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Abstract—A deep learning approach is proposed to detect
data and system anomalies using high-resolution continuous
point-on-wave (CPOW) or phasor measurements. Both the
anomaly and anomaly-free measurement models are assumed
to have unknown temporal dependencies and probability dis-
tributions. Historical training samples are assumed for the
anomaly-free model, while no training samples are available
for the anomaly measurements. By transforming the anomaly-
free observations into uniform independent and identically
distributed sequences via a generative adversarial network,
the proposed approach deploys a uniformity test for anomaly
detection at the sensor level. A distributed detection scheme
that combines sensor level detections at the control center is
also proposed which combines local detections to form more
reliable detections. Numerical results demonstrate significant
improvement over the state-of-the-art solutions for various bad-
data cases using real and synthetic CPOW and PMU data sets.

Index Terms—System event detection, continuous point-on-
wave (CPOW) measurements, bad-data detection, distributed
anomaly detection, generative adversary networks (GAN).

I. INTRODUCTION

We consider the problem of detecting data and system
anomalies using possibly unsynchronized high-resolution
power system measurements. Besides conventional syn-
chrophasor measurements, we consider continuous point-on-
wave (CPOW) measurements sampled at up to 100 kHz. At
these sampling rates, power system measurements exhibit
strong temporal dependencies.

High-resolution measurements currently exist in the field
in various monitoring devices [1], mostly used for local
protection purposes and also for post-event analysis. Rarely
they are streamed to the control center for real-time moni-
toring. However, with the increasing penetration of inverter-
based resources, there are cogent needs for high-resolution
monitoring that goes beyond using low-resolution SCADA
and PMU based measurements [1]-[3]. To this end, we aim
to fill a theoretical and practical gap in using high-resolution
measurements to detect anomalies at the sensor level and
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combine sensor-level detections at the control center to form
more accurate anomaly detections.

The challenge of anomaly detection with high-resolution
measurements is threefold. First, temporal dependencies in
high-resolution measurements are difficult to model. Con-
ventional techniques based on sample-by-sample detection or
assuming independent data samples tend to perform poorly.
In this work, we stress the significance of anomaly sequence
detection where anomaly detection is made based on a
measurement sequence rather than individual samples.

Second, anomalies are rare events, and there are un-
countably many possibilities that anomalies can occur; no
single model nor sufficient historical data are available to
characterize and validate anomaly data. Therefore, anomaly
detection should be derived from the anomaly-free model
only, independent of the types of anomalies that may occur.

Finally, defining “normalcy” is nontrivial. While a power
system has well-defined nominal operating conditions, it has
frequent transients as generators are dispatched in real-time.
There is no standard data model that leads to well-defined
statistical tests for anomaly-free data.

We consider three types of anomalies. One is the con-
ventional bad data caused by malfunctioning sensors and
communication errors that generate outliers. The second is
data anomaly from data attacks, where an adversary manip-
ulates sensor data to affect the operator’s decision process.
The third is system anomalies such as faults and operation
contingencies that manifest themselves in data. We do not
distinguish among different data anomalies.

A. Related work

The classic anomaly detection in wide-area power system
monitoring is bad-data detection in the context of power
system state estimation [4]-[6]. A standard approach is
post-estimation bad-data detections where state estimation
is performed first as if there were no bad data. Data anomaly
is declared when the (normalized) residue error (computed
using the estimated state) is greater than a certain threshold.
As a result, inaccuracy of state estimation caused by anomaly
data circulates back to affect bad-data detection.

An alternative is the pre-estimation bad-data detection
techniques that detect data anomaly before state estimation,
thus breaking the path of estimation error propagation. The
key idea is to replace the estimated state in the post-
estimation scheme with a predicted state using the past mea-

ublication/redistribution requires IEEE permission. See htt$é//§vavw22ie?e108rg‘{%ublicationsﬁstandards/ ublications/rights/index.html for more information.
, at 18:49:

48 UTC from IEEE Xplore. Restrictions apply.


krm264@cornell.edu
xw555@cornell.edu
lt35@cornell.edu

0885-8950 (c) 2021 IEEE. Personal use is permitted, but reF S { I
Authorized licensed use limited to: Cornell University Library. Downloaded on July

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3168529, IEEE

Transactions on Power Systems

surements and apply residue test on the predicted measure-
ment [7], [8]. Such techniques exploit temporal dependencies
in the data for prediction, thus more relevant to the anomaly
sequence detection problem considered in this paper. These
techniques, however, assume specific temporal dependency
models that are difficult to obtain.

A more direct pre-estimation approach is to detect anoma-
lies based on features of anomaly-free data. One of the
earliest such techniques is using a neural network classifier
trained with anomaly-free data [9]. A separate line of ap-
proaches is to extract features from the anomaly-free data
and classify data in the feature space. Examples include the
use of principal component analysis to characterize the signal
subspace of the anomaly-free data [10] and the formulation
of the problem as the detection of a change in measurement
probability distribution [11].

