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We prove that the class of trilinear multiplier forms with singularity over a one-
dimensional subspace, including the bilinear Hilbert transform, admits bounded LP-
extension to triples of intermediate UMD spaces. No other assumption, for instance of
Rademacher maximal function type, is made on the triple of UMD spaces. Among the
novelties in our analysis is an extension of the phase-space projection technique to the
UMD-valued setting. This is then employed to obtain appropriate single-tree estimates
by appealing to the UMD-valued bound for bilinear Calderén-Zygmund operators

recently obtained by the same authors.

1 Introduction and Main Results

Let X,k =1, 2,3 be Banach spaces with a trilinear contraction X; x X, x X3 — C, which

we denote by (e;,e,,e3) > e e,e5 = Hizl e, To amultiplier m defined on the orthogonal
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Banach-Valued Singular Integrals 5257
complement I" of (1,1,1) € R3, we may associate the trilinear form
3
Am(fpfz,fg) = / m(i‘_)( ka(fk)) dé (1.1)
r
k=1

acting on functions f;, € S(R) ® X, k = 1, 2,3, where the former is the Schwartz class.
This article is concerned with multipliers m whose singularity lies on a one-dimensional

subspace perpendicular to a unit vector g € I' that is nondegenerate in the sense that
Ag :=min|B; — B.| >0 (1.2)
Py TR
and satisfies for all multi-indices «

sup (dist(&, B1))“]9,m@)| <, 1. (1.3)
el

Assumption (1.3) is a f*+-modulation invariant version of the Coifman—Meyer condition.
This class includes the bilinear Hilbert transform with parameter B8, whose dual

trilinear multiplier form may be obtained by choosing
m(§) = sgn(§ - p).

The (adjoint form to the) bilinear Hilbert transform
2 dt
BHT,(fy, fo.f3) = /Rp.v./]_[fj(x—,sjt) — dx
j=1

was first introduced by Calderén within the context of LP estimates for the 1st
commutator of the Cauchy integral along Lipschitz curves. The celebrated articles of
Lacey and Thiele [27, 28] contain the 1st proof of LP estimates for the bilinear Hilbert
transform, while more general multipliers of the class (1.3) were treated by Muscalu
et al. [29].

1.1 Main results

In this article, we prove that the trilinear multiplier forms (1.1), where m is a multiplier
of the class (1.3), admit LP-bounded extensions to triples of intermediate UMD Banach

spaces. This class of UMD spaces first appears in the survey work of Rubio de
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5258 F. Di Plinio et al.

Francia [32] with focus on the Banach function space case and has subsequently been
considered by Hytonen and Lacey in the articles [18, 19] in the context of modulation
invariant operators. We repeat this definition below and send to [24] and references
therein for background and generalities on UMD Banach spaces.

Let 2 < g < oo and X, X; be a couple of compatible Banach spaces, with X
being a UMD space and X; being a Hilbert space. We say that the Banach space X is
g-intermediate UMD if

X =Xy, X1z,
q

namely X is the complex interpolation of a UMD Banach space with a Hilbert space.
Such Banach space X is automatically a UMD space. Notice that X is g-intermediate
UMD if and only if its Banach dual X’ is.

The precise statement of our main result is as follows.

Theorem 1.4. Let X]-,j = 1,2,3, be Banach spaces with Banach duals yj = X} and
suppose that each X; is qu-intermediate UMD. Assume that

3

1
2——1>0. (1.5)
= ax

Let o be any permutation of {1,2,3}, m be a multiplier satisfying (1.3) and T,, , denote
the adjoint bilinear operator to (1.1) acting on pairs of X, ;, X, -valued functions.
Then,

”T o Foqy 0(2))” 1 TR ”fa(l)”Lm R;X51)) ”fa(Z) ”L"Z(R:Xa(z))

whenever

1 1 .
1 <py/py =00, (P, P2) # (00, 00), (— —) € int(H). (1.6)
b1 P2

Here, H is the hexagon with vertices A,B, C,D, E, F as follows:

1 1 oo L
(a — Pqx, @) , D (‘1X1 +Pqx, — O qu) ,

1 Co( _
(a2 —Pax). E: (g g+ 00y, —p).

. 1 1 . 1
C: (aﬂtpqxl—p,@—pq)ﬁ), F: (% PAx, qX +,qu2—,0)
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The proof of Theorem 1.4 relies on the main energy and tree lemmata of Section 3
and is outlined in Subsection 3.4. We note in passing that if condition (1.5) holds, the

range int(#H) is non-empty and in particular contains the region

/
Gx, <Pr <00 k=1,2,3,  pyi= (;;ITP;Z) ,

which is the analogue of the local L2 range for the scalar case; see [27]. In addition,

we point out that int(H) may contain quasi-Banach pairs (p;,p,), that is, pairs with

pbip2
D1+D2

< 1. This is easier to see by particularizing Theorem 1.4 to the case
Xl =X, XZIX/, XSZ(C,

as in the following corollary. Herein, quasi-Banach estimates are available if 2 < g < 3.

Corollary 1.7. Let X be a g-intermediate UMD space, and define the trilinear contrac-

tion
@A) eXxX xCr rp(1).
Let m be a multiplier satisfying (1.3) and T,,, denote the adjoint bilinear operator to (1.1)

acting on pairs of X, X’-valued functions.

Suppose that 2 < g < 3. Then,

|| Tm(fpfz)“Lpplgf’gz ® S ||f1 ”Lpl R;X) ”fz ”Lpz (R;X") (1.8)
whenever
(@g—1(@—-2) 2 q—2 pPiP2 q
gz pvmse (1+ET0) < PP <o o

If 3 < q < 4, then (1.8) holds true if, in addition to (1.9), the condition

2
-3 1 -1 -2
q wwel((1,2,21) | Py Dy

is verified.

Theorem 1.4 and Corollary 1.7 further the rather recent line of research on
the extension of singular operators with modulation invariance properties to UMD
Banach spaces without any UMD Banach function space structure or lattice structure

altogether: a prototypical example are noncommutative LP spaces such as the reflexive
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Schatten-von Neumann subclasses of the algebra of bounded operators on a Hilbert
space. This line of research was initiated by Hytonen and Lacey in their proof of
boundedness of the Carleson maximal partial Fourier sum operator for intermediate
UMD spaces in the Walsh [19] and Fourier [18] setting; see also [21] for Walsh—Carleson
variation norm bounds. Subsequently, the same authors and Parissis [20] proved the
analogue of Theorem 1.4 for the Walsh model of the bilinear Hilbert transform. In fact,
the range of exponents int(#) is the same as the one obtained therein for the Walsh
model; see [20, Theorem 9.3]. Results in the vein of [20] were recently reproved by Amenta
and Uraltsev [3] as a byproduct of novel Banach-valued outer LP space embeddings for
the Walsh wave packet transform.

The theory of UMD-valued linear singular integrals of Calderén-Zygmund
type is rooted in the works by Burkholder [6] and Bourgain [5] among others and
has been extensively developed since then; see for instance [7, 15-17, 22, 25, 26,
36] and the monograph [24]. Recent advances have concerned the UMD extension of
multilinear Caldéron-Zygmund operators [11-13]. The above-mentioned references deal
with generic UMD spaces, as opposed to lattices, and thus develop fundamentally
different techniques from those of the classical vector-valued theory of, for example,
Benedek, Calderon and Panzone, Fefferman and Stein, and Rubio de Francia, which are
strictly tied to A,-type weighted norm inequalities. In a similar contrast, the present
article combines novel technical tools in UMD-valued time frequency analysis to the
UMD interpolation space idea of [18] in order to deal with multilinear modulation
invariant operators on non-lattice UMD spaces, which are out of reach for typical
lattice-based techniques.

Nevertheless, a systematic function space-valued theory for (1.1) is quite recent.
The 1st proof of ¢P-valued bounds for the bilinear Hilbert transform in a wide range
of exponents is due to Silva [33]. In [33], those estimates have been employed to obtain
bounds for the biparameter bilinear operator obtained by tensoring the bilinear Hilbert
transform with a Coifman-Meyer multiplier. Several extensions and refinements of
[33] have since appeared; see for example [1, 4, 8, 9]. In general, as Corollary 1.7
demonstrates, Theorem 1.4 is outside the scope of the above references, although it
does imply a strict subset of the ¢P estimates of [33]. We send to [3, 20] for a detailed
discussion of this point.

However, to stress the difference with the results of [33] and follow-ups, we
would like to showcase here a further application of Theorem 1.4 to a triple of non-
function, non-lattice UMD Banach spaces, in addition to that of Corollary 1.7. In the

corollary that follows, we denote by SP, 1 < p < oo the p-th Schatten-von Neumann
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class, namely the subspace of the von Neumann algebra B(H) of linear-bounded

operators on a separable Hilbert space defined by the norm

||A||sp = ”Sn (4) ”l!’(neN)'

where {s,,(A4) : n € N} is the sequence of singular values of A, that is, eigenvalues of the
Hermitian operator |A| = v/A*A. Notice that the classes SP are increasingly nested with
p and that the trilinear form

(A;,Ay Ag) € ST x S x S 1 trace(4;A,A3) (1.10)

is a contraction provided that

31
Zt_ > 1. (1.11)
k=1 k

Corollary 1.12. Suppose that the exponents 1 < ¢}, t,, t3 < oo satisfy

1
p=> ——— _1>0.
I; max{ty, (t;)'}
Let 0 be a permutation of {1,2,3} and m be a multiplier satisfying (1.3). Then, the

corresponding adjoint bilinear operator T,, , maps

¢ ¢ p1p2 t
Ty o LPL(R; S7M) x LP2(R; S'@) — Lp172 (R; S'®)
boundedly for all p,, p, specified by (1.6).

Corollary 1.12 is obtained from Theorem 1.4 by noticing that S, 1 < p < o
is intermediate UMD of exponent g for all g > max{p,p’}. Similar statements may be
obtained for more general tuples of noncommutative spaces LP(A) with the property
that Al oy < I1AllLaa) for p > q, so that (1.10) is a trilinear contraction in the range
(1.11). We send to [31] for comprehensive definitions and background: a quick harmonic

analyst-friendly introduction is given in [11, Section 3].

1.2 Techniques of proof and novelties

The standard proofs of LP-bounds for the scalar-valued versions of the forms A,, in
(1.1) are articulated in roughly three separate moments. The 1st is to realize that the
forms (1.1) lie in the convex hull of suitable discretized model versions, the so-called

tri-tile forms, displaying the same modulation and translation invariance properties of
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the condition (1.3): this step extends verbatim to the vector-valued case. We may thus
focus on LP-bounds for the model sums.

An essential step of the proof is the decomposition of the model operators into
(discretized) multipliers that are adapted to a certain fixed top frequency and localized
in space to a top interval. These tree model sums are essentially trilinear Calderon—
Zygmund forms. The contribution of each tree is then controlled by localized space-
frequency norms of the involved functions, the so-called energies (or sizes). This bound
is referred to as tree estimate.

In the vector-valued case, this 2nd step has to be adapted in a nontrivial and
novel fashion. First of all, the vector-valued energies, introduced in (3.7) and (3.10)
must be defined in terms of local g-norms of (linear) tree operators rather than simply
¢? sums of wavelet coefficients coming from each tree. We do so by means of a
technical modification of the approach in [18]. Second, and most important, we obtain
an effective tree estimate by replacing the involved functions with vector-valued phase-
space projections to the space-frequency support of the tree. This extension of the
scalar-valued phase-space projections of for example [10, 30] to UMD spaces, which may
be of independent interest, is carried out in Proposition 4.3 and is the main technical
novelty of the article. The tree model sum acts on the phase-space projections roughly
as a trilinear CZ multiplier operator, and the LP-norms of the constructed projections
are controlled by the corresponding energies. These observations may be used in
conjunction with the LP-bound for UMD extensions of bilinear CZ operators, recently
obtained by the authors of this paperin [11], to produce the tree estimate of Lemma 3.16.

Finally, the recomposition of the bounds obtained for each tree into a global esti-
mate relies on almost orthogonality considerations. To export this almost orthogonality
to the vector-valued scenario, we rely, as in previous literature [3, 18, 20], on the g-
intermediate property of the involved spaces X. This step is carried out in Lemma 3.13.
As every known example of UMD space is g-intermediate for some g, this assumption
may seem harmless. However, unlike the linear setting of [18], it is the combined g-
intermediate type of the three spaces that introduces the restriction (1.5) and influences
the range int(H) in Theorem 1.4. Further investigation on the necessity and on possible

weakening of the g-intermediate assumptions are left for future work.

