
A Software Ecosystem for Deploying Deep Learning in
Gravitational Wave Physics

Alec Gunny
Dylan Rankin
Philip Harris

Erik Katsavounidis
Ethan Marx
alecg@mit.edu

drankin@mit.edu
pcharris@mit.edu
kats@mit.edu
emarx@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Muhammed Saleem
Michael Coughlin
William Benoit

saleem.muhammed.c@gmail.com
cough052@umn.edu
benoi090@umn.edu

School of Physics and Astronomy, University of Minnesota
Minneapolis, Minnesota, USA

ABSTRACT
The recent application of neural network algorithms to problems
in gravitational-wave physics invites the study of how best to build
production-ready applications on top of them. By viewing neural
networks not as standalone models, but as components or functions
in larger data processing pipelines, we can apply lessons learned
from both traditional software development practices as well as
successful deep learning applications from the private sector. This
paper highlights challenges presented by straightforward but naïve
deployment strategies for deep learning models, and identifies solu-
tions to them gleaned from these sources. It then presents HERMES,
a library of tools for implementing these solutions, and describes
how HERMES is being used to develop a particular deep learning
application which will be deployed during the next data collection
run of the International Gravitational-Wave Observatories.

CCS CONCEPTS
• Applied computing→ Physics; • Computing methodologies
→ Neural networks.

KEYWORDS
gravitational waves, neural networks, mlops

ACM Reference Format:
Alec Gunny, Dylan Rankin, Philip Harris, Erik Katsavounidis, Ethan Marx,
Muhammed Saleem, Michael Coughlin, and William Benoit. 2022. A Soft-
ware Ecosystem for DeployingDeep Learning in GravitationalWave Physics.
In Proceedings of the 12th Workshop on AI and Scientific Computing at Scale
using Flexible Computing Infrastructures (FlexScience ’22), July 1, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3526058.3535454

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FlexScience ’22, July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9309-6/22/07.
https://doi.org/10.1145/3526058.3535454

1 INTRODUCTION
The last several years have witnessed an explosion in the appli-
cation of deep learning algorithms to problems in the physical
sciences [17–19, 27, 30]. Gravitational-wave physics has proven to
be especially fertile ground for this research [19, 26], where efficient,
low-latency detection and parameterization of gravitational-wave
events [4, 9] has the potential to enable a host of discoveries during
the next data collection run of the observatories of the Interna-
tional Gravitational-Wave Observatory Network (IGWN), referred
to as Observing Run 4 (O4) [2, 5, 25]. However, much of this work
has focused primarily on showing as a proof-of-concept that deep
learning could supplant various existing modelling techniques in
gravitational-wave analysis, with less attention to more practical
questions about how this ecosystem of models, deep learning and
otherwise, might work together to power real discoveries during
O4.

This research has emerged in a decade in which deep learn-
ing has been shown more broadly to achieve state-of-the-art re-
sults in fields such as computer vision [36, 37], natural language
processing [22, 31], generative modelling [33], and complex game
playing [13, 28]. However, for much of this time, private sector
applications of deep learning suffered the same curse of "AI for
AI’s sake" [6], with only a handful of the largest companies de-
ploying production deep learning applications at scale. However,
recent years have witnessed a growth of mature deep learning
applications powered by the emerging field of machine learning
operations (MLOps) [7]. This field seeks to develop a set of tools and
best practices which reduce the overhead associated with responsi-
bly training, testing, and deploying deep learning applications [32].
These practices in turn enable domain experts in novel fields to
replace hand-crafted functions with off-the-shelf neural networks
in new or existing applications, taking advantage of improved per-
formance, real-time inference capabilities, or simplified engineering
with a minimum of friction. While there remains much work to be
done to establish if and how deep learning algorithms will fit into
the data processing pipelines of large-scale physics experiments

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

9

https://doi.org/10.1145/3526058.3535454
https://doi.org/10.1145/3526058.3535454
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526058.3535454

alongside or in place of more traditional models, their clear suc-
cess on other problems and promising results in this space thus far
suggest that studying these practices in this context is worthwhile.

In this work, we describe the key challenges we faced in de-
veloping a deep learning-based application in the context of the
IGWN. We then identify how emerging software and infrastructure
tools can address these challenges, highlighting available off-the-
shelf components when applicable. We also outline how the unique
constraints of the gravitational-wave data analysis problem and
computing environment demand more custom solutions, and intro-
duce HERMES, a library of open-sourced tools designed to make
these solutions available to practitioners more generally. Finally,
we conclude by describing a deep learning application built on top
of these tools which will be in deployment in O4, taking advantage
of modern MLOps practices to more quickly take novel ideas into
production with higher degrees of confidence in their expected
behavior.

