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We prove that the class of trilinear multiplier forms with singularity over a one-

dimensional subspace, including the bilinear Hilbert transform, admits bounded Lp-

extension to triples of intermediate UMD spaces. No other assumption, for instance of

Rademacher maximal function type, is made on the triple of UMD spaces. Among the

novelties in our analysis is an extension of the phase-space projection technique to the

UMD-valued setting. This is then employed to obtain appropriate single-tree estimates

by appealing to the UMD-valued bound for bilinear Calderón–Zygmund operators

recently obtained by the same authors.

1 Introduction and Main Results

Let Xk, k = 1, 2, 3 be Banach spaces with a trilinear contraction X1 ×X2 ×X3 → C, which

we denote by (e1, e2, e3) �→ e1e2e3 =∏3
k=1 ek. To a multiplier m defined on the orthogonal
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Banach-Valued Singular Integrals 5257

complement � of (1, 1, 1) ∈ R3, we may associate the trilinear form

�m(f1, f2, f3) =
∫

�

m(ξ)

(
3∏

k=1

f̂k(ξk)

)
dξ (1.1)

acting on functions fk ∈ S(R) ⊗ Xk, k = 1, 2, 3, where the former is the Schwartz class.

This article is concerned with multipliers m whose singularity lies on a one-dimensional

subspace perpendicular to a unit vector β ∈ � that is nondegenerate in the sense that

�β := min
j �=k

|βj − βk| > 0 (1.2)

and satisfies for all multi-indices α

sup
ξ∈�

(
dist(ξ , β⊥)

)α∣∣∂αm(ξ)
∣∣ �α 1. (1.3)

Assumption (1.3) is a β⊥-modulation invariant version of the Coifman–Meyer condition.

This class includes the bilinear Hilbert transform with parameter β, whose dual

trilinear multiplier form may be obtained by choosing

m(ξ) = sgn(ξ · β).

The (adjoint form to the) bilinear Hilbert transform

BHTβ(f1, f2, f3) =
∫
R

p.v.
∫ 3∏

j=1

fj(x − βjt)
dt

t
dx

was first introduced by Calderón within the context of Lp estimates for the 1st

commutator of the Cauchy integral along Lipschitz curves. The celebrated articles of

Lacey and Thiele [27, 28] contain the 1st proof of Lp estimates for the bilinear Hilbert

transform, while more general multipliers of the class (1.3) were treated by Muscalu

et al. [29].

1.1 Main results

In this article, we prove that the trilinear multiplier forms (1.1), where m is a multiplier

of the class (1.3), admit Lp-bounded extensions to triples of intermediate UMD Banach

spaces. This class of UMD spaces first appears in the survey work of Rubio de
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5258 F. Di Plinio et al.

Francia [32] with focus on the Banach function space case and has subsequently been

considered by Hytönen and Lacey in the articles [18, 19] in the context of modulation

invariant operators. We repeat this definition below and send to [24] and references

therein for background and generalities on UMD Banach spaces.

Let 2 ≤ q ≤ ∞ and X0,X1 be a couple of compatible Banach spaces, with X0

being a UMD space and X1 being a Hilbert space. We say that the Banach space X is

q-intermediate UMD if

X = [X0,X1] 2
q
,

namely X is the complex interpolation of a UMD Banach space with a Hilbert space.

Such Banach space X is automatically a UMD space. Notice that X is q-intermediate

UMD if and only if its Banach dual X′ is.

The precise statement of our main result is as follows.

Theorem 1.4. Let Xj, j = 1, 2, 3, be Banach spaces with Banach duals Yj = X′
j and

suppose that each Xj is qXj
-intermediate UMD. Assume that

ρ =
3∑

j=1

1

qXj

− 1 > 0. (1.5)

Let σ be any permutation of {1, 2, 3}, m be a multiplier satisfying (1.3) and Tm,σ denote

the adjoint bilinear operator to (1.1) acting on pairs of Xσ(1),Xσ(2)-valued functions.

Then, ∥∥Tm,σ (fσ(1), fσ(2))
∥∥

L
p1p2

p1+p2 (R;Yσ(3))
�
∥∥fσ(1)

∥∥
Lp1 (R;Xσ(1))

∥∥fσ(2)

∥∥
Lp2 (R;Xσ(2))

whenever

1 < p1, p2 ≤ ∞, (p1, p2) �= (∞, ∞),
(

1

p1
,

1

p2

)
∈ int(H). (1.6)

Here, H is the hexagon with vertices A, B, C, D, E, F as follows:

A :
(

1
qX1

− ρqX3
, 1

qX2

)
, D :

(
1

qX1
+ ρqX1

− ρ, 1
qX2

)
,

B :
(

1
qX1

, 1
qX2

− ρqX3

)
, E :

(
1

qX1
, 1

qX2
+ ρqX2

− ρ
)

,

C :
(

1
qX1

+ ρqX1
− ρ, 1

qX2
− ρqX1

)
, F :

(
1

qX1
− ρqX2

, 1
qX2

+ ρqX2
− ρ

)
.
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Banach-Valued Singular Integrals 5259

The proof of Theorem 1.4 relies on the main energy and tree lemmata of Section 3

and is outlined in Subsection 3.4. We note in passing that if condition (1.5) holds, the

range int(H) is non-empty and in particular contains the region

qXk
< pk < ∞, k = 1, 2, 3, p3 :=

(
p1p2

p1+p2

)′
,

which is the analogue of the local L2 range for the scalar case; see [27]. In addition,

we point out that int(H) may contain quasi-Banach pairs (p1, p2), that is, pairs with
p1p2

p1+p2
< 1. This is easier to see by particularizing Theorem 1.4 to the case

X1 = X, X2 = X′, X3 = C,

as in the following corollary. Herein, quasi-Banach estimates are available if 2 < q < 3.

Corollary 1.7. Let X be a q-intermediate UMD space, and define the trilinear contrac-

tion

(x, φ, λ) ∈ X× X′ × C �→ λφ(x).

Let m be a multiplier satisfying (1.3) and Tm denote the adjoint bilinear operator to (1.1)

acting on pairs of X,X′-valued functions.

Suppose that 2 ≤ q ≤ 3. Then,∥∥Tm(f1, f2)
∥∥

L
p1p2

p1+p2 (R)
�
∥∥f1

∥∥
Lp1 (R;X)

∥∥f2

∥∥
Lp2 (R;X′) (1.8)

whenever

1 + (q − 1)(q − 2)

q(5 − q) − 2
< p1, p2 ≤ ∞,

2

3

(
1 + q − 2

5 − q

)
<

p1p2

p1 + p2
<

q

q − 2
. (1.9)

If 3 < q < 4, then (1.8) holds true if, in addition to (1.9), the condition

q2 − 3q + 1

q
< min

(u,v)∈{(1,2),(2,1)}

{
q − 1

pu
+ q − 2

pv

}
is verified.

Theorem 1.4 and Corollary 1.7 further the rather recent line of research on

the extension of singular operators with modulation invariance properties to UMD

Banach spaces without any UMD Banach function space structure or lattice structure

altogether: a prototypical example are noncommutative Lp spaces such as the reflexive
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5260 F. Di Plinio et al.

Schatten–von Neumann subclasses of the algebra of bounded operators on a Hilbert

space. This line of research was initiated by Hytönen and Lacey in their proof of

boundedness of the Carleson maximal partial Fourier sum operator for intermediate

UMD spaces in the Walsh [19] and Fourier [18] setting; see also [21] for Walsh–Carleson

variation norm bounds. Subsequently, the same authors and Parissis [20] proved the

analogue of Theorem 1.4 for the Walsh model of the bilinear Hilbert transform. In fact,

the range of exponents int(H) is the same as the one obtained therein for the Walsh

model; see [20, Theorem 9.3]. Results in the vein of [20] were recently reproved by Amenta

and Uraltsev [3] as a byproduct of novel Banach-valued outer Lp space embeddings for

the Walsh wave packet transform.

The theory of UMD-valued linear singular integrals of Calderón–Zygmund

type is rooted in the works by Burkholder [6] and Bourgain [5] among others and

has been extensively developed since then; see for instance [7, 15–17, 22, 25, 26,

36] and the monograph [24]. Recent advances have concerned the UMD extension of

multilinear Caldéron–Zygmund operators [11–13]. The above-mentioned references deal

with generic UMD spaces, as opposed to lattices, and thus develop fundamentally

different techniques from those of the classical vector-valued theory of, for example,

Benedek, Calderón and Panzone, Fefferman and Stein, and Rubio de Francia, which are

strictly tied to Ap-type weighted norm inequalities. In a similar contrast, the present

article combines novel technical tools in UMD-valued time frequency analysis to the

UMD interpolation space idea of [18] in order to deal with multilinear modulation

invariant operators on non-lattice UMD spaces, which are out of reach for typical

lattice-based techniques.

Nevertheless, a systematic function space-valued theory for (1.1) is quite recent.

The 1st proof of 
p-valued bounds for the bilinear Hilbert transform in a wide range

of exponents is due to Silva [33]. In [33], those estimates have been employed to obtain

bounds for the biparameter bilinear operator obtained by tensoring the bilinear Hilbert

transform with a Coifman–Meyer multiplier. Several extensions and refinements of

[33] have since appeared; see for example [1, 4, 8, 9]. In general, as Corollary 1.7

demonstrates, Theorem 1.4 is outside the scope of the above references, although it

does imply a strict subset of the 
p estimates of [33]. We send to [3, 20] for a detailed

discussion of this point.

However, to stress the difference with the results of [33] and follow-ups, we

would like to showcase here a further application of Theorem 1.4 to a triple of non-

function, non-lattice UMD Banach spaces, in addition to that of Corollary 1.7. In the

corollary that follows, we denote by Sp, 1 ≤ p < ∞ the p-th Schatten–von Neumann
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Banach-Valued Singular Integrals 5261

class, namely the subspace of the von Neumann algebra B(H) of linear-bounded

operators on a separable Hilbert space defined by the norm

‖A‖Sp = ‖sn(A)‖
p(n∈N),

where {sn(A) : n ∈ N} is the sequence of singular values of A, that is, eigenvalues of the

Hermitian operator |A| = √
A∗A. Notice that the classes Sp are increasingly nested with

p and that the trilinear form

(A1, A2, A3) ∈ St1 × St2 × St3 �→ trace(A1A2A3) (1.10)

is a contraction provided that
3∑

k=1

1

tk
≥ 1. (1.11)

Corollary 1.12. Suppose that the exponents 1 < t1, t2, t3 < ∞ satisfy

ρ =
3∑

k=1

1

max{tk, (tk)′} − 1 > 0.

Let σ be a permutation of {1, 2, 3} and m be a multiplier satisfying (1.3). Then, the

corresponding adjoint bilinear operator Tm,σ maps

Tm,σ : Lp1(R; Stσ(1) ) × Lp2(R; Stσ(2) ) → L
p1p2

p1+p2 (R; St′
σ(3) )

boundedly for all p1, p2 specified by (1.6).

Corollary 1.12 is obtained from Theorem 1.4 by noticing that Sp, 1 < p < ∞
is intermediate UMD of exponent q for all q > max{p, p′}. Similar statements may be

obtained for more general tuples of noncommutative spaces Lp(A) with the property

that ‖A‖Lp(A) ≤ ‖A‖Lq(A) for p > q, so that (1.10) is a trilinear contraction in the range

(1.11). We send to [31] for comprehensive definitions and background: a quick harmonic

analyst-friendly introduction is given in [11, Section 3].

1.2 Techniques of proof and novelties

The standard proofs of Lp-bounds for the scalar-valued versions of the forms �m in

(1.1) are articulated in roughly three separate moments. The 1st is to realize that the

forms (1.1) lie in the convex hull of suitable discretized model versions, the so-called

tri-tile forms, displaying the same modulation and translation invariance properties of
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5262 F. Di Plinio et al.

the condition (1.3): this step extends verbatim to the vector-valued case. We may thus

focus on Lp-bounds for the model sums.

An essential step of the proof is the decomposition of the model operators into

(discretized) multipliers that are adapted to a certain fixed top frequency and localized

in space to a top interval. These tree model sums are essentially trilinear Calderón–

Zygmund forms. The contribution of each tree is then controlled by localized space-

frequency norms of the involved functions, the so-called energies (or sizes). This bound

is referred to as tree estimate.

In the vector-valued case, this 2nd step has to be adapted in a nontrivial and

novel fashion. First of all, the vector-valued energies, introduced in (3.7) and (3.10)

must be defined in terms of local q-norms of (linear) tree operators rather than simply


2 sums of wavelet coefficients coming from each tree. We do so by means of a

technical modification of the approach in [18]. Second, and most important, we obtain

an effective tree estimate by replacing the involved functions with vector-valued phase-

space projections to the space-frequency support of the tree. This extension of the

scalar-valued phase-space projections of for example [10, 30] to UMD spaces, which may

be of independent interest, is carried out in Proposition 4.3 and is the main technical

novelty of the article. The tree model sum acts on the phase-space projections roughly

as a trilinear CZ multiplier operator, and the Lp-norms of the constructed projections

are controlled by the corresponding energies. These observations may be used in

conjunction with the Lp-bound for UMD extensions of bilinear CZ operators, recently

obtained by the authors of this paper in [11], to produce the tree estimate of Lemma 3.16.

Finally, the recomposition of the bounds obtained for each tree into a global esti-

mate relies on almost orthogonality considerations. To export this almost orthogonality

to the vector-valued scenario, we rely, as in previous literature [3, 18, 20], on the q-

intermediate property of the involved spaces X. This step is carried out in Lemma 3.13.

As every known example of UMD space is q-intermediate for some q, this assumption

may seem harmless. However, unlike the linear setting of [18], it is the combined q-

intermediate type of the three spaces that introduces the restriction (1.5) and influences

the range int(H) in Theorem 1.4. Further investigation on the necessity and on possible

weakening of the q-intermediate assumptions are left for future work.

Plan of the paper

Section 2 contains the preliminary material needed to define the model tri-tile forms.

Section 3 presents the outline of the proof of Theorem 1.4: in particular, the definitions

of trees, vector-valued energies as well as the statement of the energy and tree lemmata,
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Banach-Valued Singular Integrals 5263

Lemma 3.13 and 3.16, respectively. Section 4 contains the proof of the tree Lemma 3.16

via the reduction to the phase-space projection Proposition 4.3. The proof of the

latter proposition is developed in Section 5. Section 6 contains the proof of the energy

Lemma 3.13, while Lemma 3.12 is proved in the concluding Section 7. We include some

of the pre-existing results of space-frequency analysis, adapted to the framework we

work with, in an appendix at the end of the article. We include the proof or the proof

sketch whenever (small) adaptations are required but claim no originality.

Remark

In the final stages of preparation of the present manuscript, the authors learned of the

work by Amenta and Uraltsev [2]. These authors obtain a simultaneous and independent

version of Theorem 1.4, focused on the bilinear Hilbert transform in the Banach range of

exponents, under the same intermediate space condition (1.5). Interestingly, the methods

employed in [2] are rather different from ours: the use of phase-space projections and

of the UMD Calderón–Zygmund estimates from [11] is replaced by outer embeddings for

the vector-valued wave packet transform involving telescoping (defect) energies.

The authors want to thank Alex Amenta and Gennady Uraltsev for sharing their

preprint and for interesting discussions on the subject. They are also grateful to the

very generous referees for the careful reading and the numerous suggestions that helped

improve the quality of the article.

2 Space-Frequency Model Sums

2.1 Notation

While our estimates are valid in any ambient space Rd, we work with d = 1 to avoid

unnecessary notational proliferation. However, we adopt d-dimensional terminology

and notation whenever possible. For instance, we write Br(x) = {y ∈ R : |y − x| < r} and

simply Br in place of Br(0). Whenever possible, spatial and frequency one-dimensional

cubes are indicated respectively by I, ω. The center and sidelength of a one-dimensional

cube I are respectively denoted by c(I), 
(I). We use the Japanese bracket notation

〈x〉 = √1 + |x|2.

If m is a bounded function on R, we denote both the corresponding

L2(R)-bounded Fourier multiplier operator and its trivial extension to L2(R) ⊗ X for

any Banach space X as

Tmf (x) =
∫

f̂ (ξ)m(ξ)eixξ dξ , x ∈ R.
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5264 F. Di Plinio et al.

When X is a Banach space, we keep denoting by T the trivial extension T⊗IdX of a linear

operator T.

2.2 Frequency-localized indicators

Indicator functions, for example of intervals, possess perfect localization in space

but poor frequency decay. We intend to define frequency-localized approximations of

indicator functions by weakening such spatial localization to polynomial decay.

For this reason, we introduce suitable normalized classes of frequency-localized

functions adapted to an interval I ⊂ R. For a large positive integer N and δ, C > 0, we

say χ ∈ XI(N, δ, C) if χ ∈ S(R) satisfies

supp χ̂ ⊂ Bδ
(I)−1 ; (2.1)

χreal-valued,
〈
x − c(I)


(I)

〉−N

≤ χ(x) ≤ C
〈
x − c(I)


(I)

〉−N

, x ∈ R. (2.2)

If ψ instead satisfies (2.1) and

|ψ(x)| ≤ C
〈
x − c(I)


(I)

〉−N

, x ∈ R

in place of the more stringent (2.2), we say that ψ ∈ �I(N, δ, C). Obviously, we have the

inclusion XI(N, δ, C) ⊂ �I(N, δ, C). It is important to notice that if I, I ′ are A-comparable

intervals, that is, I ⊂ AI ′, I ′ ⊂ AI, and χ ∈ XI(N, δ, C), then cχ ∈ XI ′(N, δ′, C′) as well, for

suitable constant c and values of δ′, C′ depending only on the comparability constant A

and on N, δ, C. A similar statement applies to the classes �I(N, δ, C).