Plan of the paper

Section 2 contains the preliminary material needed to define the model tri-tile forms.
Section 3 presents the outline of the proof of Theorem 1.4: in particular, the definitions

of trees, vector-valued energies as well as the statement of the energy and tree lemmata,
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Lemma 3.13 and 3.16, respectively. Section 4 contains the proof of the tree Lemma 3.16
via the reduction to the phase-space projection Proposition 4.3. The proof of the
latter proposition is developed in Section 5. Section 6 contains the proof of the energy
Lemma 3.13, while Lemma 3.12 is proved in the concluding Section 7. We include some
of the pre-existing results of space-frequency analysis, adapted to the framework we
work with, in an appendix at the end of the article. We include the proof or the proof

sketch whenever (small) adaptations are required but claim no originality.
Remark

In the final stages of preparation of the present manuscript, the authors learned of the
work by Amenta and Uraltsev [2]. These authors obtain a simultaneous and independent
version of Theorem 1.4, focused on the bilinear Hilbert transform in the Banach range of
exponents, under the same intermediate space condition (1.5). Interestingly, the methods
employed in [2] are rather different from ours: the use of phase-space projections and
of the UMD Calderén-Zygmund estimates from [11] is replaced by outer embeddings for
the vector-valued wave packet transform involving telescoping (defect) energies.

The authors want to thank Alex Amenta and Gennady Uraltsev for sharing their
preprint and for interesting discussions on the subject. They are also grateful to the
very generous referees for the careful reading and the numerous suggestions that helped

improve the quality of the article.

2 Space-Frequency Model Sums
2.1 Notation

While our estimates are valid in any ambient space R%, we work with d = 1 to avoid
unnecessary notational proliferation. However, we adopt d-dimensional terminology
and notation whenever possible. For instance, we write B,(x) = {y e R: |y — x| < r} and
simply B, in place of B,(0). Whenever possible, spatial and frequency one-dimensional
cubes are indicated respectively by I, w. The center and sidelength of a one-dimensional
cube I are respectively denoted by c(I), £(I). We use the Japanese bracket notation
(x) = V1 +|x2.

If m is a bounded function on R, we denote both the corresponding
L?(R)-bounded Fourier multiplier operator and its trivial extension to L*(R) ® X for

any Banach space X as

T,.f(x) = /35(5)7'1(5)6”‘S dg, x e R.
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When X is a Banach space, we keep denoting by T the trivial extension T®1Idy of a linear

operator T.

2.2 Frequency-localized indicators

Indicator functions, for example of intervals, possess perfect localization in space
but poor frequency decay. We intend to define frequency-localized approximations of
indicator functions by weakening such spatial localization to polynomial decay.

For this reason, we introduce suitable normalized classes of frequency-localized
functions adapted to an interval I C R. For a large positive integer N and §,C > 0, we
say x € X;(N, 8, C) if x € S(R) satisfies

supp X C Bsyq)-1 (2.1)
x—c\™ x—cm\ ™"
xreal-valued, <W> < x(x) < C<W> , x eR. (2.2)
If ¥ instead satisfies (2.1) and
x—c@\ N
()] < C<W> . xeR

in place of the more stringent (2.2), we say that ¢ € ¥;(V, §, C). Obviously, we have the
inclusion X;(IV,8,C) C W;(IV, 4, C). It is important to notice that if I,I’ are A-comparable
intervals, that is, I C AI',I'’ C AI, and x € X;(IV,$,C), then cx € X, (IV,8',C") as well, for
suitable constant ¢ and values of §', C’ depending only on the comparability constant A
and on NN, §, C. A similar statement applies to the classes ¥, (N, §, C).

Suitable frequency-supported approximate indicators to E C R may be con-
structed as follows. For a fixed large positive integer N and § > 0, construct n € S(R)

satisfying
70)=1, supp 7CB;, (XN <nx Iys; xV VxeR.

We rescale 7 at frequency scale 2/, nj = 2/n(27.), and for a positive integer J, which we

keep implicit in the notation of the left-hand side, E C R,j € R, we introduce

XEj = lE*rle
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whose frequency support is contained in By,j;. The function g ; is an approximate

indicator in the sense that

dist(x, 9E) >N +1 CeR 2.3)

X5,10) — 1500 5< —
where JE is the topological boundary of E. This estimate is easily checked arguing
separately in each case x € E, x € R\ E. When E = [ is an interval with ¢(I) = 24,
the function cy; ; belongs to X;(N, s, C) for a suitable constant ¢ depending only on the

parameters (N, §, C). We reserve for this case the simplified notation

X1 = Xp; = 11 *ny. (2.4)

It is important to notice that if I,I’ are A-comparable intervals, that is, I c AI',I' C
Al and x € X;(IV,5,C), then x € X,(N',8',C’) as well, for suitable values of N',§',C,
depending only on the comparability constant A and on N,§,C. A similar statement
applies to the classes W;(V, §, C).

Let now w be a frequency interval. The class M, (V) will consist of those smooth

functions m with supp m C w and adapted to w of order N, in the sense that

sup sup £(w)”
la|<N &eR

orm®)| < 1.

As customary, we will work with tiles t = I, xw, C RxR, namely the Cartesian product of
intervals in R of reciprocal length, to specify space-frequency localizations. Mimicking
rank-1 projections in a Hilbert space, we may define classes of multiplier operators
adapted to each tile ¢ as follows. Whenever y € ¥, (I, §, C), m € M, (N), the operator

5.£00 = VT, f 0 = [ woom@Fre* de

is said to belong to the class S;(IV, §, C) of t-localized operators. From the rapid decay of
the kernel of T, and the adaptedness of v, it follows that

dist(x,I;)

~100
T > M(|f1x) (), x eR.

0] s(

Here, X may be any Banach space, not necessarily UMD.
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Remark 2.5. In the remainder of the paper, the values IV, §, C will be kept implicit and
dropped from the notation for X;(N, §, C), ¥;(IV, 8, C), M, (), and S,(N, §, C) whenever they

vary within the fixed range
1°<N<N, c<C 2¥<s5<2%,

where J is a large integer depending on the nondegeneracy parameter Az from (1.2) as
specified in Appendix A.2. Therefore, the reader is warned that the precise values of
these parameters may vary from line to line without explicit mention. In addition, if
the function x is such that cx € X; for ¢ > 0 varying in a fixed range depending on
the parameters N, C,J, we abuse notation and write X € X; instead. An advantageous
example of usage for this convention is that whenever x € X;, the functions x™ € X;
as well for small values of m € N. We keep a similar convention for the other adapted
classes.

The one place where we do not keep the parameters N,C implicit is in the

definitions of the maximal energies (3.10) and their related quantities.

In our arguments, we will make use of a form of Bernstein’s inequality involving
approximate indicators, in particular, functions of the classes X; described above. This
is a known phenomenon in the literature, see for example [30, Lemma 5.4]; we give the

proof as we are in the vector-valued context.

Lemma 2.6. Let R > 0, X be a Banach space and f be an X-valued function on R with

supp f C Bg.

Let w : R — (0, 00) be essentially constant at scale R~!, namely

A Rix -y 100 < YO 4 Rix 0, xpeR
w(y)

for some positive constant A. Then, forall0 <« <1,

10f e ey Sae RENWEI 3
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Proof. Let ¢ be a smooth nonnegative function with ¢ = 1 on Bg and ¢ = 0 off B,jp.
Notice that |p(x)| < R(R|x])~2%, for all x € R. Then, f = f * ¢, and

lwy)f(¥)lx
lwE)f(X)x <o R/ Tho 100
Xed ) (Rix — )10
Rd e
< R*|wf]| , (/ —on) < R¥wfll 1
Lo (R;X) <R|X - y|> Lo (R;X)
as claimed. The proof is complete. |

We will apply the lemma above to w = x € X; for values R ~ £(I).

2.3 Tri-tiles and rank-1 forms

Trilinear multiplier forms of type (1.1) admit a discretization in term of tri-tiles. There
are several well-known versions of this discretization procedure, with origins rooted in
Lacey and Thiele [27, 28] in the case of the bilinear Hilbert transforms. Working in the
generality of the multipliers (1.1), whose singularity lies on the line I'' = I' N 8+, we
choose to rely on the procedure described in [29, Section 5], where the multiplier (1.1)
is decomposed in frequency via a partition of unity subordinated to a Whitney cover of
R\ I'" by cubes Q = Q; x Q, x Q4 € Q coming from finitely many shifted dyadic grids
in R3. Details are given in Subsection A.1 of the appendix.
We say that the ordered triple of tiles P = (P, P,, P;) is a tri-tile if

Ip, =Ip, = Ip, = Ip.

In accordance to the uncertainty principle, tri-tiles specify the space-frequency essen-
tial support of single-scale multiplier forms, spatially concentrated on I, and frequency

supported on the frequency cube
Qp = wp, X wp, X wp,. (2.7)

Reflecting the invariance of condition (1.3) under the one-parameter family of trans-
lations along I'/, the collections of tri-tiles that are relevant to us are those whose
frequency cubes come from the cover Q, which is designed to be invariant under the one-
parameter family of translations along I'’. For this reason, we refer to these collections

of tri-tiles as rank-1 collections: below, a formal definition is given.
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In what follows, if J is a positive integer and G is a subcollection of a dyadic

system (or grid) on R, we say that G is a J-separated dyadic grid if
LI eg () <) = 27e() < ed),

I£I'eG, () =¢lI) = distd,I') = 27110 ).

We say that P; is a rank-1 collection of tri-tiles with parameters K > 0 and J € N, with
K > 1,27 > K10, if the following properties hold.

a. The frequency boxes Qp = wp, x wp, x wp, belong to the collection Q for all
PeP.

b. The collection 7 = {I : P € P,} is the collection of all dyadic intervals on R
whose sidelengths are of the form £(I) = 2//+% for some j € Z, where u is any
fixed integerin {0, ...,J—1}. The collections ©; = {a)Pk :PeP;},k=1,2,3are
J-separated dyadic grids. Furthermore, there exist additional J-separated
collections of dyadic intervals Q_k, k =1,2,3, such that for each P € P; and
k = 1,2,3, we may find @p, € 2 with K*owp, C @p, and £(wp) > K~ °¢(@p,).
Thus, both the intervals wpk,P € P, and their K* dilates have good dyadic
properties.

c. If P# P € P, are such that I, = I, then wp, N wp = @ foreach j e {1,2,3}.
The rank-1 properties r8 to r10 hold for all choices of P,P’ € P,. These
properties are stated in Section A.2 of the appendix in terms of certain
approximate order relations among tri-tiles. Here, we give the equivalent

explicit description
dist(Qp, I') < 2¢(Qp); PP e P, Ip CIp, wp; C 5ka for some k € {1, 2,3}
= wp C Kop, \ 3wp, forallk e{1,2,3}\ {k}.

The singular multiplier forms A, from (1.1) then lie in the convex hull of the tri-tile

forms

3
Ap(f1.foifs) = Z/R H X1, () Ty, Jic(0) dx, (2.10)
k=1

PeP

where P is the (finite) subset of a rank-1 collection of tri-tiles P, whose spatial
intervals {Ip : P € P} are contained in a fixed but arbitrary J-dyadic interval and
whose frequency box set {Qp : P € P} is finite but arbitrary, x;, € X;, has been

defined in (2.4) of Subsection 2.2 and mp, € Mka (IV), P € P satisfies the consistency
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condition

OP= OP/ — mPk =mP;c, k: 1,2,3, (2.11)

referring to (2.7). Therefore, to bound 4A,,, it suffices to bound Ap uniformly. A detailed
proof of these statements is given in [29, Section 5]; see also [30, 35]. A summary of proof
is given in the appendix. The remainder of the article will be devoted to the proof of

such uniform bounds for Ap. Note that the operators
f = XIP Tmpkf
belong to the class Spk, fork=1,2,3.

Remark 2.12. As most of the analysis in this paper is an extension to UMD spaces of
the phase-space projection technique introduced in [30], we take a moment to explain
how our choice of discretization relates to the one developed in the latter reference.
The main point of [30] is obtaining bounds uniform in the degeneracy parameter (1.2),
which may be identified with the absolute ratio between the largest and the smallest
eigenvalues of a map L rescaling the subspace R(1,1, 1) to the singular line I’ of m. In
[30], the multiplier m is pulled back to m(L-) and then discretized with a partition of

unity subordinated to the finitely overlapping cover
a={o:=17"a:0¢4},

where Q is instead a Whitney decomposition of R3 \ R(1,1,1) into cubes. The Whitney
pieces of the multiplier are thus adapted to boxes Q whose sidelengths are scaled by
the eigenvalues of the map L. When the degeneracy parameter Az in (1.2) is 2 1, the
scaling map L may be neglected by suitable finite splittings and Q, Q may be conflated;
the model of [30] essentially coincides with our discretization. The reader who wants to

compare our analysis with that of [30] is encouraged to do so.

3 Proof of Theorem 1.4: Tree and Energy Estimates

In this section, after devising the necessary definitions in our context, we present the
statements of the three main lemmas, which may then be combined to prove Theorem 1.4
in a standard fashion.

We first introduce trees, roughly speaking, collections of tri-tiles sitting at a

common frequency and spatially localized to an interval. Then, we define tree operators,
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that is, modulated Calderén-Zygmund localized operators associated to each tree. These
are used to define the energy of a certain X-valued function with respect to a set of
tri-tiles P: this is a sort of localized maximal L9(R; X)-norm of tree operators coming
from P.

