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RENORMALIZED VOLUME AND THE VOLUME OF
THE CONVEX CORE

by Martin BRIDGEMAN & Richard D. CANARY (*)

Abstract. — We obtain upper and lower bounds on the di�erence between
the renormalized volume and the volume of the convex core of a convex cocompact
hyperbolic 3-manifold which depend on the injectivity radius of the boundary of
the universal cover of the convex core and the Euler characteristic of the boundary
of the convex core. These results generalize results of Schlenker obtained in the
setting of quasifuchsian hyperbolic 3-manifolds.

Résumé. — On obtient des majorations et des minorations pour la di�érence
entre le volume renormalisé et le volume du cœur convexe d’une variété hyperbo-
lique convexe cocompacte qui dépendent du rayon d’injectivité du bord du revête-
ment universel du cœur convexe et de la caractéristique d’Euler du bord. Ces ré-
sultats généralisent ceux de Schlenker obtenus pour les 3-variétés quasifuchsiennes.

1. Introduction

Krasnov and Schlenker [16, 17] studied the renormalized volume of a
convex cocompact hyperbolic 3-manifold. Renormalized volume was intro-
duced in the more general setting of infinite volume conformally compact
Einstein manifolds as a way to assign a finite normalized volume in a natu-
ral way (see Graham–Witten [11]). Krasnov and Schlenker’s renormalized
volume generalizes earlier work of Krasnov [15] and Takhtajan–Teo [21] for
special classes of hyperbolic 3-manifolds. In particular, it is closely related
to the Liouville action functional studied by Takhtajan–Teo [21] and the
renormalized volume gives rise to a Kähler potential for the Weil–Petersson
metric (see Krasnov–Schlenker [16, §8]).

Keywords: convex cocompact, hyperbolic 3-manifold, Renormalized Volume, Convex
cores.
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(*) Bridgeman was partially supported by NSF grant DMS-1500545. Canary was par-
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Schlenker [20] showed that there exists K > 0 such that if M is a quasi-
fuchsian hyperbolic 3-manifold, then

VC(M) ≠ K|‰(ˆM)| 6 VR(M) 6 VC(M)

where VR(M) is the renormalized volume of M and VC(M) is the volume
of the convex core C(M) of M . This inequality, along with a variational
formula for the renormalized volume, was used by Kojima–McShane [14]
and Brock–Bromberg [7] to give an upper bound on the volume of a hy-
perbolic 3-manifold fibering over the circle in terms of the entropy of its
monodromy map.

In this paper, we use the work of the authors [3, 4, 5, 6, 8] to general-
ize Schlenker’s result to the setting of all convex cocompact hyperbolic
3-manifolds. We exhibit bounds on the di�erence between VC(M) and
VR(M) in terms of the injectivity radius of the boundary of the univer-
sal cover of the convex core and the Euler characteristic of the boundary
of the convex core. We will see that, even if |‰(ˆC(M))| is bounded, this
di�erence can be arbitrarily large.

The convex core C(M) of a complete hyperbolic 3-manifold M (with
non-abelian fundamental group) is the smallest convex submanifold of M

whose inclusion into M is a homotopy equivalence. Its boundary ˆC(M)
is a hyperbolic surface in its intrinsic metric (see Epstein–Marden [10,
Thm. II.1.12.1] and Thurston [23, Prop. 8.5.1]). A complete hyperbolic
3-manifold M (with non-abelian fundamental group) is said to be convex
cocompact if C(M) is compact.

Our results, and their proofs, naturally divide into two cases, depending
on whether the boundary of the convex core is incompressible. We recall
that ˆC(M) is incompressible if whenever S is a component of ˆC(M), then
fi1(S) injects into fi1(M). Equivalently, the boundary of the convex core is
incompressible if and only if fi1(M) is freely indecomposable. In particular,
if M is a quasifuchsian hyperbolic 3-manifold, the boundary of its convex
core is incompressible. In this case, we get the following generalization of
Schlenker’s result.

Theorem 1.1. — If M = H
3
/� is a convex cocompact hyperbolic

3-manifold and ˆC(M) is incompressible, then

VC(M) ≠ 6.89|‰(ˆC(M))| 6 VR(M) 6 VC(M) .

Moreover, VR(M) = VC(M) if and only if ˆC(M) is totally geodesic.

