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Abstract— Physical interaction between humans and robots
can help robots learn to perform complex tasks. The robot arm
gains information by observing how the human kinesthetically
guides it throughout the task. While prior works focus on how
the robot learns, it is equally important that this learning is
transparent to the human teacher. Visual displays that show the
robot’s uncertainty can potentially communicate this informa-
tion; however, we hypothesize that visual feedback mechanisms
miss out on the physical connection between the human and
robot. In this work we present a soft haptic display that wraps
around and conforms to the surface of a robot arm, adding a
haptic signal at an existing point of contact without significantly
affecting the interaction. We demonstrate how soft actuation
creates a salient haptic signal while still allowing flexibility
in device mounting. Using a psychophysics experiment, we
show that users can accurately distinguish inflation levels of
the wrapped display with an average Weber fraction of 11.4%.
When we place the wrapped display around the arm of a robotic
manipulator, users are able to interpret and leverage the haptic
signal in sample robot learning tasks, improving identification
of areas where the robot needs more training and enabling the
user to provide better demonstrations. See videos of our device
and user studies here:

I. INTRODUCTION

Imagine teaching a rigid robot arm to clean objects off
a table (see Figure 1). One intuitive way for you to teach
this robot is through physical interaction: you push, pull, and
guide the arm along each part of the task. Of course, the robot
may not learn everything from a single demonstration, and
so you show multiple examples of closing shelves, removing
trash, and sorting objects. As you kinesthetically teach the
robot you are faced with two questions: i) has the robot
learned enough to clear the table by itself and ii) if not,
what parts of the task is the robot still uncertain about?

While existing work enables robots to learn from physical
human interaction [1]-[4], having the robot effectively pro-
vide real-time feedback to human teachers remains an open
problem. Ideally, this feedback should not be cumbersome or
distracting (i.e., the human must be able to focus on seam-
lessly guiding the robot) and should be easily interpretable
(i.e., the human must be able to clearly distinguish between
different signals). These requirements present a tradeoff as
human fingertips provide the densest mechanoreceptors, but
placing rigid devices at the hand will impact task perfor-
mance. Recent research has created communication channels
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Fig. 1. Human physically teaching a robot arm. We wrap a soft pneumatic
display around the arm and render haptic signals by controlling the pressure
of the display. The robot learner leverages this haptic display in real-time
to communicate the parts of the task that it is confident about, as well as
the parts where it is uncertain and needs additional guidance.

by wrapping haptic devices around the human’s arm [5]-
[7], but locating feedback on the human’s body can create a
disconnect with the robot’s task.

Our insight is that — instead of asking the human teacher
to wear a feedback device or watch a computer monitor —

We can take advantage of the preexisting physical contact
between the human and robot through slim form-factor soft
haptic displays that can be wrapped around the robot arm.

Accordingly, in this paper we apply soft robotics techniques
to develop, analyze, and apply a wrapped haptic display for
communicating robot learning. We distribute this soft display
along a rigid robot arm so that wherever the human physi-
cally interacts with the robot they perceive its feedback. We
then actively control the pressure of the pneumatic display to
render the robot’s uncertainty: the display inflates in regions
of the task where the robot is unsure about its actions (and
needs additional human teaching), and deflates in regions
where the robot is confident about the task (and does not
need any additional human guidance). Our hypothesis is that
— because the soft wrapped display creates a channel for
communication on any surface without impacting the task —
humans will be able to more intuitively and robustly use this
feedback. We experimentally demonstrate that this pressure-
based feedback enables humans i) to determine whether the
robot has learned enough to be deployed and ii) to identify
parts of the task where kinesthetic teaching is still required.
Overall we make the following contributions:

Developing Wrapped Haptic Displays. We design and
build a compliant pneumatic haptic device that wraps around
and conforms to the robot, providing haptic stimuli that are
localized to the robot arm and distributed along its geometry.
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This device is manufactured using soft, flexible pouches that
render haptic signals through pressure.

Measuring User Perception of Wrapped Displays. We
perform a psychophysics study to find the range of pressures
that humans can distinguish. We report the just noticeable
difference (JND) for pressures rendered by the soft display.

