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ABSTRACT
Vision modality has been the dominant approach for human
activity recognition (HAR), but concerns on how camera
systems subject to various viewpoints and occlusions have
increased recently. Alternatively, time series data, i.e. ac-
celerometer data, from wearable devices can prevent such
concerns. However, restricted computational resources as-
sociated with wearable devices failed to directly support the
advanced deep neural networks with many layers. To tackle
this issue and push towards its wide application on HAR
understanding, this study introduces an end-to-end Vision-
to-Sensor Knowledge Distillation (VSKD) framework by
transferring the knowledge from vision to sensor domain. To
retain the local temporal relationship and facilitate employing
visual deep learning models, we convert time series data to
two-dimensional images by applying the Gramian Angular
Field (GAF) based encoding method. We adopted ResNet18
and TSN with BN-Inception as teacher and student network in
this study, respectively. After that, we proposed a novel loss
function, named Distance and Angle-wised Semantic Knowl-
edge loss (DASK), which is applied to mitigate the intra-
modality variations between the video and sensor domain.
This study contributes to the field of occlusion-sensitive as
well as cross-modal HAR technology. Extensive experimen-
tal results on UTD-MHAD, MMAct and Berkeley-MHAD
datasets demonstrate the effectiveness and competitiveness
of our proposed VSKD model. [Be carefully to talk about
privacy issue in vision. Other modalities probably also has
privacy issues.]

Index Terms— Cross-modal learning, Knowledge distil-
lation, Human activity recognition, Privacy-sensitive, Signal
encoding.

1. INTRODUCTION

Human Activity Recognition (HAR) has been one of the
prominent topics, with a focus on perceiving and recognizing
actions in various spheres, such as healthcare and human-
robot interaction [1]. In recent years, vision-based models

have dominated the HAR community due to their popularity
and easy access. However, video-based HAR is intrinsically
restricted in some occlusion cases and various illumination
conditions similar to the human vision limitations. Conse-
quently, such limitations make the video-based approach un-
feasible and impractical in such areas. Meanwhile, utilizing
time series data, i.e. accelerometer data, from wearable de-
vices is another typical way of identifying the HAR problem
due to its ability to work in gloomy and bounded conditions
[2]. Even though existing methods achieved promising re-
sults [3, 4], those methods failed to realize that it is feasible
to couple the knowledge from both vision and sensor modal-
ities. For example, vision-based approaches could provide
global motion features while sensor-based methods can give
3D information about local body movement [5]. In reality,
we understand and perceive the surrounding environment
in a multi-modal cognitive way. By utilizing the comple-
mentary information acquired from different modalities, we
can eventually boost the performance of action recognition.
Nevertheless, limited resources associated with the wearable
devices, such as CPU and memory storage, cannot support
such powerful and advanced multi-modal systems. In order
to tackle such issues, the technique of cross-modal transfer,
i.e. knowledge distillation (KD), is a potential approach that
needs only one modality input during the testing phase to
reach the performance close to the combination of multi-
modal data during the training phase [6]. In this case, we
can transfer the knowledge from vision to sensor domain
by reducing hardware resource demand from the wearable
devices.

[Describe our method first before talking about the contri-
butions.] Based on the above observations, in this study, we
propose an end-to-end Vision-to-Sensor Knowledge Distilla-
tion (VSKD) to work on the HAR problem. The overview of
our proposed method is shown in Figure 1. First, we adopted
the Gramian Angular Field (GAF) method which encodes the
accelerometer data to image representation while keeping the
temporal information from accelerometer data [7]. After that,
we trained the teacher networks with video stream inputs us-



Fig. 1. Schematic overview of our proposed VSKD method.
[Discuss the figure 1 in the introduction. Also a bit in the
caption]

ing cross-entropy loss. The accelerometer data KD process
was accomplished by using our proposed loss function. Over-
all, the contributions of this paper are summarized as follows:
1) To the best of our knowledge, this is the first study conduct-
ing the knowledge distillation (KD) model from the video-to-
sensor domain. [Are you sure? I think there will be many and
you just don’t find them] In this VSKD model, we use a stu-
dent network with the input of accelerometer data 2) We pro-
posed a novel loss function, named Distance and Angle-wised
Semantic Knowledge loss (DASK), which is utilized to alle-
viate the modality gap between the teacher and student net-
work. Our experimental results confirm the effectiveness of
our model and the result on three datasets demonstrate the ro-
bustness and competitiveness of our proposed VSKD method.