In Proposition 5.1 we construct examples demonstrating the necessity of
a linear dependence on |‰(ˆC(M))| in Theorem 1.1.
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If the boundary of the convex core is compressible, then the boundary
of the universal cover Ĉ(M) of the convex core is not simply connected
and it is natural to consider its injectivity radius ÷, in its intrinsic metric.
Equivalently, ÷ is half the length of the shortest homotopically non-trivial
curve in ˆC(M) which bounds a disk in C(M).

Theorem 1.2. — If M is a convex cocompact hyperbolic 3-manifold,
ˆC(M) is compressible and ÷ > 0 is the injectivity radius of the intrinsic
metric on ˆĈ(M), then

VC(M) ≠ |‰(ˆM)|
3

45 log
3

1
min{1, ÷}

4
+ 67

4
6 VR(M) < VC(M)

Furthermore, if ÷ 6 sinh≠1(1), then

VR(M) 6 VC(M) ≠ fi log
3

1
÷

4
≠ 1.79 .

If M = H
3
/�, then the domain of discontinuity �(�) is the largest open

subset of Ĉ = ˆH
3 which � acts properly discontinuously on. The quotient

ˆcM = �(�)/� is called the conformal boundary of M . The manifold M

is convex cocompact if and only if
„M = M fi ˆcM = (H3 fi �(�))/�

is compact. �(�) admits a unique conformal metric of curvature ≠1, called
the Poincaré metric. Since the Poincaré metric is conformally natural, it
descends to a hyperbolic metric on the conformal boundary. We also obtain
a version of our theorem where the bounds depend on the injectivity radius
of the Poincaré metric on �(�).

Theorem 1.3. — If M = H
3
/� is a convex cocompact hyperbolic 3-

manifold, ˆC(M) is compressible and ‹ > 0 is the injectivity radius of the
Poincare metric on �(�), then

VC(M) ≠ |‰(ˆC(M))|
3

205
‹

+ 202
4

6 VR(M) < VC(M) .

Furthermore, if ‹ 6 1

2
, then

VR(M) 6 VC(M) ≠
3

9
‹

≠ 9
4

One may loosely reformulate Theorem 1.2 as saying that VC(M)≠VR(M)
is comparable to log 1

÷(M)
when ÷(M) is small, where ÷(M) is the injectivity

radius of ˆ̂C(M). Similiarly, one may reformulate Theorem 1.3 as saying
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2086 Martin BRIDGEMAN & Richard D. CANARY

that VC(M) ≠ VR(M) is comparable to 1

‹(M)
when ‹(M) is small, where

‹(M) is the injectivity radius of �(�) in the Poincaré metric.
We note that one may obtain slightly more precise forms of our results

by giving exact forms for the constants involved, but the expressions for
the constants would be rather unpleasant and it seems unlikely that the
constants obtained by our techniques are sharp. However, our estimates are
of roughly the correct asymptotic form as ‹ or ÷ approach 0.

Acknowledgements

The authors would also like to thank Curt McMullen and Greg Mc-
Shane for useful conversations related to this work. This material is based
upon work supported by the National Science Foundation under grant
No. 0932078 000 while the authors were in residence at the Mathemati-
cal Sciences Research Institute in Berkeley, CA, during the Spring 2015
semester.

2. Renormalized Volume

In this section, we recall the work of Krasnov–Schlenker ([16, 17]) and
Schlenker ([20]) on renormalized volume for convex cocompact hyperbolic
3-manifolds. We will assume for the remainder of the paper that M = H

3
/�

is convex cocompact.
If N is a compact, C

1,1 strictly convex submanifold such that the inclu-
sion of N into M is a homotopy equivalence, the W -volume of N is given
by

W (N) = V (N) ≠ 1
2

⁄

ˆN
H dA

where H is the mean curvature function.(1) (We recall that a submanifold
N is strictly convex if the interior of any geodesic in M joining two points
in N lies in the interior of N .)

Notice that if N is C
1,1, then the curvature and mean curvature of ˆN

are defined almost everywhere and the integral of mean curvature is well-
defined and well-behaved. This is the natural regularity assumption, since

(1) We are using the convention that the mean curvature H is the average of the principal
curvatures, while Krasnov and Schlenker [16, 17] use the convention that H is the sum
of the principal curvatures, so our definition, although apparently di�erent, agrees with
theirs.

ANNALES DE L’INSTITUT FOURIER
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a metric neighborhood of the convex core is C
1,1 (see Epstein–Marden [10,

Lem. II.1.3.6]), but need not be C
2.