Finally, we state the main steps in the proof of Theorem 1.4. The 1st is the energy
lemma, which allows us to decompose any given collection of tri-tiles into unions of
trees of controlled energy for each function f; of bounded spatial support. The 2nd is the
tree lemma, which provides a bound of the tri-tile form (2.10) when PP is a tree. The proof
of this lemma is one of the main novelties of this article, as it relies on a combination
of the multilinear UMD CZ theory of [11] with newly developed phase-space projections

adapted to the vector-valued setting.

3.1 Trees

In the definitions below, an important role is played by the singular line of m in (1.3),
namely I =Tn ,Bl. Let P be a rank-1 collection of tri-tiles. Rank-0 subcollections of P,
whose associated forms Ap are discretized multilinear CZ type multipliers, are called
trees. We work with a specific notion of tree that satisfies certain additional properties
along the lines of [30, Section 4].

Recall from Subsection 2.3 that if P € P, wp_is an interval approximating the
dilate K4a)Pk and coming from a fixed J-separated dyadic grid. We say that the non-
empty collection T C P is a tree having (I, &) as top data if the following conditions
hold.

a. I;is a J-dyadic interval in R and

I,cl; VYPeT k=1,23.
b. & = ((6p)1, (Ep)a (Ep)g) € IV and
(ET)kELl)—Pk VPGT,kI 1,2,3.

It is convenient to denote by j1 = {j € Z : £(Qp) = 2/ for some P € T}, the frequency

scales appearing in T. Then,

T={JTG), TH={(PeT:uap =27 (3.1)

Jeit
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We also take the opportunity here to observe that trees constructed via greedy selection
processes, such as the ones in the proof of Lemma 3.13 below and explicitly defined in

Section A.5 of the appendix, satisfy the following additional properties.

gl. The frequency localization sets Q1 = {Qp : P € T} are such that
Q,Q €0, £(Q) =£Q) = Q=0Q

namely, there is only one frequency localization for each J-dyadic scale.

g2. The spatial localization sets
Egr=|Jp:PeT,0p=0}, Qe0r
are nested, that is,
Q,Q €0, U(Q) < 4(Q) = Eo1DEq 1.

Furthermore, a family of sets {E; : j € Z} with the properties that
g3. E,  CEVjeZandQeOr, Q) =2 = E 1 CE

and with useful smoothing properties may be constructed as detailed in Section A.5 of
the appendix. By virtue of these observations, we may rely on gl to g3 when proving
the phase-space projection estimates of Proposition 4.3. We send to Section A.5 of the

appendix for the proofs of properties gl to g3 and more detailed statements.

3.2 Tree operators

We now introduce two special types of trees with different frequency localization

properties. We say that the tree T is k-lacunary for a certain index k € {1, 2, 3} if
{2wp, : P € T} are a pairwise disjoint collection. (3.2)

Remark 3.3. Let T be a k-lacunary tree for a certain k € {1,2,3}, and suppose that
Tink = {P € T: (§p)x € 2wp, } is non-empty. From (3.2) and property g1, we immediately
see that Ty, , = T(ji, ) for some jj, ; € j. Notice that T;, , is also a k-lacunary tree with

the same top data as T. If Ty, , = &, we set ji, , = —oc for unifying purposes.
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Remark 3.4. A consequence of properties r9 and r10 of rank-1 collections is that each
tree T can be written as the disjoint union

T= |J T4 (3.5)

Ac(1,2,3)
#A>2

where each T, is a tree with the same top data as T and has the additional property (3.2)
for k € A, while
3wp_ 3 (67),,  Vk €B:i={1,2,3}\A. (3.6)

We prove this claim in the appendix, Section A.4.

We then introduce tree operators associated to k-lacunary trees. For our
purposes here, we need a more refined object than the usual, for example appearing

in [9, 18, 27, 28], fully discretized tree operator
fe D (fep)ep,  keA,

PeT
where ¢p,_is a wave packet adapted to the tile P;. Let T be a k-lacunary tree. A (scalar)
tree operator of k-th type is the linear operator
Stf = Z Sp, I
PeT
where each Sp € Sp, P € T. When &5 = 0, the defined tree operator is a pseudo-

differential operator with symbol

ax,&) = > Yp (Omp, (&),

PeT

where each yp € ¥, and mp,_ € M,, - A routine computation relying on the space-
frequency localization of Sp, verifies that this symbol is uniformly of class 5(1),1- Further,
as the intervals {wp : P € T} are pairwise disjoint, Sy is uniformly L%(R) bounded.
Relying on these two observations, we gather that St is an L?(R)-bounded Calderén—
Zygmund operator; see for instance the discussion at [34, p. 271]. Therefore, St satisfies
uniform L9(R; X) bounds, 1 < g < oo, as well as L*(R; X) — BMO(R; X) estimates,
whenever X is a UMD Banach space [14, 16]. In fact, by modulation invariance, we may
remove the & = 0 assumption and conclude that tree operators St are uniformly L4(R; X)
bounded, when 1 < g < oo.

The definition of k-overlapping tree is very simple. We say that a tree T with top
data (I7, &7) is k-overlapping for some k=1, 2,3 if

(gT)k € 3ka’ VPeT.
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Notice that the collection of a single tri-tile {P} may be made into a k-lacunary tree by
picking as top data (I, §) whenever I is a J-dyadic interval with I, C I and & € Kwp, \2wp, .
However, a single tri-tile {P} may also be made into a k-overlapping tree by picking as
top data (I,§) whenever I is a J-dyadic interval with Ip C I and & € 3wp, . We will use

the latter observation in the next definition.

3.3 Energy and energy lemma

This definition is a re-elaboration of [18, Section 8]. Let ¢ > 2 and f be a X-valued

function. If T is a k-lacunary tree with top data (I, &), we define

1
1 ;T g = S9P — S| ooy - (3.7)
[It|a

where the supremum is taken over all possible choices of type k tree operators Sy =
> pet Sp, normalized to satisfy Sp, € Spk(104,8, 1). We give an analogous definition for
k-overlapping trees. If T is a k-overlapping tree with top data (I7,&7), we define the

corresponding tile 7

trp=Tr xore  ong= | E - R0 Gy + 20T (3.8)

and

1

fllovT kg = SUP sup 16 T | Loy -

= _ 1
MeMor teX (10%5,0) |I7]4

M, ={meM,  :m(E)y =0}, (3.9)

Notice that, referring to (3.9), {T), € Sy,

vanishes at (¢7);. We also need to define maximal versions: for each set IP of tri-tiles,

but we require the extra property that m

ek @ @ = sup  [flliacT kg
TcP
T k—lacunary

ok DB @ = sup  [fllowTiq
TcP
T k—overlapping

eng (N (P; @) = max {engjacx () (P; @), enGoy1 (F) (P; )} - (3.10)
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For instance, we have

1
S e englac;k(f) ®; q)
LIR:X)

Z AIp Tmpkf

PeT

when x;, and mp_are as in (2.10), whenever T C P is a k-lacunary tree, as f — CXImepkf
belongs to Spk(104, 8,1) for a uniform constant c. The point of this example is to explain
how the normalization in the definitions (3.7) and (3.9) plays a role in relation to
Remark 2.5.

We briefly explain the usage we make of the 2nd term in (3.10) with a lemma.

Lemma 3.11. Fix k € {1,2,3}. Let I be a J-dyadic interval with ¢(I) = 27 el and w

be an interval centered at & and satisfying
27 < ¢(w) < 270F9),
Suppose that the tri-tile P is such that
I, C10I, Iy <2700, g e3wp .

Then,

1
sup sup || x Tpf || pam.ny < H17€NG0ux (N UPY; @)
XEX1 meM,,

Proof. Lety e€X;, me 1\7[w. Let I’ be the unique J-dyadic interval with 277 < £(w)(I') <
1 that contains Ip, which must exist because of the relations between lengths. Then,
dist(I,I') < 10¢(I) and ¢(I) ~; £(I'), whence x € X, up to constants. For this reason, we
may as well assume I = I'. In this case, the collection {P} is a k-overlapping tree T with

top data (I,§), as o C ot and £(w) > %K(a)le), and the claim follows. |
The next lemma is a variation of for example [18, Corollary 9.6].
Lemma 3.12. Let P be a finite collection of tri-tiles. Then,
eng, (f)(P; @) < sup inf M(|f]y).
PeP Ip

Although the arguments of [18] may be adapted to the context of Lemma 3.12,

we provide a more direct proof in Section 7.

220z AINr G uo Jasn (L|A) Ateqr SURIPSIAl O [00UDS AYISIOAIUN UCIBUIYSEAN Aq 61.62065/952S/L/2202/a101E/UIWI/Woo"dno"olwapede/:sdiy Wwoly papeojumod



Banach-Valued Singular Integrals 5275

In the last main lemma, the quantitative assumption of X being an interpolation
space is used. We could alternatively bring forth definitions akin to the tile-type of a
Banach space in [18, 20, 21], which is a formal consequence of our intermediate UMD
assumption, but for simplicity and lack of examples, we give up on this additional

formal generality.

Lemma 3.13. Suppose X is gy-intermediate UMD, and let f € L*°(R; X) be subordinated
to the finite measure set F, namely |f|y < 1z. Fix g > gy, and let P be a finite set of tri-
tiles. Then, P = P'°% U PN with the property that

eng; () (P°; g) < 27 eng, (f)(P; g) (3.14)

and that P" is a union of trees T € T with the property that

D Il S, [engr (N ®; g IF). (3.15)
TeT

The proof of Lemma 3.13 is a revisitation of the steps leading to [18, Proposition
8.4] and is postponed to Section 6. Note that Lemma 3.13 is the only main step of the
proof of Theorem 1.4 where a gy-intermediate assumption is used.

The final main tool of the proof of Theorem 1.4 is a bound on the forms (2.10) in

terms of energy parameters in the particular case where the collection P is a tree.

Lemma 3.16. Let Xj, k=1,2,3 be UMD spaces and

3

1
25Q1:CI2,Q3<00, E _Z]- (317)
i—1 Ik

Let T be a tree. With reference to (2.10), there holds
3
At (Fy fo f)l S Ul [ engi (o) (T; ap)
k=1
uniformly over all choice of tri-tile forms At.
The proof of Lemma 3.16 uses a novel vector-valued version of the phase-space

projection technique of [10, 30] in conjunction with [11, Theorem 1.2] and is given in

Section 4.
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3.4 Proof of Theorem 1.4

We are now ready to compile the proof of the main theorem. A standard combination
of Lemmata 3.16, 3.13, and 3.12 yields a range of restricted weak-type estimates for the
forms (2.10): the elementary procedure is identical to that leading to [20, Corollary 9.2].
These estimates then entail Theorem 1.4 by standard multilinear restricted weak-
type interpolation; see for example [35]. This deduction is the same as that of [20,
Theorem 9.3] from [20, Corollary 9.2]. We omit the details.

4 Phase-Space Projections and the Proof of the Tree Lemma

We develop phase-space projections in the vector-valued context and combine them with
the bounds for vector-valued extensions of bilinear CZ operators to prove Lemma 3.16.
The following treatment is an adaptation of the construction made in [30, Sections
7 and 8]. Our arguments are more involved due to the vector-valued nature of the
involved functions. However, we take advantage of a significant simplification in that
no uniformity issues are considered: in the language of [30], the indices m; are all zero.
Uniform estimates in the vector-valued context will be the object of future work.

In the main proposition of this section, we make use of Littlewood-Paley
projections as follows. The operator T; stands for a Fourier multiplier whose symbol

ij is real, even, and
supp ®; C (=270, 270%2) @) =1 on [-270+271 270HD1), (4.1)
Then, the projections S; == T; — T;_, are Fourier multiplier with symbol V; satisfying
supp ¥; C (5 : 270D < 15| < 27072, y(6) = 1 for 270D < 5 < 270¥271 (4.2)

The projections S; appear also in Lemma 4.12 below.

Proposition 4.3 (Phase-space projections). For k = 1,2, 3, let X}, be a UMD space and
gy € [2,00). Let T be a tree with the following properties:
i. &=0;
ii. Tis k-lacunary fork € A, in the sense that (3.2) holds, and not x-lacunary for
k € B, in the sense of (3.6), with AUB = {1, 2, 3} disjoint union and #4 € {2, 3};
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iii. the separation of scales condition
inf{lj —Jj'| :j.J' €Jr.J #J'} = 10

holds true.

Choose {Spk € SPk,P e T,k € {1,2,3}}. Then, there are linear operators IT; with the

following properties.

a. If p > g, there holds

1
ITef Nl xS 1P enge (O (T gg)- (4.4)

b. If k € A, for all j € jy, with reference to Remark 3.3 and to (4.1), we have the
equality

> Spf =S, J#E Tk

PeT(j)

c. Ifp = qi, k € B, jp € jr and £(Ip) = 277,

1 dx
1, D, Sp(f =) < 1P eng, (F)(T; qi) / Yoy @)y (X) =, (4.5)
PeT( R Lol
0 LP (RiX)
where I is defined in (A.11). Furthermore,
1
1, > SpIf < 1plPengy (F)(T; ). (4.6)

PeT(o) PR Xy)

While the operators IT; depend on the choice of {SPk c Spk,P e T,k € {1,2,3}}, the

estimates above are uniform over such choice.