There is a growing literature on the use of machine
learning for bad-data detection in power systems since the
mid-1990s [9]. These techniques can be categorized based on
how data are used in learning. Supervised learning requires
labeled training data in both anomaly-free and anomaly cases
[12], semi-supervised learning requires training samples for
the anomaly-free data [13], [14], and unsupervised learning
requires no training data [11]. An ensemble learning tech-
nique is proposed in [15] that combines a collection of bad-
data detectors.

Because it is difficult to obtain labeled anomaly data
for training, the semi-supervised and unsupervised learning
paradigms are of particular significance. Although not de-
signed for power system state estimation, two types of semi-
supervised anomaly detectors that use only training samples
under the anomaly-free model can be applied for bad-data
detection in power systems. One is the one-class support
vector machine OC-SVM [16] that separates anomaly and
anomaly-free data deterministically. The other is based on
the idea of auto-encoder in deep neural network [17]. An
implicit assumption is that anomaly and anomaly-free data
do not share a common data domain for these methods, which
rarely holds in power system measurement models.

Statistical learning approaches to anomaly detection start
from the premise that anomaly and anomaly-free data come
from different probability distributions. To this end, a recent
work of particular relevance is [13] that focuses on dynamic
data attacks of power system state estimation. Although
the attack models in [13] suggests an anomaly sequence
detection problem, the proposed mitigation strategy is a
sample-by-sample detection scheme based on anomaly-free
probability distributions from historical samples. The idea of
universal bad-data detection methods developed in [14] is
a semi-supervised learning technique that learns the inverse
generative model of the anomaly-free data using a genera-
tive adversarial network (GAN) approach using Wasserstein
distance [18], followed by a coincidence test. The approach
developed in [14] relies on that the observations are i.i.d.,

which is unreasonable for high-resolution data.

There is significant literature on detecting the so-called
data injection attacks by an adversary who can inject,
remove, and substitute data to affect system and market
operations [19]-[24]. In particular, an attacker may create
a fake sequence of system states such that the manipulated
measurements and the fake state sequence satisfy the un-
derlying power flow equation, which makes the manipulated
data unobservable. There is no effective anomaly detection
solution for such attacks in the literature. The technique
proposed here gives a viable solution.

B. Summary of approach and contributions

We develop a data-driven machine learning technique to
detect anomalies from high-resolution CPOW and PMU mea-
surements. By stressing the significance of anomaly sequence
detection, the proposed approach is a notable departure from
the conventional sample-by-sample detection solutions, and
it is perhaps the first anomaly sequence detection method for
power system monitoring.

The main technical contribution of this work is twofold.
First, we develop a sensor-level non-parametric anomaly
sequence detection method in which no assumptions are
made for the anomaly data model. The anomaly-free model
is also assumed to be unknown, except that historical training
samples are available, making the proposed technique a data-
driven solution. By not assuming any anomaly model, the
proposed sensor-level detection applies to bad-data anoma-
lies, data injection attacks, and system anomalies that mani-
fest themselves in anomaly data patterns. To our best knowl-
edge, there is no existing alternative in the power system
monitoring literature.

A significant challenge of anomaly sequence detection is
the unknown temporal dependencies in measurements. To
this end, we propose a GAN-based independent component
analysis, referred to as ICA-GAN, that transforms anomaly-
free measurements with unknown statistical dependencies
to uniform independent and identically distributed (i.i.d.)
samples. We then apply a uniformity test that distinguishes
uniform i.i.d. samples from the anomaly-free hypothesis from
non i.i.d. and/or non-uniform anomaly samples. While ICA
[25], [26] and uniformity tests [27]-[29] have been developed
separately in the past, a combination of them for anomaly-
detection is a novel contribution.

Second, we propose a distributed detection framework that
combines sensor-level detections for system-level anomaly
detection. Such techniques are essential because individual
sensors have access to local measurements only, and their
detections are likely to be unreliable. Distributed detection
plays crucial roles in various surveillance applications and
has been studied extensively [30]. Classic techniques require
known anomaly and anomaly-free probability models, and
measurement samples are assumed to be conditionally i.i.d.
These assumptions do not apply to the anomaly detection
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model considered here. To our best knowledge, there are
no effective non-parametric decentralized techniques in the
literature. The proposed technique exploits a key feature of
ICA-GAN that, under the anomaly-free hypothesis, maps de-
pendent measurement sequences to uniform i.i.d. sequences,
making it possible that local detectors with the same false
positive rate (FPR) are used. To this end, we derive a fusion
rule that combines individual sensor decisions.

Finally, we test the proposed technique under three
anomaly scenarios, using real data set from the EPFL net-
work [31], [32] and a larger synthetic Northern Texas network
with PMU measurements [33]. These illustrations cover a
natural data anomaly, an unobservable data-injection attack,
and a system anomaly. They serve as demonstrations of the
versatility of the proposed detection method.