Suitable frequency-supported approximate indicators to E ⊂ R may be con-

structed as follows. For a fixed large positive integer N and δ > 0, construct η ∈ S(R)

satisfying

η̂(0) = 1, supp η̂ ⊂ Bδ, 〈x〉−N ≤ η(x) �N,δ 〈x〉−N ∀x ∈ R.

We rescale η at frequency scale 2j, ηj := 2jη(2j·), and for a positive integer J, which we

keep implicit in the notation of the left-hand side, E ⊂ R, j ∈ R, we introduce

χE, j = 1E ∗ ηJj
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Banach-Valued Singular Integrals 5265

whose frequency support is contained in Bδ2Jj . The function χE, j is an approximate

indicator in the sense that

∣∣∣χE, j(x) − 1E(x)

∣∣∣ � 〈dist(x, ∂E)

2−Jj

〉−N+1

, x ∈ R, (2.3)

where ∂E is the topological boundary of E. This estimate is easily checked arguing

separately in each case x ∈ E, x ∈ R \ E. When E = I is an interval with 
(I) = 2−Jj,

the function cχI, j belongs to XI(N, δ, C) for a suitable constant c depending only on the

parameters (N, δ, C). We reserve for this case the simplified notation

χI := χI, j = 1I ∗ ηJj. (2.4)

It is important to notice that if I, I ′ are A-comparable intervals, that is, I ⊂ AI ′, I ′ ⊂
AI, and χ ∈ XI(N, δ, C), then χ ∈ XI ′(N′, δ′, C′) as well, for suitable values of N′, δ′, C′,
depending only on the comparability constant A and on N, δ, C. A similar statement

applies to the classes �I(N, δ, C).

Let now ω be a frequency interval. The class Mω(N) will consist of those smooth

functions m with supp m ⊂ ω and adapted to ω of order N, in the sense that

sup
|α|≤N

sup
ξ∈R


(ω)α
∣∣∣∂α

ξ m(ξ)

∣∣∣ ≤ 1.

As customary, we will work with tiles t = It×ωt ⊂ R×R, namely the Cartesian product of

intervals in R of reciprocal length, to specify space-frequency localizations. Mimicking

rank-1 projections in a Hilbert space, we may define classes of multiplier operators

adapted to each tile t as follows. Whenever ψ ∈ �It(N, δ, C), m ∈ Mωt
(N), the operator

Stf (x) = ψ(x)Tmf (x) =
∫
R

ψ(x)m(ξ )̂f (ξ)eix·ξ dξ

is said to belong to the class St(N, δ, C) of t-localized operators. From the rapid decay of

the kernel of Tm and the adaptedness of ψ , it follows that

∣∣Stf (x)
∣∣X �

〈
dist(x, It)


(It)

〉−100

M(|f |X)(x), x ∈ R.

Here, X may be any Banach space, not necessarily UMD.
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5266 F. Di Plinio et al.

Remark 2.5. In the remainder of the paper, the values N, δ, C will be kept implicit and

dropped from the notation for XI(N, δ, C), �I(N, δ, C), Mω(N), and St(N, δ, C) whenever they

vary within the fixed range

106 ≤ N ≤ N̄, C ≤ C̄, 2−3J ≤ δ ≤ 2−2J ,

where J is a large integer depending on the nondegeneracy parameter �β from (1.2) as

specified in Appendix A.2. Therefore, the reader is warned that the precise values of

these parameters may vary from line to line without explicit mention. In addition, if

the function χ is such that cχ ∈ XI for c > 0 varying in a fixed range depending on

the parameters N̄, C̄, J, we abuse notation and write χ ∈ XI instead. An advantageous

example of usage for this convention is that whenever χ ∈ XI , the functions χm ∈ XI

as well for small values of m ∈ N. We keep a similar convention for the other adapted

classes.

The one place where we do not keep the parameters N, C implicit is in the

definitions of the maximal energies (3.10) and their related quantities.

In our arguments, we will make use of a form of Bernstein’s inequality involving

approximate indicators, in particular, functions of the classes XI described above. This

is a known phenomenon in the literature, see for example [30, Lemma 5.4]; we give the

proof as we are in the vector-valued context.

Lemma 2.6. Let R > 0, X be a Banach space and f be an X-valued function on R with

supp f̂ ⊂ BR.

Let w : R → (0, ∞) be essentially constant at scale R−1, namely

A−1 〈R|x − y|〉−100 ≤ w(x)

w(y)
≤ A 〈R|x − y|〉100 , x, y ∈ R

for some positive constant A. Then, for all 0 < α ≤ 1,

‖wf ‖L∞(R;X) �A,α Rα‖wf ‖
L

1
α (R;X)

.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/7/5256/5902919 by W
ashington U

niversity School of M
edicine Library (M

1) user on 15 July 2022



Banach-Valued Singular Integrals 5267

Proof. Let φ be a smooth nonnegative function with φ = 1 on BR and φ = 0 off B2R.

Notice that |φ̂(x)| � R〈R|x|〉−200, for all x ∈ R. Then, f = f ∗ φ̂, and

|w(x)f (x)|X �α,A R
∫ |w(y)f (y)|X

〈R|x − y|〉100 dy

≤ Rα‖wf ‖
L

1
α (R;X)

(∫
Rdy

〈R|x − y|〉100

)1−α

� Rα‖wf ‖
L

1
α (R;X)

as claimed. The proof is complete. �

We will apply the lemma above to w = χ ∈ XI for values R ∼ 
(I).

2.3 Tri-tiles and rank-1 forms

Trilinear multiplier forms of type (1.1) admit a discretization in term of tri-tiles. There

are several well-known versions of this discretization procedure, with origins rooted in

Lacey and Thiele [27, 28] in the case of the bilinear Hilbert transforms. Working in the

generality of the multipliers (1.1), whose singularity lies on the line �′ = � ∩ β⊥, we

choose to rely on the procedure described in [29, Section 5], where the multiplier (1.1)

is decomposed in frequency via a partition of unity subordinated to a Whitney cover of

R3 \ �′ by cubes Q = Q1 × Q2 × Q3 ∈ Q coming from finitely many shifted dyadic grids

in R3. Details are given in Subsection A.1 of the appendix.

We say that the ordered triple of tiles P = (P1, P2, P3) is a tri-tile if

IP1
= IP2

= IP3
=: IP.

In accordance to the uncertainty principle, tri-tiles specify the space-frequency essen-

tial support of single-scale multiplier forms, spatially concentrated on IP and frequency

supported on the frequency cube

QP = ωP1
× ωP2

× ωP3
. (2.7)

Reflecting the invariance of condition (1.3) under the one-parameter family of trans-

lations along �′, the collections of tri-tiles that are relevant to us are those whose

frequency cubes come from the cover Q, which is designed to be invariant under the one-

parameter family of translations along �′. For this reason, we refer to these collections

of tri-tiles as rank-1 collections: below, a formal definition is given.
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5268 F. Di Plinio et al.

In what follows, if J is a positive integer and G is a subcollection of a dyadic

system (or grid) on R, we say that G is a J-separated dyadic grid if

I, I ′ ∈ G, 
(I) < 
(I ′) �⇒ 2J
(I) ≤ 
(I ′),

I �= I ′ ∈ G, 
(I) = 
(I ′) �⇒ dist(I, I ′) ≥ 2J+10
(I).

We say that P1 is a rank-1 collection of tri-tiles with parameters K > 0 and J ∈ N, with

K � 1, 2J ≥ K10, if the following properties hold.

a. The frequency boxes QP = ωP1
× ωP2

× ωP3
belong to the collection Q for all

P ∈ P1.

b. The collection I = {IP : P ∈ P1} is the collection of all dyadic intervals on R

whose sidelengths are of the form 
(I) = 2jJ+u for some j ∈ Z, where u is any

fixed integer in {0, . . . , J−1}. The collections �k = {ωPk
: P ∈ P1}, k = 1, 2, 3 are

J-separated dyadic grids. Furthermore, there exist additional J-separated

collections of dyadic intervals �k, k = 1, 2, 3, such that for each P ∈ P1 and

k = 1, 2, 3, we may find ωPk
∈ �k with K4ωPk

⊂ ωPk
and 
(ωPk

) ≥ K−5
(ωPk
).

Thus, both the intervals ωPk
, P ∈ P1 and their K4 dilates have good dyadic

properties.

c. If P �= P′ ∈ P1 are such that IP = IP′ , then ωPj
∩ ωP′

j
= ∅ for each j ∈ {1, 2, 3}.

d. The rank-1 properties r8 to r10 hold for all choices of P, P′ ∈ P1. These

properties are stated in Section A.2 of the appendix in terms of certain

approximate order relations among tri-tiles. Here, we give the equivalent

explicit description

dist(QP, �) ≤ 2
(QP); P, P′ ∈ P1, IP ⊂ IP′ , ωP′
k

⊂ 5ωPk
for some k ∈ {1, 2, 3}

�⇒ ωP′
κ

⊂ KωPκ
\ 3ωPκ

for all κ ∈ {1, 2, 3} \ {k}.

The singular multiplier forms �m from (1.1) then lie in the convex hull of the tri-tile

forms

�P( f1, f2, f3) =
∑
P∈P

∫
R

3∏
k=1

χIP (x)TmPk
fk(x) dx, (2.10)

where P is the (finite) subset of a rank-1 collection of tri-tiles P1 whose spatial

intervals {IP : P ∈ P} are contained in a fixed but arbitrary J-dyadic interval and

whose frequency box set {QP : P ∈ P} is finite but arbitrary, χIP ∈ XIP has been

defined in (2.4) of Subsection 2.2 and mPk
∈ MωPk

(N), P ∈ P satisfies the consistency
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Banach-Valued Singular Integrals 5269

condition

QP = QP′ �⇒ mPk
= mP′

k
, k = 1, 2, 3, (2.11)

referring to (2.7). Therefore, to bound �m, it suffices to bound �
P

uniformly. A detailed

proof of these statements is given in [29, Section 5]; see also [30, 35]. A summary of proof

is given in the appendix. The remainder of the article will be devoted to the proof of

such uniform bounds for �P. Note that the operators

f �→ χIP TmPk
f

belong to the class SPk
, for k = 1, 2, 3.

Remark 2.12. As most of the analysis in this paper is an extension to UMD spaces of

the phase-space projection technique introduced in [30], we take a moment to explain

how our choice of discretization relates to the one developed in the latter reference.

The main point of [30] is obtaining bounds uniform in the degeneracy parameter (1.2),

which may be identified with the absolute ratio between the largest and the smallest

eigenvalues of a map L rescaling the subspace R(1, 1, 1) to the singular line �′ of m. In

[30], the multiplier m is pulled back to m(L·) and then discretized with a partition of

unity subordinated to the finitely overlapping cover

Q =
{
Q := L−1Q̃ : Q̃ ∈ Q̃

}
,

where Q̃ is instead a Whitney decomposition of R3 \ R(1, 1, 1) into cubes. The Whitney

pieces of the multiplier are thus adapted to boxes Q whose sidelengths are scaled by

the eigenvalues of the map L. When the degeneracy parameter �β in (1.2) is � 1, the

scaling map L may be neglected by suitable finite splittings and Q, Q̃ may be conflated;

the model of [30] essentially coincides with our discretization. The reader who wants to

compare our analysis with that of [30] is encouraged to do so.

3 Proof of Theorem 1.4: Tree and Energy Estimates

In this section, after devising the necessary definitions in our context, we present the

statements of the three main lemmas, which may then be combined to prove Theorem 1.4

in a standard fashion.

We first introduce trees, roughly speaking, collections of tri-tiles sitting at a

common frequency and spatially localized to an interval. Then, we define tree operators,
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5270 F. Di Plinio et al.

that is, modulated Calderón–Zygmund localized operators associated to each tree. These

are used to define the energy of a certain X-valued function with respect to a set of

tri-tiles P: this is a sort of localized maximal Lq(R;X)-norm of tree operators coming

from P.

Finally, we state the main steps in the proof of Theorem 1.4. The 1st is the energy

lemma, which allows us to decompose any given collection of tri-tiles into unions of

trees of controlled energy for each function fk of bounded spatial support. The 2nd is the

tree lemma, which provides a bound of the tri-tile form (2.10) when P is a tree. The proof

of this lemma is one of the main novelties of this article, as it relies on a combination

of the multilinear UMD CZ theory of [11] with newly developed phase-space projections

adapted to the vector-valued setting.

3.1 Trees

In the definitions below, an important role is played by the singular line of m in (1.3),

namely �′ = � ∩ β⊥. Let P be a rank-1 collection of tri-tiles. Rank-0 subcollections of P,

whose associated forms �P are discretized multilinear CZ type multipliers, are called

trees. We work with a specific notion of tree that satisfies certain additional properties

along the lines of [30, Section 4].

Recall from Subsection 2.3 that if P ∈ P, ωPk
is an interval approximating the

dilate K4ωPk
and coming from a fixed J-separated dyadic grid. We say that the non-

empty collection T ⊂ P is a tree having (IT, ξT) as top data if the following conditions

hold.

a. IT is a J-dyadic interval in R and

IP ⊂ IT ∀ P ∈ T, k = 1, 2, 3.

b. ξT = ((ξT)1, (ξT)2, (ξT)3) ∈ �′ and

(ξT)k ∈ ωPk
∀ P ∈ T, k = 1, 2, 3.

It is convenient to denote by jT = {j ∈ Z : 
(QP) = 2jJ for some P ∈ T}, the frequency

scales appearing in T. Then,

T =
⋃
j∈jT

T(j), T(j) = {P ∈ T : 
(QP) = 2Jj}. (3.1)
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We also take the opportunity here to observe that trees constructed via greedy selection

processes, such as the ones in the proof of Lemma 3.13 below and explicitly defined in

Section A.5 of the appendix, satisfy the following additional properties.

g1. The frequency localization sets QT = {QP : P ∈ T} are such that

Q, Q′ ∈ QT, 
(Q) = 
(Q′) �⇒ Q = Q′;

namely, there is only one frequency localization for each J-dyadic scale.

g2. The spatial localization sets

EQ,T =
⋃

{IP : P ∈ T, QP = Q}, Q ∈ QT

are nested, that is,

Q, Q′ ∈ QT, 
(Q) ≤ 
(Q′) �⇒ EQ,T ⊃ EQ′,T.

Furthermore, a family of sets {Ej : j ∈ Z} with the properties that

g3. Ẽj+1 ⊂ Ẽj ∀ j ∈ Z, and Q ∈ QT, 
(Q) = 2Jj �⇒ EQ,T ⊂ Ẽj

and with useful smoothing properties may be constructed as detailed in Section A.5 of

the appendix. By virtue of these observations, we may rely on g1 to g3 when proving

the phase-space projection estimates of Proposition 4.3. We send to Section A.5 of the

appendix for the proofs of properties g1 to g3 and more detailed statements.

3.2 Tree operators

We now introduce two special types of trees with different frequency localization

properties. We say that the tree T is k-lacunary for a certain index k ∈ {1, 2, 3} if

{2ωPk
: P ∈ T} are a pairwise disjoint collection. (3.2)

Remark 3.3. Let T be a k-lacunary tree for a certain k ∈ {1, 2, 3}, and suppose that

Tin,k := {P ∈ T : (ξT)k ∈ 2ωPk
} is non-empty. From (3.2) and property g1, we immediately

see that Tin,k = T(jin,k) for some jin,k ∈ jT. Notice that Tin,k is also a k-lacunary tree with

the same top data as T. If Tin,k = ∅, we set jin,k = −∞ for unifying purposes.
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5272 F. Di Plinio et al.

Remark 3.4. A consequence of properties r9 and r10 of rank-1 collections is that each

tree T can be written as the disjoint union

T =
⋃

A⊂{1,2,3}
#A≥2

TA, (3.5)

where each TA is a tree with the same top data as T and has the additional property (3.2)

for k ∈ A, while

3ωPκ
� (ξT)κ , ∀ κ ∈ B := {1, 2, 3} \ A. (3.6)

We prove this claim in the appendix, Section A.4.

We then introduce tree operators associated to k-lacunary trees. For our

purposes here, we need a more refined object than the usual, for example appearing

in [9, 18, 27, 28], fully discretized tree operator

f �→
∑
P∈T

〈 f , ϕPk
〉ϕPk

, k ∈ A,

where ϕPk
is a wave packet adapted to the tile Pk. Let T be a k-lacunary tree. A (scalar)

tree operator of k-th type is the linear operator

STf =
∑
P∈T

SPk
f ,

where each SPk
∈ SPk

, P ∈ T. When ξT = 0, the defined tree operator is a pseudo-

differential operator with symbol

a(x, ξ) =
∑
P∈T

ψPk
(x)mPk

(ξ),

where each ψPk
∈ �IP and mPk

∈ MωPk
. A routine computation relying on the space-

frequency localization of SPk
verifies that this symbol is uniformly of class S0

1,1. Further,

as the intervals {ωPk
: P ∈ T} are pairwise disjoint, ST is uniformly L2(R) bounded.

