugacy
classes of elements of 71(S) whose images have translation length at most 7. So, I is
independent of the reference metric po and invariant by the action of the mapping class
group of S. Proposition 2.8 states that

2 32
ﬁ J(fnwfm): m I(fnovfm)
=0

t=0 t=

70llp =

(again by fact (3)) and thus the pressure metric is mapping class group invariant.

One may interpret I(p, 1) as the length in X, of a random unit length geodesic on X,.
So, the pressure metric is given by considering the Hessian of the length of a random
geodesic. Since the pressure form agrees with Thurston’s metric, Wolpert’s work [87]
implies that the pressure metric is a multiple of the Weil-Petersson metric. O

5. The pressure metric on the Hitchin component

Let V be a vector space and G be a group. Recall that a representation 7 : G — GL(V)
is irreducible if T(G) has no proper invariant subspaces other than {0}. Let us begin by
recalling the following well-known result, see for example Humphreys [43].

PROPOSITION 5.1. For each integer d >?2 there exists an irreducible representation
74 : SLa(R) — SLy(R), unique up to conjugation.

The existence of such an irreducible action is an explicit construction we will
now explain. Denote by Symd (R?) the d-dimensional vector space of homogeneous
polynomials on two variables of degree d — 1. A base for Symd (R?) is, for example,

B= {xd_l, xd_2y, e, xyd_z, yd_l}.

We identify x with (1, 0) and y with (0, 1) in R? so that if g = (% 5) € SLy(R), then
g-x=ax+cyand g-y=bx+dy. The action of SL;(R) on Symd(R2) is defined on

the base B by

k. d—k—1 d—k—1
y ) .

a(g) - x =(g- 0@y

As before, let S be a closed oriented surface of genus g > 2. Hitchin [41] studied the
components of the space
Hom(rr; (S), PSLg(R))/PGL4(R)
containing an element p : 71 (S) — PSL,;(R) that factors as
71(8) 2% PSLa(R) 4 PSL4(R),

where pg € T(S).

By analogy with Teichmiiller space, he named these components Teichmiiller
components, but they are now known as Hitchin components, and denoted by H4(S). Each
Hitchin component contains a copy of 7 (S), known as the Fuchsian locus, which is an
image of 7 (S) under the mapping induced by ;. Hitchin proved the following remarkable
result.
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THEOREM 5.2. (Hitchin [41]) Each Hitchin component H4(S) is an analytic manifold
diffeomorphic to R@-D2g=2) — RIX(S)] dim PSLy(R)

Hitchin [41] commented that ‘Unfortunately, the analytical point of view used for the
proofs gives no indication of the geometrical significance of the Teichmiiller component.’
Labourie [49] introduced dynamical techniques to show that Hitchin representations,
i.e. representations in the Hitchin component, are geometrically meaningful. In particular,
Hitchin representations are discrete, faithful, quasi-isometric embeddings. Labourie’s
work significantly expanded the analogy between Hitchin components and Teichmiiller
spaces.

We view the following result as a further step in exploring this analogy. Its proof follows
the same basic strategy as in the Teichmiiller space setting, although there are several
additional difficulties to overcome.

THEOREM 5.3. (Bridgeman et al [17]) There exists an analytic Riemannian metric on
Ha(S) which is invariant under the action of the mapping class group and restricts to a
multiple of the Weil—Petersson metric on the Fuchsian locus.

Remark.

e The mapping class group, regarded as a subgroup of Out(w;(S)), acts by
precomposition on H;(S).

e  When d = 3, metrics have also been constructed by Darvishzadeh and Goldman [29]
and Li [52]. Li [52] showed that both her metric and the metric constructed by
Darvishzadeh and Goldman have the properties obtained in our result.

5.1. Labourie’s work. Labourie developed the theory of Anosov representations as a
tool to study Hitchin representations. This theory was further developed by Guichard and
Wienhard [39] and has played a central role in the subsequent development of higher
Teichmiiller theory. The following theorem summarizes some of the major consequences
of Labourie’s work for Hitchin representations.

THEOREM 5.4. (Labourie [49, 50]) If p € Ha(S) then we have the following.

(1)  p is discrete and faithful.

2) If y em(S) is non-trivial, then p(y) is diagonalizable over R with distinct
eigenvalues.

(3) p is a quasi-isometric embedding.

4) pisirreducible.

Theorem 5.4 is based on Labourie’s proof that Hitchin representations are Anosov with
respect to a minimal parabolic subgroup for PSLy(R), i.e. the upper triangular matrices in
PSL4(R). We will develop the terminology necessary to give a definition.

A complete flag of Risa sequence of vector subspaces {V; }?:1 such that V; C V41 and
dim V; =iforalli =1, ..., d. Two flags {V;} and {W;} are transverse if V; N W,_; = {0}
for all i. Denote by .% the space of complete flags and by .#® the space of pairs of
transverse flags. The following result should be viewed as the analogue of the limit map
constructed in Proposition 4.1.
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THEOREM 5.5. (Labourie [49]) If p € H4(S), then there exists a unique p-equivariant
Holder map &, : doom1(S) — F such that, if x #y, then the flags &,(x) and &,(y) are
transverse.

If p € Hy(S) and x € 0071 (S) then we denote by é[()k) (x) the kth-dimensional space in
the flag &,(x). Notice that if y; is an attracting fixed point of the action of y € 7(S)
on deom1(S), then E,()k)(y+) is spanned by the eigenlines of p(y) associated to the k
eigenvalues of largest modulus. In particular, & él)(y+) is the attracting fixed point for the
action of p(y) on P(R?) and E,(,d_l)(y_) is its repelling hyperplane (where y~ is the
repelling fixed point for the action of y on 71 (S)).

When p is Fuchsian, Labourie’s map is an explicit construction, called the Veronese
embedding, which is moreover tg-equivariant. This is a map from dsH? = P(R?) — .Z
explicitly defined, identifying R? with Sym?(R?), by

R-(ax +by)— {p€ Symd(Rz) : p has (ax + by)d*k asa factor}le.

Conventions. As in the previous section, we fix pg € 7(S), so that pg identifies S with
X - and hence identifies 9071 (S) with 9ooH? and T!S with TlXpo. Let ¢ = ¢ be the
geodesic flow on S. Let

JooT1($)@ = {(x, ¥) € Boom1(S)? 1 x # ¥}

and consider the Hopf parametrization of TIH? by 00071 ($)@ x R where (x, y, ) is the
point on the geodesic L joining x to y which is a (signed) distance ¢ from the horocycle
through y and a fixed basepoint for H?.

Labourie considers the bundle E, over T!S which is the quotient of T'H? x .# by
m1(S) where y € m1(S) acts on TH? by po(y) and acts on % by p(y). There is a flow
¥? on T'H? x .% which acts by the geodesic flow on T'H? and acts trivially on .%. The
flow ¥ descends to a flow ¥” on E,. The limit map &, : 9,071 (S) — & determines
a section o, (TIH? - Ep given by o (x, y, 1) = ((x, y, t), §,(x)) which descends to a
sectiono : T1S — E,.