Applying Wrapped Displays to Communicate Learning.
We ask participants to kinesthetically teach a robot arm while
the robot provides real-time feedback about its learning. We
map the robot’s uncertainty to the pressure of our wrapped
display. When compared to a graphical user interface, render-
ing feedback with our wrapped haptic display leads to faster
and more informative human teaching, and is subjectively
preferred by human teachers.

II. RELATED WORK

In this paper we introduce a wrapped haptic display for
communicating robot learning in real-time during physical
human-robot interaction. We build on previous research for
kinesthetic teaching, haptic interfaces, and soft displays.

Kinesthetic Teaching. Humans can show robot arms how to
perform new tasks by physically demonstrating those tasks
on the robot [1]-[4]. As the human backdrives the robot,
the robot records the states that it visits and the human’s
demonstrated actions at those states. The robot then learns
to imitate the human’s actions and perform the task by
itself [8]. One important outcome of the learning process is
uncertainty: the robot can measure how confidently it knows
what to do at different states along the task [9], [10]. In
this paper we explore how robots should communicate their
learning uncertainty back to the human teacher. Keeping the
human up-to-date with what the robot has learned builds trust
and improves teaching [11]. Outside of physical human-robot
interaction, prior research has developed multiple modalities
to communicate robot learning and intent: these include robot
motion [12], graphical user interfaces [13], projections into
the environment [14], and augmented reality headsets [15].
Within a teleoperation domain, our recent work suggests that
haptic interfaces are particularly effective at communicating
low-dimensional representations of robot learning [6]. Here
we will leverage these results to develop a real-time feedback
interface specifically for kinesthetic teaching.

Haptics to Convey Intent. While haptic devices have a
general goal of stimulating the human sense of touch, haptics
have also been applied to communicate robot intent or similar
social features. For instance — when studying how humans
and robots should interact in shared spaces — prior works
have used haptics to explicitly convey the robot’s intended
direction of motion or planned actions [5], [16], [17]. Here
the haptic feedback is worn by the human (e.g., a wristband).
Wrapping the haptic device around the human’s arm enables
the human to move about the space while receiving real-time
feedback; but this feedback is physically separated from the
task, potentially requiring additional mental energy to decode
the robot’s message. Recent work has shown that, given
appropriate context, complex human-to-human social touch

signals, like stroking [18], [19], hugging [20], and emotional
communication [21], can be replicated and understood in
a wearable format. Based on these recent successes in
human-to-human touch, we revisit wrapped haptic devices:
instead of locating haptic devices on the human’s body, we
physically constrain the haptic signal to the point of the
human-robot interaction.

Soft Displays. To locate the haptic signal at the point of
interaction, we must develop a flexible display that can be
mounted onto a wide range of robot arms without redesign.
Previous soft displays have demonstrated compliance in two
factors: flexibility of the interface and compliance of the actu-
ators themselves. Soft haptic displays have been developed
with pneumatic actuation [22], [23], shape memory alloys
[19], and dielectric elastomers [24]. Many of these soft haptic
displays have been physically flexible, often so that they can
be worn by humans [19], [22], or even wrapped around a
human’s arm [23]. We will take advantage of the intrinsic
compliance of soft actuators and displays to create a wrapped
haptic display that we can mount on robot arms.

III. DEVELOPING A WRAPPED HAPTIC DISPLAY
A. Requirements

The design process for the wrapped display covered three
key requirements: low volume, fast inflation, and textured
surface. First, we wanted to design a display that would
clearly show inflation without using large volumes of air
and pressures. Limiting the volume that the display holds
allows for fast inflation and deflation. This is an important
design feature since fast transitions between inflation levels
would allow for faster changes in the signals that the display
is producing. An additional requirement was to create an
inflatable surface that would produce textured tactile sensa-
tions. Our hypothesis is that a textured surface would help
users to quickly identify pressure changes in the display since
there are more surface features to explore with their hands.
Since the target application of the wrapped haptic display
is robot learning, an additional design constraint was the
need to fully wrap the display around robot arms without
constraining motion or impairing demonstration.