2. RELATED WORK

HAR has been a highly active research field due to its wide
applications among various areas, such as healthcare and
human-robot interaction [1]. Despite the fact that video
modality containing rich RGB information, video modality
is often subject to occlusions and various viewpoints or il-
lumination conditions. Moreover, it raises privacy concerns,
as videos may capture personal and sensitive information.
Consequently, HAR studies with time series data, i.e. ac-
celerometer data, from wearable devices have emerged as
a promising research field recently [4, 8]. For instance, a
wrist-worn tri-axial accelerometer was used to perform arm
movement prediction and results demonstrated the robustness
of such wearable device [8]. A recurrent neural network
(RNN) model was then suggested to deal with such time-
dependent input sequences [3]. Additionally, there were
some approaches that recommended time series sequences
be converted into images in the HAR study [7, 9]. Although
those works showed promising results, there is still a signifi-
cant performance gap between the video and sensor domain
on HAR due to intra-modality variations. By aggregating var-
ious data modalities, a multi-modal approach can ultimately
alleviate the performance gap. For example, Kong et al. [10]

proposed a multi-modal attention distillation method to model
video-based HAR with the instructive side information from
time series data. Similarly, Liu et al. [9] introduced a multi-
modal KD method where the knowledge from multiple sensor
data were adaptively transferred to video domain. Although
those works provide promising evaluation results on HAR
with the multi-modal KD approach, no work has yet been
proposed where the sensor domain was applied as the student
model within multi-modal KD method. With this framework,
it will not only improve the accuracy performance of sensor
data on HAR, but also reduce the computational resource de-
mand during the testing phase. Eventually, such framework
will be feasible to run on the wearable devices directly.

3. METHODOLOGY

3.1. Virtual Image Generation

[It is better to use bold for vector/matrix in equations.] In-
spired by [7], we encodes the accelerometer data to image
representation first. In short, we denote one of the three ax-
ial accelerometer data (for example, x coordinate) as X =
{x1, x2, ..., xn} and normalize it into X̂ among interval [-1,
1]. The normalized X̂ was then encode into the polar coordi-
nate (θ, γ) using the transformation function g. This function
encode cosine angle from the normalised amplitude and the
radius from the time t, as represented in Eq.1:

g (x̂i, ti) = [θi, ri] where

{
θi = arccos(x̂i), xi ∈ X̂

ri = ti
(1)

After this transformation, the correlation coefficient
which is equivalent to the cosine of the angle between vectors
can be easily calculated upon the trigonometric sum between
points [7]. The correlation between time i and j is then cal-
culated using cos (θi, θj). Consequently, the tri-axial sensor
data with the size of n can be assembled as an image repre-
sentation P = (Gx,Gy,Gz) of size n × n × 3. Selected
examples of original sensor and GAF-based HAR images of
UTD-MHAD [11] are shown in Figure 2.

3.2. DASK Loss

Hinton et al. [6] proposed a KD method that compresses
knowledge from a larger mode (i.e. teacher) into a smaller
model (i.e. student), while retaining decent accuracy perfor-
mance. Given a teacher model Tk and a student model Sk,
the soft-target ŷT produced by the teacher model is consid-
ered high-level knowledge. The loss of KD when training
student can be defined as:

LKD = LC(y, y
S) + αLK(ỹT , ỹS) (2)

LK =
1

m

m∑
k=0

KL(
PTk

T
,
PSk

T
) (3)



Fig. 2. Original sensor (top) and their corresponding GAF
images (bottom) of selected HAR in UTD-MHAD [11] : (1)
basketball shooting; (2) bowling; (3) knock on door and (4)
walking. [Figure is not clear. Bold and large font for legend
and text in the figure please. The same for Fig 1]

where y and yS refer to the predicted labels and class
probability for the student network in this study, respectively.
ỹS is the ”soft target” generated by the student model. Here
LC is the typical cross-entropy loss and LK is the Kullback-
Leibler (KL) divergence, while PTk is the class probability
for the teacher network and PSk is the class probability for
the student network. T represents the temperature controlling
the distribution of the provability and we use T = 4 in this
study according to [6].

