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Turbulence data from the CASES-99 field experiment, over comparatively hor-
izontally homogeneous and flat terrain, are separated based on the anisotropy
of the Reynolds stress tensor (into isotropic, two-component axisymmetric and
one-component turbulence) and flux-variance similarity scaling relations are tested.
Results illustrate that different states of anisotropy correspond to different similarity
relations, especially under unstable stratification. Experimental data with close to
isotropic turbulence match similarity relationships well. On the other hand, very
anisotropic turbulence deviates significantly from the traditional scaling relations.
We examine in detail the characteristics of these states of anisotropy, identify con-
ditions in which they occur and connect them with different governing parameters.
The governing parameters of turbulence anisotropy are shown to be different for
stable and unstable stratification, but are able to delineate clearly the conditions in
which each of the anisotropy states occurs.
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1 INTRODUCTION

Accurate numerical weather prediction is essential for
many applications including transportation, agriculture, wind
energy, hydrology and military (Katz and Murphy, 1997).
For these applications, it is crucial that the region of the
atmosphere closest to the land surface (atmospheric surface
layer, ASL) is well captured numerically. Within the ASL, the
land–atmosphere forcing is transmitted to the rest of the atmo-
sphere via turbulent exchange of momentum, heat and mois-
ture. The short time-scales and limited spatial extent of these
turbulent exchange processes make capturing them with tradi-
tional numerical weather prediction (NWP) models very diffi-
cult. NWP models, therefore, make use of similarity theory to
compute surface fluxes of momentum, sensible and latent heat
from the corresponding averaged quantities at a fixed height
(e.g., Brutsaert, 1982; Garratt, 1992; Wyngaard, 2010).

Strictly speaking, similarity relationships were originally
developed for ensemble averages of statistically stationary

and horizontally homogeneous surface layer flows (Monin
and Yaglom, 1971). However, because it is in practice
impossible to realize true ensemble averages in real field
measurements, temporal averages are traditionally used,
summoning the principle of ergodicity (e.g., Katul et al.,
2004; Wyngaard, 2010; Higgins et al., 2013). Furthermore,
high-resolution modern numerical methods such as Large
Eddy Simulations (LES), rarely rely on the mean equations
anymore but need detailed information about the fluxes as
boundary conditions. To be able to model real flows over
heterogeneous and complex surfaces, theory and applications
must be reconciled under the principle of ‘local’ homogeneity
and statistical stationarity. Meaning, that over small enough
regions, sampled long enough, what a-priori might resem-
ble a heterogeneous surface, can ultimately be interpreted as
homogeneous.

In this regard, the validity of surface layer similarity rela-
tions has been evaluated in terms of quasi-steadiness and local
homogeneity (e.g., Brutsaert, 1982; Sugita and Brutsaert,
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1990; Bou-Zeid et al., 2005; Wyngaard, 2010; Hultmark et
al., 2013; Babić et al., 2016a; 2016b), through numerical
simulations (e.g., Khanna and Brasseur, 1997; Bou-Zeid et
al., 2007; Stoll and Porté-Agel, 2009) and data obtained in
several experimental field campaigns located in places rang-
ing from quasi-perfect horizontal homogeneity (Kaimal and
Finnigan, 1994) to highly complex terrain (e.g., Martins et
al., 2009; Nadeau et al., 2013; Stiperski and Rotach, 2016),
and complex atmospheric conditions (e.g., Grachev et al.,
2013; 2016). From these results, procedures and rules-of-use
have been developed to ensure appropriate use of similarity
relationships.

Within this work, we present a new perspective on the
range of validity of similarity scaling relations based on the
anisotropy of the Reynolds stress tensor and the correspond-
ing invariants (Lumley, 1978). In this novel approach, turbu-
lence, instead of being separated into a coherent and a random
part (cf. Salesky et al., 2017), is instead explored based on
its topology. This topology, defined by the anisotropy, is then
used as a means of assessing the success or failure of similar-
ity relations. Note that similarity relations traditionally relate
higher-order moments (e.g., fluxes of momentum and energy)
that describe transport processes to lower-order moments. In
turbulent flows, it is the deviatoric or anisotropic portion of
the Reynolds stress tensor (Pope, 2000) that is responsible for
the turbulent transport of momentum and energy. Therefore it
seems only natural to try to establish a relationship between
similarity relations and turbulence anisotropy.

Lumley and Newman (1977) parametrized the Reynolds
stress tensor u′

iu
′
j in terms of the invariants of its anisotropy

stress tensor, providing the possibility of quantifying varia-
tions of the stress tensor analytically. As proposed by Lumley,
turbulence anisotropy can be used explicitly in the descrip-
tion of energy transfer, dissipation and turbulent transport
(Jovanovic, 2004). In this regard, Banerjee et al. (2009)
established a relationship between the dissipation tensor and
the Reynolds stress tensor in axisymmetric turbulence. Klipp
(2010a) used the CASES-99 experimental data to investigate
the statistical properties of the anisotropy stress tensor as a
function of turbulence length-scales. Results showed that the
motions are near-isotropic at the smallest scales, transition-
ing through pancake-like axisymmetry at intermediate scales
up to two-dimensional large scales. In contrast, intermediate
scales in urban canopies were found to be of the cigar type
(Klipp, 2010b). In a more recent study, Klipp (2014) also
used the anisotropic decomposition of the turbulence stress
tensor as a means to provide new insight into the descrip-
tion of the outer length-scale of the atmospheric boundary
layer. As a result of this analysis, two new length-scales
were derived related to the transition between isotropic- and
anisotropic-type turbulence. One of these length-scales was
identified as a good candidate for the traditional definition of
the outer scale used in optical applications.

The goal of this work is to re-examine the near-surface
similarity scaling in light of turbulence anisotropy and to

identify regimes in which different turbulent topologies are
realized and how the transitions between anisotropic states
are achieved. This novel approach could lead to improved
surface-layer parametrizations, as well as helping to advance
numerical modelling of the land–atmosphere interface. For
this purpose, we first focus on the bulk statistics of turbu-
lence in the form of well-known similarity scaling relations as
functions of limiting states of anisotropy. We then isolate the
governing parameters and identify the conditions under which
these limiting states occur. Finally, we focus on the scale-wise
structure of turbulence and perform a spectral analysis of
different turbulence topologies.

The article is organized as follows: in section 2 the invari-
ant decomposition of the anisotropy stress tensor is reviewed
and the dataset and post-processing methods presented;
section 3 presents the relationship between similarity scaling
and turbulence anisotropy; section 4 identifies regimes and
parameters governing anisotropy; section 5 examines the
diurnal variation of the anisotropy and transitions between
different limiting states; section 6 examines the spectral
structure of turbulence anisotropy; an extended discussion of
the results and implications for similarity theory is provided
in section 7, with conclusions in section 8.

2 METHODOLOGY

2.1 Anisotropy of the Reynolds stress tensor

Turbulence is often described through the Reynolds stress
tensor, expressed as

u′
iu

′
j =

⎛⎜⎜⎜⎝
u′

1u′
1 u′

1u′
2 u′

1u′
3

u′
2u′

1 u′
2u′

2 u′
2u′

3

u′
3u′

1 u′
3u′

2 u′
3u′

3

⎞⎟⎟⎟⎠
, (1)

where u′
i denotes velocity fluctuations (u′

i = ui − ui) and the
overline denotes the time-averaging operation. Indices spec-
ify the rectangular Cartesian coordinates of different velocity
components (i = 1, streamwise; i = 2, spanwise; i = 3
wall-normal, i.e. vertical over flat terrain).