Relying on these two observations, we gather that ST is an L2(R)-bounded Calderón–

Zygmund operator; see for instance the discussion at [34, p. 271]. Therefore, ST satisfies

uniform Lq(R;X) bounds, 1 < q < ∞, as well as L∞(R;X) → BMO(R;X) estimates,

whenever X is a UMD Banach space [14, 16]. In fact, by modulation invariance, we may

remove the ξT = 0 assumption and conclude that tree operators ST are uniformly Lq(R;X)

bounded, when 1 < q < ∞.

The definition of k-overlapping tree is very simple. We say that a tree T with top

data (IT, ξT) is k-overlapping for some k = 1, 2, 3 if

(ξT)k ∈ 3ωPk
, ∀ P ∈ T.
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Banach-Valued Singular Integrals 5273

Notice that the collection of a single tri-tile {P} may be made into a k-lacunary tree by

picking as top data (I, ξ) whenever I is a J-dyadic interval with IP ⊂ I and ξk ∈ KωPk
\2ωPk

.

However, a single tri-tile {P} may also be made into a k-overlapping tree by picking as

top data (I, ξ) whenever I is a J-dyadic interval with IP ⊂ I and ξk ∈ 3ωPk
. We will use

the latter observation in the next definition.

3.3 Energy and energy lemma

This definition is a re-elaboration of [18, Section 8]. Let q ≥ 2 and f be a X-valued

function. If T is a k-lacunary tree with top data (IT, ξT), we define

‖f ‖lac;T,k,q = sup
1

|IT|
1
q

∥∥STf
∥∥

Lq(R;X)
, (3.7)

where the supremum is taken over all possible choices of type k tree operators ST =∑
P∈T SPk

normalized to satisfy SPk
∈ SPk

(104, δ, 1). We give an analogous definition for

k-overlapping trees. If T is a k-overlapping tree with top data (IT, ξT), we define the

corresponding tile tT,k

tT,k = IT × ωT,k, ωT,k :=
[
(ξT)k − [2
(IT)]

−1, (ξT)k + [2
(IT)]
−1
)

(3.8)

and

‖f ‖ov;T,k,q := sup
m∈M̃ωT,k

sup
ζ∈XIT (104,δ,C̄)

1

|IT|
1
q

∥∥ζTmf
∥∥

Lq(R;X)
,

M̃ωT,k
:= {m ∈ MωT,k

: m((ξT)k) = 0}. (3.9)

Notice that, referring to (3.9), ζTm ∈ StT,k
, but we require the extra property that m

vanishes at (ξT)k. We also need to define maximal versions: for each set P of tri-tiles,

englac;k(f )(P; q) := sup
T⊂P

Tk−lacunary

‖f ‖lac;T,k,q,

engov;k(f )(P; q) := sup
T⊂P

Tk−overlapping

‖f ‖ov;T,k,q,

engk(f )(P; q) := max
{
englac;k(f )(P; q),engov;k(f )(P; q)

}
. (3.10)
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5274 F. Di Plinio et al.

For instance, we have ∥∥∥∥∥∑
P∈T

χIP TmPk
f

∥∥∥∥∥
Lq(R;X)

� |IT|
1
q englac;k(f )(P; q)

when χIP and mPk
are as in (2.10), whenever T ⊂ P is a k-lacunary tree, as f �→ cχIP TmPk

f

belongs to SPk
(104, δ, 1) for a uniform constant c. The point of this example is to explain

how the normalization in the definitions (3.7) and (3.9) plays a role in relation to

Remark 2.5.

We briefly explain the usage we make of the 2nd term in (3.10) with a lemma.

Lemma 3.11. Fix k ∈ {1, 2, 3}. Let I be a J-dyadic interval with 
(I) = 2−Jj, ξ ∈ �′ and ω

be an interval centered at ξk and satisfying

2Jj ≤ 
(ω) ≤ 2J(j+5).

Suppose that the tri-tile P is such that

IP ⊂ 10I, 
(IP) ≤ 2−J(j+10), ξk ∈ 3ωPk
.

Then,

sup
χ∈XI

sup
m∈M̃ω

∥∥χTmf
∥∥

Lq(R;X)
� |I| 1

q engov;k(f )({P}; q).

Proof. Let χ ∈ XI , m ∈ M̃ω. Let I ′ be the unique J-dyadic interval with 2−J < 
(ω)
(I ′) ≤
1 that contains IP, which must exist because of the relations between lengths. Then,

dist(I, I ′) ≤ 10
(I) and 
(I) ∼J 
(I ′), whence χ ∈ XI ′ up to constants. For this reason, we

may as well assume I = I ′. In this case, the collection {P} is a k-overlapping tree T with

top data (I, ξ), as ω ⊂ ωT,k and 
(ω) ≥ 1
2
(ωT,k), and the claim follows. �

The next lemma is a variation of for example [18, Corollary 9.6].

Lemma 3.12. Let P be a finite collection of tri-tiles. Then,

engk(f )(P; q) � sup
P∈P

inf
IP

M(|f |X).

Although the arguments of [18] may be adapted to the context of Lemma 3.12,

we provide a more direct proof in Section 7.
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In the last main lemma, the quantitative assumption ofXk being an interpolation

space is used. We could alternatively bring forth definitions akin to the tile-type of a

Banach space in [18, 20, 21], which is a formal consequence of our intermediate UMD

assumption, but for simplicity and lack of examples, we give up on this additional

formal generality.

Lemma 3.13. Suppose X is qX-intermediate UMD, and let f ∈ L∞(R;X) be subordinated

to the finite measure set F, namely |f |X ≤ 1F . Fix q > qX, and let P be a finite set of tri-

tiles. Then, P = Plow ∪ Phi with the property that

engk(f )(Plow; qX) ≤ 2−1engk(f )(P; qX) (3.14)

and that Phi is a union of trees T ∈ T with the property that

∑
T∈T

|IT| �q

[
engk(f )(P; qX)

]−q |F|. (3.15)

The proof of Lemma 3.13 is a revisitation of the steps leading to [18, Proposition

8.4] and is postponed to Section 6. Note that Lemma 3.13 is the only main step of the

proof of Theorem 1.4 where a qX-intermediate assumption is used.

The final main tool of the proof of Theorem 1.4 is a bound on the forms (2.10) in

terms of energy parameters in the particular case where the collection P is a tree.

Lemma 3.16. Let Xk, k = 1, 2, 3 be UMD spaces and

2 ≤ q1, q2, q3 < ∞,
3∑

k=1

1

qk
≥ 1. (3.17)

Let T be a tree. With reference to (2.10), there holds

|�T(f1, f2, f3)| � |IT|
3∏

k=1

engk(fk)(T; qk)

uniformly over all choice of tri-tile forms �T.

The proof of Lemma 3.16 uses a novel vector-valued version of the phase-space

projection technique of [10, 30] in conjunction with [11, Theorem 1.2] and is given in

Section 4.
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5276 F. Di Plinio et al.

3.4 Proof of Theorem 1.4

We are now ready to compile the proof of the main theorem. A standard combination

of Lemmata 3.16, 3.13, and 3.12 yields a range of restricted weak-type estimates for the

forms (2.10): the elementary procedure is identical to that leading to [20, Corollary 9.2].

These estimates then entail Theorem 1.4 by standard multilinear restricted weak-

type interpolation; see for example [35]. This deduction is the same as that of [20,

Theorem 9.3] from [20, Corollary 9.2]. We omit the details.

4 Phase-Space Projections and the Proof of the Tree Lemma

We develop phase-space projections in the vector-valued context and combine them with

the bounds for vector-valued extensions of bilinear CZ operators to prove Lemma 3.16.

The following treatment is an adaptation of the construction made in [30, Sections

7 and 8]. Our arguments are more involved due to the vector-valued nature of the

involved functions. However, we take advantage of a significant simplification in that

no uniformity issues are considered: in the language of [30], the indices mi are all zero.

Uniform estimates in the vector-valued context will be the object of future work.

In the main proposition of this section, we make use of Littlewood–Paley

projections as follows. The operator Tj stands for a Fourier multiplier whose symbol

�j is real, even, and

supp �j ⊂ (−2J(j+2), 2J(j+2)), �j(ξ) = 1 on [−2J(j+2)−1, 2J(j+2)−1]. (4.1)

Then, the projections Sj := Tj − Tj−1 are Fourier multiplier with symbol �j satisfying

supp �j ⊂ {ξ : 2J(j+1)−1 ≤ |ξ | ≤ 2J(j+2)}, �j(ξ) = 1 for 2J(j+1) ≤ |ξ | ≤ 2J(j+2)−1. (4.2)

The projections Sj appear also in Lemma 4.12 below.

Proposition 4.3 (Phase-space projections). For k = 1, 2, 3, let Xk be a UMD space and

qk ∈ [2, ∞). Let T be a tree with the following properties:

i. ξT = 0;

ii. T is k-lacunary for k ∈ A, in the sense that (3.2) holds, and not κ-lacunary for

κ ∈ B, in the sense of (3.6), with A∪B = {1, 2, 3} disjoint union and #A ∈ {2, 3};
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iii. the separation of scales condition

inf{|j − j′| : j, j′ ∈ jT, j �= j′} ≥ 10

holds true.

Choose {SPk
∈ SPk

, P ∈ T, k ∈ {1, 2, 3}}. Then, there are linear operators �k with the

following properties.

a. If p ≥ qk, there holds

‖�kf ‖Lp(R;Xk) � |IT|
1
p engk(f )(T; qk). (4.4)

b. If k ∈ A, for all j ∈ jT, with reference to Remark 3.3 and to (4.1), we have the

equality

∑
P∈T(j)

SPk
f = Sj(�kf ), j �= jin,k.

c. If p ≥ qk, k ∈ B, j0 ∈ jT and 
(I0) = 2−Jj0 ,

∥∥∥∥∥∥1I0

∑
P∈T(j0)

SPk
(f − �kf )

∥∥∥∥∥∥
Lp(R;Xk)

� |I0| 1
p engk(f )(T; qk)

∫
R

χI0(x)μj0(x)
dx

|I0| , (4.5)

where μj is defined in (A.11). Furthermore,

∥∥∥∥∥∥1I0

∑
P∈T(j0)

SPk
�kf

∥∥∥∥∥∥
Lp(R;Xk)

� |I0| 1
p engk(f )(T; qk). (4.6)

While the operators �k depend on the choice of {SPk
∈ SPk

, P ∈ T, k ∈ {1, 2, 3}}, the

estimates above are uniform over such choice.

The proof of Proposition 4.3 is postponed to the next section. Herein, we

proceed to show how this proposition may be coupled with the main result of [11] to

obtain the tree estimate we claimed in Lemma 3.16. The next subsection contains some

preliminaries, while the main line of argument, namely the proof of estimate (4.11), is

deployed in Subsection 4.2.
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5278 F. Di Plinio et al.

4.1 Preliminaries

We begin with a preliminary localized single-scale estimate for tree operators that will

be of use toward Lemma 3.16 as well as in Section 5.

Lemma 4.7. Let T be any tree, I0 be a J-dyadic interval with 
(I0) = 2−j0J , ψI0 ∈ �I0 ,

SPk
∈ SPk

for each P ∈ T(j0). Then, for any k ∈ {1, 2, 3},
∥∥∥∥∥∥ψI0

∑
P∈T(j0)

SPk
f

∥∥∥∥∥∥
Lp(R;Xk)

� |I0| 1
p engk(f )(T; qk), qk ≤ p ≤ ∞. (4.8)

Proof. Arguing by interpolation, it suffices to prove the extremal cases. Notice also

that we may assume ψI0 ∈ XI0 by possibly replacing ψI0 ∈ �I0 with a pointwise majorant

in XI0 . Case p = qk. Let n ∈ N. By virtue of J-dyadicity and property g1 of greedily

constructed trees, there are at most two P ∈ T(j0) such that dist(IP, I0) = n2−j0J . Fix such

a P. It then suffices to estimate

∥∥∥ψI0SPk
f
∥∥∥

Lqk (R;Xk)
� 〈n〉−100|I0| 1

qk engk(f )(T; qk).

Write SPk
f = ψTmf . Then, ψ̃ := 〈n〉100ψI0ψ ∈ �IP and the estimate in the last display

simply follows from the definition of engk(f )(T; qk). Case p = ∞. The function we are

estimating has frequency support in a ball of radius O(2j0J). Then, this case follows

from the case p = qk and a straightforward application of Lemma 2.6. �

We then particularize the definition (2.10) to the case where P is our tree T. By

translation and scaling invariance, we may reduce Lemma 3.16 to the case IT = [0, 1). By

invariance with respect to modulations along the subspace �′, we may also reduce to

the case ξT = 0. Notice that, referring to (2.7), (4.1), property g1 ensures that we have

QP = QP′ =: Qj P, P′ ∈ T(j).

Consequently, in view of (2.11), mPk
= mP′

k
:= mj,k for all P, P′ ∈ T(j), k = 1, 2, 3. Therefore,

we may set for j ∈ jT, referring to (2.4)

χ̃j :=
∑

P∈T(j)

χIP

π̃j,k := Tmj,k
, k = 1, 2, 3
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Banach-Valued Singular Integrals 5279

and rewrite, and subsequently estimate, (2.10) for T = P as

∣∣�T(f1, f2, f3)
∣∣ =

∣∣∣∣∣∣
∑
j∈jT

∫
R

χ̃j

3∏
k=1

π̃j,kfk

∣∣∣∣∣∣ ≤
∑
j∈jT

∣∣∣∣∣
∫
R

χ̃j

3∏
k=1

π̃j,kfk

∣∣∣∣∣ . (4.9)

We may turn χ̃j into (χ̃j)
3 by virtue of the bound

∑
j∈jT

∣∣∣∣∣
∫
R

χ̃j(x)

3∏
k=1

π̃j,kfk(x) −
3∏

k=1

χ̃j(x)π̃j,kfk(x) dx

∣∣∣∣∣ �
3∏

k=1

engk(fk)(T; qk) (4.10)

whose proof is given at the end of this subsection. As the error in (4.10) is acceptable for

the estimate of Lemma 3.16, we have reduced the tree Lemma 3.16 to prove that∣∣∣∣∣∣
∑
j∈jT

εj

∫
R

3∏
k=1

χ̃jπ̃j,kfk

∣∣∣∣∣∣ �
3∏

k=1

engk(fk)(T; qk) (4.11)

uniformly over choices of unimodular coefficients {εj : j ∈ jT}, which is the core of the

argument and is left for the next subsection.

The final preliminary result is a Hölder-type estimate for the vector-valued

extension of a classical trilinear paraproduct form. Such estimate is a particular case

of the main result of [11] and depends only on the UMD property of the spaces involved.

The proof is postponed to the end of this subsection.

Lemma 4.12. Let {pk : k = 1, 2, 3} be a Hölder tuple of exponents with 1 < pk < ∞
for all k = 1, 2, 3. Let Xk be UMD spaces with a trilinear contraction

∏3
k=1Xk → C. Let

gk ∈ (L1(R) ∩ L∞(R)) ⊗ Xk, for k = 1, 2, 3. Then,∣∣∣∣∣∣
∫ ∑

j∈jT

εj(π̃j,1g1)(Sjg2)(Sjg3)

∣∣∣∣∣∣ �
3∏

k=1

‖gk‖Lpk (R;Xk).

Proof of (4.10). This is analogous to [30, Lemma 7.3]. First of all, we bound the single-

scale pieces of (4.9). Relying on (3.17), we may find a Hölder tuple p1, p2, p3 with qk ≤
pk < ∞. If I ∈ Dj, we may pick P ∈ T(j) and ζ ∈ XIP

such that ζ 12 � χ̃j on I (simply pick

P ∈ T(j) such that dist(I, IP) is minimal.) In the display below, we couple this with Hölder

inequality followed by Lemma 4.7 with I0 = IP, ψI0 = ζ , and the operators SPk
= ζ π̃j,k

when P = P and SPk
= 0 otherwise. We obtain∫

I
(χ̃j)

1
2

3∏
k=1

|π̃j,kfk| �
3∏

k=1

‖ζ 2π̃j,kfk‖pk
� |I|

3∏
k=1

engk(fk)(T; qk).
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5280 F. Di Plinio et al.

The left-hand side of (4.10) is then controlled by

∑
j∈jT

∑
I∈Dj

∫
I

∣∣∣χ̃j − (χ̃j)
3
∣∣∣ 3∏

k=1

|π̃j,kfk| �
3∏

k=1

engk(fk)(T; qk)×
⎛⎝∑

j∈jT

∑
I∈Dj

|I|
∥∥∥∣∣∣1 − (χ̃j)

2
∣∣∣ (χ̃j)

1
2

∥∥∥
L∞(I)

⎞⎠ .