II. SYSTEM AND ANOMALY DETECTION MODEL
A. Measurement and anomaly models

The proposed anomaly detection solution applies to mea-
surements involve a single sensor at a remote terminal or a
group of possibly unsynchronized sensors. Let the measure-
ment sequence® at sensor ¢ be (z;;), which we model as a
random process generated from power system state sequence
(), additive noise (w;), and anomaly sequence (a;;):

Zit = hi(z¢) + Wi + aie, ()

where the measurement function h;(-) at sensor i encodes
system parameters and topology information is assumed
unknown. Herein, we make the assumption that noise pro-
cesses (w;;) at different sensors are statistically independent
whereas the anomaly sequences (a;;) may be dependent.
For natural data anomalies, (a;;) are assumed to be inde-
pendent of (h;(z;;)), ambient noise (w;;) and measurements
elsewhere (zj;). For adversarial data anomalies, very little
can be assumed about a;. In particular, a;; may be a
function of past measurements and statistically dependent
on the system state in some arbitrary fashion. An extreme
type of unobservable attack can be constructed in the form
of a;; = hi(x}) — h;(x¢) where the adversary substitute the
actual system measurement h;(x;) by a fictitious measure-
ment corresponding to a fictitious state x’. For system anoma-
lies with post-contingency measurement function A;(-), the
anomaly sequence can simply be a;; = h(x:) — hi(zy).

B. Sensor level anomaly sequence detection

At the sensor level, we formulate the anomaly sequence
detection problem as a non-parametric hypothesis testing
of a time series. We assume that at time ¢, we have a
block of M of current and past measurements Z; =
(Zit» Zi(¢—1)s - » Zi(t—m+1)). Let the null hypothesis Ho

*We adopt the standard notation that (z¢) denotes a sequence of mea-
surements.

model the anomaly-free data and the alternative 7{; for the
anomaly data. In particular,

Hio : Zie ~ fio vs. Hi1: Zip ~ fir € Fic )
yz}e = {f7 Hf - f20|| > 6}

where f;o and f;; are the underlying joint probability dis-
tributions of Z;; under H;o and H;;, respectively. Note
that ;o is a simple hypothesis with a single probability
distribution f;o and H;1 a composite hypothesis with a set
F. of distributions some ¢ distant away’. The requirement
of € separation of the null and the alternative hypothesis is
to ensure consistency of the detector.

Under (2), each sensor makes an individual binary decision
uit = Di(Zi) € {0,1} on anomaly based on Z;s: u;y = 1
means that the detector rejects the null (anomaly-free) hy-
pothesis H,o, and u;; = 0 means that the null hypothesis H,;
is accepted. In practice, a sensor produces a detection every
M samples when non over-lapping blocks are used. The size
of M has both theoretical and practical implications. A larger
M means better detection reliability with considerably higher
complexity in learning and implementation.

C. Distributed detection and data fusion model

We now consider a power system with K local
PMU/CPOW sensors as shown in Fig. 1, where sensor ¢ pro-
duces a local binary sensor detection u;; at time t. We assume
that local decisions {u;;} are communicated synchronously
to the control center (fusion center) where a global decision
v on anomaly is made. Let us = (u1¢, - - , uxy) be the local
decision vector at the control center.

vy

Control
center

Uit Ut UKt

PMU/CPOW PMU/CPOW
sensor 2

PMU/CPOW
sensor K

(2K+)

sensor 1

(=1t)

(221)

Fig. 1: A schematic of a distributed anomaly
detection system.

Assume that the local detector at sensor ¢ has false positive
rate (FPR) of a; and true positive rates of [3;, the control
center faces the following binary hypothesis testing problem
Ho vs. Hi where H, corresponds to the anomaly-free
hypothesis and H; the anomaly:

Ho:utNPO VS. ’leuthl, (3)

"The distance measure of probability distributions can be arbitrary.
Examples include the total variation and Jensen-Shannon distances.

1 . d, b Fublication/redi§tribu_tion requires IEEE permission. See htqn://www.ieeeorg/%ublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: Cornell University Library. Downloaded on July 12,2022 at 18:49:.

48 UTC from IEEE Xplore. Restrictions apply.



0885-8950 (c) 2021 IEEE. Personal use is permitted, but reF S { I
Authorized licensed use limited to: Cornell University Library. Downloaded on July

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3168529, IEEE

Transactions on Power Systems

where u;; ~ B(c;) is Bernoulii* with parameter o; under Ho
and u;¢y ~ B(6;) under H;. In (3), Py, P, are joint probability
mass functions of u; under Hy and H;, respectively. Note
that, while the FPR «; of is a design parameter that can be
controlled, the TPR f; is unknown, and it varies with the
realized anomaly.

III. SENSOR-LEVEL ANOMALY SEQUENCE DETECTION

We now focus on the anomaly detection problem at a
particular sensor. For brevity, we drop the sensor index ¢
in the subscripts of relevant variables.

Fig. 2 shows a schematic of the proposed technique, which
includes an independent component analysis (ICA) prepro-
cessing Gy and a uniformity test. At time ¢, a vector con-
sisting of M measurements Z; = (24, 2t—1," " , Z—(M—1))
is passed through a neural network trained to extract a
block of uniformly distributed independent components V; =
(ve1,- -+, v, v ) under the anomaly-free model (2). The train-
ing of ICA-GAN is discussed in Sec III-B, where either an
offline or online training using past anomaly-free measure-
ments can be used.