If r > 0 and Nr is the closed r-neighborhood of N , then Nr is C
1,1

and strictly convex, and {Sr = ˆNr}r>0 is a family of equidistant surfaces
foliating the end of M . In particular, Nr is homeomorphic to „M for all
r > 0. The following fundamental lemma relates W (Nr) to W (N).

Lemma 2.1 (Krasnov–Schlenker [16, Lem. 4.2], Schlenker [20, Lem. 3.6]).
If M is a convex cocompact hyperbolic 3-manifold and N is a strictly
convex, C

1,1, compact submanifold such that the inclusion of N into M is
a homotopy equivalence, then

W (Nr) = W (N) ≠ rfi‰(ˆC(M)) .

Lemma 2.1 follows from the fact that

Ẇt = d
dt

W (Nt) = d
dt

V (Nt) ≠ 1
2

d
dt

3⁄

St

Ht dAt

4
= A(t) ≠ 1

4A
ÕÕ(t)

where A(t) is the area of St. The general solution to the equation y
ÕÕ≠4y = 0

is ae
2t + be

≠2t. Therefore as the exponential terms in A(t) are of this form,
they do not contribute to a change in W -volume. Further analysis shows
that the remaining terms give Ẇt = ≠fi‰(ˆN).

If Ir is the intrinsic metric on Sr, the normal map identifies Sr with the
conformal boundary ˆcM and one may define the limiting conformal metric
I

ú on ˆcM by
I

ú = lim
ræŒ

4e
≠2r

Ir .

C. Epstein [9] showed that given any conformal C
1,1 metric h on ˆcM ,

there exists an (asymptotically) unique family of equidistant submanifolds
Nr(h), called the Epstein submanifolds, whose limiting conformal structure
is h. Explicitly, let � ™ Ĉ be a hyperbolic domain in the Riemann sphere
and let g be a C

1,1 conformal metric on �. Given z œ �, let H(z, g) be the
horoball bounded by the horosphere

h(z, g) =
)

x œ H
3 | vx(z) = g(z)

*

where vx is the visual metric on Ĉ obtained by identifying Ĉ with T
1
xH

3.
Then

�(g) = ˆ

A
€

zœ�

H(z, g)
B

.

is the outer envelope of the collection of horospheres {h(z, g)}zœ�.
If h is a conformal metric on ˆcM , then h lifts to a metric h̃ on �(�).

For all su�ciently large r, �(er
h̃) descends to a C

1,1 surface Sr bounding

TOME 67 (2017), FASCICULE 5
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a strictly convex submanifold Nr(h) of M . Lemma 2.1 indicates that it is
natural to define the W-volume of h as

W (h) = W (Nr(h)) + rfi‰(ˆNr(h))

for any r large enough that Nr(h) is well-defined, strictly convex and C
1,1.

The renormalized volume VR(M) = W (fl) where fl is the Poincaré metric
on the conformal boundary ˆcM . Krasnov and Schlenker [16, §7] showed
that the renormalized volume is the maximum of W (h) as h varies over all
smooth conformal metrics on ˆcM with area 2fi|‰(ˆcM)|.

The W -volume satisfies the following linearity and monotonicity proper-
ties, which will be very useful in establishing our bounds.

Lemma 2.2 (Schlenker [20, Prop. 3.11, Cor. 3.8](2) ). — Let M be a
convex cocompact hyperbolic manifold. Then

(1) (Linearity) If s œ R and h is a C
1,1 conformal metric on ˆcM , then

W (es
h) = W (h) ≠ sfi‰(ˆM) .

(2) (Monotonicity) If g and h are non-positively curved, C
1,1, conformal

metrics on ˆcM and g(x) 6 h(x) for all x œ ˆcM , then

W (g) 6 W (h) .

The proof of (1) follows nearly immediately from the definitions. We note
that from the definition of Nr(h) that Nr(es

h) = Nr+s(h). Therefore,

W (es
h) = W (Nr(es

h)) + fir‰(M) = W (Nr+s(h)) + fir‰(ˆM)
= (W (Nr(h)) ≠ fis‰(ˆM)) + fir‰(ˆM)
= (W (Nr(h)) + fir‰(ˆM)) ≠ fis‰(ˆM)
= W (h) ≠ fis‰(ˆM) .