2 BACKGROUND
We begin by briefly providing background on the IGWN data pro-
cessing setting more generally, as well as on the specific problem
within it to which we have applied deep learning. LIGO [2, 23]
consists of two ground-based detectors located in the United States
whose purpose is to detect minuscule fluctuations in the fabric
of spacetime called gravitational waves. In conjuction with the
Kamioka Gravitational Wave Detector (KAGRA) in Japan [8, 35]
and the Virgo interferometer in Italy[5], these observatories will
begin a joint fourth run of observation, the O4 run, in early 2023
with the hope of detecting and characterizing gravitational wave
events with unparalleled sensitivity and precision [3]. The ability to
perform this detection and characterization at low-latency will be
critical to the use of these observatories as early-warning triggers
for follow-up by observatories of other cosmic messengers such as
electromagnetic radiation, cosmic rays, and neutrinos. Comparison
of measurements across these disparate modalities from the same
events, referred to asmulti-messenger astrophysics (MMA), will help
deliver a slew of new insights during O4[14].

The detectors in these observatories use very finely-calibrated
lasers tomeasure timeseries of a unitless quantity called gravitational-
wave strain, denoted ℎ(𝑡). However, the delicate calibration on
which the detector’s sensitivity relies is constantly disturbed by
factors from the environment surrounding its instruments [10, 38].
In order to mitigate the influence of these environmental condi-
tions, sensors are deployed to monitor them so that the timeseries
measured by these witness channels can be used to predict the cor-
responding noise observed in the strain channel. DeepClean [29]
attempts to model this mapping from witnesses to noise using a
neural network in order to capture non-linear couplings between
the channels in real-time in order to meet the demands of MMA.

The architecture underlying DeepClean follows a convolutional
autoencoder-like structure, mapping finite-length snapshots or ker-
nels of the 𝑘 witness timeseries to a kernel of predicted witnessed
noise of the same length. Because DeepClean encodes entirely local
information, the size of the kernel 𝑙 is not fixed and can be chosen
as an inference-time parameter to trade off between compute and
prediction quality. Moreover, the rate at which these kernels are

Witness 1 timeseries

Witness 2 timeseries

Witness timeseries...

Noise prediction timeseries

Kernel length

(a)

(b)

+

+

Aggregation latency

(c)

Figure 1: Performing inference with DeepClean. (a) Deep-
Clean maps from finite-length snapshots or kernels of wit-
ness timeseries to a kernel of the same length representing a
prediction of the witnessed noise in the strain channel at that
same snapshot. (b) Kernels are sampled from the timeseries
at some fixed frequency 𝑟 ≤ 𝑓𝑠 , the sample rate of the data.
If 1

𝑟 < 𝑙 , there will be overlap between the input and output
kernels. (c) Overlapping predictions are averaged over a fixed
number of kernels in order to improve prediction quality,
introducing latency as future data is generated with which
to average.

sampled from the timeseries is another inference-time parameter,
which we refer to as the inference sampling rate 𝑟 (not to be con-
fused with the rate 𝑓𝑠 at which the timeseries itself is sampled). If
the inference sampling rate is high compared to the length of the
kernel, 1𝑟 < 𝑙 , there will be overlap between the input and output
kernels as depicted in figure 1.

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

10

3 MOTIVATION
While the original DeepClean inference implementation which pro-
duced the results outlined in [29] proved itself capable of adding
value to the noise subtraction problem, it also made several mod-
elling and software decisions which do not lend themselves to the
online deployment scenario required by a real-time production ap-
plication. In this section, we outline some of these difficulties and
show how they lead to a new set of infrastructure tools as solutions.

3.1 Inference-as-a-Service
A production DeepClean application is fundamentally a data pro-
cessing pipeline charged with removing environmental noise from
a streaming timeseries of strain data. As one of its components,
this application makes use of an inference function which it uses
to map from witness noise timeseries to an estimated noise time-
series in a “black-box” fashion. The rest of the application encodes
logic about how to load and prepare data to feed this inference
function, and how to turn its outputs into a physically significant
timeseries which can be subtracted from the raw strain channel.
That the inference function leverages a neural network, rather than
a more explicitly modelled function, is a detail to which the physics
encoded in the cleaning application ought to be agnostic.

The most straightforward way to take a trained DeepClean net-
work and use it in an application is to load it into the application’s
memory and use it to perform inference locally. However, this
intuitive approach has several drawbacks, outlined in figure 2a.
Coordinating the distribution of the piece of software which a de-
ployed neural network represents leads to inconsistent results as
users become out of sync with one another and the latest changes
to the model. Moreover, the deep learning software stack is complex
and places a non-trivial burden on users to gain familiarity with
the requisite libraries and high-performance compute techniques in
order to effectively leverage expensive heterogeneous computing
resources, to which they may not even have easy access. All of these
issues are made combinatorially more difficult in even slightly more
complex scenarios that involve utilizing multiple neural networks
which leverage different software frameworks.

Perhaps more importantly in the physical sciences, gaining fa-
miliarity with deep learning techniques and software involves a
significant investment of time in skills which may be orthogonal
to a practitioner’s field of interest. While some physicists may find
gaining this expertise valuable, requiring it as a price of admis-
sion for any user will deter adoption of important algorithms and
ultimately hamper discoveries. Good deep learning inference im-
plementations ought to extricate these details from the applications
that leverage them in order to allow the physicists building them
to focus on their domains of expertise.