Uniformity test

Zy = (zk) gé Vi=(v,)|| Coincidence |x, = (z,;)| &= Ho Y,
ICA-GAN pre- feature Z(;,J;m >7H
processor extraction j=0 %,

Fig. 2: A schematics of ICA-GAN for anomaly
sequence detection.

The uniformity test takes the output of the ICA preproces-
sor Gy and produces a NN-dimensional coincidence feature
Xt = (x40, -+ ,x,n) followed by a linear classifier whose
output Y; lables the input sequence Z; as anomaly (Y; = 1)
or anomaly-free (Y; = 0).

The implementations of the ICA preprocessing and unifor-
mity test are described next.

A. Anomaly sequence detection via uniformity test

We begin with the uniformity test for anomaly sequence
detection, assuming that the preprocessing step has generated
V, that, under the anomaly-free hypothesis #, contains i.i.d.
uniformly distributed random variables (v; ;) in [0, 1].

To derive the detection feature vector X;, we first quan-
tize vy ; uniformly into a discrete random variables ¥, ; of
alphabet size L, i.e.,

’l_)tﬂ; =1 if Vi € %l = [Z/L, (l+ 1)/L),

#The Bernoulli random variable X ~ B(p) is defined here by Pr(X =
1)=pand Pr(X =0)=1—p.

where we refer % to as the k-th quantization bin. Such
a quantization transforms the original anomaly detection
problem (2) to the classical uniformity test defined as

H6 : (’Dt;i)i}i.\dj P[;:(%v 7%)7 (4)
Hy: (0) ~ Pl € Fu,

where o = {p = (p1,---.pL)| |Ip — Pj|| > €}. Note
that the probability distribution under H, above is unknown
whereas P} in (4) is known.

Following the classic work of David [27] and Viktorova
and Chistyakov [28], we define a N-dimensional detection

feature vector X; = (x40, -,y n) Where z, ) is the
number of quantization bins that have exactly k samples
of (U1, ,0¢n). In particular, x4 is the number of

quantization bins that contains no samples of (7 ;) and x; 1
the number of quantization bins containing one sample.

With the feature vector X, a linear anomaly detector for
hypothesis testing (2) is given by

N Ho
> erwin 2 Ta, (5)
k=0 H

where T, is the threshold that controls the level of false
positive detection rate.

In [29], Paninski shows that the above detector is consistent
when only z;0 is used (¢, = 0,k > 1) so long as
N grows faster than VL as N = o(%+v/L). Remarkably,
the sample complexity can be significantly less than the
size of the alphabet. When the coefficients of the linear
detector is carefully chosen as in [28], the detector in (5)
is asymptotically most powerful.

The threshold of the test statistics affects the true and false-
positive probabilities of the detection. The threshold 77, of the
24,1 coincidence test with the constraint on the false-positive
probability to no greater than « is given by

T, = min{k : Pr(z,1 < k;Ho) < a}. (6)

The computation of 7, amounts to evaluating P, :=
Pr(zy1 = 1;Ho), which was given by Von Mises in [34]:

-y () ()5

i=l

(L =N
Ly

B. Extracting Independent Components via ICA-GAN

Independent Component Analysis (ICA), a generalization
of Principle Component Analysis (PCA), extracts a set of
independent components from a block of measurements.
Originally proposed by Jutten and Herault [35] and Comon
[25], ICA has found a wide range of applications when
statistical independence is essential in learning and inference
tasks. ICA typically requires nonlinear processing, and neural
network techniques have been proposed [36]. More recently,
Brackel and Bangio introduced a deep learning solution
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based on GAN [26]. However, their technique that enforces
independence through resampling does not perform well in
time series. Here we propose an alternative solution, referred
to as ICA-GAN, based on direct minimization of Wasserstein
distance [18] between the distribution of ICA estimates and
that of uniform i.i.d. random variables.
Assume that the measurement vector has a nonlinear ICA
representation, B
Zy = f(Vh), (7)

where V;, = (D41, ,0,n) has uniform i.i.d. components
D5 ~ U(0,1). The proposed ICA-GAN produces a mini-
mum Wasserstein-distance estimate V; of Vt

The learning structure of ICA-GAN, shown in Fig 3, is an
inverse GAN®, where the ICA-GAN neural network Gy with
weights vector #, once properly trained, maps a sequence
of arbitrary distributed random variables to a uniform i.i.d.
sequence. A discriminator neural network D,, with weights
vector 7, through a dual optimization, computes the estimated
gradient of Wasserstein distance between the distribution of
the estimated ICA V; and that of f/t with uniform i.i.d.
components. The stochastic gradient of the Wasserstein dis-
tance is used to update generator neural network coefficient
0 and discriminator neural network coefficients 7. See an
implementation of ICA-GAN in Algorithm 1.