A representation p : 71 (S) — PSLq(R) is Anosov with respect to a minimal parabolic
subgroup if and only if there is a limit map with the properties in Theorem 5.5 such that
the inverse of the associated flow ¢ * is contracting on o, (TLS).

5.2. The geodesic flow of a Hitchin representation. ~ We wish to associate a topologically
transitive metric Anosov flow to each Hitchin representation. Since p is discrete and
faithful, one is tempted to consider the geodesic flow of the associated locally symmetric
space

Ny = p(1(8)\PSLg(R)/PSO().

However, N, is neither closed, nor negatively curved, so its geodesic flow will not be
Anosov. Moreover, this flow does not even have a nice compact invariant set where it is
metric Anosov (see Sambarino [73, Proposition 3.5]).

Sambarino [72, §5] (or more specifically [72, Theorem 3.2, Corollary 5.3 and
Proposition 5.4]) constructed metric Anosov flows associated to Hitchin representations
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which are Holder orbit equivalent to a geodesic flow on a hyperbolic surface such that the
closed orbit associated to y € m1(S) has period log A, (p), where A, (p) is the spectral
radius of p(y), i.e. the largest modulus of the eigenvalues of p(y).

We will use these flows to construct a thermodynamic mapping and an associated
pressure metric satisfying the conclusions of Theorem 5.3.

PROPOSITION 5.6. (Sambarino [72, §5]) For every p € Hy(S), there exists a positive
Holder function f, :TLS — (0, 00) such that

[ fo=1log Ay (p)
[v1
for every y € m(S).

Notice that ¢/# is a topologically transitive, metric Anosov flow, Holder orbit equivalent
to the geodesic flow, whose periods are the logarithms of the spectral radii of p (1 (S)).
We call this flow the geodesic flow of the Hitchin representation.

We will give a different construction of the geodesic flow of a Hitchin representation,
from [17], which generalizes easily to the setting of projective Anosov representations
of a word-hyperbolic group into SLy(R). If p € H4(S), we let &, : o1 (S) — .Z be the
associated limit map to the space of complete flags where &, (x) = {&§ g (x) }Z: |- We consider
the line bundle F), over 0oy (5)@ whose fiber at (x, y) is

M(x, y) = {(¢. v) € R)* x RY [kerp =&V (x), v e £ ().
p) =1}/(g, v) ~ (=@, —v).
Consider the flow ¢” = (¢ : F, — F,);cRr given by
(9, v) = (e '@, e'v).
Notice that the 71 (S)-action on F), given by

Y,y (@, 0) = (x, vy, (9o p() ™, p()v)
is free. We further show that it is properly discontinuous and co-compact, so ¢” descends
to a flow ¢” on U, = F,/m1(S), which we call the geodesic flow of p. The proof proceeds
by finding a p-equivariant orbit equivalence between T'H? and F, o

PROPOSITION 5.7. [17, Propositions 4.1 and 4.2] The group mi(S) acts properly
discontinuous and cocompactly on F,. The quotient flow ¢* on U, is Holder orbit
equivalent to the geodesic flow on T'S. Moreover, the closed orbit associated to y € m1(S)
has ¢ -periodlog A, (y).

Sketch of proof. Consider the flat bundle E, over T!S which is the quotient of T'H? x R?
by 1 (S) where y € m1(S) acts on TIH? by po(y) and acts on R4 by p(y). One considers
a flow ¥” on T'H? x R? which acts as the geodesic flow on T'H? and acts trivially on
R?. The flow 1}” preserves the p (1 (S))-invariant line sub-bundle ¥ whose fiber over the
point (x, y, t) is "g‘ﬂ()l)(x). Thus, ¥” descends to a flow ¥* on E,, preserving the line sub-
bundle ¥ which is the quotient of 3. Since p is Anosov with respect to a minimal parabolic
subgroup, ¥* is contracting on X (see [17, Lemma 2.4]). Since ¥/” is contracting on X
one may use an averaging procedure to construct a metric T on ¥ with respect to which
¥ is uniformly contracting.
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LEMMA 5.8. [17, Lemma 4.3] There exists a Holder metric T on X and 8 > 0, so that for
allt > 0,

W)u(r) <e P
We construct a p-equivariant Holder orbit equivalence

JO yo ) = (x, y, u(x, y, 1))

where 7(u(x, y, t)) = 1 and 7 is the lift of 7 to . The map j~ is p-equivariant, since &,, is,
and the fact that 7 is uniformly contracting implies that j~ is injective. It remains to prove
that j is proper to show that it is a homeomorphism. (We refer the reader to the proof
of [17, Proposition 4.2] for this relatively simple argument.) Then, j descends to a Holder
orbit equivalence j between T'S and U 0-

In order to complete the proof, it suffices to evaluate the period of the closed orbit
associated to an element y € 1 (S). The closed orbit associated to y is the quotient of the

fiber of F,, over (y*, y 7). If we pick v € sél)()ﬂ') and ¢ € El(,d_l)(y_) so that p(v) = 1,

then
vty T e v) =y L B e £A,(00))
= (»Z;{())gAp(y)(y+v V77 ((pv U)), (3)
so the closed orbit has period log A(p(y)) as claimed. O

Notice that Proposition 5.6 follows immediately from Proposition 5.7 and Lemma 2.2.

5.3. The thermodynamic mapping. Proposition 5.6 allows us to construct a thermo-
dynamic mapping in the Hitchin setting. Livsic’s theorem (Theorem 2.1) guarantees that if
p € Ha(S), then the LivSic cohomology class of the reparametrization function f, is well
defined. So, applying Lemma 2.3, we may define a thermodynamic mapping

@ Hy(S) — H(TLS)

from the Hitchin component #,(S) to the space H(T'S) of Liviic cohomology classes of
pressure zero Holder functions on T1S, by letting

®(p) =[=h(p) fpl.

In order to construct an analytic pressure form, we need to know that & admits local
analytic lifts to the space P(T'S) of pressure zero Holder functions on T'S.

PROPOSITION 5.9. [17, Proposition 6.2] The mapping ® admits local analytic lifts to the
space P(TLS), i.e. each p € Hq(S) has an open neighborhood W and an analytic map
@ W — P(TLS) such that ®(p) = [P(p)].

Sketch of proof. Let p € Hy(S). Choose a neighborhood V of p which we may
implicitly identify with a submanifold of Hom(m{(S), PSL4(R)) (by an analytic map
whose composition with the projection map is the identity). Consider the .%#-bundle
A=V x T'H? x .Z over V x T'HZ2. There is a natural action of 7;(S) on A so that
y € m(S) takes (n, (x, y, 1), F)to(n, y(x, y, t), n(y)F) with quotient A. The limit map
&, determines a section o, of A over {p} x Tls.
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The geodesic flow on TS lifts to a flow {¥;};cr on A (whose lift to A acts trivially
in the V and .# direction). The Anosov property of Hitchin representations implies that
the inverse flow is contracting on o, ({p} x TLS). One may extend 0, to a section o of A
over V x T!S which varies analytically in the V coordinate (after first possibly restricting
to a smaller neighborhood of the lift of p). One may now apply the machinery developed
by Hirsch er al [40] (see also Shub [75]), to find a section T of A over W x TLS, where
W is a sub-neighborhood of V, so that the inverse flow preserves and is contracting along
(W x TLS). Here the main idea is to apply the contraction mapping theorem cleverly to
show that one may take

T(n, X) =1im W_1 (0 (1, Wy (X))

for some #p > 0 so that W_, is uniformly contracting. It follows from standard techniques
that T varies smoothly in the W direction and that the restriction to {n} x TLS is Holder for
all n € W. One must complexify the situation by considering representations into PSL4(C)
in order to verify that t varies analytically in the W direction. (See [17, §6] for more
details.)