The proof of (2) is more involved. One first observes that if g 6 h and r is
large enough that Nr(g) and Nr(h) are both defined, then Nr(g) ™ Nr(h).
Schlenker then defines a relative W -volume of the region Nr(h) ≠ Nr(g),
which agrees with W (Nr(h)) ≠ W (Nr(g)), and uses a foliation of
Nr(h) ≠ Nr(g) by strictly convex, C

1,1, non-positively curved surfaces to
prove that this relative W -volume is non-negative.

(2) The references here and elsewhere in the paper are to the revised version of [20] which
appears at https://arxiv.org/abs/1109.6663. In particular, the assumption that g and
h are non-positively curved is omitted from the published version.

ANNALES DE L’INSTITUT FOURIER
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3. The Thurston metric on the conformal boundary

The Thurston metric · = ·(z)|dz| on a hyperbolic domain � µ Ĉ is
defined by letting the length of a vector v œ Tz(�) be the infimum of the
hyperbolic length of all vectors v

Õ œ H
2 such that there exists a Möbius

transformation f such that f(H2) µ � and df(vÕ) = v. The Thurston
metric is clearly conformally natural and conformal to the Euclidean metric.
Therefore, if M = H

3
/� is convex cocompact, then the Thurston metric

· on �(�) descends to a conformal metric on ˆcM which we will again
denote · and call the Thurston metric. Kulkarni and Pinkall [18, Thm. 5.9]
proved that the Thurston metric is C

1,1 and non-positively curved (see also
Herron–Ibragimov–Minda [12, Thm. C]).

We recall that the Poincaré metric fl = fl(z)|dz| on � can be similarly
defined by letting the length of a vector v œ Tz(�) be the infimum of the
hyperbolic length over all vectors v

Õ such that there exists a conformal map
f : H2 æ Ĉ such that f(H2) µ � and df(vÕ) = v. So, by definition,

fl(z) 6 ·(z)

for all z œ �. So, by the monotonicity lemma, Lemma 2.2,

VR(M) = W (fl) 6 W (·) .

One may combine estimates of Beardon–Pommerenke [2], Canary [8,
Cor. 3.3] and Kulkarni–Pinkall [18, Thm. 7.2] to establish the following
relationship between the Poincaré metric and the Thurston metric of a
uniformly perfect hyperbolic domain (see Bridgeman–Canary [6, §3]). No-
tice that if M = H

3
/� is convex cocompact, then � acts cocompactly by

isometries on �(�), so there is a lower bound on the injectivity radius of
�(�) in the Poincaré metric.

Theorem 3.1. — Let � be a hyperbolic domain in Ĉ and let ‹ > 0 be
the injectivity radius of the Poincare metric fl on �. If · is the Thurston
metric on � and k = 4 + log(3 + 2

Ô
2) ¥ 5.76, then

·(z)
2
Ô

2(k + fi2

2‹ )
6 fl(z) 6 ·(z)

for all z œ �. Moreover, fl = · if and only if � is a round disk.

If � is a simply connected hyperbolic domain, then the Thurston metric
and the Poincaré metric are 2-bilipschitz.

TOME 67 (2017), FASCICULE 5
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Theorem 3.2 (Anderson [1, Thm. 4.2], Herron–Ma–Minda [13,
Lem. 3.2]). — If � is a simply connected hyperbolic domain with Poincare
metric fl and Thurston metric · , then

·(z)
2 6 fl(z) 6 ·(z)

for all z œ �.

It will be useful to be able to pass back and forth between lower bounds
on the injectivity radius of the boundary ˆĈ(M) of the universal cover of
the convex core, in the intrinsic metric, and lower bounds on the injectivity
radius bound of the Poincaré metric on the domain of discontinuity.

Proposition 3.3. — Suppose that M = H
3
/� is a convex cocompact

hyperbolic 3-manifold and that ˆC(M) is non-empty.
(1) (Bridgeman–Canary [4, Lem. 8.1]) If ‹ > 0 is a lower bound for the

injectivity radius of �(�) in the Poincaré metric, then

e
≠m

e
≠fi2

2‹

2

is a lower bound for the injectivity radius of ˆĈ(M) in its intrinsic
metric, where m = cosh≠1(e2) ƒ 2.68854.

(2) (Canary [8, Thm. 5.1]) If ÷ > 0 is a lower bound for the injectivity
radius of ˆĈ(M) in its intrinsic metric, then

min
;

1
2 ,

÷

.153

<

is a lower bound for the injectivity radius of �(�) in the Poincaré
metric.