The proof of Proposition 4.3 is postponed to the next section. Herein, we
proceed to show how this proposition may be coupled with the main result of [11] to
obtain the tree estimate we claimed in Lemma 3.16. The next subsection contains some
preliminaries, while the main line of argument, namely the proof of estimate (4.11), is

deployed in Subsection 4.2.
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4.1 Preliminaries

We begin with a preliminary localized single-scale estimate for tree operators that will

be of use toward Lemma 3.16 as well as in Section 5.

Lemma 4.7. Let T be any tree, I, be a J-dyadic interval with £(I;) = 27JoJ, v, € Vi,
Sp, € Spk for each P € T(j,). Then, for any k € {1, 2, 3},

1
Vi, > Spf SIlPengy(N(Tqr), g <p < oo. (4.8)
PeT(o) LP(R;Xy)

Proof. Arguing by interpolation, it suffices to prove the extremal cases. Notice also
that we may assume y;, € X; by possibly replacing v; € V; with a pointwise majorant
in X; . Case p = q;. Let n € N. By virtue of J-dyadicity and property gl of greedily
constructed trees, there are at most two P € T(j,) such that dist(Ip, I,) = n277%/. Fix such

a P. It then suffices to estimate

1
< —100 @ .
LIk (R;Xy) ~ (n) |I0| kengk(f)(T: qk)

iS50,

Write Sp, f = ¥T,,f. Then, ¥ = (n)!%%; ¢ € W, and the estimate in the last display
simply follows from the definition of eng,(f)(T; g;). Case p = oco. The function we are
estimating has frequency support in a ball of radius O(2/0/). Then, this case follows

from the case p = q; and a straightforward application of Lemma 2.6. |

We then particularize the definition (2.10) to the case where PP is our tree T. By
translation and scaling invariance, we may reduce Lemma 3.16 to the case It = [0, 1). By
invariance with respect to modulations along the subspace I'’, we may also reduce to

the case & = 0. Notice that, referring to (2.7), (4.1), property gl ensures that we have
Qp = Qp =: Q; P, P eT(.

Consequently, in view of (2.11), mp, = sz’c =myy forall P,P' € T(j),k =1, 2, 3. Therefore,

we may set for j € j1, referring to (2.4)

)Zj = Z XIp

PeT(j)
ﬁ],k = ij,k' k= ].,2,3
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and rewrite, and subsequently estimate, (2.10) for T = P as

|AT(f1 S f3)| = Z/X]H i 1Sk <Z/ Ii[ft]kfk

J€IT JeIt

(4.9)

We may turn ¥; into ( )Zj)s by virtue of the bound

>

Jeit

S H engy (i) (T; qx) (4.10)
k=1

/ X;(x) H 7 o (%) — H KO 1o (%) dx

whose proof is given at the end of this subsection. As the error in (4.10) is acceptable for

the estimate of Lemma 3.16, we have reduced the tree Lemma 3.16 to prove that

D /HX; Tiife| S Hengk(fk)(T ar) (4.11)

Jeit

uniformly over choices of unimodular coefficients {¢; : j € jr}, which is the core of the
argument and is left for the next subsection.

The final preliminary result is a Holder-type estimate for the vector-valued
extension of a classical trilinear paraproduct form. Such estimate is a particular case
of the main result of [11] and depends only on the UMD property of the spaces involved.
The proof is postponed to the end of this subsection.

Lemma 4.12. Let {p; : k = 1, 2,3} be a Hélder tuple of exponents with 1 < p; < oo
for all k = 1,2,3. Let X;, be UMD spaces with a trilinear contraction Hi:l X, — C. Let
g € LHR) NL®(R)) ® Xy, for k = 1,2, 3. Then,

3
/ > 6 (519)(5,98,99)| < [T 19w
Jjeir k=1

Proof of (4.10). This is analogous to [30, Lemma 7.3]. First of all, we bound the single-
scale pieces of (4.9). Relying on (3.17), we may find a Hoélder tuple p,, p,, p3 with g; <
Py < o0. If I € D;, we may pick P € T(j) and ¢ € X;, such that ¢'? 2 %; on I (simply pick
P € T(j) such that dist(I, I;) is minimal.) In the display below, we couple this with Hélder
inequality followed by Lemma 4.7 with I, = I5, ¥, = ¢, and the operators Sp, = {7

when P = P and Sp, = 0 otherwise. We obtain

3 3 3
/I Gp? [T 17 S [T 16276l < 11T ] enge o (T ap)-
k=1 k=1 k=1
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The left-hand side of (4.10) is then controlled by

ZZ/\ ~ (%) \Hm AR Hengk(kaT x> D1 - G2l G

L)
Jeir 1Dy ejt I€D;

(4.13)
Here, we use (2.3) and the fact that Eoit is a union of disjoint intervals of Z)j to obtain
the estimate

dist(x, 9Eq 1)\ V1!
X~ lEalT‘ ~\ ol '

leading to the following bound for the bracketed term in (4.13):

=

dist(x, 0Eqgi 1)\~ 2 iy
5Z:Z:/<#> dX§22 T#OEgi 1 STl =1, (4.14)

Jeit 1€D; Jjeit

having used (A.6) in the last step. Combining the last display with (4.13) yields exactly

(4.10). Here, the estimate right above (4.14) is obtained by writing |)Zj — ()Zj)3|()~(j)*%
|1—)?j||1+)~(j|()2j)% S II—XjI()Zj)% and observing that when x € E, 1, we have |1—)ZJ-|(5(J-)% <
- s —N+1 . S| 1
% = 1g,; | S (27 dist(x, 9Eq; 7)) , while when x € R\ Egi1, [1 — X;1(()2 S (x)? S
[ |

(2 dlst(X 0By 1) 2

Proof of Lemma 4.12.  Recall that m;;, the symbol of 7;,, is adapted and supported
in (Of)l, which is a dyadic interval of length 27 and such that 2%((21')l contains the
origin. Thus, m;, vanishes outside [§] < 270+2), The symbol ¥; of S; is supported on
270+D=1 < |g| < 270+2) Let g, € L' (R) N L®(R) be scalar functions. Then, Plancherel's
equality yields

|3 55.190(5:92)(595) = (0(91,9).3) (4.15)
jeit

where O is the bilinear Fourier multiplier operator

0(g,,9,)(x) = /R Rgﬁ(a)g;@z)m@l,sz)ez”i’“ﬁ*&) d¢, dg,,  x€R,

mE) &) = D ey (6 (E) W (—& — &)

Jeit

The support and smoothness conditions on m;i, ¥ imply that m satisfies the Coifman-

Meyer condition, and thus, O is a bilinear CZ operator. We may then use [11, Theorem
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1.1] to conclude that O extends to a bounded bilinear operator
IPI(R; X;) x IP2(R; X,) — LIP3 (R; X3).

As (4.15) continues to hold for g; € (L' R) NL®[R)) ® X}, the vector-valued bound of the
above display and duality complete the proof of the lemma. |

4.2 Proof of Lemma 3.16, estimate (4.11)

We keep using the local notation D; for the collection of all J-dyadic intervals of length
2%, By the condition (3.17), we may find a Hblder tuple p;, p,, p; With g < pj < co. To

apply Proposition 4.3, it is useful to keep in mind the equalities

/HX] kak—/H SpJr | Je€it

k=1 \PeT(j)

having called Sp,_ € Sp, the operator f — x, ij,kfk- Recall that A stands for the lacunary
components and B the non-lacunary components.
We first take care of the case where T, # & for some k € A. To do so, it is

convenient to introduce the polynomial cutoff

Jx— ) 100
(%) = <—K(IT) > , x e R.

The key idea is that up := cy7x;, € cXp, for all P € T. We then estimate the contribution
of the j = ji, x scale as follows: choosing ; € cX; with (y;)® > 1 onI foreach[ € D;,

[T < 32|11 (v 3 vt

IeD PeT())
<Dl ||L°°(I)H U D upTo,fi
IeD; PeT() 1Pk (R:X)
dist(Z, I7) 80
S Z< s > 1| H eng, (i) (T; qp) < || Hengk(kaT ar)
IeD; k=1

provided we have chosen a Hélder tuple p, with g, < p;, < oo and having used
Lemma 4.7 in the passage to the last line.

Replacing T by T\ (Ugeg Tinx), we may now assume that T, = @ for all k € 4,
so that ji, x & jy for all k € A. We handle the easy case where B = @. Applying part b of
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Proposition 4.3 to each f;, for each j € j;, we have

EZ/Ih”m—Z_/Hﬂ%m

JeT JET

For k = 1,2,3, let 03, = {aj,k 1 j € j7} be a sequence of ii.d. random variables that
take the values 1, —1 with equal probability. We denote the expectation with respect
to oy, by EX, Using [11, Lemma 4.1], Hélder's inequality, LP*-bounds for the X;-valued
randomized square function (as X is UMD, the space Rad(X}) is also UMD and the
randomized square function is a Rad(X;)-valued CZ operator, [23]) and subsequently

part a of Proposition 4.3, there holds

1
Pk

N

> [ s

JeiT

3
[T (= [ [ opesimuso }
k=1

jeit

3 3
S T IMfellze @y S [ enge o) (T ap),
k=1

k=1

which is the claim (4.11).
We turn to the harder case where #4 = 2. By symmetry, we may work with B =
{1}. We use Proposition 4.3 to bound the left-hand side of (4.11) by MAIN+ ERR; +ERR,,

where

3
MAIN := Ze/ # (D) [ %7 e
k=2

JE)T

3
ERR, => > /|XJ-:%J-,1(f1 — My, [] (ijﬁj,kfk‘xk'
k=2

jeit I€D;

ERR, =D > / (1= x| @ . ol ﬁ [CARE AP
k=2

Jejr 1€D;

the 2nd and 3rd of which are error terms.
We first handle the error terms: via Holder’s inequality with exponents p;, and

a combination of (4.5) for the X; with Lemma 4.7 for the X;, factors, k = 2,3, we achieve
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the estimates

3 3
ERR; S (H engy (fi) (T; Qk))z > /XIMJ' S (H engy (f) (T; qk))Z/Mj-
k=1 k=1

Jjeir I€D; Jjeir

Then, expanding out W (for the definition of I, see (A.11)), we have

S wmsE Y [artn-ph P s 32wk < =1, (4.16)
Jeit JeiT yedk; Jjeit

where we have used (A.10) in the last inequality. This shows that ERR; complies with
the right-hand side of (4.11). The 2nd error term is bounded proceeding as in the
proof of (4.10): namely, splitting the integral over with I € 9; and applying Hélder's
inequality (4.10) followed by the single-scale estimates with I, = I (4.6) for x;7; ; (I1,f})
and Lemma 4.7 for ()”(j)%y%j,kfk, k =1,2. The resulting estimate is

3
ERR, < [Tenau(oTan < | 2 > mf1-x | ., | < []enado a0,

k=1 jejr IeD; k=1

where the bracketed term has been bounded with the same procedure leading to (4.14)

above.
We move to the main term. Using part b of the proposition, we recognize that
3 3
MAIN = | > ¢; / G DS TS )| S [ ] IMfillrexy < [ ] engeo (T ar)
jeit j=1 k=1

having used Lemma 4.12 for the 1st bound and (4.4) for the 2nd. This completes the

proof of Lemma 3.16.

5 Proof of Proposition 4.3

In all cases below, the index k € {1, 2, 3} is fixed and we avoid mentioning it whenever
1
accordance with this policy, we will use the notation w(j) := (@/), for j € j; where @’ is

possible. For instance, we write g for g, X for X, and « for o), where o = 1 — In
the (at most) unique element of Q with sidelength 2%, We have also fixed the collection
{Sp, € Sp,, P € T} and will write below Sp, f' = (T, ,f for a fixed choice of ¢p € ¥}, and
mp € M, when P € T(j).

w
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5.1 Proof of Proposition 4.3, a and b parts: lacunary case

Referring to Remark 3.3, a consequence of k-lacunarity of T is that 0 = (¢1);, € @ () \2w(j)

whenever j # ji, . Thus, the Fourier transforms of the functions

M f = D Spf  J#Jnk (5.1)

PeT(j)

are supported in the disjoint intervals {¢ : 2/0+D-1 < |¢| < 270+2)} where the symbol of
S; is constant equal to one, cf. (4.2): this is because of the Fourier support of ¢, € ¥}, and
mp € M, for P € T(j). In the lacunary case, the definition of I1; is then very simple,

namely referring to (5.1)
M= > Mg,
Jeit\ink}
and the equality in b is immediate from the above considerations, while the estimate in

a for p = q; is immediate from the definition, as IT; is itself a tree operator. We now

prove the estimate

TS lemom;xy) < €NGk (T gy)

and a for the other values of p will follow by interpolation.
Fix a J-dyadic interval I. We first bound the contribution of the large scales: set
Tt ={P e T:£dp) > £(I)}. Then, if P € TT with €£(Ip) = 2V¢(I) and dist(Ip,I) ~ 2"¢(Ip),

v,n € N, the Poincaré inequality yields

Sp S — ]{(Spkf)

5], <77 i)
[Ip|a

1
osci(Snf) = 1| 1
LUTLX)

<

LALX)

1
|4 LX) ~

I
We write mp(§) == £(Ip)émp(§), so that
1LIp)V (Sp)lx = 16pTipf + Cp)VEp) T Ix = Xip (|30 T | x + | X5 T | )

= X1 (|SPk,lf|X + |Spk,2f|x)

for a suitable choice of X7, € X;, so that the domination of the last display holds. Observe

that with this choice Spk'u, u =1, 2, belong to the class Spk and are thus single-scale tree
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operators, whence

1

E ‘SP’C”HM(]RX) S eng (N ).