B. Design

The soft wrapped haptic display consists of an array
of cells patterned into a low-density polyethylene (LDPE)
plastic tube using heat sealing. The cells are interconnected
to allow for smooth and fast inflation of the array via
a pattern of gaps in sealing. Initial testing showed that
having a single inflatable cell did not provide enough surface
change to assist users in identifying pressure changes, as
well as being slow to inflate. Additionally, single inflatable
cells were hard to wrap around objects. Adding heat seals
subdivides the cell, limiting the volume, adding additional
texture, and allowing the overall surface to remain flexible
when inflated and deflated. A repeated and homogeneous
pattern across the entire length allowed for even and reliable
inflation of the display. If the pattern was not homogeneous,
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Fig. 2. (a) Detailed view of the soft wrapped haptic display. The thick lines
indicates places where the LDPE plastic tube was heat-sealed. The wrapped
display is shown deflated (b) and inflated (c). The diagram description of
the pneumatic control system is shown in (d).

we found that issues such as superfluous contraction and
unintentional airflow blocking would happen.

The final square-array design is shown in Figure 2. The
soft wrapped haptic display is made from a set of 3 haptic
display strips made from an LDPE plastic tube (10.16 cm
wide). The plastic tube was cut to fit the length of one
of the sections of the robotic arm (40.64 cm). The square
pattern was manufactured into the plastic tube using a heat
sealer (H-89 Foot-Operated Impulse Sealer, ULINE) that
fused the plastic layers in precise lines. The sealed lines are
1.27 cm long, alternated in rows and columns to create 2.54
cm-squares during inflation. Figure 2(a) shows the design
with the dimensions in more detail. Through-wall straight
connectors (5779K675, McMaster-Carr) were attached to one
of the sides of each strip to allow for individual inflation.
Three display strips were taped together using viscoelastic
adhesive tape (MD-9000, Marker Tape) to construct a sleeve
that entirely wrapped the robotic arm and the pipe.

C. Implementation

The wrapped haptic display was mounted around a tube
of 6.35 cm diameter, either a PVC pipe or a section of the
UR10 robot arm (used for the Wrapped condition in Section

). For the Flat condition, a strip of the haptic display
was mounted on the table. The mounting arrangements fixed
the wrapped display in place, restricting it to less than
10% contraction. Figure 2(d) shows the pneumatic control
system for the wrapped haptic display. A pressure regulator
(QB3, Proportion-Air, McCordsville, Indiana) was controlled
using an Arduino Uno via MATLAB. The Arduino sent
analog signals to the QB3, which provided accurate pressure
values needed for the studies. For the user study described
in Section V, the pressure regulator (550-AID, ControlAuir,
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Fig. 3. Experimental Setup. The participants were instructed to sit in the
desk right in front of the curtain and put on hearing protection headphones.

Amberst, New Hampshire) was controlled using the UR10’s
I/O controller. Airflow to the haptic display was controlled
using two on-off solenoid valves (ASCO Z134A, Emerson,
St. Louis, Missouri). One of these allowed airflow from the
pressure regulator into the display, while the other allowed air
to escape for deflation. The inflation pressure was measured
using an electronic pressure sensor (015SPGAAS, Honeywell
Sensing, Gold Valley, Minnesota).

Tests showed that the soft wrapped haptic display can be
inflated quickly; pressures above 1.5 psi (10.43 kPa) inflate
the display in 0.86 seconds. The display can operate to a
maximum of 3.5 psi (24.13 kPa). Above that pressure the
heat-sealed edges begin to tear, producing small air leaks.

IV. MEASURING HUMAN PERCEPTION OF
WRAPPED HAPTIC DISPLAYS

Understanding the human sensory perception of the soft
display, especially as it compares to rigid haptic displays,
is essential in determining how to apply and control the
wrapped haptic display. To that end, we conducted a psy-
chometric user study to measure the basic ability to distin-
guish touch sensations outside of the context of the target
application scenario and to obtain qualitative data of how
users perceive the display. Participants physically interacted
with the display and were asked to distinguish between pairs
of pressures. We focused on studying the user’s ability to
differentiate pressure inflation levels in the display to un-
derstand the minimum pressure differential that can produce
clear haptic signals.

