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Abstract-This paper studies the probabilistic hosting capacity
analysis (PHCA) problem in distribution networks considering
uncertainties from distributed energy resources (DERs) and
residential loads. PHCA aims to compute the hosting capacity,
which is defined as the maximal level of DERs that can be
securely integrated into a distribution network while satisfying
operational constraints with high probability. We formulate
PHCA as a chance-constrained optimization problem, and model
the uncertainties from DERs and loads using historical data.
Due to non-convexities and a substantial number of historical
scenarios being used, PHCA is often formulated as large-scale
nonlinear optimization problem, thus computationally intractable
to solve. To address the core computational challenges, we
propose a fast and extensible framework to solve PHCA based on
Bayesian Optimization (BayesOpt). Comparing with state-of-the­
art algorithms such as interior point and active set, numerical
results show that the proposed BayesOpt approach is able to find
better solutions (25% higher hosting capacity) with 70% savings
in computation time on average.

I. INTRODUCTION

The rapidly growing distributed energy resources (DERs)
are reshaping the design and operation of distribution power
networks. The excessive amount of reverse power flow and
intermittent DERs gives rise to an array of operational risks
such as overloading of transformers and feeders, protection
failures, over and under voltages, excessive line losses, and
high harmonic distortion [1]. To avoid compromising the op­
erational security and reliability, distribution system operators
(DSOs) often perform hosting capacity analysis (HCA) to
compute hosting capacity, which is defined as the amount of
production that can be integrated into a distribution network,
above which the system performance becomes unacceptable
[1]. HCA reveals the physical limits and major limiting factors
of a distribution network to accommodate deep penetration
of DERs. By controlling existing devices, it is shown that a
distribution network can host more DERs thus defer costly
planning decisions such as installing additional power lines
and upgrading transformers.
One commonly accepted estimation on the hosting capacity

of a distribution feeder is a fixed percentage (e.g., 15%) of
annual peak load as most recently measured at the substation
[2]. However, this simplistic estimation is problematic as peak
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loads and hosting capacities are shown to be poorly correlated
[3]. An alternative approach is to perform HCA and compute
the hosting capacity for a given DER generation and load
profile, e.g., [4]. This approach considers more factors such
as network topology and spatial and temporal couplings, but
it fails to capture the significant level of stochasticity brought
about by DERs, which is the main limiting factor of deep DER
integration.
To accommodate the stochastic nature of DERs, various

techniques of hosting capacity analysis have been proposed.
These techniques can be categorized into three groups based
on modeling ofDER uncertainties: (1) using probability distri­
butions [5], [6], (2) stochastic programming based approaches
[7], [8], and (3) set-based description of DER uncertainties
using robust optimization [9], [10]. Although different models
of DER uncertainties lead to distinct HCA formulations, there
are two things in common. First, most of them model uncer­
tainties using a large number of sampled or historical data, e.g.,
[7]-[10]. Second, most of them quantify the operational risk of
integrating DERs using the probability of violating operational
constraints, e.g., [5], [6], [8], [9]. Motivated by this two com­
mon features, this paper studies the data-driven probabilistic
hosting capacity analysis problem, which models the DER
and load uncertainties using historical data, and restricting the
probability of constraint violation within acceptable level.
Due to the large number of scenarios and nonlinear power

model equations, data-driven PHCA often requires solving
large-scale non-convex optimization problems. This paper
addresses the computational challenges in PHCA and proposes
an efficient and extensible computational framework. Instead
of solving non-convex optimization problems involving a
large number of variables and scenarios, we formulate PHCA
as a small-scale nonlinear optimization problem which only
includes nodal hosting capacities as decision variables. The
proposed PHCA formulation features a non-convex and com­
putationally expensive constraint. This constraint is expensive
in the sense of evaluating it involves checking the feasibility
of (optimal) power flow problems in every DER and load sce­
nario. We use Bayesian Optimization to search for the global
optimal solution to PHCA while using as few evaluations of
the expensive constraint as possible.
The main contribution of this paper is an efficient and

flexible computational framework for PHCA. Numerical re­
sults on the 56-node South California Edison distribution
network show that the proposed BayesOpt approach is able
to find better solutions (25% higher hosting capacity) with
70% savings in computation time. The proposed framework
can be easily extended towards more complicated models such
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The key elements in equation (3) include: a given DER
installation scenario 'if' E JRILI, a given DER generation profile