The section t lifts to a section T of A which is induced by a map

é W X 0001 (S) = F
which varies analytically in the W direction such that
£ =£(n, ) doomi (S) > PR

is n-equivariant and Holder for all n € W. The uniqueness of limit maps for Hitchin
representations guarantees that é,] = &,. So, &, varies analytically over W.

One may then examine the proof of Proposition 5.7 and apply an averaging procedure,
as in the Teichmiiller space case, to produce an analytically varying family of Holder
function { f;;},ew, so that the reparametrization of the geodesic flow on T!S by [ has the
same periods as U,. (Again to get analytic, rather than just smooth, variation one must
complexify the situation. See [17, §6] for details.) Therefore, the map

oW — PTLS)

given by }
O(n) =—h(n) fy

is an analytic local lift of ®. O

5.4. Entropy and intersection numbers.  Proposition 5.6 allows us to define entropy and
intersection numbers for Hitchin representations. If p € H;(S), let

Rr(p) ={lyl€lmi($][log(A,(y)) =T}
The entropy of p is given by

log #R
M) = hifp) = tim CEERTE)
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The intersection number of p and n in H4(S) is given by

3 log(A,(¥)

I(o, m) =X(fp, fy) = lim log(A, ()

T—oo #R
oo #R7(p) .

€R,(T)

and their renormalized intersection number is

_ _ ko
Jo, m) =3(fo, fr) = h(p)l(p, n).

Proposition 5.9 and Corollary 2.6 immediately give the following corollary.

COROLLARY 5.10. Entropy varies analytically over Hg(S) and intersection 1 and
renormalized intersection J vary analytically over H4(S) x Hq(S).

Remark. Tt follows from Bonahon’s work [8], that the intersection number is symmetric
on Teichmiiller space. However, it is clear that the intersection number is not symmetric on
the Hitchin component. For example, one may use the work of Zhang [91, 92] to exhibit
forall K > 1andd > 3, p1, p2 € Ha(S) such that log A(p1(y)) = K log A(pa2(y)) for all
y em(S) —{id}, so I(p1, p2) > K and I(p2, p1) <1/K. One expects that the
renormalized intersection number is also asymmetric.

5.5. The pressure form. We then define the analytic pressure form on H;(S) as the
pullback of the pressure form on P(T'S) using a lift of the thermodynamic mapping .
Explicitly, if {n;};c(—1,1) is an analytic path in H4(S) and ®:U — P(T'S) is an analytic
lift of & defined on a neighborhood U of p, then we define

70113 = 1d® (o) 13-
If p € Hy(S) and J,, : Ha(S) — R is defined by
Jo(m =J(o, n) =T(fp, fi’))a

then Proposition 2.8 implies that the pressure form on T,H4(S) is the Hessian of J,
at p. Since the renormalized intersection number is mapping class group invariant by
definition, it follows that the pressure form is also mapping class group invariant. Wolpert’s
theorem [87] implies that the restriction of the pressure form to the Fuchsian locus is a
multiple of the Weil-Petersson metric. It only remains to show that the pressure form is
positive definite, so gives rise to an analytic Riemannian metric on all of H4(S).

5.6. Non-degeneracy of the pressure metric. ~ We complete the proof of Theorem 5.3 by
proving the following.

PROPOSITION 5.11. The pressure form is non-degenerate at each point in H;(S).
We note that each Hitchin component H,(S) lifts to a component of
X (m1(S), SLa(R)) = Hom(rr1(S), SL4(R))/SLa4(R)

and we will work in this lift throughout the proof (see Hitchin [41, §10]).
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In particular, this allows us to define, for all y € m1(S), an analytic function
Tr), : Ha(S) — R, where Tr), (p) is the trace of p(y).

As in the Teichmiiller case, the proof proceeds by applying Corollary 2.5. If {n;} (¢ ¢) C
Hq(S) is a path such that ||7g|lp = ||d®Pv|lp = O, then

d
Fm h( )y, (v) =0 C))
t=0

for all y € m1(S). The main difference is that entropy is not constant in the Hitchin
component.

If y € m((S), we may think of log A, as an analytic function on H;(S), where we
recall that A, (p) is the spectral radius of p(y). The following lemma is an immediate
consequence of equation (4) (compare with equation (2) in §4.4).

LEMMA 5.12. Ifv e T, Ha(S) and | D, ®(v)|p =0, then

D,h(v)
h(p)

Dylog Ay (v) = — log Ay (p)

forall y € m1(S).

Lemma 5.12 implies that if veT,Ms(S) is a degenerate vector, and we set
K = —(D,h(v))/ h(p), then D, log A, (v) = K log A, (p) for all y € m((S). The next
proposition, which is the key step in the proof of Proposition 5.11, then guarantees that the
derivative of the trace function of every element is trivial in the direction v.

PROPOSITION 5.13. Ifv € T,H4(S) and there exists K € R such that
Dy log Ay (v) = K log Ay (p)
SJorally € m(S), then K =0 and D, Tr), (v) =0 for all y € m1(S).

The proof of Proposition 5.11, and hence Theorem 5.3, is then completed by applying
the following standard lemma.

LEMMA 5.14. If p € Hy(S), then {D,Tr, |y € m1(S)} spans the cotangent space
TZH,,_:(S).

Since every Hitchin representation is absolutely irreducible, Schur’s lemma can be
used to show that H;(S) immerses in the SL;(C)-character variety X (;r1(S), SL4(C)).
Lemma 5.14 then follows from standard facts about X (7r1(S), SL;(C)) (see Lubotzky and
Magid [55]).

Proof of Proposition 5.13. It will be useful to introduce some notation. If M is a real
analytic manifold, an analytic function f : M — R has log-type K atv € T, M if f(u) #0
and

D,log(] f)(v) = K log(| f (u)]).
Suppose that A € SL;(RR) has real eigenvalues {A; (A)}7_, where

[A1(A)] > [A2(A)] > - - - > [Am (A)].
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If p; (A) is the projection onto the X; (A)-eigenspace parallel to the hyperplane spanned by
the other eigenspaces, then

A=) M(Api(A). )

k=1
We say that two infinite order elements of m(S) are coprime if they do not share
a common power. The following lemma is an elementary computation (see Benoist [4,
Corollary 1.6] or [17, Proposition 9.4]).