A. Experiment Setup

The inflatable haptic display was mounted on a PVC pipe
of identical diameter to the UR-10 used in Section V, as
described in Section . The pipe was placed lying flat
and secured to a table. As shown in Figure 3, we placed
a curtain to block the user’s vision and instructed users to
wear hearing protection to ensure the perception study was
focused entirely on tactile sensations.

The study was conducted as a forced-choice comparison
where participants were asked to identify the higher pressure.
The pressures were shown in pairs (i.e., reference pressure,
P,, vs. test pressure, P) to the user, distinguished as "Pres-
sure 1" and "Pressure 2". We selected 2 psi (13.79 kPa) as the
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reference pressure, and the test pressure values of 1.5, 1.75,
1.875, 2.0, 2.125, 2.25, and 2.5 psi (10.34, 12.07, 12.93,
13.79, 14.65, 15.51, and 17.93 kPa) since these pressures
are a safe range of pressures for the operation of the display.
Each pressure was compared against the reference ten times.
We randomized the order in which the P, and P pairs would
be shown to the participant, as well as the order in which the
reference and test pressure would be shown in each pair. We
also showed the reference pressure against itself to measure
bias on whether participants preferred choosing the first or
the second pressure when unsure.

The participants were instructed to sit at the desk, posi-
tioned in front of the curtain, and put on hearing protection
headphones. Before beginning the experiments, we demon-
strated the display function to the participants by inflating
the display to three pressure levels and allowing them to
interact with it. Each experimental trial started by inflating
the display to the selected "Pressure 1". Once the display
reached a steady-state, constant pressure, the participants
were asked to touch and interact with the display for an
unrestricted period of time and then release it. There was
no restriction on how the participants could grasp or touch
the display; however, they were allowed to interact only
while the device had a constant pressure. Then, the display
was inflated to “Pressure 2”. Again, the participants were
asked to touch the display and then release it. Once they
interacted with both pressure levels, we asked which one felt
like a higher inflation pressure. The subjects were not told
the correct answers during the experiment. This procedure
was then repeated until all pairs of pressures were tested ten
times. Since seven different pressures were tested against the
reference pressure, we had a total of 70 pairs in the study.

After completing the interaction portion of the experiment,
the participants were given a post-experiment questionnaire.
The questionnaire asked about the overall experience during
the study (clarity of instructions, sense of safety during the
experiment) and about their previous experiences and famil-
iarity with haptic technology, robotics, and video games. The
entire experiment took approximately 35 minutes, with an
optional break after the first 35 experimental pairs.

B. Results

A total of 10 participants (5 female or nonbinary, average
age 20.6 years, age range 18 — 23 years) participated in this
experiment after giving informed consent. Out of the group,
9 participants were right-handed, and 1 was left-handed.
The Purdue Institutional Review Board approved the study
protocols. Figure 4 shows a single subject’s responses to the
experiment. Each dot shows the percentage of times the test
pressure was selected as higher when compared against the
reference pressure. The just noticeable difference (JND) was
calculated by first fitting a sigmoid function to the data:
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where ¢ is the modeled percentage of times the user choose
the test pressure (P) as higher, & is the steepness factor for
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fitting a sigmoid curve, P is the test pressure, and P is the
reference pressure. Using this fit, the JNDs are calculated
by finding the pressure value corresponding to the 75%
threshold, Prs, and subtracting the reference pressure, F:

1
JND = Prs — P, = —

2
Figure 5 shows the sigmoid function fit for each of the
subjects, as well as the fit for the collection of responses
from all subjects.