A popular emerging paradigm to address these difficulties is
the inference-as-a-service (IaaS) model, in which inference is per-
formed by an off-the-shelf application which can efficiently sched-
ule asynchronous, framework-agnostic inference executions across
heterogeneous hardware platforms [15]. An IaaS deployment is
illustrated in figure 2b, with a centralized model repository keeping
all users in-sync and up-to-date. Instead of making local inference
calls, pipelines send gRPC inference requests to the service using
standardized APIs which abstract the implementation details of the

inference execution itself. One such IaaS application is NVIDIA’s
Triton Inference Server1, which is well optimized for GPU perfor-
mance and supports multiple framework backends as well as model
ensembling. By deploying Triton via software containers, we are
able to wrap up the inference portion of our cleaning application
as a self-contained, portable black-box which is usable by both our
application and other users.

While Triton helped to massively simplify the deployment of a
trained DeepClean model, it introduced new issues as well. Triton
expects the model repository from which it loads the models it ex-
poses for inference to follow a strict structure, which involves a fair
amount of systematic hand coding (boilerplate) to ensure that new
entries and versions are added to the repository in the appropri-
ate fashion. Moreover, it relies on configuration files implemented
as protocol buffers, whose programming involves non-Pythonic
syntax and requires information that can often be dynamically in-
ferred from the model itself, resulting in more boilerplate. Triton’s
client APIs also suffer from these boilerplate issues, especially when
implementing the streaming inference required by DeepClean’s
caching model outlined in section 5.3. Components of the hermes
library discussed in section 4 were built to address these issues
in order to more smoothly export and make requests to new or
retrained models.

3.2 Online deployment
While an IaaS deployment solved the problems in our pipeline sur-
rounding deep learning inference, other components still needed to
be updated to reflect the online inference scenario. In the original
offline inference scenario, each segment in the timeseries of Deep-
Clean’s noise predictions is produced by averaging over predictions
made on that segment by all kernels, including those which contain
data from the future. Moreover, it performs forward and bandpass
filtering over the entire timeseries of noise predictions before sub-
tracting it from the strain timeseries. Online inference, however,
has a much higher sensitivity to additional latency incurred wait-
ing for future data to materialize, and as such requires different
modelling choices. At first, our instinct was to neglect averaging al-
together and filter using only past data in order to minimize latency.
However, these choices produced vastly different results than those
made in the offline scenario, results which introduced more noise
than they removed.

In contrast, we can average and bandpass filter over some, but
not all, future data to gain higher quality predictions in exchange
for some latency. This amount of data, along with the optimal kernel
length 𝑙 and inference sampling rate 𝑟 , amount to parameters of a
broaderModel being optimized, of which the DeepClean neural net-
work model is but a component. A more complex, truly production-
ready application that involves network retraining will also have
to optimize parameters deciding how frequently to retrain, how to
select or search over retraining hyperparameters, which layers of
the network to retrain, and which metrics and thresholds to use to
decide whether a retrained network is ready for deployment. It will
also need to make decisions about how to handle dropped witness
channels, shifting data distributions, and other as-yet-unforeseen
eventualities which might impact the quality of its cleaned output.

1https://github.com/triton-inference-server/server

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

11

User node on
compute cluster

Local/shared
storage

Version of DL
software stack

Git repository

Ops from different
DL frameworks

(a) Traditional distributed deployment scenario

Training Job

Training Job Cloud or
local model
repository

Containerized
inference service
gRPC inference
requests

(b) Inference-as-a-Service deployment scenario

Figure 2: (a) A traditional deployment scenario in which individual users manage their own software and hardware resources.
Inconsistencies in libraries and dependencies as well as model versions lead to inconsistent results. Reduced computational
demands of inference lead to hardware under-utilization, represented by green rectangles on each node. More complex
deployment scenarios require leveraging multiple networks utilizing multiple framework backends, exacerbating existing
issues. (b) Inference-as-a-service deployment standardizes inference across all users and coordinates complex concurrent
execution of models, saturating hardware compute capacity in a way that is portable and scalable.

Good MLOps infrastructure reduces the overhead required to
deploy novel ideas in controlled environments that look like the
true test environment, and evaluate them using metrics that look
like the true test metrics. This allows us to optimize the Model as
a whole, rather than one of its components at some fixed point in
time, and formalize contractual obligations to downstream users
by creating confident estimates of performance on the true test
distribution [12, 24]. Moreover, adopting good MLOps practices
like versioning experiments and automating their deployment via
continuous integration (CI) ensures that results are repeatable, com-
parable, and conclusive [32].

4 HERMES
In order to simplify the development of applications that implement
the ideas outlined in Section 3, we have developed a set of Python
libraries collectively called hermes [20]. These libraries provide
simple, intuitive interfaces for executing many of the tasks sur-
rounding deep learning deployment, including model export and
acceleration, asynchronous data processing and inference request
generation, and cloud-based resource provisioning and deployment.
Taken together, the hermes libraries are intended to provide the
building blocks on which higher-level, problem-specific abstrac-
tions can be built to further streamline the process of deploying
deep learning-based applications. Section 5 outlines how our pro-
duction DeepClean deployment realizes this potential.