Since in turbulent flows, such as the atmospheric bound-
ary layer (ABL), only the anisotropic components (aij) of the
Reynolds stress tensor are effective in transporting momen-
tum (Pope, 2000), it is useful to distinguish between the
isotropic and anisotropic contributions of the stress tensor.
The isotropic stress is defined as 2

3
e𝛿ij, where e represents the

turbulence kinetic energy (e = 1∕2(u′
iu

′
i)). The components

of the deviatoric, i.e. anisotropic, part are then defined as

aij ≡ uiuj −
2
3

e𝛿ij, (2)

which, upon normalization by 2e, results in a
non-dimensional anisotropy tensor with components

bij =
uiuj

ulul
− 1

3
𝛿ij. (3)
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As a result of this decomposition, it is possible to rewrite

the Reynolds stress tensor in a simplified way, as the sum of

the isotropic and anisotropic contribution uiuj = 2e( 1

3
𝛿ij+bij).

To reduce the dimensionality of the problem further and

therefore facilitate modelling and treatment of the anisotropic

part of the stress tensor, Lumley and Newman (1977) iden-

tified two independent scalar invariants of the anisotropy

tensor that describe the anisotropic part of the Reynolds stress

tensor fully. Furthermore, the functional relationship between

the invariants bounds the domain for all physically realizable

turbulent flows (Jovanovic, 2004). In practice, this means that

instead of six independent components of the stress tensor,

the state of anisotropy can be described by two invariants, 𝜂

and 𝜉, defined as 6𝜂2 = bijbji and 6𝜉3 = bijbjkbki, respectively

(see Pope, 2000 for more details). The first invariant, 𝜂, is

positive-definite and measures the degree of anisotropy in the

flow field (large values indicate large anisotropy and small

values near-isotropy). The second invariant, 𝜉, may instead be

either positive or negative. For positive 𝜉, the flow is domi-

nated by one-component turbulence, while for negative values

the flow is dominated by two-component axisymmetric turbu-

lence. The two scalar invariants of the anisotropy tensor can

be derived alternatively through an eigenvalue decomposition

of the anisotropy tensor, such that 𝜂2 = 1

3
(𝜆2

I + 𝜆I𝜆II + 𝜆2
II)

and 𝜉3 = − 1

2
𝜆I𝜆II(𝜆I + 𝜆II) (Spencer, 1971), where 𝜆n with

n = I, II, III are the corresponding eigenvalues of the normal-

ized Reynolds stress anisotropy tensor. As a result, turbulence

can be categorized equivalently by the two invariants or by

the eigenvalues of the anisotropy tensor, as shown in Table 1.

Using this reduced set of variables, it is possible to depict

the different states of turbulence graphically through the

so-called anisotropy invariant maps (AIMs: see Figure 1).

When using 𝜉 and 𝜂 as independent variables, turbulence

states are represented in the nonlinear Lumley triangle

(Lumley and Newman, 1977; Choi and Lumley, 2001); alter-

natively, a barycentric map can be employed (Banerjee et al.,
2007). This latter invariant map is a linear representation that

weighs the different limiting states of turbulence anisotropy

equally (Banerjee et al., 2007). It is spanned by a Euclidian

domain, where the limiting states are placed at x1C = (1, 0),
x2C = (0, 0) and x3C = (1∕2,

√
3∕2) and hence the coordinate

system of the barycentric map (xB, yB) is defined such that

xB = C1cx1c + C2cx2c + C3cx3c = C1c + C3c
1
2
, (4)

yB = C1cy1c + C2cy2c + C3cy3c = C3c

√
3

2
, (5)

with the corresponding weights (Cic) determined by the
eigenvalues of the normalized Reynolds stress anisotropy
tensor, such that C1c = 𝜆I − 𝜆II, C2c = 2(𝜆II − 𝜆III) and
C3c = 3𝜆III + 1 (see Figure 1).

To facilitate one-to-one correspondence between turbu-
lence data and information on the anisotropy, in this work
we further use the RGB colour map of Emory and Iaccarino
(2014) with adjustment to HSV colour space for visual pur-
poses. This simple construction assigns colours to componen-
tality behaviours. In this respect, one-component turbulence
is red, two-component axisymmetric is blue and isotropic
turbulence is green. All other states within the map are com-
binations of these colours (Emory and Iaccarino, 2014). We
will use the colour-map representation of the AIMs to classify
the ABL turbulent flow and establish a relationship between
traditional similarity relations and turbulence topology.

Note that the anisotropy invariants of the normalized
Reynolds stress tensor, the magnitude of which is represented
by an RGB combination, do not define the shape of any
particular coherent turbulent structure, but rather provide a
description of the eigenvalues of the stress tensor (Simonsen
and Krogstad, 2005).

2.2 Dataset and data treatment

The Cooperative Atmosphere–Surface Exchange Study 1999
(CASES-99) dataset (Poulos et al., 2002) forms the basis for
our investigation. This well-established dataset over horizon-
tally homogeneous and semi-flat terrain has already been used
for testing and validation of similarity relations under mostly
stable atmospheric stratification (e.g., Klipp and Mahrt, 2004;
Ha et al., 2007; Sorbjan and Grachev, 2010) among other pur-
poses (e.g., Banta et al., 2002; de Wiel et al., 2003; Kumar
et al., 2010; Mahrt, 2010; Sun et al., 2012; 2015; Sharma et
al., 2017). The data consist of a month of measurements at
a 60 m tower with seven levels of sonic anemometers (5, 10,
20, 30, 40, 50 and 55 m above ground). Two types of sonic

TABLE 1 Summary of special states of the Reynolds stress tensor in terms of the invariants (𝜂, 𝜉) and eigenvalues of the
anisotropy stress tensor as described by the Lumley triangle. The fourth column introduces the corresponding ellipsoid shape
described by the eigenvectors ((Pope, 2000))

Cases Invariants Eigenvalues Shape ellipsoid

Isotropic 𝜂 = 𝜉 = 0 𝜆I = 𝜆II = 𝜆III = 0 Sphere

Two-component axisymmetric 𝜂 = 1

6
, 𝜉 = − 1

6
𝜆I = 𝜆II =

1

6
Disk

One-component 𝜂 = 𝜉 = 1

3
𝜆I =

2

3
, 𝜆II = 𝜆III = − 1

3
Line

Axisymmetric, one large eigenvalue 𝜂 = 𝜉 − 1

6
≤ 𝜆II = 𝜆III ≤ 0 Prolate spheroid

Axisymmetric, one small eigenvalue 𝜂 = −𝜉 0 ≤ 𝜆I = 𝜆II ≤
1

6
Oblate spheroid

Two-component 𝜂 = ( 1

27
+ 2𝜉3)1∕2 𝜆I + 𝜆II =

1

3
Ellipse
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(a)

(b)

FIGURE 1 Anisotropy invariant maps: (a) Lumley triangle, function of the

two anisotropy invariants 𝜂 and 𝜉; (b) barycentric map, function of the

anisotropy stress tensor eigenvalues and represented through the linearized

coordinates xB and yB. Data points correspond to the CASES-99 dataset and

are coloured based on their componentality according to Emory and

Iaccarino (2014). Limiting states of the maps are specified.

anemometers were used in the study: levels 5, 30 and 50 m
were installed with a non-orthogonal CSAT3, whereas the
other levels used orthogonal ATI-K sonic anemometers. The
data were processed using double rotation and were detrended
prior to block averaging. Sensitivity tests have shown no great
difference in the scaling results between data that have been
detrended and those that have not, apart from a larger number
of data fulfilling the stationarity criterion (see below).