Vi= (Uf./)

Zs = (21—k) gé) Dz]
ICA-GAN Wasserstein o
s Vo aW (Vi Vi)
preprocessor j discriminator
Vi = (Dig)

Fig. 3: Learning structure of ICA-GAN.

Ideally, if an ICA representation of the measurement
exists, and the training of ICA-GAN preprocessor converges,
Gy transforms the unknown measurement distribution un-
der H;p in (2) to the uniform iid. distribution in V;. In
practice, however, ICA-GAN is trained with historical data
samples from the anomaly-free model. With a sufficiently
high-dimensional implementation and adequate training, we
expect approximately uniform i.i.d. entries of vector V;. See
discussions on implementations in Sec V.

IV. SYSTEM-LEVEL ANOMALY DETECTION

We now consider the distributed detection problem at
the system level where the control center receives binary
decisions {u;+} from individual sensors. From Sec. IV, we
know that ICA-GAN at each sensor transforms different
sensor measurements Z;; to the same uniform i.i.d. samples

8The standard GAN trains a generative network that transforms a uniform
distribution to an underlying distribution of a data set.

Algorithm 1 ICA-GAN. The experiments in the paper used
the values o« = 0.0001, A\ = 0.1, b = 100, ¢ = 10, M = &0,
N =50.

Require: : «, the learning rate. A, the gradient penalty coef-
ficient. b, the batch size. ¢, the number of iterations of the
discriminator per generator iteration. M, the block size
for the data sequence. IV, the number of the independent
components for ICA.

1: for Number of training iterations do

2: for k=1,---,cdo

3: for:=1,--- ,bdo N

4 Sample U = (U, ---,Uy) %920 (0, 1)
from uniform distribution.

5: Sample a random time ¢ for the start of
the time sequence. Get Z; = (2¢,2¢—1," ", Zt—(M—1))

measurements sequence from data sequence.

6: Sample a random number € ~ U(0, 1).

7: U < go(Zy) .

8: U+ eU+(1-eU

5 Li 4 fu(0) = Ful0) 4 M Vg Sl = 1)?

10: end for

11: Update the discriminator parameter w by de-
scending its stochastic gradient:

b
w + Adam(V,, [% > Ll])
i=1

12: end for
13: fori=1,--- ,bdo
14: Sample a random time ¢ for the start of the time

sequence. Get Z; = (24, 2¢-1," "+ , %—(M—1)) Measure-
ments sequence from real data sequence.

15: L; + —fw(gg(Z{t’... ,t+(Mfl)}))

16: end for

17: Update the ICA-GAN generator parameter 6 by de-
scending its stochastic gradient:

b
0 + Adam(Vy [% > Li]
i=1
18: end for

under H,. Because the uniformity detector at all sensors are
identical, they all have same false positive rate a@ = «;.
Furthermore, because noise process (w;;) are statistically
independent across sensors, we have, under 7—[6, Uy are Li.d.
Bernoulii B(«), and wu; ), u;+ a binomial random variable
Bin(K, ).

We derive next a Neyman-Pearson detection rule at the
control center given detection vector u; — (U1t7 oo ,uKt)
under the standard conditional independent assumption, i.e.,
conditional on ), u; have independent entries. Because
anomaly model is arbitrary, we further assume that the true
positive rates [3; for all detectors are the same. Let 8 = [3;.
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Following [30], the log-likelihood ratio is given by

B Pr(u:|H})

L) = o8 )
_ s —a) S 1-8
= lOgm : u1t+K10g1_a.

7

Noting that 8 > « for any reasonable local detector, the
Neyman-Pearson test is given by a threshold on the sum of
sensor decision variables . w;::

K H1
Z Uiy 2 T, )
i=1 Ho

where 7 is chosen to satisfy the false positive rate constraint.
Given the desired upper bound «g on the false positive rate
of the central detector, we set

(K
T=minqk:qy < ( . >o¢j1—oz(Kj)},
{rraos (5 -
where we ignore possible randomizations to make the false
positive exactly .

Note that the detector defined in (8) is uniformly most
powerful (UMP) under the assumptions that sensor-level
detectors produce (conditionally) independent decisions with
identical TPR. Note also that, although we assume that
sensors synchronously communicate their local decisions
{u;}, the above derivation shows that the central detector
can just as well operate asynchronously. The structure of the
detector and the decision rule (8) remain the same. Indeed,
the above idea also applies to local sensor decisions where
the sensor combines multiple detections from smaller blocks
to produce more reliable detections. The advantage is that
training ICA-GAN with a low-dimensional input vector is
considerably simpler than training a higher dimensional one.

V. NUMERICAL CASE STUDIES

We present three case studies that cover the three types
of anomalies considered in this paper. Wherever possible,
publicly available real data sets were used.

ICA-GAN implementations in the three case studies shared
the same structure, although parameters used are tuned dif-
ferently depending on the training data. The specific data
sets used in the case studies are described in their respective
subsections. In all three case studies, we trained the generator
with three hidden layers and 100 neurons at each hidden
layer. Hyperpolic tangent in Case I and Rectified Linear Units
(ReLU) in Case II-III activation function at the final layer
were used as the activation functions. For the discriminative
network, we also used three hidden layers with 100 neurons.
A modification of a standard implementation of Wasserstein
distancel was used in the ICA-GAN training with Adam op-
timization algorithm using mini-batches of 100 data samples.