B. Probabilistic Hosting Capacity Evaluation
Given candidate locations L. <;;; V of DERs, the (deter­

ministic) hosting capacity evaluation problem is to check the
feasibility of equation (3) for multiple snapshots t E T.

iEVU{O}, jEV, (i,j)EE.

For simplicity, the DistFlow model (1) in the remainder of this
paper is denoted by (2).

[p,Q,v] = DistFlow(p,q) (2)

as three-phase unbalanced power flow or mesh distribution
networks. Many existing techniques can be easily integrated
into the proposed framework, e.g., using multi-parametric
programming [16]. It is also worth mentioning that this paper
might be the first attempt to solve power system optimization
problems directly via BayesOpt, instead of using BayesOpt
indirectly such as tuning hyperparameters of machine learning
models.
The notations in this paper are standard. All matrices and

vectors are in the real field lit Matrices and vectors are in bold
fonts, e.g., A and b. The all-I (all-O) vector of appropriate
size is denoted by 1 (0). The indicator function is :[ (-). The
transpose of a vector a is aT, the diagonal matrix formed
using vector a is diag (a), and the j th entry of vector a is aj.

Sets are in calligraphy fonts. The cardinality of a set S is lSI.
The upper and lower bounds on variable v are denoted by v
and Q, respectively.

II. HOSTING CAPACITY ANALYSIS

A. DistFlow Model
We study a distribution network N = (V, E) with vertices

V = V U {O} and edges E <;;; V x V. The substation node
is denoted by 0 and all other nodes are represented by V.
Nodal real and reactive injections are denoted by p E JRlvl
and q E JRlvl. Nodal squared voltage magnitudes are v E JRlvl.
The real and reactive flows on distribution lines are P E JRIEI
and Q E JRIEI. Pij and Qij denote the real and reactive power
flow on line (i, j). If the distribution networkN is a tree (thus
lEI = IVI-I = IVI), then the following DistFlow model holds
true [11]. (5a)

(5b)

max IT'if'
o5c'</J 5c1f

S.t. E('if') ::; E

1At = 1 if the jth DER is at bus i; At = 0 otherwise.

The objective of PHCA (5a) is to identify (maximal) hosting
capacity, which is defined as the maximal level of DERs
that can be securely integrated into a distribution network
while restricting the risk of constraint violation E( 'if') within
acceptable level E. Constraint (5b) is a chance constraint, it
ensures the operational constraint g(a, d, e; 'if') ::; 0 to be
satisfied with probability at least 1 - E in the presence of DER
and load uncertainties. The optimal solution 'if'* to (5) is a
hypothetical DER installation scenario, which represents the
physical limit of a distribution network of integrating DERs.
Although the exact formulation of (5) does not appear in

the literature, it is closely related with almost all proposed
methods such as stochastic programming [5], [6] and robust
optimization [12]. As pointed out in [13], chance-constrained
optimization can be solved using various stochastic program­
ming or robust optimization algorithms, thus (5) can serve as
a unified problem formulation for hosting capacity analysis
under DER uncertainties.
PHCA is in general challenging to solve for the following

reasons [13]: (1) the probability distributions of DERs and
loads are often not known exactly; (2) even if the exact
knowledge of probability distribution is available, it is com­
putationally intractable to accurately evaluate the probability
of constraint violation; and (3) chance-constrained programs

E('if'):= 1-W'(g(a,d,e;'if')::; 0) (4)

C. Probabilistic Hosting Capacity Analysis (PHCA)
This paper studies the probabilistic hosting capacity analysis

problem, which is closely related with probabilistic hosting
capacity evaluation in the previous section.