LEMMA 5.15. If a and B are coprime elements of m1(S) and p € H4(S), then

. (o B)
T =1 0
P (p (@)1 (p(B)) = lim o= T T s
and 31 (p(a"B)
Te(p1(p(@)p(B) = lim LB

N ICD)
Sforall p € Hq(S).

The following rather technical lemma plays a key role in the proof of Proposition 5.13.

LEMMA 5.16. Suppose that {a[,}‘;:l, {u,,}(;:l, {bs)32,, and {vs}52 | are collections of

q 00 . . .
real numbers so that {|up|} p=1 and {|vs|}J2 | are strictly decreasing, each u is non-zero,
q )
> ey =Yt
p=1 s=1

foralln >0, and Y2 | bsvy is absolutely convergent. Then, a p=0forall p.

Proof. We may assume without loss of generality that each by is non-zero. We divide each
side of the equality by nu?, to see that

o0
. by \ vy
a; = lim E — =
n— 00 nJu”
s=1 1

for all n. However, the right-hand side of the equation can only be bounded as n — oo, if
|vi| < |uq|. However, if |vq| < |u1], then the limit of the right-hand side, as n — oo, must
be 0 and we conclude that a; = 0.

We may iterate this procedure to conclude that @, = 0 for all p. O

Suppose that «, B €m(S) are coprime. We consider the analytic function
F, : Ha(S) — R given by

Tr(p1(p(@)p(B"))

A (p(B™) Tr(p1(p(a)p1(p(B))

Lemma 5.15 and the assumption of Proposition 5.13 imply that F}, is of log-type K at v
(see the proofs of Proposition 9.4 and Lemma 9.8 in [17]). Using equation (5) we have

Fu(p) =

d
P(B") = 1 (B))"Pi(p(B))-

k=1
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Thus, we can write F;, as

L Te(pi(p(@)pe(0(B) (i (B) " d
Fn =1 -1 .
W= ,; Te(p1 (p(@)p1(0(B)) ( ) + ,; fu

r(p(B))
where
Tr(p1(p(«)pi(p(B))) < A (p(B)) )
= 0 d = ——= 0.
O = Rpp@pioen 7 0 M MO =G ) T
Since F), has log-type K at v and is positive in some neighborhood of p,
d . d
DpFa) =" nfkf/?;—]; + 3 fitf = KFa(p) log(Fu(p)). (6)
k=2 k=2

where fy = D, (v) and fk = Dyai(v). In order to simplify the proof, we consider
equation (6) for even powers. Using the Taylor series expansion for log(l + x) and
grouping terms we have

d d 00
Fop log(Fa,) = (1 + Z fklkz") log<1 + Z fkt,ﬁ") = Z cswy
=2 k=2 s=1

where {w;} is a strictly decreasing sequence of positive terms. We may again regroup terms
d fk ik 0 d 0
2 ¢ .2
Soon(A% )i =S cout = 3 fi =Y b
k=2 k s=I k=2 s=I
where {vs} is a strictly decreasing sequence of positive terms. So, letting u; = tkz, we see

that for all n y
2 ful >
s=1

k=2 T
Lemma 5.16 implies that (fiix)/f%x =0 for all k, so 7 =0 for all k. Let A; g be the
real-valued analytic function on H4(S) given by A; g(0) = A;(0(B)). Then,

to obtain

}\k,ﬁ)\l,ﬁ — )'»1,/3)»1“3 .

2
)‘l,ﬁ

0.

So,

g A,
D, (log(44))(v) = A—‘g =218 — D, (log |11.41) () = K log(1h1.5(0)]).
kB AL

Since Aq,p = 1/Ay g-1,

K log(|Ay g-1(p)]) = Dp(log(|ry g-11))(v) = Dy (log(|Ag, g-11))(v)
= —D, (| log(r1,p)])(v) = —K log(|A1,8(0)])-

Therefore, sipce log(|)\1’ﬁf1 (0)]) and log(|A1,g(p)|) are both positive, then K = 0, which
implies that A;(8) = 0 for all .

Since, DyA; g(v) =0 for all i and all 8, D, Trg =0 for all 8 € w1(S). This completes
the proof of Proposition 5.13, and hence Proposition 5.11 and Theorem 5.3. O
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5.7. Rigidity theorems for Hitchin representations.

5.7.1. Entropy rigidity. Potrie and Sambarino recently showed that entropy is
maximized only along the Fuchsian locus. One may view this as an analogue of Bowen’s
celebrated result [11] that the topological entropy of a quasi-Fuchsian group is at least 1
and it is 1 if and only if the group is Fuchsian.

THEOREM 5.17. (Potrie and Sambarino [69]) If p € Ha(S), then h(p) <2/(d —1).
Moreover, if h(p) =2/(d — 1), then p lies in the Fuchsian locus.

Remarks. (1) Crampon [27] had earlier established that the entropy associated to
Hilbert length (see §5.8) of holonomies of strictly convex projective structures on
closed hyperbolic manifolds is maximal exactly at the representations into SO(d, 1). In
particular, the Hilbert length entropy on #3(S) is maximal exactly at the Fuchsian locus.

(2) Zhang [91, 92] showed that, for all d, there exist large families of sequences of
Hitchin representations with entropy converging to 0. Nie [62] had earlier constructed
specific examples when d = 3.

5.7.2. Intersection number and marked length rigidity theorems.  One also obtains the
following rigidity theorem for Hitchin representations with respect to the intersection
number. Notice that the definition of the renormalized intersection number J(po1, p2)
for p1 € Hq, (S) and pp € Hy, (S) makes sense even if dj # do, see §5.4. Moreover, if
fi:T'S—>Rand f,:T'S — R are positive Holder functions such that ¢/1 = U, and
¢f2 =U,,, then J(p1, p2) = J(f1, f2). In particular, see Lemma 2.7, J(p1, p2) > 1.

THEOREM 5.18. [17, Corollary 1.5] Let S be a closed, orientable surface and let
p1 € Ha, (S) and p2 € Ha, (S) be two Hitchin representations such that

J(o1, p2) =1.

Then, either:

(1) di=dpand p1 = p2 in Ha, (S); or

(2) there exists an element p of the Teichmiiller space T (S) so that p1 = t4,(p) and
P2 = T4,(p).

The proof of Theorem 5.18 makes use of general rigidity results in the thermodynamic
formalism and a result of Guichard [38] classifying Zariski closures of images of Hitchin
representations.

As an immediate corollary, one obtains a marked length rigidity theorem where one
uses the logarithm of the spectral radius as a notion of length.

COROLLARY 5.19. If p1, p2 € Ha(S), then

h A
(p1) sup y(01) o1
h(p2) yer sy Ay (p2)

with equality if and only if there exists g € GLy(R) such that gp1g~" = ps. In particular,

if Ay (p1) = Ay (02) forall y € w1(S), then p1 and p; are conjugate in GLg(R).
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Bridgeman, Canary and Labourie have recently established that it suffices to consider
lengths of simple closed curves.

THEOREM 5.20. (Bridgeman et al [16]) If p1, p2 € Ha(S) and Ay (p1) = Ay (02) for all
o € m1(S) which are represented by simple closed curves, then p1 and p> are conjugate in

PGL4(R).