However, in order to minimize the intra-modality gap be-
tween the vision and sensor domain, we can’t just rely on in-
dividual predicted outputs themselves. Instead, structural re-
lation and semantic information among those two modalities
also needs to be considered [9, 12]. Given a pair of training
examples, for instance, the distance-wise function ψD tries
to minimize the Euclidean distance between teacher and stu-
dent examples and the distance-wise distillation loss, which
tries to penalize the distance differences between teacher and
student outputs is defined as:

LD =
∑

(xi,xj)∈X2

lδ(ψD(ti, tj), ψD(si, sj)) (4)

Similarly, the angle-wise distillation loss tries to transfer
the relation structures among teacher and students outputs de-
fined as:

LA =
∑

(xi,xj ,xk)∈X2

lδ(ψA(ti, tj , tk), ψA(si, sj , sk)) (5)

In addition, since multi-modal data includes the same se-
mantic content, semantic preserving loss is defined as:

LS =
1

m

m∑
k=1

(‖HS −HT ‖)22 (6)

whereHS andHT represents the feature of the layer prior
to the last fc layer, respectively.

In summary, we use the original KD loss LDK
along with

distance and angle-wised distillation loss LD, LA, to train
the student network and the final DASK loss for the student
model is defined as follow:

LST = LC + αLK + β(LD + LA) + γLS (7)

where α, β, γ are the tunable hyperparameters to balance
the loss terms for the student network.

4. EXPERIMENTS

4.1. Dataset

In this study, three benchmark datasets were selected due to
their multi-modal data forms. We use RGB video streams
as the teacher modality and accelerometer data as the student
modality in those datasets:

1) UTD-MHAD [11]. This dataset covers 27 action classes
performed by 8 participants (4 females and 4 males) in qua-
druplicate. Both modalities have 861 samples and we spit
them in half for training and testing.

2) MMAct [10]. This dataset includes 37 action classes
performed by 20 participants (10 females and 10 males) con-
taining more than 36,000 trimmed clips. Two various set-
tings (cross-subject, and cross-session) are used to evaluate
this dataset based on the train and test spit strategy mentioned
in [10].

3) Berkeley-MHAD [13]. This dataset includes 11 action
classes performed by 12 participants (5 females and 7 males)
in quintuplicate. In this study, we use the first 7 participants
for training and the rest for testing.

4.2. Experimental settings

For the teacher network, we used multi-scale TSN with BN-
Inception pre-trained on ImageNet due to its balance between
the number of parameters and efficiency [14]. In the teacher
network, we set the dropout ratio as 0.5 to reduce the effect
of over-fitting. Also, the number of segments is set as 8 for
Berkeley-MHAD and UTD-MHAD, while 3 for the MMAct.
For the student work, we use ResNet18 as the backbone. All
the experiments are running on four Nvidia GeForce GTX
1080 Ti GPUs using PyTorch. We also use a random seed
for initializing teacher and student dataloaders to ensure syn-
chronization for both networks. We employed the classifica-
tion accuracy as the evaluation metric to compare the perfor-
mance of our VSKD method with other work in which time
series data were applied. Also, we adopted F-measure to eval-
uate the performance of the MMAct dataset according to the
previous evaluation strategy [10].

4.3. Experimental results

The comparison results of three datasets are shown in Table
1, Table 2, and Table 3, respectively. In Table 1, our proposed



Method Testing Modality Accuracy
Singh et al. [3] Acc. + Gyro. 91.40

Ahmad and Khan [4] Acc. + Gyro. 95.80
Wei et al. [5] Acc. + Gyro. 90.30

Chen et al. [15] Acc. + Gyro. 96.70
Garcia-Ceja et al. [16] Acc. 90.20

Our VSKD model Acc. 96.97

Table 1. UTD-MHAD Performance Comparison. Accuracy
units in %.