{a[t]hET, and real/reactive load profiles {d[t], e[t]hET. Ma­
trix A L E {a, I}IVlxILI is the DER location-bus adjacency!
matrix. We assume that DERs operate in the maximum power
point tracking (MPPT) mode and maintain fixed power factor
1] E JRILI by simple reactive power control.
Constraints (3) consist of DistFlow equations (3a), nodal

real/reactive power balance (3b)-(3c), voltage magnitude (3d)
and line flow limits (3e). To focus on the computational
aspect, this paper considers passive distribution networks. The
problem formulation and proposed computational framework
in Section III can be easily extended towards more complicated
constraints and active distribution network (ADN) settings.
Hosting capacity evaluation checks if a DER installation

scenario 'if' is feasible for a particular DER and load profile.
The main drawback of hosting capacity evaluation is the
failure of capturing the stochastic nature of DERs. Proba­
bilistic hosting capacity evaluation takes the DER and load
uncertainties into consideration and calculates the probability
of violating operational constraints [5], [6]. Let constraints (3)
be represented succinctly as g(a, d, e; 'if') ::; O. Given a DER
installation scenario 'if', probabilistic hosting capacity evalua­
tion calculates the probability E( 'if') of constraint violation.

(Ic)

(Ia)

(Ib)

(Id)

t E T. (3a)
t E T. (3b)
t E T. (3c)
t E T. (3d)
t E T. (3e)

Pj + Pij = rijlij + L Pjk ,
k:(j,k)EE

qj +Qij = Xijlij + L Qjk,
k:(j,k)EE

Vi -Vj = 2(rijPij +XijQij) + (r;j +x;j)lij,

I = Pi~ +Q;j
"J Vi

[P[t], Q[t], v [tJ] = DistFlow(p[t], q[t]) ,
p[t] = ALdiag(a[t])'if'- d[t],

q[t] = ALdiag(1])diag(a[t])'if'- e[t],

Q ::; v [t] ::; v,
(Pij [t])2 + (Qij [t])2 ::; (Sij)2, (i, j) E E,
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are generally non-convex, which leads to computational in­
tractability.
1) Sample Average Approximation: One common solution

to deal with the first two difficulties aforementioned is sample
average approximation [13], which utilizes N U.d scenarios
{(ai, di , ei)}~l to approximate E('IjJ):

B. BayesOpt Algorithm
BayesOpt has two key components: a Bayesian statistical

model for dynamic learning of the objective function f (.) from
a finite set of query points, and an acquisition function for
deciding where to sample next. The key steps of BayesOpt
algorithms are summarized in Algorithm 1.

N

E('IjJ):= 1- ~ 2:)L (g(ai,di,ei;'IjJ) S; 0). (6)
i=l

For example, if operational constraints are satisfied in 900
out of 1000 scenarios, then E = 1 - 900/1000 = 0.1.
With the empirical violation probability E( 'IjJ), PHCA can be
approximated as:

Algorithm 1 Bayesian Optimization [14]
I: input query budget B and initial dataset Va
2: for i E {O, 1,2, ... ,B} do
3: select the next query xi+ 1 by optimizing the acquisition

function
(9)

max IT'IjJ
o5c-.jJ5c1j;

S.t. E('IjJ) S; E

(7a)

(7b)

4: query xi+ 1 and obtain f(xi+ 1 )

5: augment dataset Vi+l = {Vi, (xi+ 1,f(xi+1))}

6: update statistical model
7: end for

III. PROBABILISTIC HOSTING CAPACITY ANALYSIS VIA
BAYESIAN OPTIMIZATION

A. Introduction to Bayesian Optimization

Bayesian optimization (BayesOpt) is a class of machine­
learning-based optimization methods to solve:

Comparing with the original formulation (5), (7) is rela­
tively easier to solve. It can be reformulated as well-studied
optimization problems and solved by commercial optimization
solvers, e.g., nonlinear optimization (II-C2), Bayesian Opti­
mization (Section III), and mixed integer program (see the
full-length version of this paper on arxiv.org).
2) Using Nonlinear Optimization: Formulation (7) is a non­

linear program (NLP). The main complexity of solving (7) is
the complicated nonlinear constraints E( 'IjJ) S; E. Classical NLP
algorithms such as interior point, active set, and sequential
quadratic program (sqp) can be applied to solve (7).