Vertical gradients of potential temperature and wind speed
needed for calculating the gradient Richardson number, Ri =
g
𝜃

𝜕𝜃

𝜕z
∕( 𝜕U

𝜕z
)2, were obtained by fitting an analytic profile to the

data. For temperature, this profile was of the form x = a + bz
+ cz2 + d log(z) + e log(z)2 and for wind speed x = a +
bz + cz2 + d log(z). The turbulent kinetic enery (TKE)
dissipation rate (𝜖) was calculated from the power spectra
of the streamwise velocity component using the inertial dis-
sipation method (cf. Piper and Lundquist, 2004). For this
purpose, the inertial subrange was estimated to extend to

kz = 1 following Katul et al. (2012). Here, k = 2𝜋f∕U is
the wavenumber, calculated from frequency f using Taylor’s
frozen turbulence hypothesis (Stull, 1988). The dissipation
was only calculated for those data points that had a −5/3 slope
in the inertial subrange (allowing a 10% error margin).

The data were not corrected for flux loss caused by sensor
characteristics and sensor separation (Moore, 1986). The
reason is that this frequency correction is developed mostly
for the vertical components of the momentum flux and, if
applied as such, would add asymmetry to the Reynolds stress
tensor, causing unphysical anisotropy. Also, note that other
studies of scaling using the CASES-99 dataset report no use
of flux corrections.

Since the similarity scaling relations are only valid for tur-
bulence, the multi-resolution flux decomposition approach
(MRD: e.g., Howell and Mahrt, 1997; Vickers and Mahrt,
2003) was used to determine an appropriate averaging period
needed to eliminate the contributions from non-turbulent
(sub-)mesoscale motions, as well as to ensure the complete
turbulent fluxes are accounted for (see Figure 2). This is
achieved by examining the time-scale at which the flux
crosses over the zero line, which is usually considered the
appropriate gap scale. For stable (night-time) periods, MRD
identified two limiting regimes that can be connected with
strongly and weakly stable stratification. In the first, strongly
stable regime (Figure 2a), the flux becomes zero at all heights
at time-scales of about one minute. The magnitude of the
turbulent flux is also small, smaller than the (sub-)mesoscale
contributions at 30 min scales. In the weakly stable regime
(Figure 2b), turbulence is more intense, has a larger time-scale
of around 5 min, and the (sub-)mesoscale flux at 30 min is
smaller than the turbulent flux. Given that these two regimes
cross over the zero line at different time-scales, as a compro-
mise between the two regimes the most appropriate averaging
time was chosen to be 1 min. Selecting an averaging time
slightly lower than the limiting scale for the weakly stable
case does not have a significant influence on the results.

Alternatively, for unstable (daytime) conditions the
most appropriate averaging period was found to be 30 min
(Figure 2c, d). As in the case of stable stratification, two
distinct unstable regimes were identified: one having a
substantial increase in mesoscale flux at periods larger
than 30 min (Figure 2c), i.e. strongly unstable, and one for
which these contributions are negligible (Figure 2d), i.e.
weakly unstable. The results show that flux contributions
by (sub-)mesoscale motions can be as much as 99% in the
strongly stable case and 65% in the strongly unstable case.

Prior to the analysis, all the data were subject to basic qual-
ity control (applying sonic flags and physical limits). These
quality-controlled data are shown in Figure 2c, d using the
anisotropy classification introduced in section 2.1.

Since one of the objectives of this work is to increase
our understanding of the relationship between turbulence
anisotropy and similarity scaling, and given the prerequisites
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(a) (b)

(c) (d)

FIGURE 2 Multi-resolution flux decomposition of heat flux for example periods with (a) strongly stable, (b) weakly stable, (c) strongly unstable and (d)

weakly unstable stratification, respectively, for each height (shown in color). Vertical dashed lines indicate timescales of 1 min and 30 min. Error bars

correspond to 25% and 75% percentiles.

of similarity theory, data used for the scaling analysis were
additionally required to satisfy the following quality criteria:

1. Night-time unstable periods were discarded.
2. The gradient Richardson number had to be below the

critical level, Ri < 0.25 (Grachev et al., 2013).
3. Stationarity of the data according to Foken and Wichura

(1996) was required.

Stationarity was imposed on both the momentum and
the sensible heat fluxes simultaneously. However, given the
small values of momentum flux under convective condi-
tions, stationarity of momentum flux was not imposed in this
limit. Similarly, no stationarity of the sensible heat flux was
required in near-neutral conditions, where heat flux values are
small.

The uncertainty criterion as described in Stiperski and
Rotach (2016) was not applied to this dataset, given the short
averaging time used for stable stratification, for which this
criterion would eliminate all data. The omission of this crite-
rion does not have any detrimental effects on the results for
unstable stratification, where uncertain data are eliminated by
the stationarity criterion.

The effects of imposing quality criteria 1–3 on the data are
illustrated in Figure 3, where the data are coloured according
to their anisotropy state (localized within the Lumley trian-
gle or barycentric map from Figure 1). In the unstable regime,
the additional information provided by the anisotropy clas-
sification illustrates the strong link between one-component
turbulence and “low-quality” data, so that stationarity

criterion practically eliminates the one-component turbulence
(Figure 3b). This type of turbulence can also be shown to
correspond to night-time countergradient fluxes. In the stable
regime, however, the combination of stationarity criterion and
Richardson number considerably reduces the number of data
for all types of anisotropy, but does not eliminate all highly
anisotropic data, so instances of stationary, Kolmogorov-type
(Ri < 0.25, cf. Grachev et al., 2013) one-component turbu-
lence are still encountered over the full range of z∕Λ (see the
definition in the next section).

Additionally, to facilitate interpretation of the results based
on turbulence anisotropy, a fourth data-quality criterion has
been added. This is as follows:

4. Data falling within transition regions of the barycentric
map, between different pure anisotropy states, were fil-
tered out (see Figure 3).

This new data filtering process eliminates mixed states of
anisotropy, reducing the focus of the analysis, in a first step,
to the pure anisotropic states only (cf. Figure 4). The tran-
sition regions where these mixed states of anisotropy can
be found were determined as those points falling outside
the kite-shaped regions of the barycentric map illustrated in
Figure 4. The limiting lines for each kite were chosen to cover
70% of the sides of the equilateral triangle. Therefore only
those data close to a pure anisotropic state are conserved for
further scaling analysis. It is important to note that although,
in a pure sense, the isotropic data are only those that sit on the
vertex of the invariant map, in this article we will apply a less
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(a)

(b)

FIGURE 3 Projection of the data satisfying different quality criteria on the flux–variance relationship for the standard deviation of vertical velocity. (a) Data

passing the basic quality control; (b) data that additionally satisfy criteria 1–3. Colour indicates the anisotropy state of the data: green for isotropic, blue for

two-component axisymmetric turbulence and red for one-component turbulence.