(4.13)

Here, we use (2.3) and the fact that EQj,T is a union of disjoint intervals of Dj to obtain

the estimate ∣∣∣χ̃j − 1E
Qj ,T

∣∣∣ � 〈dist(x, ∂EQj,T)

2−Jj

〉−N+1

,

leading to the following bound for the bracketed term in (4.13):

�
∑
j∈jT

∑
I∈Dj

∫
I

〈
dist(x, ∂EQj,T)

2−Jj

〉− N
2

dx �
∑
j∈jT

2−Jj#∂EQj,T � |IT| = 1, (4.14)

having used (A.6) in the last step. Combining the last display with (4.13) yields exactly

(4.10). Here, the estimate right above (4.14) is obtained by writing |χ̃j − (χ̃j)
3|(χ̃j)

− 1
2 =

|1−χ̃j||1+χ̃j|(χ̃j)
1
2 � |1−χ̃j|(χ̃j)

1
2 and observing that when x ∈ EQj,T, we have |1−χ̃j|(χ̃j)

1
2 �

|χ̃j − 1E
Qj ,T

| �
〈
2Jj dist(x, ∂EQj,T)

〉−N+1
, while when x ∈ R \ EQj,T, |1 − χ̃j|(χ̃j)

1
2 � (χj)

1
2 �〈

2Jj dist(x, ∂EQj,T)
〉−N/2

. �

Proof of Lemma 4.12. Recall that mj,1, the symbol of π̃j,1, is adapted and supported

in (Qj)1, which is a dyadic interval of length 2Jj and such that 2
J
2 (Qj)1 contains the

origin. Thus, mj,1 vanishes outside |ξ | ≤ 2J(j+ 1
2 ). The symbol �j of Sj is supported on

2J(j+1)−1 ≤ |ξ | ≤ 2J(j+2). Let gk ∈ L1(R) ∩ L∞(R) be scalar functions. Then, Plancherel’s

equality yields ∫ ∑
j∈jT

εj(π̃j,1g1)(Sjg2)(Sjg3) = 〈O(g1, g2), g3〉, (4.15)

where O is the bilinear Fourier multiplier operator

O(g1, g2)(x) =
∫
R×R

ĝ1(ξ1)ĝ2(ξ2)m(ξ1, ξ2)e2π ix(ξ1+ξ2) dξ1 dξ2, x ∈ R,

m(ξ1, ξ2) :=
∑
j∈jT

εjmj,1(ξ1)�j(ξ2)�j(−ξ1 − ξ2).

The support and smoothness conditions on mj,1, �j imply that m satisfies the Coifman–

Meyer condition, and thus, O is a bilinear CZ operator. We may then use [11, Theorem
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Banach-Valued Singular Integrals 5281

1.1] to conclude that O extends to a bounded bilinear operator

Lp1(R;X1) × Lp2(R;X2) → Lp′
3(R;X′

3).

As (4.15) continues to hold for gk ∈ (L1(R) ∩ L∞(R)) ⊗Xk, the vector-valued bound of the

above display and duality complete the proof of the lemma. �

4.2 Proof of Lemma 3.16, estimate (4.11)

We keep using the local notation Dj for the collection of all J-dyadic intervals of length

2−Jj. By the condition (3.17), we may find a Hölder tuple p1, p2, p3 with qk ≤ pk < ∞. To

apply Proposition 4.3, it is useful to keep in mind the equalities∫
R

3∏
k=1

χ̃jπ̃j,kfk =
∫
R

3∏
k=1

⎛⎝ ∑
P∈T(j)

SPk
fk

⎞⎠ , j ∈ jT

having called SPk
∈ SPk

the operator f �→ χIP Tmj,k
fk. Recall that A stands for the lacunary

components and B the non-lacunary components.

We first take care of the case where Tin,k �= ∅ for some k ∈ A. To do so, it is

convenient to introduce the polynomial cutoff

γT(x) =
〈
x − c(IT)


(IT)

〉100

, x ∈ R.

The key idea is that uP := cγTχIP ∈ cXIP for all P ∈ T. We then estimate the contribution

of the j = jin,k scale as follows: choosing ψI ∈ cXI with (ψI)
3 ≥ 1 on I for each I ∈ Dj,∣∣∣∣∣

∫
R

3∏
k=1

χ̃jπ̃j,kfk

∣∣∣∣∣ � ∑
I∈Dj

∣∣∣∣∣∣
∫

I
γ −3
T

3∏
k=1

⎛⎝ψI

∑
P∈T(j)

uPTmj,k
fk

⎞⎠∣∣∣∣∣∣
≤
∑
I∈Dj

‖γ −3
T ‖L∞(I)

3∏
k=1

∥∥∥∥∥∥ψI

∑
P∈T(j)

uPTmj,k
fk

∥∥∥∥∥∥
Lpk (R;Xk)

�
∑
I∈Dj

〈
dist(I, IT)


(IT)

〉−80

|I|
3∏

k=1

engk(fk)(T; qk) � |IT|
3∏

k=1

engk(fk)(T; qk)

provided we have chosen a Hölder tuple pk with qk ≤ pk < ∞ and having used

Lemma 4.7 in the passage to the last line.

Replacing T by T \ (
⋃

k∈A Tin,k), we may now assume that Tin,k = ∅ for all k ∈ A,

so that jin,k �∈ jT for all k ∈ A. We handle the easy case where B = ∅. Applying part b of
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5282 F. Di Plinio et al.

Proposition 4.3 to each fk, for each j ∈ jT, we have

∑
j∈jT

εj

∫
R

3∏
k=1

χ̃jπ̃j,kfk =
∑
j∈jT

εj

∫
R

3∏
k=1

Sj(�kfk).

For k = 1, 2, 3, let σk = {σj,k : j ∈ jT} be a sequence of i.i.d. random variables that

take the values 1, −1 with equal probability. We denote the expectation with respect

to σk by Ek. Using [11, Lemma 4.1], Hölder’s inequality, Lpk-bounds for the Xk-valued

randomized square function (as Xk is UMD, the space Rad(Xk) is also UMD and the

randomized square function is a Rad(Xk)-valued CZ operator, [23]) and subsequently

part a of Proposition 4.3, there holds

∣∣∣∣∣∣
∑
j∈jT

εj

∫
R

3∏
k=1

Sj(�kfk)

∣∣∣∣∣∣ �
3∏

k=1

⎛⎝Ek
∫
R

∣∣∣∣∣∣
∑
j∈jT

σj,kSj(�kfk)

∣∣∣∣∣∣ pk
Xk

⎞⎠
1

pk

�
3∏

k=1

‖�kfk‖Lpk (R;Xk) �
3∏

k=1

engk(fk)(T; qk),

which is the claim (4.11).

We turn to the harder case where #A = 2. By symmetry, we may work with B =
{1}. We use Proposition 4.3 to bound the left-hand side of (4.11) by MAIN+ERR1 +ERR2,

where

MAIN :=
∣∣∣∣∣∣
∑
j∈jT

εj

∫
R

π̃j,1(�1f1)

3∏
k=2

χ̃jπ̃j,kfk

∣∣∣∣∣∣
ERR1 :=

∑
j∈jT

∑
I∈Dj

∫
I
|χ̃jπ̃j,1(f1 − �1f1)|X1

3∏
k=2

∣∣∣χ̃jπ̃j,kfk

∣∣∣Xk
,

ERR2 :=
∑
j∈jT

∑
I∈Dj

∫
I

[∣∣∣1 − χ̃j

∣∣∣ (χ̃j)
1
3

]
|χ̃jπ̃j,1(�1f1)|X1

3∏
k=2

∣∣∣(χ̃j)
1
3 π̃j,kfk

∣∣∣Xk
,

the 2nd and 3rd of which are error terms.

We first handle the error terms: via Hölder’s inequality with exponents pk, and

a combination of (4.5) for the X1 with Lemma 4.7 for the Xk factors, k = 2, 3, we achieve
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Banach-Valued Singular Integrals 5283

the estimates

ERR1 �
(

3∏
k=1

engk(fk)(T; qk)

)∑
j∈jT

∑
I∈Dj

∫
χIμj �

(
3∏

k=1

engk(fk)(T; qk)

)∑
j∈jT

∫
μj.

Then, expanding out μj (for the definition of μj, see (A.11)), we have

∑
j∈jT

∫
μj �

∑
j∈jT

∑
y∈∂Ẽj

∫
(1 + 2Jj|x − y|)−100 dx �

∑
j∈jT

2−Jj#∂Ẽj � |IT| = 1, (4.16)

where we have used (A.10) in the last inequality. This shows that ERR1 complies with

the right-hand side of (4.11). The 2nd error term is bounded proceeding as in the

proof of (4.10): namely, splitting the integral over with I ∈ Dj and applying Hölder’s

inequality (4.10) followed by the single-scale estimates with I0 = I (4.6) for χ̃jπ̃j,1(�1f1)

and Lemma 4.7 for (χ̃j)
1
3 π̃j,kfk, k = 1, 2. The resulting estimate is

ERR2 �
3∏

k=1

engk(fk)(T; qk) ×
⎛⎝∑

j∈jT

∑
I∈Dj

|I|
∥∥∥∣∣∣1 − χ̃j

∣∣∣ (χ̃j)
1
3

∥∥∥
L∞(I)

⎞⎠ �
3∏

k=1

engk(fk)(T; qk),

where the bracketed term has been bounded with the same procedure leading to (4.14)

above.

We move to the main term. Using part b of the proposition, we recognize that

MAIN =
∣∣∣∣∣∣
∑
j∈jT

εj

∫
(π̃j,1�1f1)(Sj�2)(Sj�3)

∣∣∣∣∣∣ �
3∏

j=1

‖�kfk‖Lpk (R;Xk) �
3∏

k=1

engk(fk)(T; qk)

having used Lemma 4.12 for the 1st bound and (4.4) for the 2nd. This completes the

proof of Lemma 3.16.

5 Proof of Proposition 4.3

In all cases below, the index k ∈ {1, 2, 3} is fixed and we avoid mentioning it whenever

possible. For instance, we write q for qk, X for Xk and α for αk, where αk = 1 − 1
qk

. In

accordance with this policy, we will use the notation ω(j) := (Qj)k, for j ∈ jT where Qj is

the (at most) unique element of QT with sidelength 2Jj. We have also fixed the collection

{SPk
∈ SPk

, P ∈ T} and will write below SPk
f = ζPTmP

f for a fixed choice of ζP ∈ �IP and

mP ∈ Mω(j), when P ∈ T(j).
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5284 F. Di Plinio et al.

5.1 Proof of Proposition 4.3, a and b parts: lacunary case

Referring to Remark 3.3, a consequence of k-lacunarity of T is that 0 = (ξT)k ∈ ω(j)\2ω(j)

whenever j �= jin,k. Thus, the Fourier transforms of the functions

�k, jf =
∑

P∈T(j)

SPk
f j �= jin,k (5.1)

are supported in the disjoint intervals {ξ : 2J(j+1)−1 ≤ |ξ | ≤ 2J(j+2)} where the symbol of

Sj is constant equal to one, cf. (4.2): this is because of the Fourier support of ζP ∈ �IP and

mP ∈ Mω(j) for P ∈ T(j). In the lacunary case, the definition of �k is then very simple,

namely referring to (5.1)

�k :=
∑

j∈jT\{jin,k}
�k, j

and the equality in b is immediate from the above considerations, while the estimate in

a for p = qk is immediate from the definition, as �k is itself a tree operator. We now

prove the estimate

‖�kf ‖BMO(R;Xk) � engk(f )(T; qk)

and a for the other values of p will follow by interpolation.

Fix a J-dyadic interval I. We first bound the contribution of the large scales: set

T+ = {P ∈ T : 
(IP) > 
(I)}. Then, if P ∈ T+ with 
(IP) = 2v
(I) and dist(IP, I) ∼ 2n
(IP),

v, n ∈ N, the Poincaré inequality yields

oscI

(
SPk

f
)

:= 1

|I|
∥∥∥∥SPk

f − −
∫

I
(SPk

f )

∥∥∥∥
L1(I;X)

� 1

|I| 1
q

∥∥∥
(I)∇SPk
f
∥∥∥

Lq(I;X)
≤ 2−αv 1

|IP| 1
q

∥∥∥
(IP)∇(SPk
f )

∥∥∥
Lq(I;X)

.

We write m̃P(ξ) := 
(IP)ξmP(ξ), so that

|
(IP)∇(SPk
f )|X = |ζPTm̃P

f + (
(IP)∇ζP)TmP
f |X ≤ χ̃IP

(∣∣χ̃IP Tm̃P
f
∣∣X + ∣∣χ̃IP TmP

f
∣∣X)

:= χ̃IP

(
|SPk,1f |X + |SPk,2f |X

)
for a suitable choice of χ̃IP ∈ XIP so that the domination of the last display holds. Observe

that with this choice SPk,u, u = 1, 2, belong to the class SPk
and are thus single-scale tree
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Banach-Valued Singular Integrals 5285

operators, whence

1

|IP| 1
q

∥∥∥SPk,u

∥∥∥
Lq(R;X)

� engk(f )(T; q).

Using the bounds ‖χ̃IP ‖L∞(I) � 2−100n, we have proved that

oscI

(
SPk

f
)

� 2−αv−100nengk(f )(T; q),

which is summable over P ∈ T+, that is, over v, n ∈ N as claimed.

We move to handling the small scales, that is, T− = {P ∈ T : 
(IP) ≤ 
(I)}. We

may partition T− as the union of T−,0 = {P ∈ T− : IP ⊂ 3I} and T−,n = {P ∈ T− : IP ⊂
(2n+1 + 1)I \ (2n + 1)I} for n ≥ 1. We may choose χ̃I ∈ XI so that the estimate

oscI

⎛⎝∑
P∈T−

SPk
f

⎞⎠ ≤ 1

|I| 1
q

∑
n≥0

‖gn‖Lq(R;X) gn =
∑

P∈T−,n

χ̃ISPk
f (5.2)

holds. We now estimate each term appearing in the last summation over n. Fix P ∈ T−,n

for a moment and notice that dist(I, IP) ∼ 2n
(I). Writing again SPk
f = ζPTmP

f , define

ζ̃P := 2100nχ̃IζP, S̃Pk
f = ζ̃PTmPk

f .

We claim that the function ζ̃P belongs to XIP . Indeed, the decay condition (2.2) for ζ̃P is

easy to verify, with the additional 2100n factor being allowed by virtue of the previously

observed separation between I, IP. The frequency support condition (2.1) for ζ̃P derives

from the fact that the Fourier support of χ̃I has an equal or smaller scale than the Fourier

support of ζP. Then, we notice that T−,n is a tree with top data (In, 0) := ((2n+1 + 1)I, 0)

and contained in T, whence

‖gn‖Lq(R;X) ≤ 2−100n

∥∥∥∥∥∥
∑

P∈T−,n

S̃Pk
f

∥∥∥∥∥∥
Lq(R;X)

≤ 2−100n|In| 1
q engk(f )(T; q) ≤ 2−99n|I| 1

q engk(f )(T; q),

where the 2nd bound holds because the operator inside the norm is a tree operator.

Summation of the above bounds over n yields the required control for the left-hand side

of (5.2). This estimate completes the proof of a and b parts of the proposition.
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5286 F. Di Plinio et al.

5.2 Proof of Proposition 4.3, a and c parts: non-lacunary case

We keep the convention of writing q for qXk
and X for Xk.

Let j ∈ jT. In this proof, the sets Ẽj, the collections �j, the intervals I

j , Ir

j refer

to Section A.5 of the appendix, to which we send for a detailed definition. There is no

loss in generality with assuming that inf jT = 0, this corresponds to the normalization


(IT) = 1. Define for x ∈ Ẽ0, j(x) = max{j ∈ jT : x ∈ Ẽj}. The scale 2−j(x)J is the smallest

spatial scale relevant for x. It is logical to choose 2j(x)J as the frequency scale for the

cutoff at x, motivating the definition of

�̃kf := 1Ẽ0
Tj(x)f = 1Ẽ0

T0f +
∑
j≥1

1Ẽj
Sjf , (5.3)

where the nestedness of Ẽj and telescoping have been used to get the 2nd equality.

The construction of the actual phase-space projection operator �k is made by suitably

modifying �̃k and begins now.

Fix a scale j ∈ jT and a connected component I = [x

I , xr

I ] ∈ �j. The perturbation

of gj = 1ISjf is made by adding and subtracting two auxiliary pieces at spatial scale

2−Jj, which kill the mean value of gj: details follow.

Recall from [30, Lemma 4.12] that I

j (resp. Ir

j ) are intervals of length 2−2
(I)

whose right endpoint (resp. left endpoint) sits to the left of x

I (resp. to the right of

xr
I ) at a distance of 2−2
(I). These intervals are well separated, see [30, Lemma 4.12] over

I ∈ �j, j ∈ jT. Introduce bump functions φ

I, j (resp. φr

I, j) adapted to and supported on I

j

(resp. Ir
j ) with normalization

∫
φ


I, j =
∫

φr
I, j = 2−Jj.

Decomposing 1I(x) = H

I (x)+Hr

I (x) := H(x−x

I )−H(x−xr

I ), where H stands for Heaviside

function, we introduce the X-valued coefficients

c�
I, j := 2Jj

∫
H�

I Sjf , � ∈ {
, r}.

Lemma 5.4. Let I ∈ �j and � ∈ {
, r}. We have the estimate

|c�
I, j|X � engk(f )(T; q). (5.5)
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Banach-Valued Singular Integrals 5287

Proof. To fix ideas, we work with � = 
. Before we start, we recall that Ẽj, and

hence I, is a union of J-dyadic intervals of length 2−jJ ; see Lemma A.7. Therefore, there

exists a J-dyadic interval I ′ of length 2−jJ whose left endpoint coincides with x

I . Then,

Lemma A.8 yields the existence of P ∈ T with IP ⊂ 10I ′ and 0 = (ξT)k ∈ 3ωPk
; as k ∈ B,

the latter fact is read from (3.6). In particular, this shows that there exists P ∈ T with

IP ⊂ 10I ′. This last fact will be of use later.