Remarks. Burger [19] introduced a renormalized intersection number between convex
cocompact representations into rank-one Lie groups and proved an analogue of
Theorem 5.18 in that setting. One should compare Corollary 5.19 and Theorem 5.20 with
the marked length spectrum rigidity theorem of Dal’bo and Kim [28] for Zariski dense
representations. Both Dal’bo and Kim [28] and Theorem 5.18 rely crucially on work of
Benoist [3, Theorem 1.2]. However, the proof of Theorem 5.20 uses Labourie’s equivariant
Frenet map into the flag variety, see Theorem 5.5, and the theory of positive representations
developed by Fock and Goncharov [31].

5.8. An alternate length function. Throughout the section, we have used the logarithm
of the spectral radius as a notion of length. It is also quite natural to consider the length of
p(y) to be

tu(p(y)) =log A(p(y)) +log A(p(y ™).

For example, if p € H3(S), then p is the holonomy of a convex projective structure on S,
and ZH(p(y)) is the translation length of y in the associated Hilbert metric on S.
Sambarino [72] also proves that there is a reparametrization of T'S whose periods are

given by £H(p(y))-

PROPOSITION 5.21. (Sambarino [72, Theorem 3.2, §5]) If p € Ha(S), then there exists a
positive Holder function f;‘ : TLS — (0, o0) such that

/ =)
[v]

forall y € m(S).

We give a proof which uses a cross-ratio to construct f /!" from the limit map &,, as
is done in the Teichmiiller setting. It is adapted from the construction given in Labourie
[50, §3].

Proof. Given linear forms ¢, € (RY)* and vectors v, w € R? such that v ¢ ker ¢ and
w ¢ Ker ¢, define the cross-ratio

O

o)y ()’

Note that the cross-ratio only depends on the projective classes of ¢, ¥, v, and w, and
is invariant under PSLg(R). Moreover, if g € PSLq(R) is bi-proximal and v ¢ ker g_ U
ker(g_l)_, then

o, ¥, v, w]

[g—, (g™ H—, v, gl = A(9)A(g™) 7

where g_ is a linear functional whose kernel is the repelling hyperplane of g.
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Theorem 5.5 provides a p-equivariant map &, : dsoH?> — .Z. We then define
iy THH? x R — R by

kp((x, y, 2), 1) =log [V (x), £V (@), £V (). &8P s (x, y, 2]

where u; is determined by ¢ (x, y, z) = (x, u;(x, y, z), z). Work of Labourie [50, §3]
implies that ¢ — «,((x, y, ), t) is an increasing homeomorphism of R, so averaging
ky and taking derivatives as before provides the desired function an (TS — (0, 00).
Equation (7) implies that f,’H has the desired periods. O

We may again obtain a thermodynamic mapping oM Hy(S) > H(T'S) defined by
0> [—h(fh £

One can use the same arguments as above to show that ® has locally analytic lifts and
one can pull back the pressure form via @ to obtain an analytic pressure semi-norm || - |4
on TH4(S). (Pollicott and Sharp [67] previously proved that the entropy associated to £y
varies analytically over H4(S).) However, this pressure form is degenerate in ways which
are completely analogous to the degeneracy of the pressure metric on quasi-Fuchsian space
discovered by Bridgeman [14].

Consider the contragredient involution o : PSLyq(R) — PSLy4(R) given by g+
(g~ 1!, where t denotes the transpose operator associated to the standard inner product of
R?. This involution induces an involution on the Hitchin component 6 : Hg(S) — Hq(S),
where 6 (p)(y) = o (p(y)) forall y € w1 (S). If n € Hy(S) is a representation whose image
lies in (a group conjugate to) Sp(2n, R) (if d =2n) or SO, n + 1, R) (if d =2n + 1),
then 6 (n) = 1.

Consider the tangent vectors in TH;(S) which are reversed by Da, i.e. let

By(S) = {v € TH4(S) : D6 (v) = —v}.
The vectors in B4(S) are degenerate for the pressure metric || - ||H.

LEMMA 5.22. Ifv € By(S), then vy = 0.

Proof. Consider a path {n:}1,1) C Ha(S) so that &(n;) =n—, for all t e (-1, 1).
Then, £4(n: () = €q(n—(y)) and h(fF) = h(f} ) for all 1 € (=1, 1) and y € 7 (S),

Therefore,
o, My m(y) =0
8[ —o (f;y, fr!'l‘ V)_
for all y € m1(S). Corollary 2.5 then implies that ||v||y = 0. O

Remark. With a little more effort one may use the techniques of [17] to show that these are
the only degenerate vectors for | - ||4 and that || - || induces a path metric on the Hitchin
component.
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6. Generalizations and consequences

In [17] we work in the more general setting of Anosov representations of word hyperbolic
groups into semi-simple Lie groups. In this section, we will survey these more general
results and discuss some of the additional difficulties which occur. The bulk of the work
in [17] is done in the setting of projective Anosov representations into SL;(R). We
note that Hitchin representations are examples of projective Anosov representations as
are Benoist representations, i.e. holonomy representations of closed strictly convex (real)
projective manifolds (see Guichard and Wienhard [39, Proposition 6.1]).

6.1. Projective Anosov representations. ~ We first show that the pressure form gives an
analytic Riemannian metric on the space of (conjugacy classes of) projective Anosov,
generic, regularf, irreducible representations. In order to define projective Anosov
representations, we begin by recalling basic facts about the geodesic flow of a word
hyperbolic group.

Gromov [36] first established that a word hyperbolic group I" has an associated geodesic
flow Ur. Roughly, one considers the obvious flow on the space of all geodesics in the
Cayley graph of I, collapses all geodesics joining two points in the Gromov boundary to a
single geodesic, and considers the quotient by the action of I". We make use of the version
due to Mineyev [61] (see also Champetier [24]). Mineyev defines a proper cocompact
action of I' on ﬁ} = 9o'@ x R and a metric on ﬁf—, well defined only up to Holder
equivalence, so that I" acts by isometries, every orbit of R is quasi-isometrically embedded,
and the R-action is by Lipschitz homeomorphisms. Moreover, the R-action descends to a
flow on Up = Uy / I'. In the case that I" is the fundamental group of a negatively curved
manifold M, one may take Ur to be the geodesic flow on T' M.

A representation p : I' = SL;(R) has transverse projective limit maps if there exist
continuous, p-equivariant limit maps

£y dool — P(RY)

and
6, : 0ol = Gry—1(RY) =P((RY)*)

so that if x and y are distinct points in doI", then

Ep(x) @ 6,(y) =R

A representation p with transverse projective limit maps determines a splitting Z @ ®
of the flat bundle E, over Ur. Concretely, if E o 1s the lifted bundle over IF]} then the lift
E of E has fiber &,(x) and the lift ® of ® has fiber 6,(y) over the point (x, y, ). The
geodesic flow on Ur lifts to a flow on l?f~ which extends, trivially in the bundle factor, to
a flow on E » which descends to a flow on E,. One says that p is projective Anosov if the
resulting flow on the associated bundle Hom(®, E) = E ® ©* is contracting.