(10)

(12a)

(12b)

max c('IjJ)
-.jJ

S.t. 0 S; 'IjJ S; 'IjJ

aEI(x;Vi ) := lE [(J(x) - f(x i )) l(J(x) > f(x i ))] (11)

C. Probabilistic Hosting Capacity Analysis via BayesOpt
BayesOpt solves optimization problems with complicated

objective functions, but PHCA (7) features a complicated
constraint. We first reformulate PHCA:

Using similar notations, the acquisition function aEI e) is the
expected improvement over the incumbent solution Xi:

The statistical model, which is often a Gaussian process
(GP), provides a Bayesian posterior probability distribution
describing potential values for the objective f (x) of candidate
solution x. The Gaussian process GP(/ho,~) is a nonparamet­
ric model characterized by a mean function /ho : X ---7 JR
and a keruel function ~ : X x X ---7 R The posterior
mean and variance evaluated at any point x represent the
model's prediction and uncertainty in the objective function
at the point x. The mean function /ho provides a possible
offset. In practice, /ho is set to a constant and inferred from
data. Common choices of keruel functions include automatic
relevance determination (ARD) squared exponential keruel,
ARD Materu 3/2 keruel, and ARD Materu 5/2 keruel [15].
The acquisition function determines the mechanism or

policy for selecting the sequence of query points. Common
choices of acquisition functions include expected improvement
(EI), probability of improvement (PI), and lower confidence
bound [14]. For example, at the ith step of Algorithm 1,
given dataset Vi and the incumbent solution Xi, the acquisition
function apI ( .) is the probability that a candidate x is better
than the incumbent solution Xi:

The objective function of (12) consists of the original objective
IT 'IjJ and a penalty term p (max{E( 'IjJ) - E, O}).

c('IjJ) := IT 'IjJ - p (max{E('IjJ) - E, O}). (13)

(8a)

(8b)s.t. x EX

max f(x)
x

in which the feasible set X is simple (e.g., hyper-rectangle)
while the objective fe) is an expensive black-box derivative­
free function [14]. More specifically, fe) is expensive in the
sense of evaluating it typically takes a substantial amount
of time or bears a monetary cost. Moreover, f (.) could be
an unknown function lacking known structural properties like
convexity or concavity (black-box). In most cases, informa­
tion on derivatives is not available either (derivative-free).
BayesOpt aims at find the global optimum solution to (8) while
using as less function evaluations of f (.) as possible.
BayesOpt has found successful applications in various areas

such as material discovery and medicine. BayesOpt gains its
popularity especially due to its success in hyperparameter
tuning for machine learning algorithms [14]. Despite the
success of BayesOpt in various fields, it has been seldom
used in power system studies. Only a handful of papers have
incorporated BayesOpt, and all of them used BayesOpt to
train machine learning models such as deep neural networks
or Bayesian Networks.
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When a solution 'IjJ is feasible (i.e., E( 'IjJ) ::.; f), the penalty
function p (max{E( 'IjJ) - f, O}) = 0 thus the objective function
is identical to the original problem. When a solution 'IjJ is infea­
sible (E( 'IjJ) > f), then a large penalty p (max{E( 'IjJ) - f, O}) »
1T 'IjJ is added to the objective, so that any infeasible solutions
to (7) cannot be optimal to (12). With a carefully chosen
penalty function p (max{E( 'IjJ) - f, O}), the optimal solution
to (12) is identical to the solution to (7). Even if the penalized
formulation (12) results in a (slightly) infeasible solution
'IjJ *, i.e., E('IjJ *) is slightly higher than f, it is quite easy to
recover a strictly feasible solution by scaling down the solution
'IjJ* +--- (1 - 5)'IjJ*. The coefficient 1 - 5 can be chosen by
performing binary search along the direction from the orign
o to 'IjJ*. In numerical simulations, we observe that NLP
algorithms perform much better on (12) than (7). Complete
details are available in the full-length version of this paper on
arxiv.org.