C. Analysis

The experimental results show that the &k steepness factor
for the overall sigmoid fit (shown as the orange line in
Figure 5) was 4.678, with 95% confidence bounds between
3.605 and 5.751, giving a JND of 0.235 psi (1.62 kPa).
Table | summarizes the JNDs for each of the participants.
Individual JNDs ranged 0.099-0.444 psi (0.68-3.06 kPa). The
mean JND was defined as the mean of the values obtained
for all participants, which was found to be 0.228 psi (1.57
kPa), with a standard deviation of 0.109 psi (0.75 kPa).
The Weber fraction (WF), calculated as the ratio of the
JND and the reference pressure, ranged between 4.9% and
22.2%, with a mean value of 11.4%. Although there was no
restriction on how the user could interact with the display,
multiple users reported (via post-experiment questionnaire)
using active interaction with the inflation to explore the
display. This means that users explored reactive force sensing
to explore the dynamics of inflation and determine how much
pressure was used to inflate the display. Additionally, the
users reported they mainly used their fingertips. Previous
studies on fingertip psychophysics tests show similar values
for INDs and WF. Frediani and Carpi [25] conducted psy-
chophysical tests for a fingertip-mounted pneumatic haptic
display, reporting JNDs varying in the range of 0.12-0.33
psi (0.8-2.3 kPa) for driving pressure between 0.58 and 2.90
psi (4 and 20 kPa). The WF found for this experiment was
15%. Another study evaluating a haptic jamming display
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Fig. 4. Raw data and sigmoid function fit for a single participant. The
percentages represent the times this subject selected the test pressure, P, as
higher. The JNDs were calculated using the sigmoid function to solve for
the pressure value corresponding to the 75% threshold, and subtracting it
from the reference pressure.
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Fig. 5. Sigmoid function fit for each of the subjects (grey), and the
collection of responses from all subjects (orange). The dots represent
percentages associated with individual subject responses. The k steepness
factor for the overall sigmoid fit was 4.678, giving a JND of 0.235 psi. The
individual steepness factors ranged 2.477-11.15, with JNDs varying between
0.099 and 0.444 psi (0.68-3.06 kPa).

found fingertips WF to be 16% (with a standard deviation
of 7.4%) and 14.3% (with a standard deviation of 2.6%) for
stiffness and size perception, respectively [26]. A different
study testing stiffness perception for a rigid vibrotactile,
fingertip-mounted haptic device reported WF between 17.7
and 29.9% [27]. The results of this study demonstrate
that our wrapped haptic display performs according to the
psychometric baselines found in the literature. The JNDs
and Weber fractions obtained show that the display produced
detectable signals and matched previously developed rigid or
soft haptic devices in performance.

As mentioned in Section , the reference pressure was
shown against itself 10 times to the subjects to measure bias
on whether users had a preference for choosing ‘“Pressure
17 or “Pressure 2”. Overall, the results showed that there
was no bias on their choices. The subjects chose “Pressure
17 as the higher pressure 45% of the time, and ‘“Pressure
2” 55% of the time. Two subjects had a large preference
for choosing “Pressure 2” as the highest when shown this
pair of identical pressures (80% of the time). Looking at the
qualitative data, one of these subjects mentioned that they
were unsure about their answers throughout the experiment,
which may explain the discrepancy in their bias relative to
the average bias shown by the complete pool of participants.

The qualitative data collected from the post-experiment
questionnaire shows that, besides the participant already
mentioned (which had the highest JND), no other participants
struggled to identify the pressures. A majority of the partici-
pants (7) mentioned that they could detect the differences and
that they “more or less agree” or “completely agree” that they
were sure about their answers throughout the experiment.
Additionally, 9 out of the 10 participants said they felt
safe interacting with the haptic display. It is also worth
noting that the subjects with the highest correctness rates
when comparing pressures mentioned they have dexterity-
related hobbies or skills. For example, subject 2, who had the
smallest JND and Weber fraction, mentioned that they play
multiple string musical instruments. This activity requires
them to vary contact pressure, which explains their high
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TABLE I
EXPERIMENTAL RESULTS FOR PSYCHOPHYSICS STUDY.