Remark. — The Thurston metric is also known as the projective (or
grafting) metric, as it arises from regarding � as a complex projective
surface and giving it the metric Thurston described on such surfaces (see
Tanigawa [22, §2] or McMullen [19, §3] for further details). Kulkarni and
Pinkall [18] defined and studied a generalization of this metric in all di-
mensions and it is also sometimes called the Kulkarni–Pinkall metric.

4. The bending lamination and renormalized volume

The boundary of the convex core of a convex cocompact hyperbolic
3-manifold M = H

3
/� is a hyperbolic surface in its intrinsic metric. It is

ANNALES DE L’INSTITUT FOURIER
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totally geodesic except along a lamination —M , called the bending lamina-
tion. The bending lamination inherits a transverse measure which records
the degree to which the surface is bent along the lamination. The length
L(—M ) of the bending lamination then records the total amount of bend-
ing of the convex core (see Epstein–Marden [10, §II.1.11] for details on the
bending lamination).

If Nr is the closed r-neighborhood of C(M) for all r > 0, then one
can easily check that {S̃r = ˆÑr}r>0 is a family of Epstein surfaces for
the Thurston metric on �(�) (see Bridgeman–Canary [6, Lem. 3.5] for
example). Using this observation, one may establish the following equality:

Lemma 4.1 (Schlenker [20, Lem. 4.1]). — If M is a convex cocompact
hyperbolic 3-manifold, ˆC(M) is non-empty and —M is the bending lami-
nation, then

W (·) = VC(M) ≠ 1
4L(—M ) .

where · is the Thurston metric on ˆcM .
Furthermore, we have the following bounds on the length of the bend-

ing lamination of the convex core in terms of the injectivity radius of the
Poincaré metric on the domain of discontinuity.

Theorem 4.2 (Bridgeman–Canary [5, Thm. 1Õ, Thm. 2Õ]). — If M =
H

3
/� is a convex cocompact hyperbolic 3-manifold and ‹ > 0 is the injec-

tivity radius of the Poincare metric on �(�), then

L(—M ) 6 |‰(ˆM)|
3

807
‹

+ 771
4

.

Furthermore, if ‹ 6 1/2, then

L(—M ) > 37
‹

≠ 36 .

We also have a bounds on L(—M ) in terms of the injectivity radius of
ˆĈ(M) in its intrinsic metric.

Theorem 4.3 (Bridgeman–Canary [5, Thm. 1, Thm. 2]). — If M =
H

3
/� is a convex cocompact hyperbolic 3-manifold and ÷ > 0 is the injec-

tivity radius of the intrinsic metric on ˆĈ(M), then

L(—M ) 6 |‰(ˆM)|
3

164 log
3

1
min{1, ÷}

4
+ 218

4
.

Furthermore, if ÷ 6 sinh≠1(1), then

L(—M ) > 4fi log
3

2 sinh≠1(1)
÷

4
.

TOME 67 (2017), FASCICULE 5
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If C(M) has incompressible boundary, we obtain the following bound
which improves on the bound obtained in Theorem 3 in [5]. (A similar
argument is given in the proof of Theorem 6.7 in Anderson [1].)

Theorem 4.4. — If M is a convex cocompact hyperbolic 3-manifold,
ˆC(M) is incompressible, and —M is the bending lamination, then

L(—M ) 6 6fi|‰(ˆC(M))|.

Proof. — Recall that, by Theorem 3.2, ·(z) 6 2fl(z) for all z œ �(�), so

Area· (ˆM) =
⁄

ˆM
·

2 6 4
⁄

ˆM
fl

2 = 4Areafl(ˆM) = 4(2fi|‰(ˆM)|) .

A simple calculation shows that Area· (ˆM) = 2fi|‰(ˆM)| + L(—M ) (see
Schlenker [20, §4.2]). Therefore,

2fi|‰(ˆM)| + L(—M ) 6 4(2fi|‰(ˆM)|) ,

which implies that
L(—M ) 6 6fi|‰(M)| . ⇤

Remark. — One may use the proof of Theorem 4.4 and the estimate
from Theorem 3.1 to bound the length of the bending locus in the com-
pressible case. However, in this situation the argument gives that

L(—M ) 6
A

16fi

3
k + fi

2

2‹

42

≠ 2fi

B
|‰(ˆM)|

which is significantly worse than the bound obtained in Theorem 4.2.