We then prove that there exists ζ ∈ �I ′ such that

|c

I, j|X � 1

|I ′|
∫

|ζ 2(x)Sjf (x)|X dx. (5.6)

Inequality (5.6) is proved in the same fashion as [30, Equation (65)]; we adjust the

details to our setup. Recall that Sj is a smooth Littlewood–Paley projection with support

specified by (4.2). Let φ be a bump function whose Fourier transform is bounded by 1,

equals 1 on the support of Sj and vanishes outside of 2(j−1)J ≤ |ξ | ≤ 2j(J+3), and let � be

its antiderivative. Then,

c

I, j = 2Jj

∫
(H


I ∗ φ)Sjf .

As (H

I ∗ φ)(·) = ±�(· − x


I ), and the latter function belongs to �I ′ , the desired estimate

follows with ζ := c�(· − x

I ).

We finally turn to the proof of (5.5), where the previously found P ∈ T with IP ⊂
10I ′ will play a role. As both IP, I ′ are J-dyadic, the case 
(IP) > 
(I ′) is forbidden. Thus,

we are in either of the cases below. Suppose first that 
(IP) = 
(I ′). Then, the intervals IP
and I ′ are comparable, so that ζ ∈ XIP , and Sj ∈ MωPk

by construction. Therefore, ζSj is a

tree operator adapted to the k-lacunary tree (P, IP, c(QP)) and

|c

I, j|X ≤ 1

|I ′|
∥∥∥ζSjf

∥∥∥
Lq(X)

� englac,k(f )({P}; q) ≤ engk(f )(T; q). (5.7)

Suppose instead that 
(IP) = 2−JjP < 2−Jj. Then, by separation of scales property iii, it

must be jP > j+10. We already know that 0 ∈ 3ωPk
, and the multiplier of Sj vanishes at 0

and is supported on the interval ω centered at 0 and of length 2J(j+5). Lemma 3.11 then

applies with I ′ in place of I, χ = ζ , Tm = Sj and ξ = ξT = 0 whenever χ ∈ XI , yielding

|c

I, j|X ≤ 1

|I ′|
∥∥∥ζSjf

∥∥∥
Lq(X)

� engov,k(f )({P}; q) ≤ engk(f )(T; q). (5.8)

In both cases, we have reached (5.5). This completes the proof. �
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5288 F. Di Plinio et al.

With Lemma 5.4 in hand, we are able to define the phase-space projection

operator: with reference to (5.3),

�kf := �̃kf −
∑
j∈jT

∑
I∈�j

∑
�∈{
,r}

c�
I, jφ

�
I, j. (5.9)

5.2.1 Proof of Proposition 4.3, part a for k ∈ B

It suffices by interpolation to prove estimate (4.4) for p = q together with the endpoint

‖�kf ‖L∞(R;X) � engk(f )(T; q). (5.10)

Proof of (5.10). First of all, by virtue of the separation properties of the support of the

φ�
I, j over I ∈ �j, j ∈ jT we have recalled earlier, and of the 2nd bound in Lemma 5.4,

∥∥∥∥∥∥
∑
j∈jT

∑
I∈�j

∑
�∈{
,r}

c�
I, jφ

�
I, j

∥∥∥∥∥∥
L∞(R;X)

� engk(f )(T; q).

Hence, it suffices to prove an L∞ bound on �̃k. Fix x ∈ Ẽ0, and set j = j(x). By

construction of j(x), there is an interval I ′ ⊂ Ẽj of length 2−Jj containing x, and by

construction of IT, there is a tile P ∈ T with IP ⊂ 10I ′; see [30, Lemma 4.11]. For a suitable

choice of ζI ′ ∈ XI ′ , we then have

|�̃kf (x)|X � |ζI ′Tjf (x)|X � |I ′|− 1
q ‖ζI ′Tjf ‖Lq(R;X) � engk(f )({P}; q) ≤ engk(f )(T; q). (5.11)

We have used Lemma 2.6 in the 2nd inequality and argued exactly like in (5.7) if 
(IP) =

(I). However, in the case 
(IP) < 
(I), in the appeal to Lemma 3.11, we must be a bit

more careful and take ξ ∈ �′ such that ξk = ±2J(j+2) instead of ξ = 0, due to Tj being

in general not vanishing at 0. This is no harm because 
(ωPk
) ≥ 2(j+10)J , whence in both

cases ξk ∈ 3ωPk
. This completes the proof of (5.10). �

Proof of (4.4) for p = q. First of all, using the disjointness of I ∈ �j, j ∈ jT, we estimate

the Lq(R;X)-norm of the part involving the φ�
I, j by

⎛⎝∑
j∈jT

#�j2
−Jj

⎞⎠
1
q (

sup
�∈{
,r}

sup
j∈jT
I∈�j

|c�
I, j|X

)
� |IT|

1
q engk(f )(T; q),
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Banach-Valued Singular Integrals 5289

where the 1st factor is bounded directly by [30, Lemma 4.12] while the 2nd is (5.5) from

Lemma 5.4. We are then left with proving

‖�̃kf ‖q
Lq(R;X)

� |IT|engk(T)(f ; q)q. (5.12)

To prove (5.12), we recall that the sets Ẽj are decreasing in j and each is a union of

disjoint intervals I ∈ Ij with 
(I) = 2−Jj [30, Lemma 4.10]. Thus, the sets EI = I ∩ (Ẽj \
Ẽj+1), I ∈ Ij are a disjoint cover of each Ẽj \ Ẽj+1, and the latter sets are also pairwise

disjoint and cover the support of �̃kf . Furthermore, we see from [30, Lemma 4.10] that

for each I ∈ Ij, we may find I ′ ⊂ Ẽj \ Ẽj+1 with I ′ ⊂ I and 
(I ′) = 2−J
(I), hence |EI | ≥ 2−J |I|
and

∑
j∈jT

∑
I∈Ij

|I| �
∑
j∈jT

∑
I∈Ij

|EI | � |IT|. (5.13)

As �̃kf (x) = Tjf for x ∈ Ẽj \ Ẽj+1, the left-hand side of (5.12) is controlled by

∑
j∈jT

∑
I∈Ij

‖1EI
Tjf ‖q

Lq(R;X)
�
∑
j∈jT

∑
I∈Ij

‖ζITjf ‖q
Lq(R;X)

, ζI ∈ XI .

By virtue of the last display and of (5.13), it suffices to show that

‖ζITjf ‖q
Lq(R;X) � |I|engk(f )(T; q)q, ∀ j ∈ jT, I ∈ Ij.

Fix such j, I. We now appeal to [30, Lemma 4.11] to find P ∈ T with IP ⊂ 10I and the last

display follows by similar arguments as (5.11), completing the proof of (4.4). �

5.2.2 Proof of Proposition 4.3, part c

We begin the proof by using the single-scale estimate of Lemma 4.7. In fact, (4.6) follows

immediately from (4.5), (4.8), and the fact that μj is uniformly bounded. So it remains to

prove (4.5). As usual, we prove the extremal cases. In fact, it suffices to prove the case

p = q, as the case p = ∞ may then be recovered from Lemma 2.6.

Proof of (4.5) for p = q. In the proofs that follow, we use the local notation

SPk
g = ζIP TmPk

g, Og =
∑

P∈T(j0)

SPk
g,
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5290 F. Di Plinio et al.

where ζIP ∈ XIP = XIP (2N, δ, C) and mPk
∈ MωPk

. Notice that O is a tree operator and thus

is bounded on Lq(R;Xk), but it is also pointwise bounded by maximal averages and thus

bounded on L∞(R;Xk).

Recall that �k is defined in (5.9). The 1st step in the proof proper is to notice

that

O(f − �kf ) = O(Tj0f − �kf ),

leading to the key decomposition

Tj0f − �kf =
1
R\Ẽj0

Tj0f (5.14)

− 1
R\Ẽj0

�̃k f (5.15)

+
∑

�∈{
,r}
1
R\Ẽj0

∑
j≤j0

∑
I∈�j

c�
I, jφ

�
I, j (5.16)

−
∑

�∈{
,r}

∑
j>j0

∑
I∈�j

(H�
I Sjf − c�

I, jφ
�
I, j); (5.17)

cf. [30, Equations (77)–(82)]. We now have to estimate the four contributions separately,

and, as in [30], distinguish the local case 5I0 ∩ Ẽj0 �= ∅ from the complementary nonlocal

case: for clarity, we first present the local case, and at the end of the proof, we elaborate

on the sketch provided in [30, p. 295] and unify the two cases: see Remark 5.24 below.

We first estimate the contribution of g = (5.14) − (5.15) + (5.16). Using the

decay at scale 
(I0) of the kernel of O together with the L∞ bounds (5.11), (5.10),

and (5.5),

‖1I0O(1R\3I0g)‖Lq(R;Xk) � |I0| 1
q
∑
j≤j0

2−J|j−j0|
〈

dist(I0, ∂Ẽj)


(I0)

〉−100

engk(f )(T; q), (5.18)

which is acceptable for (4.5). Further, if 13I0g is nonzero, then I0 is close to the boundary

of Ẽj0 . The integral term in the right-hand side of (4.5) is O(1) and we may just aim for

the estimate

‖O(13I0g)‖Lq(R;Xk) � |I0| 1
q ‖O‖Lq(R;Xk)engk(f )(T; q). (5.19)

Although the O-norm appearing here is O(1), we choose to keep this constant in evidence

for later use.
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Banach-Valued Singular Integrals 5291

We begin the proof of (5.19). We argue separately for each summand of g. First

of all, we bound the contribution of (5.14). Appealing to [30, Lemma 4.11], we learn that

there exists P ∈ T such that IP ⊂ 10I0. Hence, for suitable choice of ζI0 ∈ XI0 , arguing via

Lemma 3.11 as in the proof of (5.11),

‖13I0Tj0f ‖Lq(R;Xk) ≤ ‖ζI0Tj0f ‖Lq(R;Xk) � |I0| 1
q engk(f )({P}, q) ≤ |I0| 1

q engk(f )(T; q). (5.20)

This makes the contribution of (5.14) acceptable for (5.19). To control the contribution of

(5.15), we note that (R \ Ẽj0) ∩ 3I0 is the union of at most three intervals I1 of length 
(I0),

on which �̃kf coincides with Tj0−1f . On each of these intervals, by the same argument

used for (5.20),

‖1I1Tj0−1f ‖Lq(R;Xk) � |I0| 1
q engk(f )(T; q), (5.21)

which is acceptable. Finally, from the last claim of [30, Lemma 4.12], we gather that

I�
j ∩ 3I0 �= ∅ for at most O(1) intervals I ∈ �j with j ≤ j0. Therefore,

‖13I0(5.16)‖Lq(R;Xk) � |I0| 1
q sup

I,j,�
|cI, j| � |I0| 1

q engk(f )(T; q)

by (5.5), and we have proved (5.19). This finishes the control of terms (5.14) to (5.16).

To complete the proof of (4.5), we are left with estimating the small spatial scales

term (5.17). Using the triangle inequality and the definition of μj0 , it will suffice to prove

that for each fixed � ∈ {
, r}, j > j0, I ∈ �j, there holds

‖1I0O(GI)‖Lq(R;Xk) � |I0| 1
q engk(f )(T; q)

∫
ζI0(x)

|I0| 2− (j−j0)

100 〈2Jj|x − x�
I |〉−100 dx,

GI := H�
I Sjf − c�

I, jφ
�
I, j.

As they will be kept fixed below, we have omitted � and j from the GI notation for

simplicity. Let n ∈ N be the least integer such that 2nI0 ∩ I�
j �= ∅. A direct computation of

the right-hand side and the fact that χI0 ∈ XI0 tells us that the above bound is equivalent

to the estimate

‖1I0O(GI)‖Lq(R;Xk) � |I0| 1
q engk(f )(T; q)2− (j−j0)

100 2−Jj2−100n. (5.22)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/7/5256/5902919 by W
ashington U

niversity School of M
edicine Library (M

1) user on 15 July 2022



5292 F. Di Plinio et al.

The final stretch of the proof will be to establish (5.22). As the frequency support

of O is localized near 2j0 , we gather that O[(Tj−1H�
I )(Sjf )] = 0. This means we may replace

GI by

FI = GI − (Tj−1H�
I )(Sjf ) = [(1 − Tj−1)H�

I ]Sjf − c�
I, jφ

�
I, j.

As both GI and FI − GI have mean zero, FI also does. Letting �I be the antiderivative of

FI , which vanishes at ±∞, we have

OFI(x) = 2Jj0Õ�I(x),

where

Õg(x) =
∑

P∈T(j0)

∫
ζIP (x)2−Jj0ξmPk

(ξ )̂g(ξ)eixξ dξ .

Note that ξ �→ 2−Jj0ξmPk
(ξ) belongs to MωPk

, and let uP be the Fourier transform of the

latter function. Let g be a scalar function and g̃N = 〈2j0J(· − c(I0))〉−Ng. If P ∈ T(j0),

|c(I0) − c(IP)| � n
(I0) and x ∈ I0, we have

|ζIP (x)| [|g| ∗ |uP|] (x)≤ 1

〈n〉10

∫
|uP(y)|

〈
2j0J(x − c(I0) − y)

〉N |g̃N(x − y)| dy � 1

〈n〉10 M(g̃N)(x)

by virtue of the rapid decay of uP at scale 2−j0J . Summing up over P ∈ T(j0), and thus

over n ∈ N, we may thus estimate (5.22) by

‖1I0O(GI)‖Lq(R;Xk) � ‖ζI0�I‖Lq(R;Xk)

for a suitable choice of ζI0 ∈ XI0 . An estimate on |�I(x)|X compatible with the right-hand

side of (5.22) may be produced, cf. [30, p. 298], once we establish the pointwise bound

|FI(x)|X � engk(f )(T; q)〈2Jj|x − x�
I |〉−100. (5.23)

The last step toward (5.22), and therefore (4.5), is to prove (5.23). The contribution of

c�
I, jφ

�
I, j is controlled by virtue of the decay of φ�

I, j and (5.5). We turn to controlling the

summand [(1 − Tj−1)H�
I ]Sjf . First, we recall that by construction of I ∈ �j, I�

j , and by [30,

Lemma 4.11], we may find a dyadic interval I ′ with 
(I ′) = 2−Jj adjacent to one of the

endpoints of I, and P ∈ T such that IP ⊂ 10I ′. Pick χ ∈ XI ′ with decay parameter N (for
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Banach-Valued Singular Integrals 5293

instance). If 
(IP) = 
(I), we argue as in (5.7). Otherwise, as in (5.8), we may appeal to

Lemma 3.11 for S = χSj, I ′ in place of I, ξ = ξT = 0, so that

‖χSjf ‖L∞(R;X) ≤ 1

|I ′| 1
q

‖χSjf ‖Lq(R;X) � engk(f )({P}; q) ≤ engk(f )(T; q).

As χ(x) � 〈2Jj|x − xI�
j
|〉−N , we have

|Sjf (x)| � 〈2Jj|x − xI�
j
|〉Nengk(f )(T; q).

Integrating repeatedly by parts the high frequency function [(1−Tj−1)H�
I ], we may bound

it pointwise by factors of �N 〈2Jj|x − x�
I |〉−N−100, compensating the polynomial growth

of the last display and yielding an acceptable right-hand side for (5.23), which is finally

proved. The proof of (4.5) is finally complete. �

Remark 5.24 (The nonlocal case of (4.5)). The local/nonlocal cases can be unified by

introduction of the parameter

Z = least nonnegative integer such that I0 ± Z
(I0) ∩ Ẽj0 �= ∅.

Comparing with what we did to obtain (5.20), and to [30, Lemma 4.11], we learn that

there exists P ∈ T such that IP ⊂ 10 · ZI0, whence {P} is a k-overlapping tree with top

data (10 ·ZI0, ξT). Applying Lemma 3.11 with this top data yields a ZN loss in for example

estimates (5.20) and (5.21). However, as we are concerned with estimates for 1I0O(Tj0f −
�kf ), we may replace O by the operator g �→ Õg = χI0Og, where ζI0 ∈ XI0(2N, δ, C) and

ζI0 ≥ 1I0 . The separation between Ẽj0 and I0 yields that

‖Õ‖Lq(R;Xk) � Z−2N , (5.25)

and the same additional decay factor is gained in the kernel estimates for Õ. Replacing

O by Õ in (5.18) and (5.19) and taking (5.25) into account offsets the loss introduced in

(5.20) and (5.21).

6 Proof of Lemma 3.13

The 1st two paragraphs of this section are devoted to certain almost orthogonality

estimates in the Hilbert space case, respectively, for k-lacunary and k-overlapping trees.
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5294 F. Di Plinio et al.

These are then extended to q-intermediate UMD spaces by interpolation, along the lines

of [18] in Subsection 6.3. The proof of Lemma 3.13 is given in the concluding subsection.

6.1 The L2-orthogonality estimates: k-lacunary trees

We begin with a definition. We say that a family of trees T ∈ T is lac; k-strongly disjoint

with parameter 1 ≤ θ � 2J if

i. each T is a k-lacunary tree;

ii. if T,T′ ∈ T, T �= T′, then

P ∈ T, P′ ∈ T′, 
(ωP) ≤ 
(ωP′), 10θωPk
∩ 10θωP′

k
�= ∅ �⇒ IP′ ∩ IT = ∅.

The rationale behind this definition is that, if the consequence of the above implication

failed, the tri-tile P′ would qualify to be in a suitable completion of the tree T. In what

follows, we work with the parameter θ = 1, as the general case 1 ≤ θ � 2J may

be handled by finite splitting. Tree operators associated to families of lac; k-strongly

disjoint trees give rise to an L2 almost orthogonality estimate: this is well known, and

extends to the case of Hilbert space valued functions, as detailed in the next lemma.