4.1 The HERMES libraries
HERMES consists of multiple sub-libraries, each with their own
dedicated functionality and corresponding dependencies, allowing

users to pick and choose which libraries they need in order to
keep their deployments lightweight. In this section, we will briefly
describe the purpose of the most relevant libraries, and leave more
detailed information to their documentation.

4.1.1 hermes.cloudbreak. The cloudbreak library contains tools
for provisioning Kubernetes clusters and virtual machines on pri-
vate clouds and deploying workloads onto those computational
resources. While support only currently exists for Google Cloud,
the intent of the library is to be written in such a way that the
user interface is agnostic to the actual cloud backend. Moreover, by
using Python contexts to deploy resources, we can ensure that any
resources are spun-down once jobs are complete so that unneces-
sary costs are not incurred. cloudbreak is not currently used as
part of the DeepClean production pipeline, but will form a critical
part of future large-scale offline experiments.

4.1.2 hermes.quiver. The quiver library is used to reduce the
user-written boilerplate associated with exporting a model for use
with Triton outlined in section 3.1. It takes care of structuring
and exporting models to your model repositories, either locally
or in the cloud, and uses the in-memory version of your model
to extract all the necessary metadata to build the associated con-
figuration file Triton expects. It can also automatically facilitate
the conversion of models from common frameworks like Torch
to the accelerated inference library TensorRT2, and has utilities
for quickly constructing model ensembles and exposing input and
output server-side caching models for minimizing data transfer in
streaming use cases. This latter functionality allows us to perform
2https://developer.nvidia.com/tensorrt

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

12

Dedicated node at detector site

G
PU

0

Retraining

Export +
acceleration

G
PU

1

Inference
service

Witness
data

Strain
data

Production
cleaned strain

Validation
cleaned strainCleaning

pipeline

Monitoring +
validation

Shared directory

Local directory

Containerized service
run via Singularity

Disk read/write

gRPC request

(a)

GPU-enabled node on LIGO Data Grid

Validation

Hyperparameters

Training - learning
rate, batch size,
architecture, early
stopping, etc.
Retraining -
cadence, layers,
fine-tuning
learning rate
Inference - kernel
size, kernel stride,
online averaging,
filter padding
Validation -
metrics,
thresholds

Results +
analysis

Training

Export +
acceleration

Inference
service

Cleaning
pipeline

(b)

Figure 3: (a) A production DeepClean deployment. The inference service hosts production and development versions of the
model, with the development model being moved into production once its performance has been validated on the live data
stream. Newmodels are produced at a fixed cadence or in response to instrument interruptions in order to keep the model up-to-
date with nonstationary data distributions. Cleaned data are written to shared directories to be made available to downstream
users via automated data distribution mechanisms. (b) DeepClean offline experimentation structure. Each component of the
production application is run in serial in containers hosting the experimental version of the code. The test data used to validate
one version of the model is used to train the next version. The cleaned strain produced at each model testing is consumed by a
validation application which produces a publishable document containing experimental results and analyses for discussion in
the corresponding pull request.

online averaging of DeepClean’s outputs on the server-side, stream-
ing back non-overlapping averaged predictions for each segment
and avoiding the drawbacks of the “fully online” inference scenario
depicted in figure 14 of [21]. More information on this will be given
in section 5.3.

4.1.3 hermes.stillwater. One of the benefits of leveraging a
dedicated inference service is that it allows the deep learning infer-
ence step of a pipeline to execute asynchronously from the other
steps, increasing the total throughput capacity. stillwater helps
client pipelines take advantage of this by offering a PipelineProcess
class which simplifies implementing data loading and pre- and post-
processing steps as asynchronous processes which communicate
via pipes. It also provides a InferenceClient subclass which ad-
dresses some more of the boilerplate referenced in section 3.1 by dy-
namically inferring the names, shapes, and datatypes of the inputs
expected by a given network for making asynchronous streaming
requests.

5 DEEPCLEAN IN PRODUCTION
5.1 Deployment Outline
Figure 3a illustrates the functionality of a fully production-ready
DeepClean application. Application components are deployed with
containers via Singularity [11] and orchestrated via Singularity
Compose [34]. Because of the real-time demands of this application,

all components are deployed on the same node at each detector
site in order to minimize communication latency. Raw witness
and strain data are made available in 1-second increments in a
shared drive through automated gravitational-wave data distribu-
tion mechanisms. Cleaned strain data is written to similar shared
drives in order to leverage the same distribution mechanisms for
downstream users.

After the network is fine-tuned on new data in order to keep up
with nonstationary data distributions, it is accelerated via TensorRT,
and deployed as a development version on the inference service
via hermes.quiver. A secondary data processing stream in the
cleaning pipeline, implemented with hermes.stillwater, writes
data cleaned using this development model to a local directory.
A monitoring service measures metrics of interest on both the
production and development data, ensuring that the production
deployment is maintaining adequate performance and publishing
its metrics to an internal site at a fixed cadence. It also validates
the performance of the development model and ensures that it
can meet established standards. Once this is validated, the current
production model is retired to cold storage and the development
model is moved into production.

5.2 Offline development
Novel additions to the DeepClean analysis pipeline will require
thorough validation in an environment which replicates the full

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

13

101588

1001

...