Projective Anosov representations are discrete, well-displacing, quasi-isometric
embeddings with finite kernel such that the image of each infinite order element is bi-
proximal, i.e. its eigenvalues of maximal and minimal modulus have multiplicity one

T A representation p : I' — SLy(R) is regular if it is a smooth point of the algebraic variety Hom(I", SL; (R)).
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(see Labourie [49, 50] and Guichard and Wienhard [39, Theorem 5.3,5.9]). However,
projective Anosov representations need not be irreducible and the images of elements
need not be diagonalizable over R. On the other hand, Guichard and Wienhard
[39, Proposition 4.10] showed that any irreducible representation with transverse
projective limits maps is projective Anosov.

6.2. Deformation spaces. 'The space of all projective Anosov representations of a fixed
word hyperbolic group I' into SL;(R) is an open subset of Hom(T", SL;(R))/SL;(R)
(see Labourie [49, Proposition 2.1] and Guichard and Wienhard [39, Theorem 5.13]).
However, a projective Anosov representation need not be a smooth point of
Hom(T", SL;(R))/SL;(R) (see Johnson and Millson [45]). Moreover, the set of projective
Anosov representations need not be an entire component of Hom(I", SL;(R))/SL;(R).

In order to have the structure of a real analytic manifold, we consider the space Ci (T, d)
of regular, projective Anosov, irreducible representations p : I’ — SL;(R) and let

C(T, d) =C(T, d)/SL4(R).

If G is a reductive subgroup of SL;(R), we can restrict the whole discussion to
representations with image in G, i.e. let C(I", G) be the space of regular, projective Anosov,
irreducible representations p : I' — G and let

C(T, G)=C(, G)/G.

We will later want to restrict to the space Cg(I", G) of G-generic representation in
C(T', G), i.e. representations such that the centralizer of some element in the image is
a maximal torus in G. In particular, in the case that G = SL;(R), a representation is
G-generic if some element in the image is diagonalizable over C with distinct eigenvalues.
The resulting spaces are real analytic manifolds.

PROPOSITION 6.1. [17, Proposition 7.1] If T is a word hyperbolic group and G is
a reductive subgroup of SLy(R), then C(T',d), C(I', G), Co(T', G) and Cq(T', d) =
C, (T, SL4s(R)) are all real analytic manifolds.

6.3. The geodesic flow, entropy and intersection number. One new difficulty which
arises, is that it is not known in general whether or not the geodesic flow of a word
hyperbolic group is metric Anosov, i.e. a Smale flow in the sense of Pollicott [66]. Notice
that our construction in §5.2 immediately generalizes to give, for any projective Anosov
representation o, a geodesic flow U, which is Holder orbit equivalent to Ur and whose
periods are exactly spectral radii of infinite order elements of I". In general, we must further
show [17, Proposition 5.1] that U, is a topologically transitive metric Anosov flow.

PROPOSITION 6.2. [17, Propositions 4.1, 5.1] If p : T — SLys(R) is projective Anosov,
then there exists a topologically transitive, metric Anosov flow U, which is Hélder orbit
equivalent to Ur such that the orbit associated to y € I" has period A(p(y)).

Lemma 2.2 provides a Holder function f, : Ur — (0, co), well defined up to Livsic
cohomology, such that U, is Holder conjugate to the reparametrization of Ur by f,.
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One may then use the thermodynamic formalism to define the entropy of a projective
Anosov representation and the intersection number and renormalized intersection number
of two projective Anosov representations. If p is projective Anosov, we define

R7(p) ={ly] € [m1(S)]log(A,(p)) =T}
and the entropy of p is given by
log #R
hp) = h(f) = Jim EETE).

The intersection number of two projective Anosov representations p and 7 is given by

. log(Ay (1))
o) =1y, f) = lim s o)
T80 1y 1ery(r) OBV (P
and their renormalized intersection number is
h(n)
J(o, m) = ——I(p, n).
h(p)

One may use the technique of proof of Proposition 5.9 to show that all these quantities
vary analytically.

THEOREM 6.3. [17, Theorem 1.3] If T is a word hyperbolic group and G is a reductive
subgroup of PSLy(R), then entropy varies analytically over C(I', G) and intersection
number and renormalized intersection number vary analytically over C(T', G) x C(T, G).

6.4. The pressure metric for projective Anosov representation spaces. If G is a
reductive subgroup of PSL4(R), we define a thermodynamic mapping

®:C(T, G) > H(Ur)
by p = [—h(fp) fo]. We can again show that ® has locally analytic lifts, so we can pull

back the pressure norm on P(Ur) to obtain a pressure semi-norm || - ||p on C(I", G). The
resulting pressure semi-norm gives an analytic Riemannian metric on Cg (T, G).

THEOREM 6.4. [17, Theorem 1.4] If T is a word hyperbolic group and G is a reductive
subgroup of SLy(R), then the pressure form is an analytic Out(I")-invariant Riemannian
metric on Cg(T', Q). In particular, the pressure form is an analytic Out(T")-invariant
Riemannian metric on Cg (T, d).

It only remains to prove that the pressure semi-norm is non-degenerate. We follow the
same outline as in the Hitchin setting, but encounter significant new technical difficulties.
As before, we may use Corollary 2.5 to obtain restrictions on the derivatives of spectral
length of group elements.

LEMMA 6.5. [17, Lemma 9.3] If G is a reductive subgroup of PSLg(R), v € T,C(T", G)
and ||v|lp =0, then

D,h(v)
h(p)

D, log Ay(v) =— log Ay (p)
forally eT.

We use this to establish the following analogue of Proposition 5.13 from the Hitchin
setting. In order to do so, we must work in the setting of G-generic representations and we
can only conclude that the derivative of spectral length, rather than trace, is trivial.
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PROPOSITION 6.6. [17, Proposition 9.1] If G is a reductive subgroup of PSL4(R), v €
T,Ce (T, Q) and there exists K such that

D, log Ay (v) = K log Ay (p)
forally €T, then K = 0. In particular, D, log A, (v) =0 forall y eT.

One completes the proof by showing that the derivatives of the spectral radii functions
generate the cotangent space.

PROPOSITION 6.7. [17, Proposition 10.3] If G is a reductive subgroup of PSLg(R) and
p € Cy(T', G), then the set {D,A,, | y € I'} spans T:;Cg(l", G).

6.5. Anosov representations. We now discuss the generalizations of our work to
spaces of more general Anosov representations. If G is any semisimple Lie group with
finite center and P* is a pair of opposite parabolic subgroups, then one may consider
(G, P*)-Anosov representations of a word hyperbolic group I' into G. A (G, P*)-Anosov
representation p : I' — G has limit maps

£ ool —> G/P*

(which are transverse in an appropriate sense and give rise to associated flows with
contracting/dilating properties). In fact, Zariski dense representations with transverse limit
maps are always (G, P*)-Anosov [39, Theorem 4.11].