This lemma is a transposition of [18, Proposition 6.1] to our context. It is convenient in

what follows to introduce the single-tile version of the energy parameters. To do so, for

each interval I and for each tri-tile P we introduce the functions

uI :=
〈 |x − c(I)|


(I)

〉−10

, uP := uIP
(6.1)

and also define

‖f ‖P,k,q = sup
mPk∈MPk

|IP|− 1
q

∥∥∥uPTmPk
f
∥∥∥

Lq(R;X)
. (6.2)

For uniformity, we gave the definitions above for a generic 1 ≤ q ≤ ∞. However,

Lemma 2.6 shows the upper bound ‖f ‖P,k,∞ � ‖f ‖P,k,1, and it follows that ‖f ‖P,k,p ∼p,q

‖f ‖P,k,q for all 1 ≤ p, q ≤ ∞. Below, we will only use the value q = 2 in (6.2). Note the

trivial bounds

‖f ‖P,k,q � |IP|− 1
q ‖uP‖q sup

mPk∈MPk

‖TmPk
f ‖L∞(R;X) � ‖f ‖L∞(R;X), (6.3)

sup
SPk∈SPk

‖SPk
f ‖Lq(R;X) � |IP| 1

q ‖f ‖P,k,q. (6.4)
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Banach-Valued Singular Integrals 5295

Lemma 6.5. Let X be a Hilbert space and T be a collection of lac; k-strongly disjoint

trees, and define T =⋃{T : T ∈ T}. There holds

∥∥∥√|IT|englac;k(f )(T; 2)

∥∥∥

2(T∈T)

� ‖f ‖L2(R;X) +
⎛⎝‖f ‖L∞(R;X)

[∑
T∈T

|IT|
] 1

2
⎞⎠

1
3

‖f ‖
2
3
L2(R;X)

. (6.6)

Before entering the proof, we detail the almost orthogonality of the single-tile

operators within a k-lacunary tree.

Lemma 6.7. Let X be a Hilbert space and T be a k-lacunary tree. Then,√|IT|englac;k(f )(T; 2) �
√∑

P∈T
|IP|‖f ‖2

P,k,2.

Proof. By modulation invariance, it suffices to take care of the case ξT = 0. Choose a

tree operator ST = ∑
P∈T SPk

that nearly achieves the supremum in englac;k(f )(T; 2), and

write SPk
g = ζPTmPk

g. From the disjointness of the frequency supports, we have that,

referring to (4.1),

〈SPk
f , SP′

k
f 〉 �= 0 �⇒ P, P′ ∈ T(j).

For n ∈ Z, denote by P+n the unique (if it exists) tri-tile P′ ∈ T(j) with IP′ = IP + n
(IP).

Then, define

ζ̃P := ζP

uP
, S̃Pk

g := ζ̃PTmPk
g. (6.8)

It is immediate to see that ζ̃P ∈ �IP as multiplying by the correctly scaled polynomial 1
uP

does not change the frequency support neither significantly alters the rapid decay of ζP,

hence S̃Pk
belongs to SPk

. Therefore,

|IT|englac;k(f )(T; 2)2 � ‖STf ‖2
L2(R;X)

�
∑
j∈jT

∑
P∈T(j)

∑
n∈Z

∫
SPk

f SP+n
k

f

≤
∑
j∈jT

∑
P∈T(j)

∑
n∈Z

∫
|S̃Pk

f ||S̃P+n
k

f |uPuP+n

�
∑
j∈jT

∑
P∈T(j)

∑
n∈Z

〈n〉−10
(
‖S̃Pk

f ‖2
L2(R;X)

+ ‖S̃P+n
k

f ‖2
L2(R;X)

)
�
∑
P∈T

‖S̃Pk
f ‖2

L2(R;X)
�
∑
P∈T

|IP|‖f ‖2
P,k,2,
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5296 F. Di Plinio et al.

and this proves the claimed inequality. We have used ‖uPuP+n‖∞ � 〈n〉−10 to pass to the

2nd line and (6.4) in the last estimate. �

Proof of Lemma 6.5. Let us choose the scaling ‖f ‖L2(R;X) = 1. From Lemma 6.7, we may

bound the quantity

S :=
√∑

P∈T
|IP|‖f ‖2

P,k,2

in place of the left-hand side of (6.6). Then,

S2 ∼
∑
P∈T

√|IP|‖f ‖P,k,2‖uPTmPk
f ‖L2(R;X)

having linearized the suprema in ‖f ‖P,k,2 with a suitable choice mPk
∈ MPk

, P ∈ T.

From now on, as mPk
and k are fixed, we simply write TP in place of TmPk

. Defining the

X-valued function

vP = √|IP|(uP)2TPf ,

we have the identity

√|IP|‖uPTPf ‖L2(R;X) = 〈T∗
PvP, f 〉, P ∈ T

and the pointwise estimate

|vP(x)|X ≤ uP(x)
√|IP|‖uPTPf ‖∞ � uP(x) (6.9)

coming from Lemma 2.6 with R = (
(IP))−1, w = uP, TPf in place of f . These

considerations lead to the estimate

S2 ∼
〈∑

P∈T
‖f ‖P,k,2T∗

PvP, f

〉
≤
∥∥∥∥∥∑

P∈T
‖f ‖P,k,2T∗

PvP

∥∥∥∥∥
L2(R;X)

. (6.10)

Define now

T<(P) := {P′ ∈ T : ωPk
� ωP′

k
}, T=(P) := {P′ ∈ T : ωP′

k
= ωPk

}.
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Banach-Valued Singular Integrals 5297

Frequency support considerations applied to the inner products 〈T∗
PvP, T∗

P′vP′ 〉 then lead

to the chain of inequalities

∥∥∥∥∥∑
P∈T

‖f ‖P,k,2T∗
PvP

∥∥∥∥∥
2

L2(R;X)

=
∑
P∈T

∑
P′∈T=(P)

‖f ‖P,k,2‖f ‖P′,k,2〈T∗
PvP, T∗

P′vP′ 〉

+ 2
∑
P∈T

∑
P′∈T<(P)

‖f ‖P,k,2‖f ‖P′,k,2〈T∗
PvP, T∗

P′vP′ 〉 := S1 + 2S2. (6.11)

We first treat S1. Note that if P′ ∈ P=(P), then P′ = P+n for some n ∈ Z, see the line before

(6.8) for a definition. The decay of vP (6.9) and the kernel estimate for T∗
P guarantee the

pointwise bound

|T∗
PvP|X � uP, (6.12)

whence ∣∣〈T∗
PvP, T∗

P+nvP+n〉∣∣ � |IP|〈n〉−10, n ∈ Z.

Therefore, we control

S1 �
∑
P∈P

∑
n∈Z

〈n〉−10
(
|IP|‖f ‖2

P,k,2 + |IP+n |‖f ‖2
P+n,k,2

)
� S2 (6.13)

using the definition of S. We turn to S2. Notice that if P′ ∈ T<(P), then 
(IP′) < 
(IP).

Relying on (6.12) again,

|〈T∗
PvP, T∗

P′vP′ 〉| � |IP′ |
〈
dist(IP, IP′)


(IP)

〉−10

� ‖1IP′ uP‖1, P′ ∈ T<(P). (6.14)

We claim that the intervals {IP′ : P′ ∈ T<(P)} are pairwise disjoint and do not intersect

IT(P) where T(P) is the unique tree in T where P belongs. The argument is standard, see

for example [18, 30], but we reproduce it for completeness. Due to k-lacunarity of T(P),

we have T<(P) ∩ T(P) = ∅. Therefore, the condition ii in the definition of the strongly

disjoint trees forces IP′ ∩ IT(P) = ∅ for all P′ ∈ T<(P). Furthermore, if P′, P′′ ∈ T<(P), it

follows that 10ωP′
k

∩ 10ωP′′
k

�= ∅. If P′, P′′ belong to distinct trees T′,T′′, then condition ii

forces IP′ ∩ IT′′ = ∅. If P′, P′′ belong to the same tree T′, then k-lacunarity forces ωP′
k

= ωP′′
k
.

In both cases IP′ ∩ IT′′ = ∅. Using the bound (6.3), estimate (6.14), the trivial estimate

‖1IP′ uP‖1 ≤ ‖uP‖1 � |IP|, Cauchy–Schwarz, disjointness, and separation from IT(P) of
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5298 F. Di Plinio et al.

{IP′ : P′ ∈ T<(P)}, and we obtain

S2 � ‖f ‖∞
∑
P∈T

‖f ‖P,k,2

∑
P′∈T<(P)

‖1IP′ uP‖1 ≤ ‖f ‖∞
∑
P∈T

√|IP|‖f ‖P,k,2‖1R\ITuP‖
1
2
1

� ‖f ‖∞

(∑
P∈T

|IP|‖f ‖2
P,k,2

) 1
2
(∑
T∈T

∑
P∈T

‖1
R\ITuP‖1

) 1
2

� ‖f ‖∞

(∑
T∈T

|IT|
) 1

2

S; (6.15)

we omitted some of the details, see for example [18, Proposition 6.1]. Summarizing (6.10),

(6.11), (6.13), and (6.15)

S2 �
√

S1 + 2S2 �

⎛⎝S2 + ‖f ‖∞

(∑
T∈T

|IT|
) 1

2

S

⎞⎠
1
2

,

which yields the claimed bound. The details can be read from [18, Proposition 6.1], hence

we omit them. �

6.2 The L2-orthogonality estimates: k-overlapping trees

We begin with some additional definitions related to the top data (IT, ξT) of a k-

overlapping tree T. Recall the notation (3.8) for tT,k, and denote

ωT,k,+ =
[
(ξT)k, (ξT)k + 2−1
(ωT,k)

)
, ωT,k,− =

[
(ξT)k − 2−1
(ωT,k), (ξT)k

)
.

Consider a finitely overlapping cover of ωT,k,± by intervals {ωT,k,(σ ,τ),± : σ ∈ N, τ =
1, . . . , 26}, with the properties that


(ωT,k,(σ ,τ),±)


(ωT,k)
= 2−σ−5, 2−σ ≤ dist

(
ωT,k,(σ ,τ),±, (ξT)κ

)

(ωT,k)

≤ 21−σ ∀ σ ∈ N, τ = 1, . . . , 26.

The role of the parameter τ is to refine the Whitney decomposition of ωT,k,± so that the

10-dilates of the Whitney intervals stay in the half-line ±ξ > ±(ξT)k.

We say that a family of trees T ∈ T is ov; k-strongly disjoint of type • ∈ {+, −} if

i. each T is a k-overlapping tree;

ii. if T,T′ ∈ T, T �= T′, then for all σ ∈ N, τ = 1, . . . , 26 there holds

10ωT,k,(σ ,τ),• ∩ 10ωT′,k,(σ ,τ),• �= ∅ �⇒ IT ∩ IT′ = ∅.
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The analogue of Lemma 6.16 in the overlapping setup is the following. In the statement,

we find convenient to denote HT,± the frequency restriction of f to the half-line

±ξ > (ξT)k.

Lemma 6.16. Let X be a Hilbert space and T be a collection of ov; k-strongly disjoint

trees of type ±. There holds

∥∥∥√|IT|‖HT,±f ‖ov;T,k,2

∥∥∥

2(T∈T)

� ‖f ‖L2(R;X) +
⎛⎝‖f ‖L∞(R;X)

[∑
T∈T

|IT|
] 1

2
⎞⎠

1
3

‖f ‖
2
3
L2(R;X)

. (6.17)

The proof of Lemma 6.16 is similar to that of the lacunary case, with some

modifications. As it is nonstandard, we provide the complete argument below. For the

sake of definiteness, we work in the + case. Let us again fix the scaling ‖f ‖L2(R;X) = 1.

By linearizing the supremum in each ‖HT,±f ‖ov;T,k,2, we realize we need to estimate

S :=
√∑
T∈T

∥∥∥uITTmT
f
∥∥∥2

L2(R;X)

for an extremizing choice of multiplier mT ∈ M̃ωT,k
whose support lies in the right half

of ωT,k. For simplicity, we redefine

‖f ‖T :=

∥∥∥uITTmT
f
∥∥∥

L2(R;X)√|IT|

and note for future use that ‖f ‖T � ‖f ‖∞. Arguing as in the previous subsection, we

obtain that

S2 ∼
〈∑
T∈T

‖f ‖TT∗
mT

vT, f

〉
≤
∥∥∥∥∥∑
T∈T

‖f ‖TT∗
mT

vT

∥∥∥∥∥
L2(R;X)

, (6.18)

where the X-valued functions vT satisfy the bound

|vT|X � uIT . (6.19)

Using a smooth partition of unity subordinated to the cover {ωT,k,(σ ,τ),+ : σ ∈ N, τ =
1, . . . , 26} of the support of mT, and the fact that mT vanishes at (ξT)k, we may then
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5300 F. Di Plinio et al.

decompose

TmT
=
∑
σ∈N

26∑
τ=1

2−σ TmT,σ ,τ
,

where the multiplier mT,σ ,τ is adapted to and supported on ωT,k,(σ ,τ),+. We will prove the

estimate

Uσ ,τ :=
∥∥∥∥∥∑
T∈T

‖f ‖TT∗
mT,σ ,τ

vT

∥∥∥∥∥
L2(R;X)

� 2
σ
2

⎛⎝S2 + ‖f ‖∞

(∑
T∈T

|IT|
) 1

2

S

⎞⎠
1
2

(6.20)

uniformly over σ , τ that combined with the triangle inequality and (6.18) returns (6.17)

via standard manipulations. As τ does not play any role in the argument below and

takes 64 values, we fix a value and omit it from the notation. Squaring (6.20) gives

U2
σ =

∑
T∈T

‖f ‖2
T‖TmT,σ

vT‖2
2 + 2

∑
T∈T

∑
T′∈T(T)

‖f ‖T‖f ‖T′ 〈T∗
mT,σ

vT, T∗
mT′ ,σ vT′ 〉, (6.21)

where T(T) := {T′ ∈ T : 
(IT′) ≤ 
(IT), ωT,k,σ ,+ ∩ωT′,k,σ ,+ �= ∅}. The 1st term in (6.21) is � S2,

as (6.19) and L2-boundedness tells us that ‖TmT,σ
vT‖2

2 � |IT|.
We move to the 2nd term. Suppose T′ ∈ T(T). The O(2−σ 
(ωT))-frequency

localization of TmT′ ,σ T∗
mT,σ

and the fact that vT is localized on IT entail

∣∣∣〈T∗
mT,σ

vT, T∗
mT′,σ vT′ 〉

∣∣∣ � 〈u2σ IT , uIT′ 〉 � ‖1IT′ u2σ IT‖1.

We then notice that if T′ ∈ T(T), then ωT,k,σ ,+ ⊂ 10ωT′,k,σ ,+, which together with ii in the

definition of ov; k-strong disjointness of type + tell us that the intervals {IT′ : T′ ∈ T(T)}
are pairwise disjoint. Proceeding as in (6.15), we then bound the 2nd term in (6.21) by

‖f ‖∞
∑
T∈T

‖f ‖T
∑

T′∈T(T)

‖1IT′ u2σ IT‖1 ≤ ‖f ‖∞
∑
T∈T

‖f ‖T‖u2σ IT‖1 � 2σ ‖f ‖∞

(∑
T∈T

|IT|
) 1

2

S,

(6.22)

where we used pairwise disjointness of {IT′ : T′ ∈ T(T)} in the 1st step. Chaining (6.22)

with (6.21) yields the claimed bound for (6.20) and finishes the proof of Lemma 6.16.
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6.3 Transporting almost orthogonality to intermediate spaces

In the previous subsections, we have shown that the definitions (3.10) and (6.2) lead

to Hilbert space valued orthogonality estimates for families of strongly disjoint trees.

The point is that the definitions (3.10) and (6.2) are of maximal nature and involve more

general operators than the rank-1 projections f �→ 〈f , ϕPk
〉ϕPk

of [18], namely operators

of the class SPk
. It is because of this additional generality that we had to reproduce,

with small changes, the classical TT∗ arguments of [18].

Now that our version of [18, Proposition 6.1], namely Lemma 6.5 is in place, the

interpolation arguments of [18, Section 7] may be perused mutatis mutandis, leading to

the following almost orthogonality estimate for interpolation spaces.

Proposition 6.23. Let 2 ≤ p < ∞ and X = [Y0,Y1] 2
p

be the complex interpolation space

of a UMD space Y0 and a Hilbert space Y1. Then, for all 0 < α ≤ 1, the inequality

∥∥∥|IT| 1
p englac;k(f )(T; p)

∥∥∥

p(T∈T)

�α ‖f ‖Lp(R;X) +
⎛⎝‖f ‖L∞(R;X)

[∑
T∈T

|IT|
] 1

p
⎞⎠1−α

‖f ‖α
Lp(R;X)

(6.24)

all collections T of lac; k-strongly disjoint trees while the inequality

∥∥∥|IT| 1
p ‖HT,±f ‖ov;T,k,p

∥∥∥

p(T∈T)

�α ‖f ‖Lp(R;X) +
⎛⎝‖f ‖L∞(R;X)

[∑
T∈T

|IT|
] 1

p
⎞⎠1−α

‖f ‖α
Lp(R;X) (6.25)

holds uniformly over all collections T of ov; k-strongly disjoint trees of type ±.