Ihttps://keras.io/examples/generative/wgan_gp/

In performance evaluation, we obtained the receiver oper-
ating characteristic (ROC) curves over Monte Carlo simula-
tions. ROC curves plot TPR (probability of detection) against
FPR (probability of false alarm), which shows the detection
power across the entire range of FPR constraints. We paid
specific attention to FPR=0.05 as in standard power system
applications [6].

A. Benchmark techniques and implementations

While there are few comparable techniques in the liter-
ature for detecting general sequence anomalies in CPOW
and high-resolution PMU measurements, we compared three
benchmarks that have similar characteristics with ICA-GAN
and are potentially applicable in the applications considered
in the case studies presented here.

The normalized residue test (NRT) [6] is the classic
technique for bad-data detection for power system state es-
timation. NRT collects measurements from the local sensors
and form a centralized anomaly detection. When multiple
anomalies occur simultaneously, a standard approach is to
remove bad data recursively. In our implementation, we apply
the NRT-test to isolate the measurement with the largest total-
residue-error calculated over the sequence. If it failed the
NRT-test, the data would be declared bad and removed from
the system until either the measurement data pass the test or
the system becomes unobservable.

The one-class support vector machine (OC-SVM) [16]
is a semisupervised machine learning method trained with
anomaly-free historical data. It operates under a similar set
of model assumptions, except that it does not deal with
temporal dependencies in data. We used the radial basis
function as a nonlinear kernel. We evaluated the results on the
test sequences using the anomaly score function we achieved.
We varied the threshold parameter of SVM to get different
points on the ROC curve. We used the scikit-learn library for
the implementation.

The fast unsupervised anomaly detection (F-AnoGAN)
[17] is an auto-encoder technique trained on anomaly-free
data. We used a generator and a discriminator with three
hidden layers in Wasserstein GAN and a deep neural network
with two hidden layers and 100 neurons in each layer in the
auto-encoder. The input took 80 consecutive measurement
samples and encoded them into latent variables of dimension
to 50. We evaluated the results considering the reconstruction
error of the auto-encoder. The training was done on a GPU
using the Tensorflow-GPU library.

B. Case I: System anomalies in CPOW measurements

We used the EPFL data set involving a battery energy
storage system connected at a bus [32], as shown in Fig. 4
(top left). The battery system produced injections that em-
ulated different levels of anomaly events. We used CPOW
measurements on the bus voltage and current measurements
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A and B. Direct measurements on anomaly current at C were
not used. The CPOW measurements were direct samples of
the voltage/current waveforms at 50kHz, and the anomaly
power injection varied from 0 to S00kW. The EPFL data set
contained anomaly and anomaly-free data, each with 100,000
samples within 2 seconds.

Fig. 4 (top-right and the bottom panel) shows the anomaly
and anomaly-free waveforms of the bus voltage and current
measurements. There is little difference between the anomaly
and anomaly-free voltage CPOW measurements, while no-
ticeable differences are shown in the current measurements.
It was expected that the two current detectors would be more
reliable than the voltage detector. However, the control center
would not know which detector would be reliable a priori.
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Fig. 4: Learning structure of ICA-GAN.

Three sensor-level detectors were implemented using the
bus voltage and current measurements at A and B. The
anomaly-free training data were separated into training and
testing sets of the ratio 6:4. The training set contained 120
batches of 500 consecutive samples and the test set 80
batches. For each batch of samples, ICA-GAN generated
a batch of preprocessed samples on which uniformity tests
were made. A single decision was made by each sensor
every 0.01s. The thresholds for the sensor-level detection
were chosen such that their FPRs were all equal to 0.2.

The detector at the control center combined two consecu-
tive blocks of the three local decisions. Fig. 5 shows the ROC
curves of the local and central detectors'. We observed that
the central detector significantly improved the performance
of local detectors, even when combining the less reliable bus
voltage sensor. In particular, at FPR = 0.05, the TPR is above
0.7 whereas local detectors’ TPR were below 0.31.

"'We did not include OC-SVM and F-AnoGAN in the central detector
performance because the local detectors for these algorithms did not have
ROC curves above the 45° diagonal to be useful.
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Fig. 5: ROC curves (TPR at FRP=0.05). Top left: Detector
at A (TPR=0.2564). Top right: Detector at B
(TPR=0.3077). Bottom left: Detector at the
bus(TPR=0.1053). Bottom right: Detector at the
control center (TPR=0.7368.)

C. Case II: Natural anomalies in PMU measurements

Here we considered natural anomalies (bad data) involving
multiple non-interacting anomalies. Two sets of simulations
were performed. One is a small four-bus system used in
the EPFL Smart Grid Project [31]. We used the 50 Hz
PMU measurements collected on April Ist, 2016 from 5
PM to 6 PM. The second is based on the 133-bus synthetic
North Texas transmission system [33] where one hour of
30 Hz PMU measurements are used in the simulation. We
simulated non-interacting bad sequences and unobservable
attack sequences for each system. For both systems, we used
the one-phase equivalent of the three-phase systems.