Projective Anosov representations are (G, P¥)-Anosov where G = SLy(R), P is
the stabilizer of a line and P~ is the stabilizer of a complementary hyperplane [17,
Propostion 2.11]. Hitchin representations are (G, P¥)-Anosov where G = SLy(R), P*
is the group of upper triangular matrices (i.e. the stabilizer of the standard flag) and P~ is
the group of lower triangular matrices (Labourie [49]).

We may think of Anosov representations as natural generalizations of Fuchsian
representations, since they are discrete, faithful, quasi-isometric embeddings with finite
kernel so that the image of every infinite order element is P -proximal [49, 50] and [39,
Theorem 5.3,5.9]. More generally, they may be thought of as generalizations of convex
cocompact representations into rank-one Lie groups. See Labourie [49] and Guichard and
Wienhard [39] for definitions and more detailed discussions of Anosov representations.
Gueritaud et al [37] and Kapovich et al [46] have developed intriguing new viewpoints on
Anosov representations and their definition.

Guichard and Wienhard [39, Proposition 4.2, Remark 4.12] (see also [17,
Theorem 2.12]) showed that there exists an irreducible representation o : G — SL(V)
(called the Pliicker representation) such that p : T' — G is (G, P*)-Anosov if and only
if o o p is projective Anosov. Thus, one can often reduce the study of (G, P¥)-Anosov
representations to the study of projective Anosov representations.

Let Z(T', G, P¥) be the space of (conjugacy classes of) regular, virtually Zariski dense
(G, P*)-Anosov representations. The space Z(T, G, P*) is an analytic orbifold, which
is a manifold if G is connected (see [17, Proposition 7.3]). The Pliicker representation
o : G — SLy(R) allows one to view Z(TI', G, P¥) as an analytically varying family of
o (G)-generic projective Anosov representations. One may pull back the pressure form
and adapt the techniques from the projective Anosov setting to prove the following.
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THEOREM 6.8. [17, Corollary 1.9] If G is semi-simple Lie group with finite center and
" is word hyperbolic, then the pressure form is an Out(I")-invariant analytic Riemannian
metric on Z(T, G, P¥).

6.6. Examples. There are two other important classes of higher Teichmiiller spaces
which are (quotients of) entire components of representation varieties.

Burger et al [21] have studied representations of 71 (S) into a Hermitian Lie group G
of tube type with maximal Toledo invariant, i.e. maximal representations. Each maximal
representation is Anosov, with respect to stabilizers of points in the Shilov boundary of
the associated symmetric space [20, 22], and the space of all maximal representations
is a collection of components of Hom(sr(S), G) [21]. One particularly nice case arises
when G = Sp(4, R), in which case there are 2¢g — 3 components which are non-simply
connected manifolds consisting entirely of Zariski dense representations (see Bradlow et
al [13]). Hence, the quotients by G of all such components admit pressure metrics.

Benoist [5, 6] studied holonomies of strictly convex projective structures on
a closed manifold M and showed that these consist of entire components of
Hom(mr; (M), PSL4(R)). One may use his work to show that these representations, which
we call Benoist representations, are projective Anosov (see Guichard and Wienhard [39,
Propostion 6.1]). Johnson and Millson [45] gave examples of holonomy maps
p (M) — SO(d — 1, 1) of closed hyperbolic d — 1-manifold, where d > 5, such that
p is a singular point of Hom(sr; (M), PSL4(R)).

6.7. Rank-one Lie groups. Let I' be a word hyperbolic group and let G be a rank-one
semi-simple Lie group, e.g. PSL,(C). A representation p : I' — G is convex cocompact if
and only if whenever one chooses a basepoint xq for the symmetric space X = K\G then
the orbit map 7 : ' — X given by y — y(xp) is a quasi-isometric embedding. The limit
set of p(I") is then the set of accumulation points in d, X of the image of the orbit map and
one can define the Hausdorff dimension of this set. Patterson [65], Sullivan [78], Corlette
and Iozzi [26], and Yue [90] showed that the topological entropy of a convex cocompact
representation agrees with the Hausdorff dimension of the limit set of its image.

A representation p : " — G is convex cocompact if and only if it is Anosov (see
Guichard and Wienhard [39, Theorem 5.15]). Since the Pliicker embedding multiplies
entropy by a constant depending only on G (see [17, Corollary 2.14]), the analyticity of the
Hausdorff dimension of the limit set follows from the analyticity of entropy for projective
Anosov representations.

THEOREM 6.9. [17, Corollary 1.8] If " is a word hyperbolic group and G is a rank-one
semi-simple Lie group, then the Hausdorff dimension of the limit set varies analytically
over analytic families of convex cocompact representations of T into G.

Remark. When G = PSL,(C), Ruelle [71] proved this for surface groups and Anderson
and Rocha [2] proved it for free products of surface groups and free groups. Tapie [79]
used work of Katok e al [48] to show that the Hausdorff dimension is C! on smooth
families of convex cocompact representations.
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Let CC(T, PSL,(C)) be the space of (conjugacy classes of) convex cocompact
representation of I' into PSL;(C). Bers [7] showed that CC(T", PSL,(C)) is an analytic
manifold. Recall that a convex cocompact representation is not Zariski dense if and only
if it is virtually Fuchsian, i.e. contain a finite index subgroup conjugate into PSL; (R). We
may again use the Pliicker representation to prove the following.

THEOREM 6.10. [17, Corollary 1.7] If " is word hyperbolic, then the pressure form
is Out(T")-invariant and analytic on CC (T, PSLy(C)) and is non-degenerate at any
representation which is not virtually Fuchsian. In particular, if T is not either virtually
free or virtually a surface group, then the pressure form is an analytic Riemannian

metric on CC(T", PSLy(C)). Moreover, the pressure form always induces a path metric
on CC(T, PSL,(©)).

Bridgeman [14] had previously defined and studied the pressure metric on quasi-
Fuchsian space Q F(S) = CC(m1(S), PSL,(C)). He showed that the degenerate vectors
in this case correspond exactly to pure bending vectors on the Fuchsian locus.

6.8. Margulis space times. A Margulis space time is a quotient of R by a free, non-
abelian group of affine transformations which acts properly discontinuously on R3. They
were originally discovered by Margulis [57] as counterexamples to a question of Milnor.
Ghosh [32] used work of Goldman, Labourie and Margulis [34, 35] to interpret holonomy
maps of Margulis space times (without cusps) as ‘Anosov representations’ into the (non-
semi-simple) Lie group Aff(R?) of affine automorphisms of R3. Ghosh [33] was then able
to adapt the techniques of [17] to produce a pressure form on the analytic manifold M
of (conjugacy classes of) holonomy maps of Margulis space times of fixed rank (with
no cusps). This pressure form is an analytic Riemannian metric on the slice My of M
consisting of holonomy maps with entropy k (see Ghosh [33, Theorem 1.0.1]), but has a
degenerate direction on M, so the pressure form has signature (dim M — 1, 0) on M.