5. Proofs of main results

We have now assembled the necessary ingredients to prove our main
results. We begin by proving Theorem 1.1 which gives the bounds in the
simplest case where the convex core has incompressible boundary.

Proof of Theorem 1.1. — Suppose that M is a convex cocompact hyper-
bolic 3-manifold such that ˆC(M) is incompressible. Let fl be the Poincaré
metric on ˆcM and let · be the Thurston metric on ˆcM . Theorem 3.2
implies that

·

2 6 fl 6 · ,

so the monotonicity lemma, Lemma 2.2, implies that

W (·) + fi log(2)‰(ˆM) = W

1
·

2

2
6 W (fl) 6 W (·) .

ANNALES DE L’INSTITUT FOURIER
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Theorem 4.4 implies that

L(—M ) 6 6fi|‰(ˆC(M))|

and Lemma 4.1 implies that

W (·) = VC(M) ≠ 1
4L(—M ) 6 VC(M) .

It follows that

VC(M) ≠
3

fi log(2) + 6fi

4

4
|‰(ˆC(M))| 6 W (fl) 6 VC(M) .

Since VR(M) = W (fl) and fi log(2) + 6fi
4

6 6.89, it follows that

VC(M) ≠ 6.89|‰(ˆC(M))| 6 VR(M) 6 VC(M)

as claimed.
If ˆC(M) is totally geodesic, then every component of �(�) is a round

disk, so fl = · , L—(M) = 0 and W (·) = VC(M) = VR(M) = W (fl).
On the other hand, if VC(M) = VR(M), then L(—M ) = 0, so ˆC(M)
is totally geodesic. Therefore, VR(M) = VC(M) if and only if ˆC(M) is
totally geodesic. ⇤

Proposition 5.1. — There exists a sequence {Mn} of quasifuchsian
hyperbolic 3-manifolds such that

lim
næŒ

VC(Mn) ≠ VR(Mn) = +Œ

and there exists D > 0 such that
VC(Mn) ≠ VR(Mn)

|‰(ˆMn)| > D

for all n.

Proof. — Let M be a quasifuchsian hyperbolic 3-manifold such that
L(—M ) ”= 0. Let {fin : Mn æ M} be a sequence of finite covers of M whose
degrees {dn} tend to infinity. The convex core C(Mn) = fi

≠1
n (C(M)) and

similarly the bending lamination —Mn is the pre-image of —M . It follows that
|‰(ˆC(Mn)| = dn|‰(ˆC(M))| and L(—Mn) = dnL(—M ) for all n. Since, as
we saw in the above proof,

VR(Mn) = W (fln) 6 W (·n) = VC(Mn) ≠ 1
4L(—Mn)

where fln is the Poincaré metric on ˆcMn and ·n is the Thurston metric on
ˆcMn, it follows that

VC(Mn) ≠ VR(Mn) > 1
4L(—Mn) = dn

4 L(—M ) = L(—M )
4|‰(ˆC(M))| |‰(ˆC(Mn)| .
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The result follows if we choose D = L(—(M)

4|‰(ˆC(M)| . ⇤

We now prove Theorem 1.3 which bounds VR(M) in terms of ‰(ˆC(M))
and the injectivity radius of the domain of discontinuity in its Poincaré
metric.

Proof of Theorem 1.3. — Suppose that M = H
3
/� is a convex cocom-

pact hyperbolic 3-manifold such that ˆC(M) is compressible. Let ‹ > 0 be
the injectivity radius of �(�) in its Poincaré metric. Let fl be the Poincaré
metric on ˆcM and let · be the Thurston metric on ˆcM .

Theorem 3.1 implies that

·

2
Ô

2(k + fi2

2‹ )
6 fl 6 ·

so the monotonicity lemma, Lemma 2.2, implies that

W (·) + fi log
3

2
Ô

2
3

k + fi
2

2‹

44
‰(ˆM)

= W

A
·

2
Ô

2(k + fi2

2‹ )

B
6 W (fl) 6 W (·) .

Lemma 4.1 implies that

W (·) = VC(M) ≠ 1
4L(—M ) < VC(M)

while Theorem 4.2 implies that

L(—M ) 6 |‰(ˆM)|
3

807
‹

+ 771
4

and, if ‹ 6 1/2, then

L(—M ) > 37
‹

≠ 36 .