FIGURE 4 Barycentric map excluding the mixed states of anisotropy and

hence only representing the the pure (i.e. limiting) anisotropic states.

strict criterion than in e.g. Klipp (2010a) and refer to all data
that fall within the green kite as isotropic and correspondingly
for the other limiting states.

3 SCALING

The goal of this work is to provide a new perspective on
near-surface similarity scaling using additional information
from turbulence anisotropy. For this purpose we employ the
local scaling framework (cf. Nieuwstadt, 1984a; 1984b), in
which all the turbulence quantities are computed and scaled
at the corresponding measurement height z. This framework

is more general than surface-layer similarity theory, since it is
applicable under both unstable and stable stratification. Under
conditions in which the fluxes are expected to be constant
with height (e.g. unstable stratification and near-neutral stable
stratification), local scaling should in principle correspond to
surface-layer scaling. For stable stratification, however, local
scaling is more appropriate given the shallow nature of sta-
ble boundary layers, where higher tower levels are expected
to be outside the surface layer. In the very stable limit, on the
other hand, local scaling leads to z-less scaling (cf. Sorbjan,
1987). In this respect, the local Obukhov length Λ is defined

as Λ = −u3
∗𝜃v

𝜅gw′𝜃′
, where 𝜃v is the mean virtual potential tempera-

ture and 𝜅, the von Kármán constant, is taken as 0.4. The ratio
z∕Λ is therefore a measure of local stability (positive/negative
values correspond to stable/unstable stratification at the mea-
surement height). The local friction velocity is computed as

u∗ = (u′w′2 + v′w′2)1∕4 and the local temperature scale as
𝜃∗ = −(w′𝜃′)∕u∗.

As a reference, we use the well known surface-layer
flux-variance similarity relationships for the standard
deviations of velocity components (Φu,Φv,Φw), following
Panofsky and Dutton (1984):

Φw = 𝜎w

u∗
=
⎧⎪⎨⎪⎩

1.25
(

1 + 3 z
Λ

)1∕3
for z

Λ
> 0,

1.25
(

1 − 3 z
Λ

)1∕3
for z

Λ
< 0,

(6)

Φu,v =
𝜎u,v

u∗
=
⎧⎪⎨⎪⎩

2.55
(

1 + 3 z
Λ

)1∕3
for z

Λ
> 0,

2.55
(

1 − 3 z
Λ

) 1
3

for z
Λ
< 0,

(7)
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for the standard deviation of temperature (Φ𝜃) following Till-
man (1972) for unstable stratification and Pahlow et al. (2001)
for stable stratification:

Φ𝜃 =
𝜎𝜃

𝜃∗
=
⎧⎪⎨⎪⎩

3 + 0.05 z
Λ
−1 for z

Λ
> 0,

0.95
(

0.055 − z
Λ

)1∕3
for z

Λ
< −0.05,

(8)

as well as the rate of turbulence dissipation (Φ𝜖) following
Thiermann (1990):

Φ𝜖 =
𝜅z𝜖
u3
∗

=
⎧⎪⎨⎪⎩

(
1 + 4 z

Λ
+ 16( z

Λ
)2
)1∕2

for z
Λ
> 0,(

1 − 3 z
Λ

)−1
− z

Λ
for z

Λ
< 0.

(9)

Note that the form of the scaling relation for Φu and Φv
used here corresponds to that for Φw, however with a different
near-neutral limit (Stull, 1988). The neutral limit was chosen
to be the same for both Φu and Φv, despite the fact that the
two are usually given different values (cf. Stull, 1988). The
reasons for this will be shown later.

In the stable z-less limit, (Sorbjan, 1987) suggested the
following constant values of the flux–variance relationships:

Φw = 1.6, Φu,v = 3.1, Φ𝜃 = 2.4. (10)

In order to examine the relationship between turbulence
anisotropy and near-surface scaling, Figure 5 illustrates the
“high-quality” data (those satisfying criteria 1–3) separated
according to the three limiting states of anisotropy (crite-
rion 4). In this figure, the three leftmost columns present the
unstably stratified data and the three right most columns the
stably stratified data. This representation allows an examina-
tion of the range of scaling relationships (Equations 6–9).The
results show that the best correspondence between the scaling
curves and the data is encountered for isotropic turbulence,
under both unstable and stable stratification. This type of tur-
bulence is also predominant in the high-quality dataset (61%
of unstable and 67% of stable cases).

In the case of unstable stratification, both the isotropic data
(green) and two-component axisymmetric data (blue) follow
the traditional similarity relations (Equations 6–9) closely for
commonly examined variables such as the standard devia-
tion of vertical velocity (Φw) and temperature (Φ𝜃), as well
as the turbulent dissipation rate (Φ𝜖). The exceptions are the
scaled horizontal velocity components (Φu, Φv). The reason
for this is that for isotropic turbulence standard deviations of
all three wind components have the same magnitude, there-
fore the scaled horizontal velocity components Φu and Φv
follow the same similarity curve as Φw (Equation 6), albeit
with a somewhat larger scatter. This is also an indirect val-
idation of the fact that the data are truly close to isotropic.
In contrast, the scaled horizontal velocity components for
the two-component axisymmetric turbulence (blue) follow
the scaling curves commonly applied to Φu (Equation 7),
while data for Φv do not suggest an alternative neutral limit,
thus justifying our choice of the same scaling curves for Φu

and Φv. The fact that data for different limiting states of
anisotropy (isotropic versus two-component axisymmetric)
follow different scaling curves for horizontal velocity com-
ponents could explain the often encountered large scatter for
these variables (cf. Banerjee et al., 2015), given that data
with different kinds of anisotropy were thus far always exam-
ined together. It is also clear that these two limiting states of
anisotropy occupy different stability regions. In contrast, the
remnant one-component turbulence (red) that was not elim-
inated by the quality criteria has large scatter and shows no
apparent scaling of velocity components. This is turbulence
that is aligned in the direction of the only eigenvector that
has a corresponding non-negligible eigenvalue. In terms of
the Reynolds stress tensor, this turbulence state is charac-
terized by negligible vertical velocity variance and therefore
no longer corresponds to fully three-dimensional turbulence.
Hence this type of turbulence is bound to fail following any
of the traditional scaling.

A very different behaviour is observed for stably stratified
data. Under stable stratification, vertical turbulent motions
are strongly attenuated by stratification, leading to small-scale
turbulence. The growing tendency of the flow to be decoupled
from the surface with increasing stability results in z-less scal-
ing. This attenuation, however, affects different turbulence
topologies in a different way. For isotropic turbulence, the
attenuation of fluctuations is symmetric, so all the variables
follow z-less scaling (dashed lines in Figure 5) and, in analogy
to unstable stratification, both of the horizontal velocity vari-
ances follow the scaling line for Φw. On the other hand, for
one- and two-component axisymmetric turbulence, governed
by multiple length-scales, the attenuation by stratification is
heterogeneous and vertical motions are more attenuated than
horizontal ones. This causes only the vertical velocity vari-
ance Φw to follow what resembles z-less scaling, although
the limiting values are progressively lower than for isotropic
turbulence. Φ𝜖 also fits the scaling line, but with larger scat-
ter. All the other scaled variables (Φu, Φv, and Φ𝜃) exhibit
significant scatter and a dependence on height (z∕Λ) that devi-
ates from z-less scaling, but also do not appear to conform
to any other well-established scaling line. The reason that
the one- and two-component axisymmetric turbulence show
larger dependence on z∕Λ could be due to self-correlation.
Indeed, whereas the data that follow z-less scaling are not cor-
related, a dependence of a variable on z∕Λ imposed by u∗
featuring on both the x- and y-axis will exhibit some level of
self-correlation. The standard approach of Klipp and Mahrt
(2004) for estimating self-correlation, however, fails for data
that have a nonlinear relationship, such as the ones examined
here, and is therefore not attempted here.