Inference Request

Timestamp:

Shape: ()

Request id: 528

Sequence id: 1001

Snapshot states

Shape: ()

101588

1001

...

Concurrent DeepClean
execution instances

Inference Response

Timestamp:

Shape: ()

Request id: 528

Sequence id: 1001

Aggregation states

Shape: ()

Available DeepClean
instances

Occupied DeepClean
instances

Triton Inference Service Deployment

Figure 4: Triton deployment ensemble. A snapshotter model
maintains the state of each active timeseries’ most recent
input kernel, while an aggregator model maintains the as-
sociated online average of DeepClean predictions on over-
lapping segments. Inference requests contain only updates
to the existing state, and are associated with a unique se-
quence identifier which Triton uses to perform the correct
update. Multiple DeepClean instances are hosted on the in-
ference service to perform concurrent inference on different
sequences and kernels from the same sequence simultane-
ously, helping to saturate GPU utilization. States for both the
snapshotter and aggregator models are initialized to 0 for
new sequences. If no states are available, new sequences are
queued until an existing occupied state times out or sends
a “sequence end” flag with its request. Aggregated outputs
have the same length as input requests, but with a time delay
between their initial timestamp created by the aggregation
process.

test-time deployment scenario and which computes those met-
rics which represent DeepClean’s contractual obligations to down-
stream users. Experiments which test these hypothesized additions
are deployed automatically to the International Gravitational Wave
Network Computing Grid (IGWN Grid) via the methods outlined in
section 5.5, which allows these experiments to be versioned along-
side the code which implements them. Figure 3b illustrates what
such an experiment might look like, executing the asynchronous
steps performed by the various DeepClean application components
in serial to aid debugging and analysis, and automating the mea-
surement of performance metrics. Many such pipelines may be
run during a single experiment to optimize over the set of relevant
hyperparameters. In this case, the pipeline should be run again on

a held-out segment of data using the optimized hyperparameters
to validate algorithm performance.

5.3 Streaming inference
As described in [21], the streaming nature of gravitational-wave
data complicates the use of inference services. Overlapping data
in both the input and output kernels introduces extra data trans-
fer overhead which is linear in the inference sampling rate 𝑟 . At
sufficiently high values of 𝑟 , this overhead becomes the dominant
source of inference latency.

Figure 4 illustrates how this issue is resolved in the production
inference server deployment. The hermes.quiver library is used
to construct a Triton ensemble with a “snapshotter” model up front
which maintains the most recent kernel for a given timeseries as
a state on the server associated with a specific sequence identifier.
Inference requests are sent containing only new data which is used
to update this state. Triton routes the update to the appropriate state
using a sequence identifier attached to the request. This updated
kernel is passed to a pool of DeepClean inference instances, which
Triton manages to perform concurrent inference so that subsequent
kernels can be inferred upon simultaneously. This is critical to our
use case because the 1-second increments in which data is made
available means that we can stream updates to the inference service
faster than inference can be performed on them.

The one extension we make here beyond the work outlined in
[21] is that rather than adopting a fully online inference scheme
to address the data transfer bottleneck, we implement another
stateful model in the ensemble which maintains an online average
of DeepClean’s predictions on overlapping segments. This allows
us to take advantage of the higher quality cleans associated with
averaged predictions, without transferring redundant data. This
aggregator model streams back update-sized segments of data once
they have averaged over a fixed number of DeepClean predictions.
This necessarily introduces some aggregation latency 𝜆 between
the initial timestamp of the inference request which triggered the
inference, and that of the inference response which gets streamed
back, since the segment of data with the request’s initial timestamp
has not averaged over enough predictions yet.

5.4 Environment management
Managing the software environments in which these experiments
are executed is nontrivial. We use Poetry3 to manage most de-
pendencies due to its ease of use for projects with the monorepo
structure that DeepClean has adopted. For projects like this, Poetry
makes it easy to manage local libraries with editable installs to
accelerate the development process. However, there are packages
for reading and writing files specific to gravitational-wave analysis
that are only installable via Anaconda [1]. Keeping track of how
and when to leverage these different environment management
tools is onerous and decreases the repeatability of environment
builds as different methods of reconciling them are employed.

To address this, we have built a command line utility pinto4

which alleviates these difficulties by automatically using a project’s
configuration to decide how to create and manage its corresponding

3https://github.com/python-poetry/poetry
4https://github.com/ML4GW/pinto

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

14

CI Node
Unit tests
Deploy experiment
Publish results on fork

Condor Submit Node Production node

Container
repository OSG Container Service

LIGO Data Grid

...

CD Node
Container builds

Release Cycle

main branch

development branch

Figure 5: DeepClean development cycle. Pull requests automatically deploy experiments on the LIGO Data Grid so that they are
versioned along with the code that implements them. Analysis of novel results is deployed to a public web page for discussion
and comment. Accepted changes are reflected in the deployment containers on a fixed release cadence. A container deployment
service from the Open Science Grid publishes latest releases to production nodes.

software environment and execute its commands inside of it. Pinto’s
development cycle is managed separately from both HERMES and
DeepClean to be able to service both training and deployment for
other deep learning-based gravitational-wave analysis projects. It
is built and packaged as a container by leveraging GitHub’s contin-
uous deployment (CD) tools, and is used for unit testing DeepClean
components. This container image is also used as the base image
on top of which several of DeepClean’s production containers are
built, each of which is pinned to a specific version to ensure the
asynchronous development cycles don’t disrupt DeepClean’s func-
tionality.