IV. CASE STUDY

We compare BayesOpt with other algorithms on the 56­
node South California Edison distribution system [11]. Full
configurations of the distribution system and 365 days of
DER and load profiles are available on github2. All numerical
simulations were conducted in Matlab R2019a on a laptop
with 16GB of RAM and Inter i7-8550U 4-core CPU.
A. BayesOpt vs NLP Algorithms
For all algorithms compared in this section, the most time­

consuming step is evaluating the empirical violation probabil­
ity E('IjJ), which involves solving 365 x 144 AC power flow
problems. With parallel computation on 4 CPU cores, one
evaluation of E( 'IjJ) takes about 5 minutes. Therefore, we use
the number of E( 'IjJ) function evaluation calls (nfuncall) as a
metric of computation time, e.g., in Fig. 1 and Table I.
1) Configurations of BayesOpt: After some trial and error,

we found the following objective function for (12) works the
best numerically:

c('IjJ) = F'IjJ -1£1 COOmax{E~'IjJ) -f,O}) 2 (14)

The first coefficient of the penalty term is 118 (1T 'IjJ )/ 8'IjJ 111 =
1£1. When a solution 'IjJ is infeasible, the squared term in
(14) becomes a large penalty, so that the marginal cost of
infeasibility is much larger than the marginal benefit 1£1. We
choose the ARD Matern 5/2 kernel for BayesOpt since they
are less restrictive and make less assumptions than other kernel
functions [15].
2) Numerical Results: We solve 10 different PHCA prob­

lems (10 experiments), in which we randomly choose 1£1 = 5
different candidate locations for DERs. In each experiment,
we solve the revised PHCA problem (12) with objective func­
tion (14) using four algorithms (bayesopt, interior-point, sqp,
active-set). Detailed results of 10 experiments are available on
arxiv. Main results are in Fig. 1 and Table I.
Fig. 1 compares the performance of BayesOpt with the other

three algorithms (blue circles: interior point; red triangles:
sqp; yellow squares: active-set). The x-axis of Fig. 1 denotes

2https:llgithub.com!xbOOdxlDistribution-Networks-for-Hosting-Capacity­
Analysis
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the improvement of BayesOpt over other three algorithms in
terms of better objectives. Since PHCA is a maximization
problem, larger x-axis values indicate better solutions found
by BayesOpt, and negative values indicate other algorithms
found better solutions than BayesOpt. The y-axis represents
the improvement of BayesOpt over other algorithms in terms
of computational time, which is quantified by the number of
function calls of E( 'IjJ) (nfuncall). Larger y-axis values indicate
less computation time of BayesOpt, e.g., 70% means that
BayesOpt utilized 70% less nfuncalls than other algorithms.
In most cases, BayesOpt found solutions that are better than
other algorithms while using much less evaluations of E( 'IjJ).
In 3 ~ 4 cases (top-left comer of Fig. 1), NLP algorithms
found slightly better solutions than PHCA (optimality gaps
0.1% ~ 2.5%) using much longer computational time. One
such example is experiment 7 in Figs. 2b and 2e.

100 II0. a a
90 0

a a •80 0
0

0

~ •
70 a 0 a

.~ I 0 bayesopt VB interior-pt I~
'" 60 .A. bayesopt VB sqp'"1 1:1 bayesopt VB active-set

50

40

30 °a

20
-5 0 5 10 15 20 25 30 35

objective difference (%)

Fig. 1: BayesOpt versus other algorithms. Larger x-axis and
y-axis values indicate better performance of BayesOpt com­
paring with the other three algorithms.