In traditional scaling studies, it is customary to observe
large scatter for stably stratified data or for horizontal veloc-
ity variances in unstable stratification. With the proposed
turbulence topology decomposition, based on the turbulence
anisotropy, the reason behind this scatter becomes well under-
stood. Note that, while traditional scaling relations are based
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on a single characteristic length-scale, anisotropic turbu-
lence can only be characterized by at least two different
length-scales. This should be taken into consideration when
developing new similarity relationships to capture the turbu-
lent fluxes of momentum, heat and energy better in the ABL.
In addition, as mentioned earlier, similarity relationships were
developed for idealized conditions of homogeneity and sta-
tistical stationarity and it has now long been observed that,
under complex conditions (e.g. surface roughness and ther-
mal heterogeneities, inclined slopes, etc.), these tend to fail
and require additional corrections (e.g. Mironov and Sulli-
van, 2016). In view of the results presented in Figure 5, it is
shown that an additional reason for the breakdown of tradi-
tional similarity relationships in complex conditions relates to
the presence of strong turbulence anisotropy, with predomi-
nantly either one- or two- component turbulence. This will be
studied in detail in a follow-up article.

4 GOVERNING PARAMETERS

In the previous section, it was shown that all types of tur-
bulence topology can be encountered for both stable and
unstable stratification. The questions that arise at this point
are whether these different states of anisotropy occur for the
same reasons in both types of stratification and which param-
eters determine which type of turbulence topology will occur.
The anisotropy analysis by itself is unable to provide an
answer as to what processes generate each anisotropy state, as
multiple processes can produce the same form of the Reynolds
stress tensor. To isolate the governing parameters in stable
stratification, we follow the hoceky-stick transition (HOST)
framework (Sun et al., 2015), which relates the evolution
of the stably stratified boundary layer through the turbu-
lence kinetic energy (TKE) and the mean wind speed (U =√

u2 + v2 + w2). HOST identifies two distinct night-time tur-
bulence regimes: one governed by local shear and the other
by global shear. Similarly, Salesky et al. (2017) have shown
strong sensitivity of convective boundary-layer characteris-
tics to vertical wind shear (𝜕U∕𝜕z) and the local thermal
stratification. To facilitate the connection between anisotropy
states and governing parameters, quality criterion 4 is used
to isolate limiting states of anisotropy. A unique averaging
period of 30 min is used for both types of stratification in
order to capture the overall characteristics of the environment,
which for stable stratification also includes (sub-)mesoscale
contributions.

We first focus on the unstable stratification and examine the
relationship between wind shear, local atmospheric stability
(z∕Λ) and turbulence geometry (Figure 6). Two distinct and
almost non-overlapping regimes can be isolated: isotropic tur-
bulence exists only under conditions of very weak shear and
very unstable (convective) stratification (−z∕Λ > 1), regard-
less of the exact intensity of thermal instability. This corre-
sponds to dynamic–convective and free-convective sublayers

FIGURE 6 Characterization of turbulence anisotropy under unstable

conditions by two characteristic parameters, wind shear 𝜕U∕𝜕z and stability

z∕Λ, for all measurement heights. Isotropic turbulence is shown in green

and one- and two-component axisymmetric turbulence in red and blue,

respectively.

according to Kader and Yaglom (1991). On the other hand,
two-component axisymmetric turbulence occurs solely under
weakly unstable or near-neutral conditions (0 < −z∕Λ < 1)
corresponding to the dynamic sublayer according to Kader
and Yaglom (1991) and is correlated with increasing wind
shear, although it is not dependent on the exact strength of the
wind shear. Finally, the seldom encountered one-component
turbulence in unstable stratification shows no correlation with
either thermal instability or wind shear, but is associated with
wind-speed profiles that vary significantly with height.

The same governing parameters are unsuccessful in dif-
ferentiating anisotropy types for stable stratification, since
there, as shown in Figure 5, all types of anisotropy occur over
the entire stability range (z∕Λ). Here, we therefore employ
the HOST framework (cf. Figure 7) instead and examine tur-
bulence anisotropy as a function of turbulence kinetic energy
and the mean flow velocity at different heights (shown here
for 5, 10 and 55 m). Similarly to Sun et al. (2012; 2015), we
observe two turbulence regimes corresponding to different
behaviours of turbulence with increasing wind speed. The
present analysis shows that these two regimes are clearly
separated according to turbulence anisotropy. The lower part
of HOST for all examined heights corresponds to a mixture
of one- and two-component axisymmetric turbulence, for
which TKE remains quasi-invariant with mean wind speed.
This branch corresponds to very stable conditions, where
turbulence is often intermittent. The upper branch, on the
other hand, is populated exclusively with isotropic turbulence
and none of the other two limiting states. Given the lack
of isotropy very close to the surface, we observe no upper
branch at 5 m; however, mixed anisotropy states that were
filtered out by the quality criterion 4 would still populate it.
In a first approximation, one could conclude that the most
relevant distinction in stable conditions is the one between
isotropic and highly anisotropic turbulence. In order to dis-
tinguish between the occurrence of one- and two-component
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FIGURE 7 Characterization of turbulence anisotropy under stable conditions by two characteristic parameters, mean wind speed U and TKE, for three

heights (5, 10 and 55 m). Isotropic turbulence is shown in green and one- and two-component axisymmetric turbulence in red and blue, respectively.

axisymmetric turbulence in the very stable regime, however,
it appears that alternative parameters beyond those provided
by HOST or similarity theory are needed. This will be
investigated in a future study.

It is interesting to note that this very clear correlation
between anisotropy states and two regimes of HOST is lost
when using the 1 min averages (not shown). In that case,
HOST retains its form but isotropic turbulence is found in
both regimes, mixed with other types of anisotropy. This
shows that while for similarity theory it is vital to sepa-
rate turbulence from non-turbulent motions and therefore
to use 1 min averages, the HOST framework is better suited
for assessing the larger scale motions that characterize the
night-time environment and hence are better captured by
30 min averages. This result also confirms that, while the
larger scale turbulence on very stable nights might be highly
anisotropic, isotropic turbulence at very small scales can still
be locally initiated.