5.5 Development Cycle
Figure 5 depicts the development cycle of the production DeepClean
application. Bug fixes, feature additions, and new ML research take
place in branches forked from an upstream development branch.
Once a forked branch opens a pull request to the development
branch, GitHub’s CI tools use the Pinto container to test the code
then submit the relevant experiment as a job or set of jobs (e.g.
for hyperparameter searching) on the IGWN Grid. A local version
of the Pinto container which matches the version used for testing
executes the steps of the experiment on the IGWN Grid. The ex-
periment’s results and analysis are passed back as an HTML file to
the CI job which publishes them to the GitHub Page5 of the forked
repository to facilitate discussion on the merits of the changes.
Once there is consensus among the repository maintainers as to

5https://pages.github.com/

whether to accept or reject the proposed changes, the pull request
is merged or closed, respectively. A merged pull request will then
trigger the same CI steps for DeepClean’s standard experiments,
which may have been changed or augmented in the pull request.
The results of the experiment are published to the upstream reposi-
tory’s documentation hosted on its GitHub Page so that the latest
information is always available to users.

The development branch is merged into the main branch at a
fixed cadence, with each new merge triggering a new release of
the production containers. These containers are also published to
GitHub’s container repository, thenmade available on our dedicated
node on the IGWN Grid via Open Science Grid’s[16] container sync
service6. The two latest versions of each container are always made
available on the IGWN Grid, in case unexpected bugs force us to
roll back to a previous stable version. Once new containers become
available, the service is restarted to leverage the new software.

6 CONCLUSION
We have outlined in this work the requirements of a production-
ready, real-time deep learning application in the context of gravita-
tional wave analysis. We have outlined how existing off-the-shelf
tools for constructing such an application are insufficient to meet
the demands of a robust development ecosystem, and have de-
scribed an open-sourced set of tools we have built to address these
difficulties. Finally, we have described how these tools are being

6https://github.com/opensciencegrid/cvmfs-singularity-sync

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

15

used to deploy a mature application for performing noise subtrac-
tion during the O4 data collection run of the IGWN observatories.

While several of the components of this application are still
under development, we hope that by releasing the application and
relevant tools in the open-source we can both facilitate similar work
by our peers and leverage their contributions to realize a more
robust system. In the longer term, our secondary goal is to deploy a
cloud-based DeepClean inference application that can be requested
by arbitrary authorized users in order to integrate more tightly
into downstream detection and parameter estimation pipelines.
By building the components of this simpler application correctly,
our hope is that such a goal can be achieved by straightforward
extension of the same tools, bringing the power of modern deep
learning algorithms to a wider base of users with diverse expertise.

ACKNOWLEDGMENTS
All authors acknowledge support from the National Science Founda-
tionwith grant numbers OAC-1931469, OAC-1934700, PHY-2010970
and OAC-2117997.W.B. additionally acknowledges support through
DGE-1922512. This material is based upon work supported by NSF’s
LIGO Laboratory which is a major facility funded by the National
Science Foundation. The authors are grateful for computational
resources provided by the LIGO Laboratory and supported by Na-
tional Science Foundation Grants PHY-0757058 and PHY-0823459.

REFERENCES
[1] 2020. Anaconda Software Distribution. https://docs.anaconda.com/
[2] J. Aasi et al. 2015. Advanced LIGO. Classical and Quantum Gravity 32, 7 (2015),

074001.
[3] B. P. Abbott et al. 2018. Prospects for observing and localizing gravitational-wave

transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel. 21,
1 (2018), 3. https://doi.org/10.1007/s41114-020-00026-9 arXiv:1304.0670 [gr-qc]

[4] B. P. Abbott et al. 2019. Low-latency Gravitational-wave Alerts for Multimes-
senger Astronomy during the Second Advanced LIGO and Virgo Observing
Run. Astrophys. J. 875, 2 (2019), 161. https://doi.org/10.3847/1538-4357/ab0e8f
arXiv:1901.03310 [astro-ph.HE]

[5] F. Acernese et al. 2015. Advanced Virgo. Classical and Quantum Gravity 32, 2
(2015), 024001.