| Subject | k|| JND (psi) [ WF (%) |
1 5.048 0.218 10.88
2 11.15 0.099 4.927
3 3.846 0.286 14.28
4 2.478 0.443 22.17
5 4.989 0.220 11.01
6 8.557 0.128 6.419
7 2477 0.444 22.18
8 5.008 0.219 10.97
9 4.574 0.240 12.01
10 5.102 0.215 10.77
Mean 4.810 0.228 11.42
St Dev 2.524 0.109 5.431
Overall 4.678 0.235 11.74

performance in the experiment. Other hand-related activities
mentioned by high-performing participants include knitting,
piano playing, and American Sign Language proficiency.
This study shows that the sensations produced by our
wrapped haptic display match the psychometric measures
for other haptic devices. The fingertip JNDs were in close
agreement with those found in the literature. Additionally,
qualitative data showed that users felt safe interacting with
the display. The users were able to distinguish pressure
changes without a specific task context and visual feedback.
The qualitative and quantitative data show that the wrapped
haptic display fulfilled the requirements outlined in Section
. Overall, we demonstrated that the soft wrapped haptic
display can perform as well as other haptic devices (both
rigid or soft) in displaying tactile signals without encumber-
ing normal interaction. Additionally, the flexible structure
of the display, with a slim form-factor and soft actuation,
has potential benefits when compared to wearable haptic
displays, such as the ability to wrap it around objects. This
ease of mounting to different surfaces effectively increases
the variety of applications where the display can be used.

V. APPLYING WRAPPED HAPTIC DISPLAYS TO
COMMUNICATE ROBOT LEARNING

So far we have studied the precision with which humans
can perceive the wrapped haptic display. Next, we apply this
display to convey robot learning from physical interactions.
In this experiment, participants kinesthetically teach a UR-
10 robot arm to perform a set of cleaning tasks. We apply an
existing learning algorithm to measure the robot’s uncertainty
[10] and then convey that uncertainty back to the human
in real-time. We highlight two key differences from the
experiment in Section [V: the robot arm is moving during
interaction (i.e., the wrapped haptic display is not stationary),
and the haptic display now conveys a specific signal that the
human must interpret and react to during interaction. We
recognize that — because participants are now interacting
with a moving robot arm — they will experience both the
forces they apply to the arm and the pressure rendered by
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the haptic display, which will also be changing to represent
uncertainty. We anticipate this will make pressure differences
more easy to distinguish compared to the perception study,
where participants interacted with constant signals.

Independent Variables. We compared three different types
of feedback (see Figure 6):

o A graphical user interface (GUI) that displayed the
robot’s uncertainty on a computer monitor.

o Our soft haptic display placed Flat on the table.

o Our proposed approach where we Wrapped the haptic
display around the robot arm.

All three types of feedback showed the same information
but used different modalities. Within the GUI baseline we
displayed uncertainty on a computer screen that was located
in front of the user. Here uncertainty was shown as a
percentage, where numbers close to 0% meant that the robot
was certain about that specific part of the task, and numbers
close to 100% indicated that the robot was uncertain about
what it had learned. The Flat and Wrapped interfaces
used the soft haptic display from Section III. Uncertainty
was linearly scaled on the haptic display from 1 — 3 psi
(6.89 — 20.68 kPa). Here 1 psi (deflated bags) corresponded
to 0% uncertainty and 3 psi (inflated bags) corresponded to
100% uncertainty. The Flat haptic display was placed in a
designated area next to the human, such that participants
could periodically touch it while guiding the robot.

Experimental Setup. Participants completed three different
tasks with each of the three feedback conditions (i.e., nine
total trials). In the Organizing task participants were asked
to guide the robot to close a drawer, pick up a ball, and then
place the ball in the basket. In the Shelving task participants
kinesthetically taught the robot to close a drawer and then
pull an empty container from the shelf. Finally, in the
Cleaning task participants taught the robot to pick up a ball
from the top of the shelf, place it in the basket, and drag the
basket to a marked location (Figure 6 shows Cleaning task).

Before conducting any experiments we first initialized the
robot’s uncertainty. We collected five expert demonstrations
of each task and trained the robot with a behavior cloning
approach [10]. This approach outputs the robot’s uncertainty
at each state (i.e., uncertainty was a function of the robot’s
joint position). We purposely removed segments of the ex-
pert’s demonstrations from the training set: specifically, we
trained the robot without showing it how to perform either
the first segment or the last segment of the task. As a result,
when participants interacted with the robot, the robot was
uncertain about either the start or the end of the task.