The anomaly-free data were real-data measurements on
the EPFL and North Texas Synthetic Systems. Gaussian
mixture anomaly sequences were added to the anomaly-free
measurements. Four of the ten measurements in the EPFL
system and 6 out of 266 measurements in the North Texas
system contained anomalies.

We separated the available data into training and test sets.
Using EPFL data sequence we created a training set that has
1000 batches of 80 consecutive anomaly-free samples and a
test set that has 500 batches of 80 anomaly sequences and 500
batches of 80 anomaly-free sequences for each measurement.
Each test sequence consisted of 1.6 seconds of PMU mea-
surement. Similarly, using the North Texas data, we created
a training set with 900 batches of 80 consecutive anomaly-
free samples from the historical samples, and a test set with
225 batches of 80 anomaly sequences and 225 batches of
80 anomaly-free sequences for each measurement. Each test
sequence consisted of 2.6 seconds of PMU measurement.

1 . d, b Fublication/redi§tribu_tion requires IEEE permission. See httr://www.ieee0rg/%ublications_standards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: Cornell University Library. Downloaded on July 12,2022 at 18:49:.

48 UTC from IEEE Xplore. Restrictions apply.



0885-8950 (c) 2021 IEEE. Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3168529, IEEE

Transactions on Power Systems

PR
P

Fig. 6: ROC curves for anomaly case 1. Left: The EPFL
System. Right:The Synthetic North Texas system.

The Wasserstein ICA-GAN was trained to obtain the trans-
formation function from the measurements to the independent
components. b = 80 consecutive measurements were used as
inputs for the generator and the 50-dimensional output of the
generator was transferred to the discriminator. We fed another
50-dimensional i.i.d. uniform samples to the discriminator.

As a preprocessing step before applying ICA-GAN, we
used a linear least-squares prediction to decorrelate the mea-
surement samples. The input layer of the ICA-GAN neural
network was a linear least-squares predictor that whitens the
input sequence.

After the ICA-GAN generator was used to convert the
samples to i.i.d. sequence samples, we used an additional step
to convert the distribution of the ICA sequence to uniform
distribution. We used the empirical CDF of anomaly-free
samples to achieve this transformation. After these steps,
with the trained ICA-GAN we constructed the uniformity
test algorithm. We used the samples to apply the K-
coincidence test as defined in 5. We used this approach
for each measurement sequence individually. If at least one
anomaly measurement sequence is detected, we assumed it
is a successful detection.

The ROC curves of ICA-GAN and benchmark techniques
are in Fig. 6. We observed that ICA-GAN achieved the best
TPR across all FPRs and Table I (second column) shows
TPR at FPR=0.05. ICA-GAN had a significantly higher true
positive rate than the tested benchmarks.

The conventional NRT did not work well on the EPFL
system simulation compared to the Texas system simulation
possibly because a larger ratio of measurements had a bad
sequence. OC-SVM performed similarly to ICA-GAN’s on
the EPFL data set but was less successful on the Texas system
simulation. F-AnoGAN had worse performance than ICA-
GAN and OC-SVM in both cases. ICA-GAN had the best
performance on both systems and had higher than 90% TPR
even for small FPRs.

D. Case III: unobservable attacks on PMU state estimation

We considered the extreme case of unobservable attack
as an example to demonstrate the potential and importance

[——ICAGAN

= OC-SVM
F-AnoGAN

——NRT

Fig. 7: ROC curves for anomaly case 2. Left: The EPFL
System. Right:The Synthetic North Texas system.

of exploiting the inherent statistical properties and temporal
dependencies of the data. An attack is “unobservable” when
the data are manipulated so that the altered measurements
and a fake state satisfy the underlying measurement equation.
Therefore, no algebraic technique is capable of detecting such
an attack. However, such attacks inevitably alter the underly-
ing probability distribution and inter-temporal dependencies
of the measurements. It is through these properties that our
approach can make consistent detection.

We simulated the unobservable attacks, which is an ex-
treme case of attack. The purpose was to illustrate that attacks
that could not be detected based on the system model alone
could be detected by ICA-GAN that exploited distribution
properties. We constructed an unobservable data attack on
the EPFL system and the North Texas system. We used the
method in [19] to obtain an attack vector a;. We assumed that
the measurements in the system were such that the system
was marginally observable. Then it was possible to design
an unobservable data attack by manipulating 4 out of 10
measurements on EPFL system data and on 6 out of 266
measurements on North Texas synthetic system data. The
attack vector can then be added to the measurements as an
unobservable attack:

/
zZp =zt + weay,

where we constructed w; from independent samples from a
Gaussian Mixture Model.

Fig. 7 showed the ROC curves where ICA-GAN had
better performance than all compared methods with varying
significance levels. The TPRs at FRP= 0.05 for the tested
benchmarks were shown in the third column of Table I.