Method Testing Modality Accuracy
Garcia-Ceja et al. [16] Acc. 95.40
Mimouna et al. [17] Acc. 98.0

Das et al. [18] Acc. 88.90
Our VSKD model Acc. 99.25

Table 2. Berkeley-MHAD Performance Comparison. Accu-
racy units in %.

VSKD model performs better than all the previous compar-
ison models. We make an improvement in testing accuracy
of 7.0% compared to the accelerometer view method which
extracted 16 features from accelerometer signals for classifi-
cation [16]. It is worth noting that our proposed VSKD model
even performs better as compared to the methods where the
accelerometer and gyroscope data were used for testing [3, 4,
5, 15], making an improvement in testing accuracy by 0.5%-
6.9%. In Table 2, our proposed VSKD model performs better
than all the previous comparison models, increasing the test-
ing accuracy by 1.25 % - 10.35%. Those observations demon-
strate that our VSKD method is able to significantly improve
the sensor-based HAR problem, because it effectively trans-
fers the information from video to sensor modality. In Table
3, while accelerometer data is the only modality in the test-
ing phase, our method achieves better F-score performance
compared to [10, 19] in which either RGB or accelerometer
data was used in the testing phase. Similarly, our VSKD ap-
proach also outperforms those models in which RGB was ap-
plied during the testing phase. This validates that our VSKD
approach can effectively learn knowledge from the video do-
main to improve the accuracy performance of HAR.

4.4. Ablation Study

In order to evaluate the contribution of our proposed DASK
loss function, we compare our VSKD with state-of-the-art
KD methods [6, 9, 20, 21]. For those KD methods, we use
the shared codes, and the parameters are selected according
to the default setting. In Table 4, our proposed DASK loss
function performs better than all of the previous comparison
KD loss functions, indicating that both structural relation and
semantic information are critical information in the time se-

Method Testing Modality Cross Subject Cross Session
Kong et al. [10] RGB 66.45 74.58
Kong et al. [10] wearable 62.67 70.53
Kong et al. [19] RGB 65.10 62.80

Our VSKD model wearable 67.83 75.72

Table 3. MMAct Performance Comparison. F-score units in
%.

Method Modality Accuracy F1 score
ST [6] Acc. 96.04 96.15
SP [20] Acc. 96.50
CC [21] Acc. 96.40

DASK-VGG16 Acc. 95.34 95.69
DASK-ResNet18 Acc. 96.97 96.38

ASK (W/O D)-ResNet18 Acc. 96.73 96.27
DSK (W/O A)-ResNet18 Acc. 96.51 95.80

SK (W/O D and A)-ResNet18 Acc. 96.50 96.06
DAK (W/O S)-ResNet18 Acc. 95.80 96.04

Table 4. Ablation study of accuracy and F1 score perfor-
mance (%) on UTD-MHAD dataset. W/O denotes Without.

ries data. Also, angle-wised loss contributes more (0.47 %)
to accuracy improvement as compared to distance-wised loss
which was consisted with previous work [5], indicating time
series data are more valuable to give 3D information about
local body movement. Furthermore, compared to structural
relation information, semantic information contributes less,
which highlights the role of structural relation information on
HAR. In addition, even though VGG16 achieves better per-
formance compared to ResNet18 in student baseline, the pro-
posed method with ResNet18 has the best accuracy (96.97%)
compared to VGG16 (95.34%).

5. CONCLUSION

In this paper, we propose an end-to-end Vision-to-Sensor
Knowledge Distillation (VSKD) model to improve the HAR
performance. We also propose a novel loss function (DASK),
which is able to alleviate the intra-modality gap between vi-
sion and sensor modality. Extensive experiments on three
multi-modal benchmarks demonstrate the effectiveness and
competitiveness of our proposed VSKD method for knowl-
edge transfer from vision to the sensor domain.
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