5 DIURNAL EVOLUTION AND ROUTE TO
ANISOTROPY

In this section, the evolution of turbulence anisotropy is
examined in the context of traditional ABL variables (mean
temperature, mean wind speed, mean surface shear and
sensible heat flux) for four quasi-consecutive days (October
22, 23, 25 and 26; see Figure 8). For this analysis, we again use
a unique 30 min averaging period for both unstable and sta-
ble stratification. Data quality control 1–4 (see Section 2.2) is
also dropped, so as to avoid gaps in the daily evolution of the
vertical profiles. In this way all ranges of anisotropy are rep-
resented. Therefore Figure 8 shows a clear continuous diurnal
cycle of anisotropy. During the daytime, turbulence is pre-
dominantly two-component axisymmetric (blue) or isotropic
(green), while during the night-time more mixed conditions
are encountered, with the prevalence of one-component (red)
turbulence. From the contiguous vertical profiles, it is clear
that close to the surface isotropy rarely occurs and turbu-
lence is mostly two-component axisymmetric, due to the
presence of the wall and the importance of shear genera-
tion. Some exceptions to this rule occur during periods of
stable stratification, when turbulence remains one-component

all the way down to 5 m. Daytime periods with low wind
shear and modest values of friction velocity, corresponding
to convective conditions (e.g. October 25 and 26), are well
correlated, with close to isotropic turbulence already at 10 m
above the surface, increasing with height, where it prevails
throughout the day. Wind shear during the daytime causes tur-
bulence to transition to two-component axisymmetric. This
transition is first initiated close to the surface and then diffuses
towards higher altitudes (this is especially clear on October 23
and 26). At the same time, wind shear during the night-time,
coincident with a drop in the sensible heat flux, leads to close
to isotropic turbulence (e.g. pre-dawn on October 25). On
nights with low forcing and strong inversion, one-component
turbulence prevails (e.g. the night of October 25/26). Persis-
tent occurrence of two-component axisymmetric turbulence
during the night-time is not encountered in the CASES-99
dataset.

In Figure 9, the influence of TKE generation and destruc-
tion mechanisms on anisotropy, as well as the characteristics
of turbulence under these different regimes, are investigated
more closely. Here, two characteristic night-time (strongly
and weakly stable) and daytime (convective and near-neutral)
periods, each consisting of two hours, are investigated in
detail through vertical profiles of the eigenvalues (𝜆n, with
n = I, II, III), Reynolds stresses (u′

iu
′
j , with i, j = 1, 2, 3),

skewness ((u′3
i )∕(u

′2
i )

3∕2, with i = 1, 2, 3) and TKE budget
terms.

The TKE budget equation used for this analysis is given by

𝜕e
𝜕t

+ w𝜕e
𝜕z

= −u′w′ 𝜕U
𝜕z

+
g

𝜃
w′𝜃′ − 𝜕

𝜕z
w′e′ + 𝜖, (11)

where e is the TKE. Here, the TKE budget is only used
to identify dominant terms, as well as their correspond-
ing effect on turbulence anisotropy. Note that, given the
one-dimensionality of the measurements (i.e. measurements
from only a single tower are used here), it is not possible to
evaluate the full TKE budget closure (e.g. advection and hor-
izontal shear production terms are not assessed). Instead, we
focus only on the vertical terms and assume that turbulence
is in a steady state, hence 𝜕e∕𝜕t ≈ 0. This approximation,
forced by the limitations of the tower measurements, is not
that far-fetched if one understands that the measurements
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(a)

(b)

(c)

(d)

(e)

FIGURE 8 Daily evolution of (a) kinematic sensible heat flux, w𝜃, at 5 and 55 m height, (b) mean potential temperature, 𝜃, (c) mean wind speed U, (d)

friction velocity, u∗, and (e) turbulence anisotropy coloured according to the barycentric map. Times are given in local time. Vertical dashed lines separate

daytime and night-time, determined as the times when the sensible heat flux changes sign. The vertical black line marks the time discontinuity between the

night of October 23 and midnight of October 25.

were taken over fairly homogeneous terrain. The choice of
double rotation, aligning the coordinate system with the mean
wind direction at each height, used to post-process the data
means that the shear production term (S) is computed only
through the contribution of −u′w′(𝜕U∕𝜕z). Also, because of
the lack of horizontally distributed experimental data, only
the vertical turbulent transport term of TKE can be computed
(TT = −𝜕(w′e′)∕𝜕z). The divergence terms were calculated
using forward finite differences, whereas the respective fluxes
were interpolated to the same height where divergence terms
were given.

The profiles of eigenvalues and Reynolds stress compo-
nents (Figure 9b, c) are provided as means to relate the
turbulence anisotropy as observed from the principal axis
frame of reference (or eigenvector space: Pope, 2000) and the
standard streamwise coordinate system.

In strongly stable night-time conditions, close to
one-component turbulence at 30 min averaging periods
(Figure 9, first column) is associated with quite uniform ver-
tical profiles of eigenvalues 1∕3 ≤ 𝜆I ≤ 2∕3, 𝜆II ∼ −1∕6,

and 𝜆III ∼ −1∕3. These eigenvalues correspond to turbulence

anisotropy ranging between one- and two-component, or

geometrically represented between an ellipse and a line (see

Table 1). In streamwise coordinates, this type of turbulence

is observed as having close to zero fluxes, a negligible verti-

cal velocity variance and large horizontal velocity variances.

As a result, motions are dominantly in the horizontal plane

of the standard streamwise coordinate system, being hence

quasi-horizontally isotropic (𝜎u ≈ 𝜎v) in this reference frame.

It is of relevance to note that only at heights ∼10 m and

40 m where u′v′ is zero, horizontal isotropy is achieved.

It is also around these heights that turbulence is closer to

being two-component dominated (see Figures 9a, b). All the

components of skewness show negative values indicating

intermittency (cf. Kaimal and Finnigan, 1994). This type of

turbulence occurs for weak wind conditions when turbulence

destruction by stratification (B) significantly exceeds shear

generation (S), and as seen in section 4 resides on the lower

branch of HOST. Given the large non-closure of the TKE
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(a)

(b)

(c)

(d)

(e)

FIGURE 9 Example periods with strongly stable conditions and close to one-component turbulence (first column; October 25), weakly stable conditions

with close to isotropic turbulence (second column; October 27), convective conditions with isotropic turbulence (third column; October 25) and near-neutral

conditions with two-component axisymmetric turbulence (fourth column; October 22). Shown are (a) anisotropy and profiles of (b) eigenvalues, (c) components

of the Reynolds stress tensor, (d) skewness of velocity components and (e) TKE budget terms (B – buoyancy production/destruction, S – shear production, D

– dissipation, TT – turbulence transport). Profiles present medians calculated over the time periods shown in (a), together with 25th and 75th percentiles.

budget for this type of condition, horizontal and non-local

contributions play a significant role.

As noted earlier, conditions closer to isotropy can only

occur during nighttime in weakly stable conditions (Figure

9, second column) when the shear generation of turbu-

lence is larger than buoyancy destruction. In the examined

period, the eigenvalue profiles are once again uniform in

height, with values of 𝜆I ∼ 1∕6, 𝜆II ∼ 0, and 𝜆III ∼ − 1∕6,

illustrating that turbulence is actually a mixture of two-

and three-component turbulence states and is not axisym-

metric. From the streamwise coordinates perspective the

vertical and horizontal velocity variances are of the same



STIPERSKI AND CALAF 653

order of magnitude. However, because the shear forcing is
inhomogeneous, horizontal isotropy as represented in the
streamwise coordinates is lost (Figure 9c). Unlike in the
very stable case, vertical velocity has a Gaussian distribution
(skewness = 0) in this regime. On the contrary, the streamwise
component is positively skewed suggesting bursts of higher
wind speeds (i.e., gusts) embedded within a calmer environ-
ment. It is important to remember here again that the above
analysis, suggesting lack of full isotropy (𝜎u ≈ 𝜎v ≈ 𝜎w)
during nighttime, pertains to the 30 min averaging period.