Using the bounds || xz, ;=) < 2%, we have proved that

oscy(Sp f) < 27 1eng, ()(T; @),

which is summable over P € T, that is, over v, n € N as claimed.

We move to handling the small scales, thatis, T = {P € T : £(Ip) < £(I)}. We
may partition T~ as the union of TO9=(PeT : IL,c3lland T " ={PeT : I, C
2" + DI\ (2" + DI} for n > 1. We may choose j; € X; so that the estimate

0S¢y Z SPkf =—7 Z 197 |l La®:x) 9n = Z )Z}Spkf (5.2)

PeT™ | q n>=0 PeT ™

holds. We now estimate each term appearing in the last summation over n. Fix P € T~
for a moment and notice that dist(Z, Ip) ~ 2"¢(I). Writing again Sp, f = {pT, f, define

E — 2100nx é‘Pl :S‘_;l;f = EI;Tmpkf

We claim that the function ¢, belongs to Xp,. Indeed, the decay condition (2.2) for ¢p is
easy to verify, with the additional 21%°" factor being allowed by virtue of the previously
observed separation between I,I,. The frequency support condition (2.1) for g“; derives
from the fact that the Fourier support of x; has an equal or smaller scale than the Fourier
support of ¢p. Then, we notice that T~" is a tree with top data (I",0) := (2™ + 11,0)

and contained in T, whence

— 1 _ 1
Ignllza@xy <271 | D Spf <2710 aeng, (F)(T; g) < 279" |I|9eng, (F)(T; @),

PeT™ ™ LA(R;X)

where the 2nd bound holds because the operator inside the norm is a tree operator.
Summation of the above bounds over n yields the required control for the left-hand side

of (5.2). This estimate completes the proof of a and b parts of the proposition.
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5.2 Proof of Proposition 4.3, a and ¢ parts: non-lacunary case

We keep the convention of writing g for gy, and X for Xj.

Let j € j7. In this proof, the sets ]:;'J the collections €2;, the intervals IJ’?,IJ.’ refer
to Section A.5 of the appendix, to which we send for a detailed definition. There is no
loss in generality with assuming that infj; = 0, this corresponds to the normalization
¢(I;) = 1. Define for x € Ej, j(x) = max{j € jy: x € E'j}. The scale 27®7 ig the smallest
spatial scale relevant for x. It is logical to choose 2/®)/ as the frequency scale for the

cutoff at x, motivating the definition of

Mf =15, TS = 15, Tof + 2 1S (5.3)
jz1

where the nestedness of E'J- and telescoping have been used to get the 2nd equality.
The construction of the actual phase-space projection operator IT; is made by suitably
modifying ﬁ;c and begins now.

Fix a scale j € jt and a connected component I = [x},x]] € €2;. The perturbation
of g; = IIij is made by adding and subtracting two auxiliary pieces at spatial scale
277, which kill the mean value of g;: details follow.

Recall from [30, Lemma 4.12] that If (resp. Ijr) are intervals of length 272¢(I)
whose right endpoint (resp. left endpoint) sits to the left of Xf (resp. to the right of
XIr) at a distance of 272¢(I). These intervals are well separated, see [30, Lemma 4.12] over
I € Q;,j € jr. Introduce bump functions qﬁfJ (resp. qb;j) adapted to and supported on If

(resp. Ijr) with normalization

/‘ﬁfi = /d);j =277

Decomposing 1;(x) = Hf (x) +HJ (x) = H(x —x}) — H(x — x}), where H stands for Heaviside

function, we introduce the X-valued coefficients
c =27 / HiS;f,  xe{t,r).
Lemma 5.4. Let] € Q; and € {¢,r}. We have the estimate

et jlx S engi (N (T; ). (5.5)
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Proof. To fix ideas, we work with « = ¢. Before we start, we recall that E'j, and
hence I, is a union of J-dyadic intervals of length 277: see Lemma A.7. Therefore, there
exists a J-dyadic interval I’ of length 277/ whose left endpoint coincides with x¢. Then,
Lemma A.8 yields the existence of P € T with I C 10I’ and 0 = (§1) € 3wp,; as k € B,
the latter fact is read from (3.6). In particular, this shows that there exists P € T with
I, C 10I'. This last fact will be of use later.

We then prove that there exists ¢ € ¥, such that

1
o7l € / 1£2()S;F (0] dx. 5.6)

Inequality (5.6) is proved in the same fashion as [30, Equation (65)]; we adjust the
details to our setup. Recall that S;isa smooth Littlewood-Paley projection with support
specified by (4.2). Let ¢ be a bump function whose Fourier transform is bounded by 1,
equals 1 on the support of S; and vanishes outside of 20-DJ < |g] < 27U+3) and let ® be

its antiderivative. Then,
cf; =27 / (Hf % $)S;f

As (H} * ¢)(-) = £®(- — x}), and the latter function belongs to ¥, the desired estimate
follows with ¢ .= c®(- — Xf).

We finally turn to the proof of (5.5), where the previously found P € T with I, C
10I" will play a role. As both I, I’ are J-dyadic, the case ¢(Ip) > ¢(I') is forbidden. Thus,
we are in either of the cases below. Suppose first that £(Ip) = ¢(I'). Then, the intervals I,
and I’ are comparable, so that ¢ € X;, and S;eM, by construction. Therefore, {S;isa

P
tree operator adapted to the k-lacunary tree (P, Ip, c(Qp)) and

6SiF| ) S eNGci (NUPY @ < eng (H(T; @). (5.7

1
|C§ lx < — N
J || LX)

Suppose instead that £(Ip) = 2~Jp < 2=J Then, by separation of scales property iii, it
must be jp > j+10. We already know that 0 € 3wp, , and the multiplier of S; vanishes at 0
and is supported on the interval w centered at 0 and of length 2705, Lemma 3.11 then

applies with I’ in place of I, x = ¢, T, = Sjand § = & = 0 whenever x € Xj, yielding

(5], o) S ENGou ik H(APY @) < engy (F)(T; ). 5.8

1
ek iy < — <
J |T’| L4(X)

In both cases, we have reached (5.5). This completes the proof. |
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5288 F. Di Plinio et al.

With Lemma 5.4 in hand, we are able to define the phase-space projection

operator: with reference to (5.3),

Mf =Tf =D D" D ¢t (5.9)

Jjejr 1€ xe{l,r}

5.2.1 Proof of Proposition 4.3, part a for k € B
It suffices by interpolation to prove estimate (4.4) for p = q together with the endpoint

||ka||LOO(R;)<) S eng, . (H(T; g). (5.10)

Proof of (5.10). First of all, by virtue of the separation properties of the support of the

¢;]. overI € Qj,j € jt we have recalled earlier, and of the 2nd bound in Lemma 5.4,

DI Y < eng (f)(T; ).

jejT Iey {1} LoOR:X)

Hence, it suffices to prove an L*° bound on I:Ivk Fix x € E‘O, and set j = j(x). By
construction of j(x), there is an interval I' C E'J of length 2=/ containing x, and by
construction of Iy, there is a tile P € T with I, C 10I’; see [30, Lemma 4.11]. For a suitable

choice of ¢ € Xy, we then have

ITf GOly S 16 TG S 1T 18 Tef lpage S nge(H(PY @) < enge(H(T; @), (5.11)

We have used Lemma 2.6 in the 2nd inequality and argued exactly like in (5.7) if £(Ip) =
£(I). However, in the case £(Ip) < £(I), in the appeal to Lemma 3.11, we must be a bit
more careful and take & € T’ such that & = 42702 instead of &£ = 0, due to T; being

+10)J

in general not vanishing at 0. This is no harm because E(wpk) > 20 , whence in both

cases & € 3wp, . This completes the proof of (5.10). |

Proof of (4.4) for p = g.  First of all, using the disjointness of I € ;,j € jr, we estimate
the LY(R; X)-norm of the part involving the ¢; j by

q

; 1
Z#QJ'TJJ ( sup sup |C;,j|X) S Irlaeng () (T; ),
jcit *xe{l,r} jejr
IEQj
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where the 1st factor is bounded directly by [30, Lemma 4.12] while the 2nd is (5.5) from

Lemma 5.4. We are then left with proving

||ﬁkf||gq(m;x) S IFlengg (T)(f; 2. (5.12)

To prove (5.12), we recall that the sets E'J- are decreasing in j and each is a union of
disjoint intervals I € L with ¢(I) = 2= [30, Lemma 4.10]. Thus, the sets E =1InN (E'j \
Ej+1),I € Ij are a disjoint cover of each EJ \Ej+1, and the latter sets are also pairwise
disjoint and cover the support of IT,f. Furthermore, we see from [30, Lemma 4.10] that
for each I € I;, we may find I' C E;\ E;,, withI' C I and £(I') = 277¢(I), hence |E;| > 2771

and

NI AR} (5.13)

jEjT IEIJ' jEjT IEI]'

As Ika(X) =T;f forx € E'j \E'j+1, the left-hand side of (5.12) is controlled by

q q
22 e T ey S 20 2 NG T Moy & € %1

jeit I€L; jeit I€l;

By virtue of the last display and of (5.13), it suffices to show that

1 Tif ey S Mlenge (T @)% Vjejr, Il

Fix such j,I. We now appeal to [30, Lemma 4.11] to find P € T with I, C 10I and the last
display follows by similar arguments as (5.11), completing the proof of (4.4). |

5.2.2 Proof of Proposition 4.3, part c

We begin the proof by using the single-scale estimate of Lemma 4.7. In fact, (4.6) follows
immediately from (4.5), (4.8), and the fact that W is uniformly bounded. So it remains to
prove (4.5). As usual, we prove the extremal cases. In fact, it suffices to prove the case

p = q, as the case p = co may then be recovered from Lemma 2.6.

Proof of (4.5) for p = q. In the proofs that follow, we use the local notation

SPkg = é‘IPTmPkg’ Og = Z SPkgl
PeT(jo)
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5290 F. Di Plinio et al.

where {7, € X;, = X;,(2N,§,C) and mp, € wak. Notice that O is a tree operator and thus
is bounded on LI(R; X}), but it is also pointwise bounded by maximal averages and thus
bounded on L*(R; X}).

Recall that IT; is defined in (5.9). The 1st step in the proof proper is to notice
that

O(f — Tf) = O(Tj, f — Tif),

leading to the key decomposition

T, f — T f =
Ip\g;, Tiof (5.14)
—Ipg, M f (5.15)
+ > Ip\g, > D et (5.16)

xe(lr) J<jo IeQj

= D 22 HSf ¢ 97 (5.17)

*G{Z,T‘} j>j0 IGQ]'

cf. [30, Equations (77)-(82)]. We now have to estimate the four contributions separately,
and, as in [30], distinguish the local case 5, DE'jO # @ from the complementary nonlocal
case: for clarity, we first present the local case, and at the end of the proof, we elaborate
on the sketch provided in [30, p. 295] and unify the two cases: see Remark 5.24 below.

We first estimate the contribution of g = (5.14) — (5.15) + (5.16). Using the
decay at scale ¢(I;) of the kernel of O together with the L* bounds (5.11), (5.10),
and (5.5),

1 o
”IIOO(IR\3109)”L£1(R;X,C) S ple 22 Jlj—Jol

<dist(IO, 0E)\ "
J<jo

ey > eng, (N(T; q), (5.18)

which is acceptable for (4.5). Further, if 157 g is nonzero, then I is close to the boundary
of E}O. The integral term in the right-hand side of (4.5) is O(1) and we may just aim for

the estimate
1035, DllLaw:xy) S |Io|‘1 ||0||Lq(ka)engk(f)(T Q). (5.19)

Although the O-norm appearing here is O(1), we choose to keep this constant in evidence

for later use.
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We begin the proof of (5.19). We argue separately for each summand of g. First
of all, we bound the contribution of (5.14). Appealing to [30, Lemma 4.11], we learn that
there exists P € T such that I, C 10I,. Hence, for suitable choice of ¢ € X} , arguing via

Lemma 3.11 as in the proof of (5.11),

1 1
||1310Tjof||Lq(R;)(k) = ||§10T]'0f||L¢Z(R;Xk) S Llaeng, (AP} @) < [Ijlaeng, (F)(T; q). (5.20)

This makes the contribution of (5.14) acceptable for (5.19). To control the contribution of
(5.15), we note that (R \E'J-O) N 3I, is the union of at most three intervals I; of length £(I;),
on which I f coincides with T} _,f. On each of these intervals, by the same argument
used for (5.20),

1
117, Tjo—1f larix,) < Hol7engi(H(T; q), (5.21)

which is acceptable. Finally, from the last claim of [30, Lemma 4.12], we gather that
If N 31-0 #+ & for at most O(1) intervals I € QJ- with j < j,. Therefore,

1 1
L2161 oz, < Hol? supley ;1 < ol 7engie(F)(T; @)
Jix

by (5.5), and we have proved (5.19). This finishes the control of terms (5.14) to (5.16).