[6] Algorithmia Inc. 2019. Algorithmia 2020 state of enterprise ma-
chine learning. Alogrithmia Inc., Seattle, WA, USA. https://info.
algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-
2020/Algorithmia_2020_State_of_Enterprise_ML.pdf

[7] Algorithmia Inc. 2020. Algorithmia 2021 state of enterprise machine learning.
Alogrithmia Inc., Seattle, WA, USA. https://info.algorithmia.com/hubfs/2020/
Reports/2021-Trends-in-ML/Algorithmia_2021_enterprise_ML_trends.pdf

[8] Yoichi Aso, Yuta Michimura, Kentaro Somiya, Masaki Ando, Osamu Miyakawa,
Takanori Sekiguchi, Daisuke Tatsumi, and Hiroaki Yamamoto. 2013. Interferome-
ter design of the KAGRA gravitational wave detector. Phys. Rev. D 88 (Aug 2013),
043007. Issue 4. https://doi.org/10.1103/PhysRevD.88.043007

[9] Kipp Cannon et al. 2012. Toward Early-Warning Detection of Gravitational
Waves from Compact Binary Coalescence. Astrophys. J. 748 (2012), 136. https:
//doi.org/10.1088/0004-637X/748/2/136 arXiv:1107.2665 [astro-ph.IM]

[10] Davis et al. 2021. LIGO detector characterization in the second and third observing
runs. Classical and Quantum Gravity 38, 13 (jun 2021), 135014. https://doi.org/
10.1088/1361-6382/abfd85

[11] SingularityCE Developers. 2021. SingularityCE 3.8.3. https://doi.org/10.5281/
zenodo.5564915

[12] Alexander D’Amour et al. 2020. Underspecification Presents Challenges for
Credibility in Modern Machine Learning. https://doi.org/10.48550/ARXIV.2011.
03395

[13] David Silver et al. 2017. Mastering the game of Go without human knowledge.
Nature 550, 7676 (Oct. 2017), 354–359. https://doi.org/10.1038/nature24270

[14] E. A. Huerta et al. 2019. Enabling real-time multi-messenger astrophysics dis-
coveries with deep learning. Nature Reviews Physics 1, 10 (oct 2019), 600–608.
https://doi.org/10.1038/s42254-019-0097-4

[15] Javier Duarte et al. 2019. FPGA-Accelerated Machine Learning Inference as a
Service for Particle Physics Computing. Computing and Software for Big Science
3, 1 (oct 2019). https://doi.org/10.1007/s41781-019-0027-2

[16] Ruth Pordes et al. 2007. The open science grid. Journal of Physics: Conference
Series 78 (jul 2007), 012057. https://doi.org/10.1088/1742-6596/78/1/012057

[17] Matthew Feickert and Benjamin Nachman. 2021. A Living Review of Machine
Learning for Particle Physics. https://doi.org/10.48550/ARXIV.2102.02770

[18] Christopher J. Fluke and Colin Jacobs. 2019. Surveying the reach and maturity
of machine learning and artificial intelligence in astronomy. WIREs Data Mining
and Knowledge Discovery 10, 2 (dec 2019). https://doi.org/10.1002/widm.1349

[19] Daniel George and E.A. Huerta. 2018. Deep Learning for real-time gravitational
wave detection and parameter estimation: Results with Advanced LIGO data.
Physics Letters B 778 (mar 2018), 64–70. https://doi.org/10.1016/j.physletb.2017.
12.053

[20] Alec Gunny and Dylan Rankin. 2021. fastmachinelearning/gw-iaas: v0.1.0-alpha.
https://doi.org/10.5281/zenodo.5567703

[21] Alec Gunny, Dylan Rankin, Jeffrey Krupa, Muhammed Saleem, Tri Nguyen,
Michael Coughlin, Philip Harris, Erik Katsavounidis, Steven Timm, and Burt
Holzman. 2021. Hardware-accelerated Inference for Real-Time Gravitational-
Wave Astronomy. https://doi.org/10.48550/ARXIV.2108.12430

[22] Jesse Michael Han, Igor Babuschkin, Harrison Edwards, Arvind Neelakantan, Tao
Xu, Stanislas Polu, Alex Ray, Pranav Shyam, Aditya Ramesh, Alec Radford, and
Ilya Sutskever. 2021. Unsupervised Neural Machine Translation with Generative
Language Models Only. https://doi.org/10.48550/ARXIV.2110.05448

[23] GregoryMHarry et al. 2010. Advanced LIGO: the next generation of gravitational
wave detectors. Classical and Quantum Gravity 27, 8 (apr 2010), 084006. https:
//doi.org/10.1088/0264-9381/27/8/084006

[24] Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. 2020. Formalizing
Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust
in AI. https://doi.org/10.48550/ARXIV.2010.07487

[25] KAGRA collaboration. 2019. KAGRA: 2.5 generation interferometric gravitational
wave detector. Nature Astronomy 3, 1 (2019), 35–40. https://doi.org/10.1038/
s41550-018-0658-y

[26] Plamen G. Krastev, Kiranjyot Gill, V. Ashley Villar, and Edo Berger. 2021. Detec-
tion and parameter estimation of gravitational waves from binary neutron-star
mergers in real LIGO data using deep learning. Physics Letters B 815 (2021),
136161. https://doi.org/10.1016/j.physletb.2021.136161

[27] M. Ntampaka, J. ZuHone, D. Eisenstein, D. Nagai, A. Vikhlinin, L. Hernquist, F.
Marinacci, D. Nelson, R. Pakmor, A. Pillepich, P. Torrey, andM. Vogelsberger. 2019.
A Deep Learning Approach to Galaxy Cluster X-Ray Masses. The Astrophysical
Journal 876, 1 (may 2019), 82. https://doi.org/10.3847/1538-4357/ab14eb