Proof. We first prove (6.24). The 1st step of the proof consists of deducing the case

p = 2 of (6.24) from Lemma 6.5. This is accomplished following step by step the proof

of [18, Proposition 6.6]. The 2nd step consists in the deduction of an endpoint at p = ∞,

which is ∥∥englac;k(f )(T; �)
∥∥


∞(T∈T)
� ‖f ‖L∞(R;X) (6.26)

having denoted

‖f ‖lac;k,T,� := sup
∥∥∥Mod−ξT

STf
∥∥∥

BMO(R;X)
, englac;k(f )(P; �) := sup

T′⊂P

T′ k−lacunary

‖f ‖lac;k,T′,�,
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5302 F. Di Plinio et al.

where Modξ stands for modulation by ξ , and as usual, the 1st supremum is taken over

all possible choices of type k tree operators ST. The estimate (6.26) is an immediate

consequence of the uniform estimate for demodulated tree operators

Mod−(ξT)k
STMod(ξT)k

: L∞(R;X) → BMO(R;X),

which holds by virtue of the fact that each operator Mod−(ξT)k
STMod(ξT)k

is a Calderón–

Zygmund operator. Finally, the proof of the proposition is obtained by complex interpo-

lation of the case q = 2 of (6.24) with (6.26). Details are given in [18, Proposition 7.3].

The proof of (6.25) is similar, the only difference being the endpoint inequality

∥∥‖HT,±f ‖ov;T,k,�

∥∥

∞(T∈T)

� ‖f ‖L∞(R;X), (6.27)

where, in analogy with (3.9),

‖g‖ov;T,k,� := sup
S∈StT,k

∥∥∥Mod−ξT
Sg
∥∥∥

BMO(R;X)
.

The bound (6.27) is easily established: if S ∈ StT,k
the composition Mod−(ξT)k

SHT,±Mod(ξT)k

is a Calderón–Zygmund operator, so that

∥∥∥Mod−(ξT)k
SHT,±f

∥∥∥
BMO(R;X)

�
∥∥∥Mod−(ξT)k

f
∥∥∥

L∞(R;X)
= ‖f ‖L∞(R;X)

as claimed. The proof of Proposition 6.23 is thus complete. �

6.4 The proof proper of Lemma 3.13

The proof is iterative in nature. One additional remark necessary here is that the

selected trees come from a greedy selection process, as described in Section A.5 of the

appendix, and therefore satisfy properties g1 to g3 appearing in Subsection 3.1.

For the proof, write p = qX, λ := engk(f )(P; p), and let α ∈ (0, 1) be chosen so

that q = p/α. We start by excising high k-lacunary energies. Performing an iterative

algorithm analogous to [29, Lemma 7.7], we decompose

P := Plow,lac ∪ Phi,lac,
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where

englac,k(f )(Plow,lac; p) ≤ λ

2
(6.28)

and Phi,lac = ⋃{T : T ∈ Thi,lac}, where Thi,lac is a family of greedily, in the sense of

Subsection A.5 of the appendix, selected trees with the following property: for each

T, there exists a k-lacunary tree T′ ⊂ T with same top data as T, and the family

T
′,hi,lac = {T′ : T ∈ Thi,lac} consists of lac; k-strongly disjoint trees with

englac;k(f )(T′; p) � λ.

Using the 1st part of Proposition 6.23 in the 2nd inequality,

λp
∑

T∈Thi,lac

|IT| �
∥∥∥|IT| 1

p engk(f )(T; p)

∥∥∥p


p(T∈T
′ ,hi,lac)

� ‖f ‖p
Lp(R;X)

+ ‖f ‖p(1−α)

L∞(R;X)

⎛⎝ ∑
T∈Thi,lac

|IT|
⎞⎠1−α

‖f ‖αp
Lp(R;X)

� |F| +
⎛⎝ ∑
T∈Thi,lac

|IT|
⎞⎠1−α

|F|α. (6.29)

Dividing into cases depending on whether the |F| summand in the last line is larger or

not than the |F|α one,

∑
T∈Thi,lac

|IT| � max{λ−p, λ−q}|F| � λ−q|F|. (6.30)

In the last comparison, we have used that q > p and

λ � sup
P∈P

inf
IP

M(|f |X) � 1,

a consequence of Lemma 3.12.

We then excise from Plow,lac the high overlapping energies. As this piece is less

standard, we produce an explicit iterative algorithm, which is in fact the chaining of

two subsequent similar iterative procedures, one for each type of k-overlapping tree.
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5304 F. Di Plinio et al.

First, we run the following greedy selection algorithm:

INIT. Pstc := Plow,lac, Thi,ov,+ = ∅, T
′,hi,ov,+ = ∅;

WHILE the collection of k-overlapping trees (T′, I, ξ) with T′ ⊂ Pstc and the property

that

‖HT′,+f ‖ov;T′,k,p >
λ

4
(6.31)

is non-empty choose within such collection a k-overlapping tree (T′, I, ξ)

with the property that

+ξk is maximal.

Then, let T be the maximal, with respect to inclusion, tree contained in Pstc

with the same top data (I, ξ) as T′. At the end of this proof, we will refer to T

as the completion of the tree T′. Then, set

Pstc := Pstc \ T, Thi,ov,+ := Thi,ov,+ ∪ {T}, T
′,hi,ov,+ := T

′,hi,ov,+ ∪ {T′}.
(6.32)

When the algorithm terminates, set Plow,+ := Pstc. Subsequently, perform again the above

iterative algorithm, replacing the initialization step by

r1. Pstc := Plow,+, Thi,ov,− = ∅, T
′,hi,ov,− = ∅

and replacing + by − in (6.31) to (6.32). Once this 2nd algorithm has terminated, we

finally set

Plow := Pstc, T := Thi,lac ∪ Thi,ov,+ ∪ Thi,ov,−.

We notice that in view of the last two iterative algorithms, if (T′, I, ξ) is a k-overlapping

tree with T′ ⊂ Plow, it must be

‖f ‖ov;T′,k,p ≤ ‖HT′,+f ‖ov;T′,k,p + ‖HT′,−f ‖ov;T′,k,p ≤ λ

4
+ λ

4
= λ

2
,

where the 2nd inequality holds because the algorithms terminated without T′ being

selected in either. Therefore,

engov,k(f )(Plow; p) ≤ λ

2
,

and, also in view of (6.28) and the inclusion Plow ⊂ Plow,lac, the small energy estimate

on Plow; (3.14) is proved. We will show at the end of the proof that the families T
′,hi,ov,±
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are of ov; k-strongly disjoint of type ±. The estimate on the sum of the tree tops for

Thi,ov,± is proved analogously to what we did in (6.29) but appealing to the 2nd part of

Proposition 6.23 instead. This consideration, together with the estimate (6.30), yields

the counting function bound (3.15).

We prove the claim that the families T
′,hi,ov,± thus selected are ov; k-strongly

disjoint of type ±. For the sake of definiteness, we work in the + case and for simplicity

write T = T
′,hi,ov,+. Suppose T,T′ ∈ T are such that the intersection 10ωT,k,(σ ,τ),+ ∩

10ωT′,k,(σ ,τ),+ �= ∅. We need to show that IT ∩ IT′ = ∅.

6.4.1 Case 
(IT) = 
(IT′)

In this case, the assumption 10ωT,k,(σ ,τ),+ ∩ 10ωT′,k,(σ ,τ),+ �= ∅ yields |(ξT)k − (ξT′)k| �
20
(ωT,k) = 20
(ωT′,k). Suppose by contradiction IT ∩ IT′ �= ∅. In this case, by dyadicity

IT = I ′
T. By symmetry suppose that T has been selected first. As trees are non-empty,

we may find P′ ∈ T′ such that IP ⊂ IT′ = IT and (ξT′)k ∈ 3ωT′,k. The latter property and


(ωP′
k
) ≥ 
(ωT′,k) implies that (ξT)k ∈ ωP′

k
for all k. Therefore, the tri-tile P′ qualifies to be

in the completion of T and hence was not available when T′ was selected. Contradiction.

6.4.2 Case 
(IT) > 
(IT′)

First we prove by contradiction that (ξT)k > (ξT′)k, so that T must have been

selected before T′ – this claim is best proved by picture. Suppose (ξT)k < (ξT′)k, then

sup 10ωT′,k,(σ ,τ),+ ≤ (ξT)k + 2−σ+1
(ωT,k) while inf 10ωT′,k,(σ ,τ),+ ≥ (ξT′)k + 2−σ−1
(ωT′,k),

which is a contradiction, as 
(ωT′,k) ≥ 2J
(ωT,k) due to J-dyadicity. Now, assume again

for contradiction purposes that IT ∩ IT′ �= ∅. We may then find P′ ∈ T′ such that IP′ ⊂ IT′

and (ξT′)k ∈ 3ωT′,k. The latter property and 
(ωP′
k
) ≥ 
(ωT′,k) ≥ |(ξT)k −(ξT′)k|/20 imply that

(ξT)k ∈ ωP′
k

for all k. Again, we have showed that P′ qualified to be in the completion of T

and hence was not available when T′ was selected. Contradiction. This case completes

the proof of ov; k-strong disjointness of type ± for the families T
′,hi,ov,± and thus the

proof of Lemma 3.13.

7 Proof of Lemma 3.12

7.1 Notation

Throughout this proof, if I is a J-dyadic interval, we write I+v = I + v
(I) for v ∈ Z to

denote the v-th translate of I. Further, we introduce the local notation

γI(x) :=
〈
x − c(I)


(I)

〉100

, x ∈ R. (7.1)
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5306 F. Di Plinio et al.

The polynomial γI will be used to apply the so-called localization trick. As we

perform this a few times in the proof, we isolate the related notation here. If T is a k-

lacunary tree and ST a tree operator of the order appearing in the definition of (3.10),

we write

S̃Tg :=
∑
P∈T

S̃Pk
g, S̃Pk

g := γITSPk
g. (7.2)

It is immediate to verify that S̃Pk
∈ SPk

for all P ∈ T, so that S̃T is also a tree operator

albeit of a slightly different order. This difference is inconsequential for our analysis

and we do not keep track of it in the notation.

The overlapping term

We first deal with the overlapping part of the energy, which is much easier. Let T ⊂ P be

a k-overlapping tree with top data (IT, ξT) extremizing engov;k(f )(P; q) and

ζ ∈ XIT , m ∈ M̃ωT,k
⊂ MωT,k

be the corresponding data extremizing ‖f ‖ov;T,k,q. By the rapid decay of ζ at scale 
(IT)

‖ζTmf ‖Lq(X)

|IT|
1
q

� sup
σ≥0

2−100σ ‖F ∗ |K|‖L∞(2σ IT) , (7.3)

where, locally, F = |f |X and K stands for the inverse Fourier transform of m. From the

localization of m, |K| � 1
|IT|γIT

, so that if x ∈ 2σ IT, we have

F ∗ |K|(x) � sup
τ

2−90τ inf
y∈B2τ 
(IT)(x)

MF(y) � inf
y∈B
(IT)(x)

MF(y) � 2σ inf
y∈IT

MF(y).

Combining the last display with (7.3),

engov;k(f )(P; q) �
‖ζTmf ‖Lq(X)

|IT|
1
q

� inf
IT

MF ≤ inf
IP

MF, (7.4)

where we used that T contains at least one tri-tile P, and IP ⊂ IT. This completes the

handling of the overlapping part of the energy.
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7.3 The lacunary term

It remains to estimate the lacunary component. The proof strategy is an adaptation of

[18, Section 9]: indeed, with (7.4) at hand, the bound of Lemma 3.12 is an immediate

consequence of the estimate (7.5) below. Having fixed a k-lacunary tree T, there holds

∥∥STf
∥∥

Lq(R;X)
�q λ|IT|

1
q , λ := sup

I∈I
inf

I
M(|f |X), I := {IP : P ∈ T}, 1 < q < ∞. (7.5)

The estimate is uniform over tree operators ST.

By modulation invariance of (7.5), we may reduce to treating the case ξT = 0.

Then, estimate (7.5) will be obtained as a consequence of the next lemma.

Lemma 7.6. Let T be a k-lacunary tree with ξT = 0, ST be a tree operator and λ be the

same as in (7.5). For each J-dyadic interval K ⊂ R, there exists a constant aK with the

property that

∥∥1K(STf − aK)
∥∥

L1,∞(R;X)
� λ|K| (7.7)

with bound independent of K, ST and T. In particular, if 
(K) ≥ 
(IT), we may take aK = 0.

We use Lemma 7.6 to finish the proof of (7.5). Fix a tree operator ST. Then,

referring to (7.2),

∥∥STf
∥∥

Lq(R;X)
=
∥∥∥γ −1

IT
S̃Tf

∥∥∥
Lq(R;X)

�
∑
v∈Z

〈v〉−100
∥∥∥1I+v

T
S̃Tf

∥∥∥
Lq(R;X)

. (7.8)

But, Lemma 7.6 applied to T̃ together with the John–Strömberg inequality yields the two

estimates

∥∥∥1I+v
T

S̃Tf
∥∥∥

L1,∞(R;X)
� λ|IT|,

∥∥S̃Tf
∥∥

BMO(R;X)
� λ,

which together with the John–Nirenberg inequality tell us that

∥∥∥1I+v
T

S̃Tf
∥∥∥

Lq(R;X)
� λ|IT|

1
q . (7.9)

A combination of (7.9) and (7.8) finally yields (7.5).
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5308 F. Di Plinio et al.

Proof of Lemma 7.6. We fix a tree operator and use the local notation

STf =
∑
I∈I

SIf ,

where SI = SPk
∈ SPk

for the unique tri-tile P ∈ T with IP = I.

We begin the proof with the definition of the constant aK . This constant comes

from the large-scale contribution on K, that is, the intervals

Ilow = {I ∈ I : 
(I) > 
(K)}.

For n ∈ N, let K(n) be the n-th J-dyadic parent of K. Then, if I ∈ Ilow, it must be I = K(n)+v

for some n ∈ N, v ∈ Z. We define

aK =
∑
n≥1

∑
v∈Z

SK(n)+v f (c(K)), (7.10)

where we have simply set SK(n)+v = 0 if K(n)+v �∈ Ilow. Clearly, the 2nd claim now follows

from the 1st, as Ilow is empty, whence aK is zero, when 
(K) ≥ 
(IT).

We continue with the proof of (7.7). We claim that

1K

∑
n≥1

∑
v∈Z

∣∣SK(n)+v f (c(K)) − SK(n)+v f (x)
∣∣X � λ. (7.11)

Indeed, denoting by F = |f |X, by un,v the kernel of TK(n)+v and by χn,v = χK(n)+v for

simplicity, and using the kernel estimates for un,v and the extra decay in v, we have for

x ∈ K

∣∣SK(n)+v f (c(K)) − SK(n)+v f (x)
∣∣ ≤ ∣∣χn,v(x)−χn,v(c(K))

∣∣ (F ∗ |un,v|(x)
)+∫ c(K)

x
F ∗ ∣∣Dun,v

∣∣ (z) dz

� 〈v〉−1002−n inf
K(n)+v

MF ≤ 〈v〉−1002−nλ,

which is summable over v, n in (7.11). The last estimate follows from the membership of

K(n)+v to I.

We now come to the small scales. We first deal with the contribution of the

intervals

Ihigh
n,v = {I ∈ I : 
(I) = 2−n
(K), I ⊂ K+v}, n ≥ 0, v ∈ Z, |v| > 1.
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Notice that this excludes the intervals Ihigh = {I ∈ I : I ⊂ 3K}, which will be handled

as the main term. The Ihigh
n,v are tail terms: in fact, with the same notations as before, if

x ∈ K and I ∈ Ihigh
n,v

|χI(x)| (F ∗ |un,v|(x)
)

� (v2n)−100
∑
t≥0

2−100t 〈F〉[x−2t+1
(I),x+2t+1
(I)] . (7.12)

As, for x ∈ K,

〈F〉[x−2t+1
(I),x+2t+1
(I)]

�

⎧⎪⎨⎪⎩
v
(K)

2t
(I) 〈F〉[x−210v
(K),x+210v
(K)] ≤ (v2n) infx∈I MF(x) 2t+1
(I) ≤ v
(K)

infx∈I MF(x) 2t+1
(I) > v
(K),

we obtain by summation of (7.12) that

1K

∑
n≥0

∑
|v|≥2

∑
I∈Ihigh

n,v

∣∣SIf
∣∣X � λ. (7.13)

We are left to estimate the contribution of Ihigh. The union of the intervals Ihigh is

contained in 3K. By possibly splitting Ihigh into three collections and replacing I ∈ Ihigh

with the corresponding smoothing interval from one of three shifted dyadic grids, so

that the union is still contained in 18K, we can achieve the property that if I, L ∈ Ihigh

and I ⊂ L, then 3I ⊂ L.

Let now L ∈ L be the collection of those L ∈ Ihigh that are maximal with respect

to inclusion and I(L) = {I ∈ Ihigh : I � L}. First, we remove the tops. It is immediate to

bound

∑
L∈L

∥∥SLf
∥∥

L1(R;X)
�
∑
L∈L

|L| inf
L

MF � λ|K|. (7.14)

We estimate one more tail term. For n ≥ 1, let In(L) = {I ∈ I(L) : 
(I) = 2−n
(L)}. For

each I ∈ In(L), let zI be the least nonnegative integer z such that (I ± z
(I)) ∩ (R \ L) �= ∅.