To complete the proof of (4.5), we are left with estimating the small spatial scales
term (5.17). Using the triangle inequality and the definition of x; , it will suffice to prove
that for each fixed x € {¢,1},j > jy. I € QJ-, there holds

510 (x) 9= (i;({'(()))
I

1 1 —
11,06 ey < ol 7€N0(F)(T; ) / (2% |x — x3)71% dx,

As they will be kept fixed below, we have omitted » and j from the G; notation for
simplicity. Let n € N be the least integer such that 2", ﬁIJ.* # @&. A direct computation of

the right-hand side and the fact that x;, € X tells us that the above bound is equivalent

to the estimate

1 _U0) g
HIIOO(GI)”L‘I(R;Xk) S |Io|qengk(f)(T; q)2” 100 2 Jjg—100mn (5.22)
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The final stretch of the proof will be to establish (5.22). As the frequency support
of O is localized near 2/0, we gather that Ol(T;_,Hy)(S;f)] = 0. This means we may replace
G; by

Fy =Gy — (Tj_H)(SH) = (A — T;_DH{IS;f — ¢f ;971 ;.

As both G; and F; — G; have mean zero, F; also does. Letting ®; be the antiderivative of

F;, which vanishes at +00, we have
OF;(x) = 2700d,(x),
where

09 = 3 [ 02 emp, @506 de.

PeT(jo)

Note that £ > Z_Jjoémpk (&) belongs to wak, and let up be the Fourier transform of the
latter function. Let g be a scalar function and gy = (2°0/(- — c(Ip)))Ng. If P € T(j,),
lc(Iy) — cUp)| 2 nl(y) and x € I, we have

1 , N 1 ~
¢, @) [19] * [upl] (x) < W/ lup(y)l <2’°J(X —c(ly) — y)> lgyx —p)ldy S WM(QN)(X)
by virtue of the rapid decay of u, at scale 27JoJ Summing up over P € T(y), and thus

over n € N, we may thus estimate (5.22) by

117, 0D ey S 165 Prllzagesns

for a suitable choice of ¢; € X; . An estimate on |®;(x)|y compatible with the right-hand

side of (5.22) may be produced, cf. [30, p. 298], once we establish the pointwise bound
IF;(0)|x < engi(F)(T; @) (27 1x — x71)71%°. (5.23)

The last step toward (5.22), and therefore (4.5), is to prove (5.23). The contribution of
cf jqb; j is controlled by virtue of the decay of qﬁ; i and (5.5). We turn to controlling the
summand [(1 — Tj_l)HI*]ij. First, we recall that by construction of I € Qj, Ij*, and by [30,
Lemma 4.11], we may find a dyadic interval I with £(I') = 2= adjacent to one of the

endpoints of I, and P € T such that I, C 10I'. Pick x € X with decay parameter N (for
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instance). If £(Ip) = £(I), we argue as in (5.7). Otherwise, as in (5.8), we may appeal to
Lemma 3.11 for S = XSJ-, I' in place of I, § = & =0, so that

1
IxSif ey < — XSl < enge(H)UPY; @) < engy (H)(T; ).
|

I

As x(x) > (2%|x — x;.|)7Y, we have
J

1Sif ()] < (27 |x — x,;|>Nengk(f) T; Q).

Integrating repeatedly by parts the high frequency function [(1—T;_,)H], we may bound
it pointwise by factors of < (27|x — x;])~N-100 compensating the polynomial growth
of the last display and yielding an acceptable right-hand side for (5.23), which is finally
proved. The proof of (4.5) is finally complete. |

Remark 5.24 (The nonlocal case of (4.5)). The local/nonlocal cases can be unified by

introduction of the parameter
Z = least nonnegative integer such that I, £ Z¢(I)) N Ejo # 2.

Comparing with what we did to obtain (5.20), and to [30, Lemma 4.11], we learn that
there exists P € T such that I, C 10 - ZI,, whence {P} is a k-overlapping tree with top
data (10-ZI,, 7). Applying Lemma 3.11 with this top data yields a ZN loss in for example
estimates (5.20) and (5.21). However, as we are concerned with estimates for 1IOO(T]-0f —
M,f), we may replace O by the operator g — Og = x;, Og, where ¢, € X; (2N, $,C) and

¢, = 1;,- The separation between Ejo and I, yields that
”b”LQ(R;Xk) <z, (5.25)

and the same additional decay factor is gained in the kernel estimates for O. Replacing
O by O in (5.18) and (5.19) and taking (5.25) into account offsets the loss introduced in
(5.20) and (5.21).

6 Proof of Lemma 3.13

The 1st two paragraphs of this section are devoted to certain almost orthogonality

estimates in the Hilbert space case, respectively, for k-lacunary and k-overlapping trees.
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These are then extended to g-intermediate UMD spaces by interpolation, along the lines

of [18] in Subsection 6.3. The proof of Lemma 3.13 is given in the concluding subsection.

6.1 The L2-orthogonality estimates: k-lacunary trees

We begin with a definition. We say that a family of trees T € T is lac; k-strongly disjoint

with parameter 1 <@ < 27 if

i. each T is a k-lacunary tree;
ii. if T, T €T, T#T, then

PeT, P eT, twp) < lwp), 100wp, N 100@13;C 0 = Ip Nl =2.

The rationale behind this definition is that, if the consequence of the above implication
failed, the tri-tile P’ would qualify to be in a suitable completion of the tree T. In what
follows, we work with the parameter # = 1, as the general case 1 < ¢ < 2/ may
be handled by finite splitting. Tree operators associated to families of lac; k-strongly
disjoint trees give rise to an L? almost orthogonality estimate: this is well known, and
extends to the case of Hilbert space valued functions, as detailed in the next lemma.
This lemma is a transposition of [18, Proposition 6.1] to our context. It is convenient in
what follows to introduce the single-tile version of the energy parameters. To do so, for

each interval I and for each tri-tile P we introduce the functions

-10
= <%> , up = uy, (6.1)

and also define

Ifllpgg= sup || s

mpy eMpk

UL (6.2)
For uniformity, we gave the definitions above for a generic 1 < g < oco. However,
Lemma 2.6 shows the upper bound |fllpx o < Ifllpk1, and it follows that ||f||P,k,p ~0q
||f||P,k,q for all 1 < p,q < oo. Below, we will only use the value g = 2 in (6.2). Note the

trivial bounds

_1
||f||P,k,q < [Ip| 4@ ||up||q sup ||Tmpkf||L00(R;X) < “f”LOO(R;X)' (6.3)
mpkeMpk
1
sup [ISp fllzam:x) < Hpl?1fllp g q- (6.4)

SPk ESpk
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Lemma 6.5. Let X be a Hilbert space and T be a collection of lac; k-strongly disjoint
trees, and define T = |J{T : T € T}. There holds

1\ 3
2 2
H\/ I 1engjqcx (N (T; 2) S Il + | W llzoo o) [Z IITI] IIfllLe‘z(R;Xy (6.6)

02(TeT) TeT
€

Before entering the proof, we detail the almost orthogonality of the single-tile

operators within a k-lacunary tree.

Lemma 6.7. Let X be a Hilbert space and T be a k-lacunary tree. Then,

VIFenGiae ik (N(T:2) S D IIIIFIZ 5
PeT

Proof. By modulation invariance, it suffices to take care of the case & = 0. Choose a
tree operator St = > p.7 Sp, that nearly achieves the supremum in eng,q,(f)(T; 2), and
write Sp g = ;“PTmPk g. From the disjointness of the frequency supports, we have that,

referring to (4.1),
(SP,cf,Sp;cf) #0 = P,P € T()).

For n € Z, denote by P*" the unique (if it exists) tri-tile P’ € T(j) with I = I, + né(Ip).
Then, define

~ c — ~
CP = _P, SPkg = CPTmp g. (68)

Up 3
It is immediate to see that ;:1; € Yy, as multiplying by the correctly scaled polynomial ulp
does not change the frequency support neither significantly alters the rapid decay of ¢p,

hence '§Pk belongs to Sp, . Therefore,

I 1enG1acx (1) (T: 2% SISt 12y S 2 D 2 / Sp.fSpenf

J€jT PET() neZ

> > > / |Sp fIISpnf [uptipn

J€iT PET() neZ

S X T (ISp 1 + 155 Wi )

J€iT PET() neZ

T £2 2
S Se S Iza oy S D0 BlIF I3 20

PeT PeT
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and this proves the claimed inequality. We have used ||uptpinllo S (n)~19 to pass to the
2nd line and (6.4) in the last estimate. |

Proof of Lemma 6.5. Let us choose the scaling ||f|l;2g.x) = 1. From Lemma 6.7, we may

Si= D I,
PeT

in place of the left-hand side of (6.6). Then,

bound the quantity

S%~ > VipllIfllp k2

PeT

lup Tmpkf 22 (R;x)

having linearized the suprema in ||fllp, with a suitable choice mp € My, P € T.
From now on, as mp,_and k are fixed, we simply write T} in place of Tmpk' Defining the

X-valued function

vp = VIIpl(up)?Tpf,

we have the identity

V |IP|||upTPf||L2(R;X) = (T;Vp,f), PeT

and the pointwise estimate

VpX)x < up@)VIplllupTpflls S up(x) (6.9)
coming from Lemma 2.6 with R = (¢(Ip))~!, w = up, Tpf in place of f. These

considerations lead to the estimate

D I lpx2Teve (6.10)

PeT

2~ <Z ||f||p,k,2T;st,f> <

PeT

L2(R;X)

Define now

=
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Frequency support considerations applied to the inner products (Tpvp, Tp vp) then lead

to the chain of inequalities

2

= > > Wlpralfllp g2 (Tsve Tpvp)

L2(R;X) PeT P eT_(P)

+2> > Wfllpx2llfllp k2 (Tsve, Thvp) = S) +2S,. (6.11)
PeT P'eT(P)

D W llp g2 Tove

PeT

We first treat S;. Note that if P € P_(P), then P’ = P for some n € Z, see the line before
(6.8) for a definition. The decay of v, (6.9) and the kernel estimate for T} guarantee the

pointwise bound

ITpvplx < up, (6.12)
whence
(T3vp, Tpinvpen)| S 1M 710, nel.
Therefore, we control
$1.5 2 27 (IplIf W g + el f13on g2) S S (6.13)

PeP neZ

using the definition of S. We turn to S,. Notice that if P' € T_(P), then £Ip) < £(Ip).
Relying on (6.12) again,

dist(Ip, Ip) |\~ *°
— <1 , P eT_(P). 6.14
Z(IP) S Ip,up||1 <( ) ( )

|(T;Vpr T;;,VP/H § |Ip/| <
We claim that the intervals {Ip : P’ € T_(P)} are pairwise disjoint and do not intersect
Itp) where T(P) is the unique tree in T where P belongs. The argument is standard, see
for example [18, 30], but we reproduce it for completeness. Due to k-lacunarity of T(P),
we have T_(P) N T(P) = @. Therefore, the condition ii in the definition of the strongly
disjoint trees forces Ip N Itp, = @ for all P € T_(P). Furthermore, if P',P" € T_(P), it
follows that 1Oa)PI/c N lOa)P;c/ # @. If P/, P” belong to distinct trees T', T”, then condition ii
forces I, NI;» = @. If P/, P” belong to the same tree T', then k-lacunarity forces wp = wpy.
In both cases I N I;» = @. Using the bound (6.3), estimate (6.14), the trivial estimate

||11,P,up||1 < llupll; < pl, Cauchy-Schwarz, disjointness, and separation from Iy, of

220z AINr G uo Jasn (L|A) Ateqr SURIPSIAl O [00UDS AYISIOAIUN UCIBUIYSEAN Aq 61.62065/952S/L/2202/a101E/UIWI/Woo"dno"olwapede/:sdiy Wwoly papeojumod



5298 F. Di Plinio et al.

{Ip : P’ € T_(P)}, and we obtain

1
Sy SUflloe D W lprz X Mg uply < Iflloe D/ 1TolIlf I g2l gy tp

PeT PeT_(P) PeT

1

z 2 3
Sl Z|Ip|||f||%,k,2) (ZZulR\,Tupnl) Sllflloo(ZIITl) S; (6.15)
eT

TeT PeT TeT

we omitted some of the details, see for example [18, Proposition 6.1]. Summarizing (6.10),
(6.11), (6.13), and (6.15)

1
2

1
2
S2<.\/8,+25, < 52+||f||oo(ZIITI) S| .