The daytime periods are easily differentiated based on the
dominant production terms in the TKE budget. For isotropic
turbulence to occur it is necessary that buoyancy production
(B) prevails over negligible shear generation (S) and that
one is far enough from the wall. This is consistent with the
free convective conditions encountered during the morning
hours or generally under low synoptic forcing with weak
winds. Turbulence becomes progressively more isotropic
away from the surface in as much as the vertical velocity
variance increases with height. The horizontal velocity vari-
ances, however, are constant throughout the tower depth.
The approach to isotropy is also illustrated in the principal
axis frame of reference through the trend of the eigenvalues
with height. In this case, it is worth noting that all of the
off-diagonal terms of the Reynolds stress tensor are neg-
ligible, and hence both reference frames are most strongly
aligned. Measurements from an even higher tower at Cabauw
confirm that this kind of isotropic behaviour (𝜎u ≈ 𝜎v ≈ 𝜎w)
extends well above 50 m (not shown). Vertical velocity has
positive skewness (a sign of convection) for both the isotropic
and two-component axisymmetric regime. In the first case it
is due to free convection, while in the second it is caused by
forced convection when shear generation dominates the TKE
budget. In the second, near-neutral daytime case (Figure 9,
fourth column) the horizontal velocity variances are sig-
nificantly larger than the vertical velocity variance, leading
towards two-component axisymmetric behaviour as observed
in the principal axis reference frame. There are indications
that even under this regime, turbulence at higher altitudes
might tend towards isotropy.

In both of these daytime regimes horizontal isotropy is
preserved in the standard streamwise reference frame and
explains the finding that bothΦu andΦv have the same neutral
limit (Equation 7) as seen in section 3.

6 SPECTRAL ANALYSIS

Results in the previous three sections have highlighted the
connection between turbulence topology and different ABL
regimes, and as such have established a clear correlation
between anisotropy and the success or failure of similarity
theory. This connection can be further validated by exam-
ining the Fourier power spectra of the turbulent flow under
different ABL thermal stratifications and for each limiting

state of anisotropy. The spectra offer a scale-wise perspective
on the turbulence topology.

Figure 10 shows the 30-min median power spectra of the
streamwise and vertical velocity components for each of the
limiting states of anisotropy at two heights (10 and 55 m),
as a function of kz, where k is the wavenumber. The medi-
ans were calculated from the scaled power spectra for each
height by averaging over all instances of each of the three
limiting states of anisotropy that were isolated using quality
criterion 4 (see section 2). Prior to the spectral calcula-
tions, the signal was detrended. For the stable regime data
the Dougherty-Ozmidov length scale Loz =

√
𝜖w∕N3 (e.g.,

Dougherty, 1961; Ozmidov, 1965; Grachev et al., 2015), was
also computed for each averaging period from the dissipation
rate of the vertical velocity 𝜖w, and the buoyancy frequency
N, computed from the analytical profiles fit through the ther-
mocouple data. The corresponding medians are represented
with vertical lines and shaded regions are associated with the
25% and 75% percentiles.

The spectra for isotropic turbulence in both unstable and
stable stratification (Figure 10a) show a well defined k−5∕3

slope, representative of the inertial subrange (Kaimal and
Finnigan, 1994; Pope, 2000). For the unstable case, the −5∕3
slope extends beyond the kz = 1 inertial limit (Katul et al.,
2012), before transitioning to a k−1 slope, representative of
the TKE production subrange. This type of spectral extension
of the −5∕3 scaling had earlier been observed by Kader and
Yaglom (1991), and is associated with the existence of free
convection sublayer subjacent within the ABL’s surface layer,
influence of which was also noted in the previous section.
The power spectrum of vertical velocity is identical to the
streamwise component up until kz = 1, in line with the
isotropic assumption. It, however, plateaus with a −1 slope
to the left of the kz = 1 limit, quickly decaying in the
smaller-wavenumber regime. It is of relevance to note that
in agreement with this spectral scaling (−5∕3 and −1 scal-
ing regimes) Katul et al. (2013), Banerjee et al. (2015) and
Li et al. (2015a; 2015b) were able to recover the traditional
similarity scaling relations under the additional assumptions
of spatial homogeneity and zero subsidence. Therefore the
spectral analysis further justifies the success of similarity rela-
tions for isotropic turbulence illustrated in Figure 5. Also the
two-component axisymmetric turbulence (Figure 10b) under
unstable conditions presents a well marked −5∕3 slope for
both the streamwise and vertical velocity components. How-
ever, in this turbulence topology, the −5∕3 scaling for the
vertical velocity component diverges almost a decade earlier
in the wavenumber range than for the isotropic turbulence. In
this regard, the spectral scaling of the vertical velocity compo-
nent of the one-component turbulence (Figure 10c) presents
a very similar behavior. However, the streamwise velocity of
the one-component turbulence exhibits a quasi-uniform −1
spectral slope throughout the wavenumber spectral range and
large aliasing at high wavenumbers. The low number of cases
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(a)

(b)

(c)

FIGURE 10 Median Fourier power spectra of the streamwise and vertical velocity components for two heights (10 and 55 m), computed over 30 min periods

and averaged for all the limiting states of anisotropy: (a) isotropic, (b) two-component axisymmetric and (c) one-component turbulence, for unstable (left) and

stable (right) stratification. Wavenumber k was calculated from frequency f using Taylor’s frozen turbulence hypothesis and equals k = 2𝜋f∕U. Dashed

vertical line shows kz = 1. Vertical solid lines correspond to median of the scaled Dougherty-Ozmidov length scale z∕Loz for each height and the shading

corresponds to the 25% and 75% percentiles.

with one-component turbulence, however, does not allow a
more thorough analysis of this regime.

Under stable stratification (Figure 10, right column), the
difference between the spectra of isotropic turbulence and
one- and two-component axisymmetric turbulence is much
more pronounced. For isotropic turbulence, both the stream-
wise and vertical velocity components show a well-developed
inertial subrange with a clear −5∕3 slope. For the streamwise
component, the inertial subrange extends almost to kz = 1,
sharply decaying thereon without illustrating the existence of
a production range. For the vertical velocity component, how-
ever, the inertial subrange covers a much narrower wavenum-
ber range and the spectrum already starts to decay at kz = 10.
Note that this scaled wavenumber qualitatively matches the
Daugherty–Ozmidov length-scale. On the other hand, spec-
tra of both one- and two-component axisymmetric turbulence
show extensive similarities. In both, the strong stability sup-
presses turbulence, resulting in a very short inertial subrange,

only found up to much larger wavenumbers. The onset of
the inertial subrange once again matches the correspond-
ing Daugherty–Ozmidov length-scale, which is much lower
than for isotropic turbulence. Note that in this case, how-
ever, the Daugherty–Ozmidov length-scale presents larger
deviations with height, a result of the fact that turbulence
is more suppressed at higher levels. This coincidence of the
Daugherty–Ozmidov length-scale with the spectral transition
of the inertial subrange seems to indicate that this length-scale
could be used to relate the nature of anisotropy to a turbulence
length-scale. This should be further explored in future works.