As expected, NRT performed as if it were a random
selection without using measurements in both cases. OC-
SVM performance was the closest to ICA-GAN, but there
was still a significant difference. F-AnoGAN had a worse
performance than OC-SVM on both systems. ICA-GAN
had the best performance in both simulations because; 1)
the independent component analysis approach transformed
the consecutive measurements to an independent sequence
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of samples ii) it detected the changes in the probability
distribution rather than trying to find outlier samples.

Algorithms | bad data  bad data | data attack  data attack
(EPFL) (Texas) (EPFL) (Texas)
ICA-GAN 97% 95% 94% 80%
OC-SVM 94% 35% 61% 1%
F-AnoGAN 78% 5% 53% 18%
NRT 50% 88% 5% 5%

TABLE I: TPR values of different algorithms at
FPR=0.05 constraint under bad data and
data attack anomalies.

Next, we experimented with the application of the anomaly
detection scheme as a data cleansing step for state estimation.
When the bad data was detected, we deleted the bad mea-
surements from the measurement vector. A linear Bayesian
estimator was used to replace anomaly sensor data with
pseudo-measurements from clean measurements, followed by
the standard weighted-least-squares state estimator. Table II
showed the average least-squares of the tested benchmarks
along with the performance when there were no anomalies
and the performance when anomalies were undetected. We
observed that ICA-GAN had the potential as an effective data
cleansing technique.

Algorithms bad data  bad data | data attack  data attack
H (EPFL) (Texas) (EPFL) (Texas) H
Anomaly-free Meas. 6.6e-07 2.5 e-06 6.7e-07 4.3 e-06
Anomaly Meas. 1.1e-02 1.4 e-02 2.3e-02 2.3 e-02
Cleaned by ICA-GAN 1.7¢-03 3.2 e-03 3.7e-03 6.4 e-03
Cleaned by OC-SVM 3.2¢-03 6.2 e-03 1.5e-02 1.2 e-02
Cleaned by F-AnoGAN 6.1e-03 8.2 e-03 1.3e-02 2.1 e-02
Cleaned by NRT 8.7e-03 4.0 e-03 2.1e-02 2.2 e-02

TABLE II: Average squared error of sate estimation.

VI. DISCUSSIONS

We discuss in this section some of the limitations of
the proposed approach, practical implementation issues, and
unresolved problems outside the scope of this work that
requires further investigation.

1) Some limitations of the proposed techniques.: We have
taken a minimalist approach in modeling anomalies, which
covers a wide range of anomalies under the statistical hy-
pothesis testing framework. However, certain anomalies may
not alter the underlying probability distribution, therefore
undetectable by the proposed technique. One such case is
the timing attack considered in Barreto et al. [37] where
algebraic techniques that exploit the deterministic rank-one
property are used in detection.

The proposed machine learning approach is based on a
GAN approach to characterize the anomaly-free distribution
implicitly. We assume that historical data used to train the
deep learning network are certifiably anomaly-free. To this
end, we assume that cross-validation techniques are used

in selecting historical data to be used in training, which
minimizes but does not eliminate contamination of training
data by natural anomalies.

The more difficult challenge is the adversarial learning
problem, where an adversary may manipulate training data.
Currently, there is no fault-proof technique applicable to real-
time anomaly detection problems considered in this paper to
our best knowledge.

2) Offline vs. online training.: A critical component of
ICA-GAN is the GAN training of a neural network that
extracts independent components. In principle, such training
can be performed either offline using historical data or
online using recent measurements. Effective online training,
in particular, allows the monitoring system to track sys-
tem variations dynamically, provided that training converges
quickly.

In our experiments, 1.2 seconds of CPOW measurements
appeared to be sufficient in the system anomaly detection in
the EPFL battery energy system data set in Case Study I (Sec.
V.B). For the relatively slower PMU measurements in Case
Study II-1II, 40 minutes of data were used in training. These
empirical results suggest that online training may potentially
be viable.

3) Anomalies vs. system dynamics.: We make a practical
(rather than mathematical) distinction between normal opera-
tions such as topology/load/generation changes from system
or data anomalies. Because the proposed technique can be
applied at the sensor level that may not have global infor-
mation about network conditions (such as topology changes)
and dispatch points, the detection algorithm may generate
false alarms by mistakenly treating normal operations as
anomalies.

In practice, the sensor-level detection should be syn-
chronized with the five-minute real-time dispatch period in
real-time market operations so that the detection algorithm
discounts measurements during the normal transient periods
and known topology changes. How to coordinate system
operations with anomaly detection in the monitoring system
is of practical significance and deserves future investigation.

VII. CONCLUSION

We developed a data-driven deep learning approach to
anomaly detection consists of sensor-level detectors that
assume no prior models on anomaly and anomaly-free data;
only anomaly-free training samples are used. Sensor-level
decisions are combined at the control center to produce
more reliable global decisions. To our best knowledge, the
proposed technique is the first designed specifically for high-
resolution measurements for CPOW and PMU streaming and
can deal with both data and system anomalies.
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