7. Open problems

The geometry of the pressure metric is still rather mysterious and much remains to be
explored. The hope is that the geometry of the pressure metric will yield insights into the
nature of the Hitchin component and other higher Teichmiiller spaces, in much the way
that the study of the Teichmiiller and Weil-Petersson metrics have been an important tool
in our understanding of Teichmiiller space and the mapping class group. It is natural to
begin by exploring analogies with the Weil-Petersson metric on Teichmiiller space. We
begin the discussion by recalling some basic properties of the Weil-Petersson metric.

Properties of the Weil—Petersson metric.

(1) The extended mapping class group is the isometry group of 7(S) in the Weil—
Petersson metric (Masur and Wolf [59]).

(2) The Weil-Petersson metric is negatively curved, but the sectional curvature is not
bounded away from either O or —oo (Wolpert [86], Tromba [82], Huang [42]).

(3) If ¢ is a pseudo-Anosov mapping class, then there is a lower bound for its translation
distance on Teichmiiller space and there is a unique invariant geodesic axis for ¢
(Daskalopoulos and Wentworth [30]).
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(4) The Weil-Petersson metric is incomplete (Wolpert [85], Chu [25]). However, it
admits a metric completion which is CAT (0) and homeomorphic to the augmented
Teichmiiller space (see Masur [58] and Wolpert [88]).

Masur and Wolf’s result [59] on the isometry group of 7 (S) suggests the following
problem.

Problem 1. Is the isometry group of a Hitchin component generated by the (extended)
mapping class group and the contragredient involution? More generally, explore whether
the relevant outer automorphism group is a finite index subgroup of the isometry group of
a higher Teichmiiller space with the pressure metric.

Bridgeman et al [16] have shown that any diffeomorphism of 7{3(S) which preserves the
intersection number is an element of the extended mapping class group or the composition
of an element in the extended mapping class group with the contragredient involution.
Along the way, they show that any diffeomorphism which preserves the intersection
number also preserves the entropy and hence preserves the renormalized intersection
number, the pressure metric, and, by work of Potrie and Sambarino [69], the Fuchsian
locus. This suggests the following problem.

Problem 2. Prove that if g : H;(S) — H4(S) is an isometry with respect to the pressure
metric then I(g(p), g(0)) =1(p, o) for all p, o € Hy(S). It would follow that the
isometry of the group of the Hitchin component #3(S) is generated by the extended
mapping class group of S and the contragredient involution.

Bridgeman and Canary [15] have shown that the group of diffeomorphisms of quasi-
Fuchsian space Q F(S) which preserve the renormalized intersection number is generated
by the extended mapping class group and complex conjugation. So one may also consider
the corresponding analogue of Problem 2 in quasi-Fuchsian space.

It would be useful to study the curvature of the pressure metric, guided by the results
of Wolpert [86], Tromba [82], and Huang [42]. Wolf’s work [84] (see also [83]) on the
Hessians of length functions on Teichmiiller space may offer a plan of attack here.

Problem 3. Investigate the curvature of the Hitchin component in the pressure metric.

Pollicott and Sharp [68] have investigated the curvature of the pressure metric on
deformation spaces of marked metric graphs with entropy 1. In this setting, the curvature
can be both positive and negative.

Labourie and Wentworth [S1] have derived a formula for the pressure metric at points
in the Fuchsian locus of a Hitchin component in terms of Hitchin’s parametrization of the
Hitchin component by holomorphic differentials. They also obtain variational formulas
which are analogues of classical results in the Teichmiiller setting.

Since Labourie [50] proved that the mapping class group acts properly discontinuously
on a Hitchin component, it is natural to study the geometry of this action. One specific
question to start with would be the following problem.

Problem 4. 1s there a lower bound for the translation distance for the action of a pseudo-
Anosov mapping class on the Hitchin component?
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Since the restriction of the pressure metric to the Fuchsian locus is a multiple
of the Weil-Petersson metric, the Hitchin component is incomplete and the metric
completion contains augmented Teichmiiller space. However, very little is known about
the completeness of the pressure metric in ‘other directions.” The work of Zhang [91, 92]
and Loftin [54] (when d = 3) should be relevant here. It may also be interesting to study
the relationship between the metric completion and Parreau’s compactification [63] of the
Hitchin component.

Problem 5. Investigate the metric completion of the Hitchin component or other higher
Teichmiiller spaces.

Xu [89] studied the pressure metric on the Teichmiiller space 7 (S) where S is a surface
with non-empty geodesic boundary. He shows that the pressure metric in this case is not
equal to the classical Weil-Petersson metric on 7 (S). He further shows that it is not
complete and that the space of marked metric graphs on a fixed graph with its pressure
metric arises naturally in the completion.

The following problem indicates how little is known about the coarse geometry of the
pressure metric. We recall that a subset A of a metric space X is said to be coarsely dense
if there exists D > 0 such that every point in X lies within D of a point in A.

Problem 6. (a) Is the Fuchsian locus coarsely dense in a Hitchin component?

(b) Is the Fuchsian locus coarsely dense in quasi-Fuchsian space?

(c) If M is an acylindrical 3-manifold with no toroidal boundary components and I' =
m1(M), does CC(I", PSL;,(C)) have finite diameter?

Zhang [91, 92] and Nie [62] (when d = 3) produce sequences in Hitchin components
where entropy converges to 0. These sequences are candidates to produce points arbitrarily
far from the Fuchsian locus.

In case (c), Out(T") is finite (see Johannson [44]) and CC(I", PSL,(C)) has compact
closure in the PSL;(C)-character variety (see Thurston [81]).

One may phrase all the above questions as being about the quotient of a higher
Teichmiiller space by its natural automorphism group. Similarly, one might ask whether
the quotient of the Hitchin component by the mapping class group has finite volume.

Problem 7. Does the quotient of the Hitchin component by the action of the mapping class
group have finite volume in the quotient pressure metric?

Potrie and Sambarino [69] showed that the entropy function is maximal uniquely on the
Fuchsian locus of a Hitchin component, so it is natural to investigate more subtle behavior
of the entropy function.

Problem 8. Investigate the critical points on the entropy function.

Bowen [11] showed that the entropy function is uniquely minimal on the Fuchsian locus
in quasi-Fuchsian space Q F(S). Bridgeman [14] showed that the entropy function on
Q F(S) has no local maxima and moreover the Hessian of the entropy function is positive-
definite on at least a half-dimensional subspace at any critical point.

If M is an acylindrical 3-manifold with no toroidal boundary components and I" =
71 (M), then there is a unique representation in CC(I", PSL,(C)) where the boundary of
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the limit set of the image consists of round circles (see Thurston [80]). It is conjectured that
the entropy has a unique minimum at this representation (see Canary et al [23]). Storm [77]
proved that this is the unique representation where the volume of the convex core achieves
its minimum.

In the case of CC(T", PSL,(C)) we were able to obtain a path metric, even when the
pressure form is degenerate on a submanifold. One might hope to be able to do so in more
general settings.

Problem 9. If T is a word hyperbolic group, G is a semisimple Lie group and P* is a pair
of opposite parabolic subgroups, can one extend the pressure metric on Z(I", G, P*) to a
path metric on the space of all (conjugacy classes of) (G, P*)-Anosov representations of
" into G?
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