It is also interesting to note that in both cases a spec-
tral slope of between −2 and −2.5 can be observed in
the small-wavenumber range. Similar spectral slopes can
be a sign of two-dimensional turbulence, as suggested by
e.g. Lindborg (1999), Wyngaard (2010) and Lovejoy and
Schertzer (2013). Alternatively, gravity waves (Dewan, 1997;
Finnigan et al., 1984; Sukoriansky and Galperin, 2013),
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ubiquitous in very stable conditions, and Earth’s rotation
(Sukoriansky and Galperin, 2016) as well as buoyancy
(Lovejoy and Schertzer, 2013) have also been invoked to
explain spectral slopes ranging between k−2 and k−3. In all of
these studies, however, these spectral slopes were observed
in spectra obtained well above the boundary layer. It is safe
to say that the low-wavenumber part of the spectrum with a
slope of about −2.5 corresponds to (sub-)mesoscale motions,
responsible for strong turbulence anisotropy. It is also worth
noting that when a shorter averaging time is employed for the
analysis (e.g.∼ 1 min), this low-wavenumber part of the spec-
trum is not taken into account. Given the possible existence
of a −5∕3 slope for individual spectra (although this is not
necessarily observed on average), this shorter averaging time
would lead to an improvement in the overall similarity scaling
for stable conditions.

7 DISCUSSION

Results from this work show that turbulence reaches isotropy
only away from the surface in weak wind conditions dur-
ing the daytime, when buoyancy forcing dominates the TKE
budget, and at smaller scales under strong wind conditions
during the night-time, when shear generation of TKE over-
powers destruction by negative buoyancy. This antithesis of
conditions leading to the generation of isotropic turbulence
confirms that there is no single route to isotropy and that
this route depends strongly on the ABL thermal stratification.
Nonetheless, knowing the background thermal stratification
(stable or unstable) and only two governing parameters (U
and TKE for the stable cases and 𝜕U∕𝜕z and z∕Λ for the
unstable cases), turbulence topology associated with limiting
states of turbulence anisotropy can be predicted success-
fully. Therefore, in conjunction with the scaling results from
section 3, it should be possible to develop improved turbu-
lence flux parametrizations. This is especially the case for
horizontal variances, where relevant similarity relations are
clearly stratified according to anisotropy. In a future extension
of this work, one could also consider the relationship existing
between surface boundary-layer scaling and the three intrinsic
directions of the Reynolds stress tensor.

It is also of relevance to note that the mere existence
of close to isotropic turbulence states outside the inertial
subrange in real near-surface atmospheric conditions is in
contradiction with the generally accepted premise that nei-
ther buoyancy nor shear can produce larger-scale isotropic
turbulence, due to the highly anisotropic nature of these
forcings (cf. Wyngaard, 2010). Spectra for isotropic turbu-
lence (Figure 10) have shown, however, that the existence
of isotropy is related to the existence of a free convection
sublayer within the ABL surface layer characterized by an
extended −5∕3 slope, as previously predicted by Kader and
Yaglom (1991). The existence of isotropy is also in line
with the existence of a single length-scale in free convection

(vertical only), as opposed to shear-driven turbulence, which
has two dominant length-scales (vertical and horizontal) lead-
ing to two-component axisymmetric behaviour.

Finally, the current analysis shows indications of sen-
sitivity of the anisotropy analysis to the instrument used,
under certain conditions. For example, during a weakly sta-
ble isotropic night (Figure 9, second column), the levels that
have non-orthogonal CSAT3 anemometers (i.e. 5 m, 30 m
and 50 m) show less isotropic behaviour than levels where the
measurements were done with orthogonal ATI-K probes. This
result is in line with recent findings (e.g., Frank et al., 2013;
Horst et al., 2015) that non-orthogonal sonic anemometers
underestimate vertical motions (both variances and covari-
ances) due to transducer shadowing. Such an underestimation
would deform the Reynolds stress tensor and affect correct
identification of flow anisotropy. Klipp (2010a) has also noted
some sensitivity of her results to the instrument used. This
finding, however, deserves further investigation.

8 CONCLUSIONS

In this work similarity relations were examined in the light of
turbulence anisotropy. It was shown that, for the case of unsta-
ble stratification, both buoyancy-driven isotropic turbulence
and shear-driven two-component axisymmetric turbulence fit
surface-layer similarity relations well. The only differences
are scaling relations for horizontal velocity components (Φu,
Φv), which in the case of isotropic turbulence correspond to
the similarity relation for the standard deviation of vertical
velocity Φw (Equation 6) and in the case of two-component
axisymmetric turbulence fit theΦu relation (Equation 7). This
difference explains the large scatter commonly found for Φu
and Φv in various datasets (much more significant than for
other variables), since data with different types of turbulent
anisotropy are commonly examined together. This result also
highlights the fact that there can therefore be no single scaling
curve for both states of anisotropy, unless anisotropy is taken
into account in the scaling itself. The fact that both Φu and
Φv follow the same scaling curve can be attributed to hori-
zontal isotropy in the streamwise coordinate system, found for
both of these two limiting states of anisotropy under unstable
stratification.

For stable stratification, both the isotropic turbulence found
in weakly stable conditions and the two-component axisym-
metric turbulence agreed well with z-less scaling behaviour,
nonetheless with a different neutral limit. The large scat-
ter in two-component axisymmetric stable turbulence could
be a result of the underestimation of vertical velocity vari-
ance in non-orthogonal CSAT3 sonic anemometers due to
transducer shadowing in weak wind conditions. On the
other hand, one-component turbulence in both stable and
unstable stratification was characterized by large scatter and
strong deviations from similarity scaling. This type of tur-
bulence was shown to occur in strongly stable, weak wind
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conditions during the night-time and transition periods during
the daytime. Indications of similarity with 2D turbulence were
found for cases of one-component turbulence. These include
negligible vertical velocity variance, large and horizontally
isotropic horizontal velocity variances and a (close to) −3
spectral slope of the streamwise wind component spectrum
found at low frequencies.

Governing parameters that allow differentiation of these
limiting states of anisotropy were isolated. During unsta-
ble daytime periods, it was found that a balance between
buoyancy (z∕Λ) and wind shear (𝜕U∕𝜕z) predicts the shape
of turbulence anisotropy well. If buoyancy dominates
(−z∕Λ > 1), turbulence tends towards an isotropic state, par-
ticularly away from the surface, whereas for shear-dominated
forced convection (0 < −z∕Λ < 1) turbulence was found to
be two-component axisymmetric. During stable periods, a
combination of turbulence kinetic energy (e) and wind speed
(U) within the HOST framework clearly delineates the one-
and two-component axisymmetric turbulence encountered
in very stable conditions from the more isotropic turbulence
in weakly stable conditions; however, it is unable to differ-
entiate between the one- and two-component axisymmetric
motions themselves.

Finally, with knowledge of the ABL thermal stratification
(stable or unstable) and governing parameters, it therefore
becomes possible to predict turbulence topology and hence
attribute scaling relationships correctly. We believe that this
new framework will help provide a unifying approach to
data from all kinds of complex surfaces. This new perspec-
tive on land–atmosphere turbulent exchange processes might
also lead to improved parametrizations, as well as helping
to advance numerical modelling of the land–atmosphere
interface.
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