For each trial the participant provided two demonstrations.
First, the participant kinesthetically guided the robot through-
out the entire task while receiving real-time feedback from
GUI, Flat, or Wrapped. Based on this feedback, the partic-
ipant attempted to identify the region of the task where the
robot was uncertain (and needed additional teaching). During
the second demonstration, the human only taught the segment
of the task where they believed the robot was uncertain
(i.e., the region they identified in the first demonstration).
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Fig. 6. Participant kinesthetically teaching the robot arm the Cleaning task.
(Top) We compared our proposed approach (Wrapped) to two alternatives.
GUI displayed the robot’s uncertainty on a screen, while in Flat we placed
the haptic display on table. (Bottom) We initialized the robot with data from
known segments. During their first demonstration the human attempted to
identify the region where the robot was uncertain (i.e., the new segment).
The human then gave a second demonstration where they only guided the
robot through the region(s) where they thought it was uncertain.

If the feedback is effective, participants should only reteach
segments where the robot is confused without repeating parts
of the task that the robot already knows.

Participants and Procedure. We recruited ten participants
from the Virginia Tech community to take part in our study
(b female, average age 22.9 years, age range 19 — 26 years).
All subjects provided informed written consent prior to the
experiment. Only one participant had prior experience phys-
ically interacting with a robot arm. Before starting the trials,
we allowed participants to familiarize themselves with each
task and feedback method. We used a within-subject study
design: every participant interacted with all three feedback
conditions. To mitigate the confounding effect of participants
improving over time, we counterbalanced the order of the
feedback conditions (e.g., different participants start with
different feedback types).

Dependent Measures — Objective. Our objective measures
were based on the user’s second demonstration (i.e., the
demonstration where they tried to reteach the uncertain
part of the task). We recorded the amount of time users
spent on this second demonstration (Teaching Time) and
the percentage of this second demonstration that overlapped
with the segment where the robot was actually uncertain
(Correct Segment). Offline, we retrained the robot using the
participant’s second demonstration. We then measured the
percentage reduction in uncertainty due to the user’s demon-
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Objective and subjective results when communicating robot uncertainty in real-time with GUI, Flat, and Wrapped feedback. Participants taught

the robot three tasks; we here report the aggregated results across tasks. Error bars show standard error of the mean (SEM), and * indicates statistically
significant comparisons (p < .05). (Left) Wrapping the haptic display around the robot arm caused participants to spend less time teaching the robot,
focused their teaching on regions where the robot was uncertain and improved the robot’s understanding of the task after the human’s demonstration.
(Right) Participants thought that the wrapped display best enabled them to focus on the task, and they preferred this feedback type to the alternatives.

Watching GUI Focused on Robot

Watching GUI

Focused on Robot Focused on Robot Focused on Robot

Fig. 8. Participant teaching the same task under two different feedback con-
ditions. (Top) When working with GUI, participants must occasionally look
at the visual interface to monitor the robot’s uncertainty. (Bottom) Wrapping
the feedback around the robot arm enables the human to seamlessly teach
the robot without having to remember to check an external interface.

stration (Improvement). Let U; be the robot’s uncertainty
after the first demonstration, and Uy be the uncertainty after
the second demonstration. Here Improvement = UlU;le -100.

Dependent Measures — Subjective. Participants filled out a
7-point Likert scale survey after completing all three tasks
with a given method. Questions were grouped into six multi-
item scales: was the user able to recognize parts they needed
to repeat (informative), did the robot’s feedback have any
effect on the user’s ability to demonstrate the task (easy),
was the user able to fully focus on teaching the task, did the
robot’s feedback seem natural to the user, did the user find
robot’s feedback intuitive and understandable, and did the
user prefer this current feedback method to the alternatives.

Hypotheses. We had two hypotheses for this user study:
H1. Participants will most efficiently teach the
robot with wrapped haptic displays.

H2. Participants will subjectively prefer our
wrapped haptic display over other methods.