TeT

which yields the claimed bound. The details can be read from [18, Proposition 6.1], hence

we omit them. [ |

6.2 The L2-orthogonality estimates: k-overlapping trees

We begin with some additional definitions related to the top data (I},&) of a k-
overlapping tree T. Recall the notation (3.8) for ¢1;, and denote

oris = [P Gt 2 or), or = @Dk -2 br, Eni) -

Consider a finitely overlapping cover of wr . by intervals {org (s 10 € N, 7 =
1,...,25}, with the properties that

e(a)T,k,((r,r),i)
E(a)—rlk)

— 2—0'—5 2—0‘ < diSt (a)T,k,((T,t),i' (gT)K) < 21—0‘

’ = VUGN,TZI,...,ZG.
E(wT,k)

The role of the parameter 7 is to refine the Whitney decomposition of wyj , so that the
10-dilates of the Whitney intervals stay in the half-line ££ > +(&7),.
We say that a family of trees T € T is ov; k-strongly disjoint of type e € {+, —} if

i. each T is a k-overlapping tree;
ii. ifT,TeT, T#T,thenforallo eN,r=1,...,2° there holds

10(’0T,k,(0',‘[),¢ N 10(’0T/,k,(0,'[),l # %] —_— IT ﬁIT/ = .
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The analogue of Lemma 6.16 in the overlapping setup is the following. In the statement,

we find convenient to denote Hy, the frequency restriction of f to the half-line
+§& > (61

Lemma 6.16. Let X be a Hilbert space and T be a collection of ov; k-strongly disjoint
trees of type +. There holds

1
1\ 3

2 2
Sz + | 1z @iy [Zuﬂ] 1y (6:17)

TeT

| VIEINE, o F o 2

£2(TeT)

The proof of Lemma 6.16 is similar to that of the lacunary case, with some
modifications. As it is nonstandard, we provide the complete argument below. For the
sake of definiteness, we work in the + case. Let us again fix the scaling [|f|l;2g.x) = 1

By linearizing the supremum in each |[Hy L f o1 k2, We realize we need to estimate

2
L2(R;X)

5= /Z Jusy Tt
TeT

for an extremizing choice of multiplier my € ]V[wTk whose support lies in the right half

of wr . For simplicity, we redefine

H Uy Tonef L2(R:X)

Ifllr = S

and note for future use that |f|lt < IIflls- Arguing as in the previous subsection, we
obtain that

S% ~ <Z ||f||TT,’;TvT,f> < 1D IflIr T vr , (6.18)
TeT TeT L2(R;X)
where the X-valued functions vt satisfy the bound

Using a smooth partition of unity subordinated to the cover {wrg ;)4 0 € N, 7 =

1,...,25} of the support of m, and the fact that mt vanishes at (§7);, we may then
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decompose
26
_ —0
TmT - z Z 2 TmT,a,I '
oceNrt=1

where the multiplier my , - is adapted to and supported on wr i ;) +- We will prove the

estimate

DN

Uy = | 22 Iflir T, v

TeT

$27 (S2 4 1If o (Z |IT|) S (6.20)

TeT

L2(R;X)

uniformly over o, v that combined with the triangle inequality and (6.18) returns (6.17)
via standard manipulations. As r does not play any role in the argument below and

takes 64 values, we fix a value and omit it from the notation. Squaring (6.20) gives

U2 =D W13 Ty, vrl3 +22 D7 W IIf Ty, v Ty, VT 6.21)

TeT TeT T eT(T)

where T(T) .= {T' € T : £(Iy) < ULy), 01k, + NOT |5+ 7 D). The 1st term in (6.21) is S S2,
as (6.19) and L?-boundedness tells us that ||TmTUVT||§ S .
We move to the 2nd term. Suppose T' € T(T). The O(2 7{(wy))-frequency

localization of T, , Ty, —and the fact that vy is localized on I7 entail

!
k k
(T, V0 TmT,’a vr)| S (Ugop Ur,) < g, Ugorlly-

We then notice that if T' € T(T), then wry, , C 10wyt , ,, which together with ii in the
definition of ov; k-strong disjointness of type + tell us that the intervals {I; : T € T(T)}

are pairwise disjoint. Proceeding as in (6.15), we then bound the 2nd term in (6.21) by

Flloo D WFT D0 Mg Ul < Ifllog D I I llttgo g Iy S 2“||f||oo(2 |IT|) S,

TeT TeT(T) TeT TeT
(6.22)

where we used pairwise disjointness of {I;7 : T' € T(T)} in the 1st step. Chaining (6.22)
with (6.21) yields the claimed bound for (6.20) and finishes the proof of Lemma 6.16.
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6.3 Transporting almost orthogonality to intermediate spaces

In the previous subsections, we have shown that the definitions (3.10) and (6.2) lead
to Hilbert space valued orthogonality estimates for families of strongly disjoint trees.
The point is that the definitions (3.10) and (6.2) are of maximal nature and involve more
general operators than the rank-1 projections f' — (f, ¢p )pp_of [18], namely operators
of the class Sp, . It is because of this additional generality that we had to reproduce,
with small changes, the classical TT* arguments of [18].

Now that our version of [18, Proposition 6.1], namely Lemma 6.5 is in place, the
interpolation arguments of [18, Section 7] may be perused mutatis mutandis, leading to

the following almost orthogonality estimate for interpolation spaces.

Proposition 6.23. Let2 <p < oo and X = [¥, ¥,]2 be the complex interpolation space
p
of a UMD space Y, and a Hilbert space Y. Then, for all 0 < « < 1, the inequality

1 11—«

D
So I o + [ I o) [Z |IT|} 1 sy

1
| 717 englagc () (T: P)

¢P(TeT) =
(6.24)
all collections T of lac; k-strongly disjoint trees while the inequality
l1-a
1 2 o
L e e LA > 1 sy (625
€

holds uniformly over all collections T of ov; k-strongly disjoint trees of type =+.

Proof. We first prove (6.24). The 1st step of the proof consists of deducing the case
p = 2 of (6.24) from Lemma 6.5. This is accomplished following step by step the proof
of [18, Proposition 6.6]. The 2nd step consists in the deduction of an endpoint at p = oo,

which is
NGk )T 9| rery S Il (6.26)

having denoted

I hacie,. = sup [ Mod_,Srf| NGk Ei0 = U If lacyr

BMO(R;X) ' Tep
T’ k—lacunary
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where Modg stands for modulation by &, and as usual, the 1st supremum is taken over
all possible choices of type k tree operators S;. The estimate (6.26) is an immediate

consequence of the uniform estimate for demodulated tree operators
Mod _ ., StMod ;). : L¥(R; X) — BMO(R; X),

which holds by virtue of the fact that each operator Mod_ ) StMod ;. is a Calderén-

Zygmund operator. Finally, the proof of the proposition is obtained by complex interpo-

lation of the case g = 2 of (6.24) with (6.26). Details are given in [18, Proposition 7.3].
The proof of (6.25) is similar, the only difference being the endpoint inequality

T 2 NowiT sl oo remy S I e iy (6.27)

where, in analogy with (3.9),

Igllor v, == su HMod, S H :
lovTkx SEStfk &r°9 BMO(R; X)

The bound (6.27) is easily established: if S € S

is a Calderon-Zygmund operator, so that

tr, the composition Mod_ ., SHy . Mod

H Mod._ er), SHr +f HBMO(R;X) S HMOd*(ST)kf HLOO(]R;X) = Wl
as claimed. The proof of Proposition 6.23 is thus complete. |

6.4 The proof proper of Lemma 3.13

The proof is iterative in nature. One additional remark necessary here is that the
selected trees come from a greedy selection process, as described in Section A.5 of the
appendix, and therefore satisfy properties gl to g3 appearing in Subsection 3.1.

For the proof, write p = gy, A = eng,(f)(P;p), and let « € (0,1) be chosen so
that ¢ = p/a. We start by excising high k-lacunary energies. Performing an iterative

algorithm analogous to [29, Lemma 7.7], we decompose

]P’ — ]P)Iow,lac U Phi,lac,
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where
low,lac A
€NGjack (NE"p) < 5 (6.28)
and P"aC — (T : T e T} where T2 is a family of greedily, in the sense of
Subsection A.5 of the appendix, selected trees with the following property: for each

T, there exists a k-lacunary tree T' C T with same top data as T, and the family

T hilac — (T7. T ¢ Thilacy consists of lac; k-strongly disjoint trees with

engiac,x (N (T p) 2 A

Using the 1st part of Proposition 6.23 in the 2nd inequality,

1 p
3P Il < HI eng, (f)(T: _
Tzh;‘m'ﬂ” el enGe (TP, - v
eT"™
11—«
(1-a)
S @y + I e | D0 1] IF 15w
TeThi,Iac
11—«
SIFI+{ D0 Iml] IR (6.29)

TeThi,Iac

Dividing into cases depending on whether the |F| summand in the last line is larger or

not than the |F|* one,

> IRl Smax{(a P, 2" Y F| S ATYF. (6.30)

TEThi’IaC

In the last comparison, we have used that g > p and

A < supinf M(|f[y) S 1,
peP Ir

a consequence of Lemma 3.12.
We then excise from PI°¥!a the high overlapping energies. As this piece is less
standard, we produce an explicit iterative algorithm, which is in fact the chaining of

two subsequent similar iterative procedures, one for each type of k-overlapping tree.
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First, we run the following greedy selection algorithm:

INIT. [PStC .— plowlac phiov,+ _ o p"hiov,+ _ 5.
wHILE the collection of k-overlapping trees (T',I,&) with T ¢ PS® and the property
that

A
1E7 fllovr kp > 4 (6.31)

is non-empty choose within such collection a k-overlapping tree (T',I,&)

with the property that
+&, is maximal.

Then, let T be the maximal, with respect to inclusion, tree contained in PS®
with the same top data (I,£) as T'. At the end of this proof, we will refer to T
as the completion of the tree T'. Then, set

pste ._ pstc \T phiov+ ._ phiov+ T T hiov+ . plhiov+ {T/}.
(6.32)
When the algorithm terminates, set PI°%+ := PS®, Subsequently, perform again the above

iterative algorithm, replacing the initialization step by
rl. pstc .— plow+ wphiov,— _ o p'hiov,— _

and replacing + by — in (6.31) to (6.32). Once this 2nd algorithm has terminated, we
finally set

Plow — Pstc' T — Thi,lac U Thi,ov,+ U Thi,ov,—.

We notice that in view of the last two iterative algorithms, if (T',1,£) is a k-overlapping
tree with T' C P!°%, it must be

”f”OV,‘T/,k,p < ”HT’,+f||0v;T’,k,p + ||HT’,~f”0V;T’,k,p < +

’

A
2

IS

A
4
where the 2nd inequality holds because the algorithms terminated without T’ being

selected in either. Therefore,

enge, 1 () (P p) <

’

N >

and, also in view of (6.28) and the inclusion PI°¥ ¢ PloWla¢ the small energy estimate
on P'%%; (3.14) is proved. We will show at the end of the proof that the families T Mo+
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are of ov; k-strongly disjoint of type +. The estimate on the sum of the tree tops for
Thi.oV.+ is proved analogously to what we did in (6.29) but appealing to the 2nd part of
Proposition 6.23 instead. This consideration, together with the estimate (6.30), yields
the counting function bound (3.15).

We prove the claim that the families T'"%* thus selected are ov; k-strongly
disjoint of type +. For the sake of definiteness, we work in the + case and for simplicity
write T = T+ Suppose T,T' € T are such that the intersection 10wy (4 1)+ N
1007 k (0,0),+ 7 D- We need to show that It NIy = &.

6.4.1 Case L(IT) = £(Ip)

In this case, the assumption 10wy 5 1)+ N 1007 g ooy 4 # @ yields [(Ep)g — Gl S
20¢(wy ) = 20¢(wy §). Suppose by contradiction It N Iy # @. In this case, by dyadicity
It = I;. By symmetry suppose that T has been selected first. As trees are non-empty,
we may find P’ € T' such that I, C It = I and (§1); € 3wy ;. The latter property and
e(wp;c) > {(w7 )) implies that (§1); € a)_P]/C for all k. Therefore, the tri-tile P’ qualifies to be

in the completion of T and hence was not available when T’ was selected. Contradiction.

6.4.2 Case L(IT) > £(Ip)

First we prove by contradiction that (£7), > (&p);, so that T must have been
selected before T’ - this claim is best proved by picture. Suppose (67); < (é1), then
sup 1007 i 504 < EPi + 277 (wry) while inf 100y ;. ;o)1 = Ep)yp + 27 Moy p),
which is a contradiction, as €(wy ) > ZJE(a)T,k) due to J-dyadicity. Now, assume again
for contradiction purposes that It N I+ # @. We may then find P’ € T' such that I, C Iy
and (1) € 3oy k. The latter property and top) = Lot k) = [Er)— (E7)k]/20 imply that
(1) € @p, for all k. Again, we have showed that P’ qualified to be in the completion of T
and hence was not available when T’ was selected. Contradiction. This case completes
the proof of ov; k-strong disjointness of type + for the families T'hiov.E and thus the

proof of Lemma 3.13.

7 Proof of Lemma 3.12
7.1 Notation

Throughout this proof, if I is a J-dyadic interval, we write IV = I + v¢(I) for v € Z to

denote the v-th translate of I. Further, we introduce the local notation

_ 100
(%) = <XT;)(I)> , xeR. (7.1)
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The polynomial y; will be used to apply the so-called localization trick. As we
perform this a few times in the proof, we isolate the related notation here. If T is a k-
lacunary tree and St a tree operator of the order appearing in the definition of (3.10),

we write

§rg = ngkg, S'pk.Q = Y Sp,9- (7.2)
PeT

It is immediate to verify that S'Pk € Sp, for all P € T, so that St is also a tree operator
albeit of a slightly different order. This difference is inconsequential for our analysis

and we do not keep track of it in the notation.