As 3I ⊂ L, we have zI ≥ 1. Furthermore, for each integer z ≥ 1, there are at most two
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5310 F. Di Plinio et al.

intervals I ∈ In(L) with zI = z. As for x ∈ R \ L we have dist(x, I) ≥ 
(I), there holds

1
R\L(x)|SIf (x)|X �

〈
dist(x,I)


(I)

〉−100
sup

s�
(I)

1

|Bs(x)|
∫

Bs(x)

F �
〈

dist(x,I)

(I)

〉−99
inf

I
MF

�
〈

dist(x,I)

(I)

〉−90
z−9

I λ.

Integrating over R \ L the last display for each I-summand, we have

∑
n≥1

∑
I∈In(L)

∥∥∥1R\LSIf
∥∥∥

L1(R;X)
� λ

∑
n≥1

∑
I∈In(L)

z−9
I |I| � λ

∑
n≥1

∑
z≥1

z−92−n|L| � λ|L|,

whence

∑
L∈L

∑
I∈I(L)

∥∥∥1R\LSIf
∥∥∥

L1(R;X)
� λ

∑
L∈L

|L| � λ|K|. (7.15)

We are left to estimate the main term. Using disjointness of the supports of the

summands below

∥∥∥∥∥∥
∑
L∈L

1L

∑
I∈I(L)

SIf

∥∥∥∥∥∥
L1,∞(R;X)

≤
∑
L∈L

∥∥∥∥∥∥
∑

I∈I(L)

SIf

∥∥∥∥∥∥
L1,∞(R;X)

. (7.16)

To estimate each summand on the right-hand side of the last display, we use the

localization trick. Referring to (7.1), set S̄Ig := SI(γLg). We then have

∑
L∈L

∥∥∥∥∥∥
∑

I∈I(L)

SIf

∥∥∥∥∥∥
L1,∞(R;X)

=
∑
L∈L

∥∥∥∥∥∥
∑

I∈I(L)

S̄I(γ
−1
L f )

∥∥∥∥∥∥
L1,∞(R;X)

�
∑
L∈L

∥∥∥γ −1
L f

∥∥∥
L1(R;X)

�
∑
L∈L

|L| inf
L

MF � λ|K| (7.17)

as each S̄I ∈ SP where P ∈ T is the unique tri-tile with IP = I, and therefore, each L-th

summand on the right-hand side of the 1st line is a Calderón–Zygmund operator. We

achieve (7.7) by putting together (7.10), (7.11), (7.13), (7.14), (7.15), (7.16), and (7.17). The

proof of the lemma is then complete. �
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Appendix A. Details on the Space-Frequency Analysis of (1.1)

In this appendix, we collect a few well-known procedures and results of space-

frequency analysis that we have used throughout the article. The frequency discretiza-

tion of (1.3) presented in Subsection A.1 is classical and reflects the treatment of [29]

and its expanded version [35]. In the subsequent paragraphs, we describe explicitly the

approximate order relations, borrowed from [29], characterizing the rank-1 collections

of tri-tiles defined in Subsection 2.3, and explain the spatial discretization leading to

the model sums (2.10). The notion of tree given in Subsection 3.1 is different from that

of [29]: in Subsection A.4, we explain how the k-trees in [29] fit into our definition and

also prove the lacunarity claim (3.5). Finally, in Subsection A.5 we develop, in parallel

with the treatment in [30], the properties g1 to g3 of greedily selected trees, we have

used to construct phase-space projections.

A.1 Frequency discretization

Recall that �′ = � ∩ β⊥ is the singular line of the multiplier m satisfying (1.3). We may

extend m from � \ �′ to all of R3 \ �′ so that

sup
ξ∈R3\�′

(
dist(ξ , �′)

)α∣∣∂αm(ξ)
∣∣ �α 1. (A.1)

For j ∈ Z, let Dj be the collection of cubes in R3 whose sides have length 2j and whose

centers lie on the lattice 2j−10Z3, and let D = ⋃
j∈ZDj. Let Q ⊂ D be a Whitney cover of

R3 \ �′, namely Q ∈ Q if

Q ∈ D, dist(Q, �′) ∼ K
(Q), (A.2)

where K is a large constant to be chosen later and the hidden constants in ∼ are

absolute. As { 1
10Q : Q ∈ Q} is a finitely overlapping Whitney cover of R3 \ �′, we may

decompose

m =
∑
Q∈Q

mQ,

where each mQ is supported on Q
2 and such that (A.1) holds for m = mQ. Hence, we have

�m(f1, f2, f3) =
∑
Q∈Q

�mQ
(f1, f2, f3).

By expanding each mQ into its triple Fourier series on Q = Q1 × Q2 × Q3 and using the

rapid decay of its Fourier coefficients originating from (A.1), we learn that �m belongs
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to the convex hull of forms

�(f1, f2, f3) =
∑
Q∈Q

∫
R3

(
3∏

k=1

f̂k(ξk)mQk
(ξk)

)
dξ (A.3)

with mQk
∈ MQk

, k = 1, 2, 3. We now define P1 as the collection of all tri-tiles P whose

frequency cube QP ∈ Q and whose spatial interval IP is an interval from the standard

dyadic grid; of course 
(IP) is constrained to be reciprocal to the sidelength of QP. The

next paragraph clarifies the rank properties of P1.

A.2 Order relations

We introduce a few approximate order relations between tiles. If t, τ are tiles, and K is

the constant appearing in (A.2):

r1. τ < t if Iτ � It and ωt ⊂ 5ωτ ;

r2. τ ≤ t if τ < t or τ = t;

r3. τ � t if Iτ ⊂ It and ωt ⊂ Kωτ ;

r4. τ �′ t if τ � t, but it is not true that τ ≤ t.

To shed light on r4, we remark that whenever τ �′ t, necessarily 3ωt ∩ 3ωτ = ∅. We

find useful to induce through r1 to r4 similar relations on tri-tiles P ∈ P1 as follows. If

Pa, Pb ∈ P1 and k = 1, 2, 3, we say that

r5. Pb ≤k Pa if Pb
k ≤ Pa

k ,

r6. Pb �k Pa if Pb
k � Pa

k ,

r7. Pb �′
k Pa if Pb

k �′ Pa
k .

Then, [29, Lemma 6.2] may be summarized in the following two properties of P1. Firstly,

whenever Pa, Pb ∈ P1

r8. dist(QP, �) ≤ 2
(QP);

r9. Pb ≤k Pa for some k ∈ {1, 2, 3} �⇒ Pb �κ Pa for all κ = 1, 2, 3.

If in addition 
(IPb) ≤ 2−J
(IPa), we have

r10. Pb ≤k Pa for some k ∈ {1, 2, 3} �⇒ Pb �′
κ Pa for all κ ∈ {1, 2, 3} \ k

provided K is chosen sufficiently large depending on �β from (1.2) and J is chosen such

that 2J ≥ K10.
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A.3 Spatial discretization

Following [30, Section 3], and referring to (2.4) for the definitions of χIP , we decompose

any given form � appearing in (A.3) as

�(f1, f2, f3) =
∑
Q∈Q

∑
P∈P1
QP=Q

∫
R

3∏
k=1

χIP (x)TmQ
fk(x) dx.

The discussion in Subsection A.2 shows that P1 may be decomposed into O(28J) rank-1

collections as above and ultimately reduces the proof of estimates for �m from (1.1) to

corresponding bounds for the model sums (2.10).

A.4 Trees

Let us fix a rank-1 collection P. We have specified our notion of tree T in Subsection 3.1.

Our definition of tree is less restrictive than the corresponding notion of k-tree in [29,

Section 7]. The aim of this subsection is to expound this relationship and subsequently

to prove the claim leading to Remark 3.4.

First of all, let k = 1, 2, 3. We quote from [29] that a k-tree T ⊂ P with top data the

tri-tile PT ∈ P is a collection of tri-tiles satisfying P ≤k PT. We learn right away from r9

that P �κ PT for all κ = 1, 2, 3. In particular, QPT ⊂ KQP for all P ∈ T and CKQPT ∩ �′ �= ∅

because of assumption a. of rank-1 collections and (A.2). Therefore, letting IT = IPT ,

ξT ∈ �′ ∩ CKQPT , we see at once that

IP ⊂ IT, (ξT)κ ∈ ωPκ
∀ P ∈ T, κ = 1, 2, 3

as ωPκ
contains the dilate K4ωPκ

. Hence, T is a tree with top data (IT, ξT) according to the

definition on Subsection 3.1.

In the same spirit, we move to the verification of Remark 3.4 by construction of

a suitable splitting (3.5).

Let T{2,3} = {P ∈ T : (ξT)1 ∈ 3ωP1
}. Then, for any P, P′ ∈ T{2,3}, we have 3ωP1

∩3ωP′
1

�=
∅. If β, β ′ are elements of {2ωP2

: P ∈ T{2,3}}, take P, P′ ∈ T{2,3} with β = 2ωP2
, β ′ = 2ωP′

2

and 
(ωPk
) ≤ 
(ωP′

k
). By g1, we must have 
(ωPk

) ≤ 2−J
(ωP′
k
), and the fact that (ξT)1 ∈

3ωP1
∩ 3ωP′

1
forces 3ωP1

⊂ 5ωP′
1
. Let I ′′ be the unique J-dyadic interval with 
(I ′′) = 
(IP)

and I ′′ ⊃ IP′ and P′′ be the unique tri-tile in P1 with QP′′ = QP and IP′′ = I. The above

discussion shows that P′ ≤1 P′′. Finally, by r10, we learn that that P′ �′
2 P′′. In particular,

ωP2
= ωP′′

2
�⊂ 5ωP′

2
, which by virtue of 
(ωP2

) ≤ 2−J
(ωP′
2
) entails β ∩ β ′ = ∅. Thus, (3.2)

holds true for T = T{2,3} and k = 2. An identical argument verifies (3.2) for T = T{2,3} and

k = 3.
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We now set T′ := T \T{2,3} and define T{1,3} = {P ∈ T′ : (ξT)2 ∈ 3ωP2
}. Repeating the

argument for T{2,3} shows that T{1,3} enjoys (3.2) for k = 1, 3. We then set T′′ := T′ \ T{1,3}
and T{1,2} = {P ∈ T′′ : (ξT)3 ∈ 3ωP3

}. Once again, T{1,2} enjoys (3.2) for k = 1, 2. We are left

with checking that T{1,2,3} := T′′ \ T{1,3} enjoys (3.2) for k = 1, 2, 3. By construction,

(ξT)k ∈ ωPk
\ 3ωPk

∀ k = 1, 2, 3, P ∈ T{1,2,3},

which yields


(ωPk
) ≤ dist(ωPk

, (ξT)k) ≤ K6
(ωPk
) ∀ k = 1, 2, 3, P ∈ T{1,2,3}.

In particular, 2ωPk
⊂ {2−1
(ωPk

) ≤ |ξ − (ξT)k| ≤ K6
(ωPk
)}, and g1 and separation of scales

by 2J > K10 leads to (3.2) for T = T{1,2,3} and k = 1, 2, 3. This completes the verification

of Remark 3.4.

A.5 Geometry of trees

In this subsection, we record some results on the geometry of trees described in [30,

Section 4] that we have repeately used. We begin with the definition of maximal tree

and of greedy selection process.

Given a top data (I, ξ), we call

T = T(I, ξ ,P) := {P ∈ P : IP ⊂ I, ξk ∈ ωPk
∀ k = 1, 2, 3}

is the maximal tree in P with top data (I, ξ). Note that if T′ ⊂ P has top data (I, ξ), then

satisfies T′ ⊂ T(I, ξ ,P).

If P is a finite subset of a collection of rank 1 tri-tiles P1 as specified in (2.10), a

selection process consists of choosing a tree T1 from P at step 1, and for j ≥ 1, choosing

a tree Tj+1 from P \⋃j
u=1 Tu. We say that the selection process is greedy if at each step

j, the selected tree Tj is the maximal tree in P \⋃j−1
u=1 Tu for some top data (I, ξ), namely

Tj = T(I, ξ ,P \⋃j−1
u=1 Tu). Note that the selection procedures used in Subsection 6.4 for

the proof of Lemma 3.13 are greedy.

Lemma A.4. [30, Lemma 4.4] Suppose that T is a tree constructed during a greedy

selection process. Then, property g1 holds. That is, the frequency localization sets QT =
{QP : P ∈ T} are such that

Q, Q′ ∈ QT, 
(Q) = 
(Q′) �⇒ Q = Q′.
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Proof. We recall the notation T(j) = {P ∈ T : 
(QP) = 2Jj}. We have that

2Jj ≤ 
(ωPk
) ≤ K52Jj < 2(j+1)J ∀ k = 1, 2, 3, ∀ P ∈ T(j).

As the intervals ωPk
come from a J-separated grid, 
(ωPk

) is constant as P ∈ T(j) varies.

As (ξT)k ∈ ωPk
for all P ∈ T(j), this means that ωPk

= ωP′
k

for all P, P′ ∈ T(j). As the intervals

ωPk
, P ∈ T(j) are 2(j+1)J+10-separated and ωPk

⊂ K6ωPk
⊂ 2JωPk

, we learn that ωPk
= ωP′

k

for all P, P′ ∈ T(j) and k = 1, 2, 3. That is, QP = QP′ for all P, P′ ∈ T(j), which was our

claim. �

Lemma A.5. [30, Lemma 4.7] Suppose that T is a tree constructed during a greedy

selection process. Then, property g2 holds, that is, the spatial localization sets

EQ,T =
⋃

{IP : P ∈ T, QP = Q}, Q ∈ QT

satisfy

Q, Q′ ∈ QT, 
(Q) ≤ 
(Q′) �⇒ EQ,T ⊃ EQ′,T.

Proof. By Lemma A.4, we may clearly assume 
(Q) < 
(Q′). We argue by contradiction.

Suppose that there exists P′ ∈ T with QP′ = Q′ and IP′ �⊂ EQ,T. Pick any P ∈ T with QP = Q.

Let P′′ be the unique tri-tile with QP = QP′′ and IP ⊂ IP′′ . By dyadicity, 
(IP) ≤ 
(IT) and

the fact that I ′
P ⊂ IP′′ ∩ IT, we have IP′′ ⊂ IT, which, together with QP = QP′′ , qualifies P′′ to

be in the maximal tree with top data (IT, ξT). This means that P′′ was selected in a tree

T′′ with top data (IT′′ , ξT′′) at an earlier stage than T. However, IP′ ⊂ IT′′ , and we also have

ωP′′
k

= ωPk
⊂ ωP′

k
, for all k, as ωPk

, ωP′
k

are intervals from a dyadic grid both containing

(ξT)k. Therefore, P′ qualified to be in the maximal tree with top data (IT′′ , ξT′′) and would

not have been available at the time of T being selected. Contradiction. �

A consequence of the nesting property of Lemma A.5 is the following estimate:

if T is a tree constructed during a greedy selection process and Qj is the unique Q ∈ QT

with 
(Q) = 2Jj,

∑
j∈jT

2−Jj#∂EQj,T � |IT|. (A.6)

The proof (as well as the statement, in fact) is identical to that of [30, Lemma 4.8], and for

this reason, we omit it. We continue with further notation to define a suitable smoothed
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out version of the sets EQ,T. Let T be a tree as defined in Subsection 3.1. Denote by IT the

collection of J-dyadic intervals contained in IT with the following properties:

(1) 3I does not contain any IP with P ∈ T and

(2) the J-dyadic parent of I fails (1).

Define Ẽj = ∪{I ∈ IT : 
(I) < 2−Jj}. Obviously Ẽj+1 ⊂ Ẽj.

In the lemmata below, we also assume that T is a tree that has been constructed

during a greedy selection process. As the proofs involve the spatial components only,

they may be read word by word from the indicated reference and we do not repeat them.

Lemma A.7. [30, Lemma 4.10] Any two neighboring intervals in IT differ by at most a

factor 2J in length. Further, the set Ẽj is a union of dyadic intervals of length 2−Jj and

contains EQj,T if j ∈ jT.

Lemma A.8. [30, Lemma 4.11] If I0 is a J-dyadic interval of length 2−Jj0 such that

3I0 ∩ Ẽj0 �= ∅, then there is a tri-tile P ∈ T with |IP| ≤ |I0| such that IP ⊂ 10I0.

Lemma A.9. [30, Lemma 4.12] Let T be any tree. For each j ∈ jT, let �j be the collection

of connected components of Ẽj. Then, there holds

∑
j∈jT

2−Jj#�j � |IT|. (A.10)

For each I ∈ �j, let x

I and xr

I denote the left and right endpoints of I, and let I

j and Ir

j

denote the intervals

I

j := (x


I − 2−Jj−1, x

I − 2−Jj−2), Ir

j := (xr
I + 2−Jj−2, xr

I + 2−Jj−1).

Then, the intervals I

j are disjoint as j varies in the integers with 2−Jj ≤ |IT| and I varies

in �j. Moreover, if I

j is an interval in the above collection, then the distance to the next

interval I ′

j′ is at least 2−J(j+2). Similar statements hold for the Ir

j .

We conclude this appendix with the definition of μj, which appears first in

Proposition 4.3. For a fixed tree T, after construction of the sets Ẽj, set

μj(x) :=
∑
j′≥0

2−|j′−j|/100
∑

y∈∂Ẽj′

(1 + 2Jj′ |x − y|)−100. (A.11)

The estimate involving
∑∫

μj is proved in (4.16).
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