Results — Objective. We report our aggregated results in
Figure 7 and show an example interaction in Figure 8.

829

We first ran a repeated measures ANOVA, and found that
the robot’s feedback type had a statistically significant effect
on Teaching Time, Correct Segment, and Improvement. Post
hoc analysis revealed that participants spent less time teach-
ing the robot with Wrapped than with either GUI or Flat
(p < .05). Participants also better focused their teaching on
the region where the robot was actually uncertain: Wrapped
resulted in a higher Correct Segment than Flat (p < .05).
However, here the differences between Wrapped and GUI
were not statistically significant (p = .287).

Recall that Improvement captures how much more confi-
dent the robot is about the task after the participant’s demon-
stration. This metric is especially important: we want to
enable humans to teach robots efficiently, and Improvement
quantifies how much the robot learned from the human’s
teaching. We found that the robot’s confidence improved
the most in the Wrapped condition as compared to either
GUI or Flat (p < .05). Overall, these results support H1:
when users get real-time feedback from a haptic display
wrapped around the robot arm, they provide shorter duration
kinesthetic demonstrations that more precisely hone in on
the robot’s uncertainty and efficiently correct the robot.

To better explain why Wrapped outperformed GUI, we
include an example interaction in Figure 8. Notice that —
when the feedback was not located directly on the robot arm
— participants had to periodically turn their attention away
from the task in order to check the robot’s uncertainty. For
Flat, this required taking a hand away from the robot and
feeling the haptic display on the table; for GUI, participants
had to look up and check the computer monitor. The key
difference with Wrapped is that this haptic display is
located at the point of interaction, and thus participants could
experience feedback while still remaining focused on the task
and their physical demonstration.

We were initially surprised that — although users with
Wrapped and GUI scored similarly for Correct Segment
— the results for Improvement were significantly different.
However, we believe the explanation for this lies in the qual-
ity of the participants’ demonstrations. Returning to Figure 8,
we recognize that with GUI participants often had to pause
and check the uncertainty, breaking up their demonstration
(and causing the demonstration to include multiple stops).
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Our subjective results support this explanation: as we will
show, participants reported that they were more distracted
with GUI than with Wrapped feedback.

Results — Subjective. Figure 7 depicts the results from our
Likert scale survey. After confirming that our six scales were
reliable (using Cronbach’s alpha), we grouped these scales
into combined scores and ran a one-way repeated measures
ANOVA on each resulting score.

Participants perceived each of the feedback methods as
similarly natural. But post hoc analysis showed that partici-
pants thought that Wrapped was more informative, easier to
interact with, less distracting, and more intuitive than either
one or both of the alternatives (p < .05). Participants also
indicated that they preferred Wrapped over GUI and Flat.
When explaining this preference, one participant said, “I
definitely prefer Wrapped over other methods. I was able
to clearly focus and the other methods were distracting.”.
Our subjective results support H2, and indicate that users
perceived wrapped haptic displays as preferable when com-
pared to alternatives like visual interfaces.

Limitations. This experiment is a first step towards wrapped
haptic displays that communicate physical robot learning.
During the user study we purposely caused the robot to be
uncertain about either the first segment (the start of the task)
or the last segment (the end of the task). Anecdotal evidence
suggests that some participants expected the robot to always
know the start of the task: “How can a robot be confused at
the beginning?” We recognize that this assumption may be a
confounding factor in our results (although we did randomize
the unknown segment across tasks and users).

VI. CONCLUSION

In this paper we presented a soft wrapped haptic display
capable of communicating information about a robot’s inter-
nal state during physical interaction. We manufactured the
pneumatic device using soft, flexible pouches that render
haptic signals through pressure, and then wrapped this haptic
display around rigid robot arms. Our results suggest that
humans can accurately distinguish between different pres-
sures rendered by the wrapped haptic display, and that this
approach provides more informative feedback about robot
learning than current alternatives. Future work will expand
the complexity of the signals rendered by the soft display:
we will alter the pouch shapes and distributions, and exploit
these enhanced capabilities of our soft array to provide more
nuanced and complex feedback.
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