Since W (fl) = VR(M), we may combine the above estimates to see that

VC(M) ≠ K1(‹)|‰(ˆM)| 6 VR(M) < VC(M)

where

K1(‹) = fi log
3

2
Ô

2
3

k + fi
2

2‹

44
+ 1

4

3
807
‹

+ 771
4
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As log(a + b) 6 log(a) + b/a if a > 1 and b > 0 we have

K1(‹) 6 fi

3
log(2k

Ô
2) + fi

2

2k‹

4
+ 202

‹
+ 193

6
3

202 + fi
3

2k

4 3
1
‹

4
+

1
fi log(2k

Ô
2) + 193

2

6 205
‹

+ 202 .

Moreover, if ‹ 6 1/2, then

VR(M) 6 VC(M) ≠ 1
4

3
37
‹

≠ 36
4

6 VC(M) ≠
3

9
‹

≠ 9
4

. ⇤

Remark. — One may apply the technique of proof of Proposition 5.1
to produce a sequence {Mn = H

3
/�n} of Schottky hyperbolic 3-manifolds

such that the injectivity radius ‹(Mn) of �(�n) is constant, yet

VC(Mn) ≠ VR(Mn) æ Œ and lim inf VC(Mn) ≠ VR(Mn)
|‰(ˆC(Mn))| > 0 .

Such a sequence demonstrates the dependence on |‰(ˆC(M))| is necessary
in Theorem 1.3. We recall that a convex cocompact hyperbolic 3-manifold
M is called Schottky if fi1(M) is a free group.

One may derive a version of Theorem 1.2 from Theorem 1.3 and Propo-
sition 3.3. However, we will obtain better estimates by giving a more direct
proof.

Proof of Theorem 1.2. — Suppose that M = H
3
/� is a convex cocom-

pact hyperbolic 3-manifold such that ˆC(M) is compressible. Let ÷ > 0 be
the injectivity radius of ˆĈ(M) in its intrinsic metric. Let fl be the Poincaré
metric on ˆcM and let · be the Thurston metric on ˆcM . We will consider
the two bounds separately. As before we have

VR(M) 6 W (·) = VC(M) ≠ 1
4L(—M ) < VC(M) .

If ÷ < sinh≠1(1), then Theorem 4.3 implies that

VR(M) 6 VC(M) ≠ fi log
3

2 sinh≠1(1)
÷

4

= VC(M) ≠ fi log
!
2 sinh≠1(1)

"
≠ fi log

3
1
÷

4

6 VC(M) ≠ 1.79 ≠ fi log
3

1
÷

4
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Proposition 3.3 implies that min{1/2, ÷/.153} is a lower bound for the
injectivity radius of �(�) in the Poincaré metric. Theorem 3.1 then implies
that

·

2
Ô

2
1

k + fi2

2 min{1/2,÷/.153})

2 6 fl 6 · ,

so Lemma 2.2 implies that

VR(M) = V (fl) > W

Q

a ·

2
Ô

2
1

k + fi2

min{1,÷/.076}

2

R

b

= W (·) ≠ fi log
3

2
Ô

2
3

k + fi
2

min{1, ÷/.076}

44
|‰(ˆM)| .

Theorem 4.3 gives that

L(—M ) 6 |‰(ˆM)|
3

164 log
3

1
min{1, ÷}

4
+ 218

4
,

so
VR(M) > VC(M) ≠ K

Õ
1
(÷)|‰(ˆM)|

where

K
Õ
1
(÷)

= fi log
3

2
Ô

2
3

k + fi
2

min{1, ÷/.076}

44
+ 1

4

3
164 log

3
1

min{1, ÷}

4
+ 218

4

6 fi log
3

2
Ô

2
3

k + fi
2

min{1, ÷}

44
+ 1

4

3
164 log

3
1

min{1, ÷}

4
+ 218

4

6 fi log
3

1
min{1, ÷}

4
+ fi log

1
2
Ô

2
!
k min{1, ÷} + fi

2
"2

+ 1
4

3
164 log

3
1

min{1, ÷}

4
+ 218

4

6 fi

1
log

1
2
Ô

2(k + fi
2)

22
+ 218

4 +
3

fi + 164
4

4
log

3
1

min{1, ÷}

4

6 45 log
3

1
min{1, ÷}

4
+ 67 . ⇤
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