[28] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-
mysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,
Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,
Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy
Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski,
and Susan Zhang. 2019. Dota 2 with Large Scale Deep Reinforcement Learning.
https://doi.org/10.48550/ARXIV.1912.06680

[29] Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X. Adhikari, and Erik Kat-
savounidis. 2020. Noise reduction in gravitational-wave data via deep learning.
Physical Review Research 2, 3 (jul 2020). https://doi.org/10.1103/physrevresearch.
2.033066

[30] Fernanda Psihas, Micah Groh, Christopher Tunnell, and Karl Warburton. 2020.
A review on machine learning for neutrino experiments. International Jour-
nal of Modern Physics A 35, 33 (nov 2020), 2043005. https://doi.org/10.1142/
s0217751x20430058

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. https:
//doi.org/10.48550/ARXIV.1910.10683

[32] Khalid Salama, Jarek Kazmierczak, and Donna Schut. May 2021. Practitioners
guide to MLOps: A framework for continuous delivery and automation of ma-
chine learning. Google Inc., Mountain View, CA, USA. https://services.google.
com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf

[33] Axel Sauer, Katja Schwarz, and Andreas Geiger. 2022. StyleGAN-XL: Scaling
StyleGAN to Large Diverse Datasets. https://doi.org/10.48550/ARXIV.2202.00273

[34] Vanessa Sochat. 2019. Singularity Compose: Orchestration for Singularity Instances.
https://doi.org/10.5281/zenodo.3376793

[35] Kentaro Somiya. 2012. Detector configuration of KAGRA–the Japanese cryogenic
gravitational-wave detector. Classical and QuantumGravity 29, 12 (2012), 124007.

[36] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. 2021. You Only Learn
One Representation: Unified Network for Multiple Tasks. https://doi.org/10.
48550/ARXIV.2105.04206

[37] Yuhui Yuan, Xiaokang Chen, Xilin Chen, and JingdongWang. 2019. Segmentation
Transformer: Object-Contextual Representations for Semantic Segmentation.
(2019). https://doi.org/10.48550/ARXIV.1909.11065

[38] M Zevin, S Coughlin, S Bahaadini, E Besler, N Rohani, S Allen, M Cabero, K
Crowston, A K Katsaggelos, S L Larson, and et al. 2017. Gravity Spy: integrating
advanced LIGO detector characterization, machine learning, and citizen science.
Classical and Quantum Gravity 34, 6 (Feb 2017), 064003. https://doi.org/10.1088/
1361-6382/aa5cea

Workshop Presentation FlexScience ’22, July 1, 2022, Minneapolis, MN, USA

16

https://docs.anaconda.com/
https://doi.org/10.1007/s41114-020-00026-9
https://arxiv.org/abs/1304.0670
https://doi.org/10.3847/1538-4357/ab0e8f
https://arxiv.org/abs/1901.03310
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2020/Reports/2021-Trends-in-ML/Algorithmia_2021_enterprise_ML_trends.pdf
https://info.algorithmia.com/hubfs/2020/Reports/2021-Trends-in-ML/Algorithmia_2021_enterprise_ML_trends.pdf
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1088/0004-637X/748/2/136
https://doi.org/10.1088/0004-637X/748/2/136
https://arxiv.org/abs/1107.2665
https://doi.org/10.1088/1361-6382/abfd85
https://doi.org/10.1088/1361-6382/abfd85
https://doi.org/10.5281/zenodo.5564915
https://doi.org/10.5281/zenodo.5564915
https://doi.org/10.48550/ARXIV.2011.03395
https://doi.org/10.48550/ARXIV.2011.03395
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s42254-019-0097-4
https://doi.org/10.1007/s41781-019-0027-2
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.48550/ARXIV.2102.02770
https://doi.org/10.1002/widm.1349
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.5281/zenodo.5567703
https://doi.org/10.48550/ARXIV.2108.12430
https://doi.org/10.48550/ARXIV.2110.05448
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.48550/ARXIV.2010.07487
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1016/j.physletb.2021.136161
https://doi.org/10.3847/1538-4357/ab14eb
https://doi.org/10.48550/ARXIV.1912.06680
https://doi.org/10.1103/physrevresearch.2.033066
https://doi.org/10.1103/physrevresearch.2.033066
https://doi.org/10.1142/s0217751x20430058
https://doi.org/10.1142/s0217751x20430058
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf
https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf
https://doi.org/10.48550/ARXIV.2202.00273
https://doi.org/10.5281/zenodo.3376793
https://doi.org/10.48550/ARXIV.2105.04206
https://doi.org/10.48550/ARXIV.2105.04206
https://doi.org/10.48550/ARXIV.1909.11065
https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1088/1361-6382/aa5cea

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Inference-as-a-Service
	3.2 Online deployment

	4 HERMES
	4.1 The HERMES libraries

	5 DeepClean in Production
	5.1 Deployment Outline
	5.2 Offline development
	5.3 Streaming inference
	5.4 Environment management
	5.5 Development Cycle

	6 Conclusion
	Acknowledgments
	References