It is worth mentioning that only 8 experiments (24 points)
are plotted in Fig. 1. This is because BayesOpt performs signif­
icantly better than the other three algorithms in experiments 3
and 9. In experiment 9 (shown in Figs. 2c and 2f), BayesOpt
found an optimal solution with objective value 9.23, while
other algorithms were stuck at a local solution with objective
2.80 ~ 3.03, this contributes to the 200+% improvements of
best incumbent objective (bestobj) in Table I. In experiment 3
(shown in Figs. 2a and 2d), sqp failed to find a better solution
than initial point within iteration limit. This causes the "inf"
in max objective gaps. Values in brackets of columns "sqp"
are calculated including experiment 3.
3) Why BayesOpt Outperforms Other Algorithms: Fig. 1

and Table I show that the proposed BayesOpt approach is
able to find better solutions with much shorter computation
time. This is mainly due to the following two reasons.
First, BayesOpt explicitly considers the fact that evaluating
c( 'IjJ) is expensive. In numerical simulations, we observe that
NLP algorithms usually require several calls to the objective
function c( 'IjJ) in each iteration, thus they are significantly
slower than BayesOpt. Second, NLP algorithms improves
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TABLE I: Compare BayesOpt with others, higher values indicate BayesOpt perform better

bayesopt vs other interior point sqp active set
algorithms min avg max min avg max min avg max

improvement in bestobj -2.2% 24.2% 203.8% -1.8% 31.9% 229.1% (inf) -2.1% 24.7% 213.2%
improvement in nfuncall -10.5% 69.8% 99.7% -11.5% (-117.9%) 68.6% (49.9%) 98.8% 26.3% 74.3% 98.8%

experiment 3 experiment 7 experiment 9
3 10 10

:1l :1l :1l -bayesopt

~2 ~ ~
-interior pt
-sqp

~ 1 ~ 5 ~ 5 -active set

" ":0' :0' :0'
0 0 0

0 0 0
100 101 102 103 100 101 102 103 100 101 102 103

number of function calls number of function calls number of function calls

-bayesopt
-interior pt
-'qp
-active set
- - -threshold

101 102
number of function calls

101 102
number of function calls

-bayesopl
-interior pt
-'qp
-active set
- - -threshold

101 102
number of function calls

----- --- --T- -

~
j
80.5
p,

.~

i

(a) Experiment 3: best incumbent objectives (b) Experiment 7: best incumbent objectives (c) Experiment 9: best incumbent objectives
2: experiment 3 ~ experiment 7 2: experiment 9

';: 0.6,--;---------;==;====;l
:1'l
;Ei 0.4

" 0.2
.9

i
(d) Experiment 3: violation probabilities (e) Experiment 7: violation probabilities (f) Experiment 9: violation probabilities

Fig. 2: Details of violation probabilities and objective values on three experiments: experiment 3 (sqp failed completely),
experiment 7 (NLP algorithms found slightly better solutions than BayesOpt), experiment 9 (bayesopt significantly outperforms
NLP algorithms).

solutions continuously (see the objective improvements in Fig.
2), e.g., the central path of interior-point algorithm, thus they
might be stuck at suboptimal optimal solutions. By contrast,
BayesOpt explores the entire feasible region, balances the
tradeoff between exploration and exploitation thus seeks the
global optimal solution.

V. CONCLUDING REMARKS

We study the probabilistic hosting capacity analysis problem
in distribution networks with significant uncertainties from
distributed energy resources (DERs) and residential loads.
PHCA is often formulated as large-scale non-convex optimiza­
tion problems. To address the core computational challenges
of PHCA, we propose a computational framework based on
Bayesian Optimization (BayesOpt). Comparing with nonlinear
optimization algorithms, the proposed BayesOpt approach
returns better optimal solutions while using much less com­
putation time on average.
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