The overlapping term

We first deal with the overlapping part of the energy, which is much easier. Let T ¢ P be
a k-overlapping tree with top data (I, &7) extremizing engg,., (f)(P; @) and

¢ eXp, meM, CM,.,

be the corresponding data extremizing |f |7 4- BY the rapid decay of ¢ at scale ¢(Iy)

1E T 0 .
— D < sup 271 |IF % Kl oy (7.3)

|I7|4 o>0

where, locally, F = |f|y and K stands for the inverse Fourier transform of m. From the

localization of m, |K| <

—L_ sothatifx e 29I, we have
~ |ty

Fx|K|(x) <sup27%" inf MF(y) < inf MF(y) < 2° inf MF(y).
T Y€BoTo1p) (X) YEB () (%) yelr

Combining the last display with (7.3),

T
engoux NP @) < M < inf MF < inf MF, (7.4)
I |4 i IP

where we used that T contains at least one tri-tile P, and I, C It. This completes the

handling of the overlapping part of the energy.
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7.3 The lacunary term

It remains to estimate the lacunary component. The proof strategy is an adaptation of
[18, Section 9]: indeed, with (7.4) at hand, the bound of Lemma 3.12 is an immediate

consequence of the estimate (7.5) below. Having fixed a k-lacunary tree T, there holds

1 .
IStf | Laginy Sq MEFIT, A= sup infM(fly), I={:PeT), 1<q<oco. (75

The estimate is uniform over tree operators Sy.
By modulation invariance of (7.5), we may reduce to treating the case & = 0.

Then, estimate (7.5) will be obtained as a consequence of the next lemma.

Lemma 7.6. Let T be a k-lacunary tree with & = 0, St be a tree operator and X be the
same as in (7.5). For each J-dyadic interval K C R, there exists a constant ay with the

property that

11(Stf = ar) | oo @y S MK (7.7)
with bound independent of K, St and T. In particular, if £(K) > £(I7), we may take ax = 0.

We use Lemma 7.6 to finish the proof of (7.5). Fix a tree operator Sy. Then,

referring to (7.2),

(7.8)

ISt o = |72 Sef

< -100 H i
LAR:X) ™ ZEZ:(V) IIT+ Stf LIRX)
A4

But, Lemma 7.6 applied to T together with the John-Strémberg inequality yields the two

estimates

H 11T+VS~Tf S Mgl ||§Tf||BM0(R;X) Sh

LIoOR;X) ™

which together with the John-Nirenberg inequality tell us that

1
< MILple. (7.9)
LI(R;X)

|1p+$f

A combination of (7.9) and (7.8) finally yields (7.5).
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Proof of Lemma 7.6. We fix a tree operator and use the local notation

Stf =D Sif,

Iel

where S; = Sp, € Sp, for the unique tri-tile P € T with I, =I.
We begin the proof with the definition of the constant a. This constant comes

from the large-scale contribution on K, that is, the intervals
Tow =T € T:£() > £L(K)}.

Forn € N, let K™ be the n-th J-dyadic parent of K. Then, if I € 7}, it must be I = K™+

for some n € N, v € Z. We define

ag = > > Sgwf(cK)), (7.10)

n>1veZz

where we have simply set Sgmv = 0if KW+ ¢ 1, Clearly, the 2nd claim now follows
from the 1st, as I;,,, is empty, whence ay is zero, when ¢(K) > £(Iy).
We continue with the proof of (7.7). We claim that

g D> Sk (€(K)) = Sgam+vf (X)] x S A (7.11)

n>1veZ

Indeed, denoting by F = |f|y, by u,, the kernel of Txw+ and by x,, = xgm+ for
simplicity, and using the kernel estimates for u, , and the extra decay in v, we have for

xeK

c(K)
IS+ f (C(K)) — Sgmvf X)| < | X v (X) = X v (CED) | (F Iun,VI(X))+/ Fx|Du, | (z) dz

< (v)710027" inf MF < (v)~100277),
KmW+v
which is summable over v, n in (7.11). The last estimate follows from the membership of
KWtV io 7.
We now come to the small scales. We first deal with the contribution of the
intervals

ThEN e TieM =2"®),ICK™), n=0veZ |v|>1.
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Notice that this excludes the intervals 7M8h — {I € T :I c 3K}, which will be handled

as the main term. The I lrlllﬁh are tail terms: in fact, with the same notations as before, if
xeKandIle I,Illll‘%h

GO (F % [ty |(0) S (w2710 D" 27N F) sy gt oy (7.12)
t>0

As, for x € K,

(F) lx—2t+10(D) x+2t+10(1)]

(40:9 .
. rre (F) 210005 x210veky) < (V2™ infy  MF(x)  25H1e(D) < ve(K)
inf,_; MF(x) 210D > ve(K),

we obtain by summation of (7.12) that

IKZZ Z Sif | x S A (7.13)

n>0 |v|>2 Iefgiéh

We are left to estimate the contribution of 7™M The union of the intervals 7M8P is
contained in 3K. By possibly splitting 7M8" into three collections and replacing I € 7782
with the corresponding smoothing interval from one of three shifted dyadic grids, so
that the union is still contained in 18K, we can achieve the property that if I,L € rhigh
andI C L, then 3I C L.

Let now L € £ be the collection of those L € 778 that are maximal with respect
to inclusion and 7(L) = {I € 780 . T C L}. First, we remove the tops. It is immediate to
bound

DS g S 2 1L inf MF < A|K]. (7.14)
LeL LeL

We estimate one more tail term. Forn > 1, let 7*(L) = {I € I(L) : £(I) = 27"¢(L)}. For
each I € 7™(L), let z; be the least nonnegative integer z such that (I £ z¢(I)) N (R\ L) # @.

As 3I C L, we have z; > 1. Furthermore, for each integer z > 1, there are at most two
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intervals I € 7™ (L) with z; = z. As for x € R\ L we have dist(x,I) > ¢(I), there holds

>—100

. 1 ) —99
1 OIS F(x) o < <d1st(x,I) su / F< <dlst(X,I)> inf MF
IR\L( )| If( )|X ~ 126)) S>€B) |BS(X)| ~ L) I

~ Bs(x)

~\ T

< <dist(x,I) >*9° 2%

Integrating over R \ L the last display for each I-summand, we have

> > s i SA 2 2 A MISA Y > 72 S AL,

n>1J1el™(L) n>171e1™(L) n>1z>1

whence

Z Z H Ip\ Sif

LeLIeI(L)

SA L] S AK]. 7.15
A S %' | S HK] (7.15)

We are left to estimate the main term. Using disjointness of the supports of the

summands below
D1, >SS =D > sf : (7.16)

LeL IeI(L) Loy LeL|Ier@) Lo (R:X)

To estimate each summand on the right-hand side of the last display, we use the

localization trick. Referring to (7.1), set S;g := S;(y,.9). We then have

D2 s => 1> S0

LeL ||IeI(L) LLo(R:X) LeL ||IeI(L) L1 (R:X)

I i
Lel

< D ILIinf MF < AK]| (7.17)
1 . ~Y ~J
LI(R;X) Ie L

as each S; € S, where P € T is the unique tri-tile with I, = I, and therefore, each L-th
summand on the right-hand side of the 1st line is a Calder6n-Zygmund operator. We
achieve (7.7) by putting together (7.10), (7.11), (7.13), (7.14), (7.15), (7.16), and (7.17). The

proof of the lemma is then complete. |
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Appendix A. Details on the Space-Frequency Analysis of (1.1)

In this appendix, we collect a few well-known procedures and results of space-
frequency analysis that we have used throughout the article. The frequency discretiza-
tion of (1.3) presented in Subsection A.1 is classical and reflects the treatment of [29]
and its expanded version [35]. In the subsequent paragraphs, we describe explicitly the
approximate order relations, borrowed from [29], characterizing the rank-1 collections
of tri-tiles defined in Subsection 2.3, and explain the spatial discretization leading to
the model sums (2.10). The notion of tree given in Subsection 3.1 is different from that
of [29]: in Subsection A.4, we explain how the k-trees in [29] fit into our definition and
also prove the lacunarity claim (3.5). Finally, in Subsection A.5 we develop, in parallel
with the treatment in [30], the properties gl to g3 of greedily selected trees, we have

used to construct phase-space projections.

A.1 Frequency discretization

Recall that " = I' N g+ is the singular line of the multiplier m satisfying (1.3). We may
extend m from I' \ I to all of R3 \ I'"” so that

sup (dist€,IM)%|8,m®&)| <, 1. (A.1)
EcR3\I

For j € Z, let D; be the collection of cubes in R® whose sides have length 2/ and whose
centers lie on the lattice 271073, and let D = Ujez Dj- Let Q C D be a Whitney cover of
R3\ I, namely Q € Q if

QeD, dist(Q,I') ~ K(Q), (A.2)

where K is a large constant to be chosen later and the hidden constants in ~ are
absolute. As {%O : Q € Q} is a finitely overlapping Whitney cover of R® \ I/, we may

decompose
m=3ma
where each m, is supported on % and such that (A.1) holds for m = m,. Hence, we have

Ap(Frifaifs) = D Ay (Fiifarfa)-

QeQ

By expanding each m, into its triple Fourier series on Q = Q; x Q, x Q5 and using the

rapid decay of its Fourier coefficients originating from (A.1), we learn that A,, belongs
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to the convex hull of forms

3
A fof) = /R . (Hﬁ@k)mak@m) dg (A.3)
k=1

QeQ

with mq, € Mak, k =1,2,3. We now define P, as the collection of all tri-tiles P whose
frequency cube Qp € Q and whose spatial interval I, is an interval from the standard
dyadic grid; of course £(Ip) is constrained to be reciprocal to the sidelength of Qp. The

next paragraph clarifies the rank properties of P;.

A.2 Order relations

We introduce a few approximate order relations between tiles. If ¢, ¢ are tiles, and K is

the constant appearing in (A.2):

rl. 7 <tifI, CI, and w; C 5w,;
2. t<tifr<tort=t
r3. tStifI C I, and o; C Kow,;

r4. t <'tif ¢ <t butitis nottrue thatt <t.

To shed light on r4, we remark that whenever ¢ <’ ¢, necessarily 3w; N 3w, = @. We
find useful to induce through rl to r4 similar relations on tri-tiles P € P; as follows. If
pa,pb ¢ P, and k=1, 2, 3, we say that

r5. PP <, P*if P? < PY,

r6. PP <, PAif Pb < P,

r7. PP <) Paif Pb </ Pa.
Then, [29, Lemma 6.2] may be summarized in the following two properties of P,. Firstly,

whenever P?, P ¢ P,

r8. dist(Qp, T) < 20(Qp);
r9. pb <y P*forsomeke{l,2,3 = pb Se Pforalle =1,2,3.

If in addition £(Ips) < 2_J£(Ipa), we have
rlo. P <y P*forsomeke{1,2,3} = pb <, P*forallk € {1,2,3} \k

provided K is chosen sufficiently large depending on A4 from (1.2) and J is chosen such
that 27 > K19,
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A.3 Spatial discretization

Following [30, Section 3], and referring to (2.4) for the definitions of X1p» We decompose

any given form A appearing in (A.3) as

3
A fof) =3 2 [ Tl 00T mgfit dx
k=1

QeQ PePy
Qp=Q

The discussion in Subsection A.2 shows that P; may be decomposed into 0(2%) rank-1

collections as above and ultimately reduces the proof of estimates for A, from (1.1) to

corresponding bounds for the model sums (2.10).

A.4 Trees

Let us fix a rank-1 collection P. We have specified our notion of tree T in Subsection 3.1.
Our definition of tree is less restrictive than the corresponding notion of k-tree in [29,
Section 7]. The aim of this subsection is to expound this relationship and subsequently
to prove the claim leading to Remark 3.4.

First of all, let k = 1, 2, 3. We quote from [29] that a k-tree T C P with top data the
tri-tile Py € P is a collection of tri-tiles satisfying P <, P;. We learn right away from r9
that P S, Py for all « = 1,2, 3. In particular, OPT C KQp for all P € T and CKOPT NI £g
because of assumption a. of rank-1 collections and (A.2). Therefore, letting I+ = Ip,

&r € "N CKQp,, we see at once that
ICl, (§p,cwp VYPeT k=123

as @p, contains the dilate K*wp . Hence, T is a tree with top data (I1, &) according to the
definition on Subsection 3.1.

In the same spirit, we move to the verification of Remark 3.4 by construction of
a suitable splitting (3.5).

Let T3y ={P € T: (§7); € 3wp }. Then, for any P, P’ € T, 5, we have 3wp, N3wp, #
2. If B, B’ are elements of {2wp, : P € Ty 4}, take P,P' € T, 4, with g = 2wp,, p’ = 2wp,
and Uwp,) < Z(wp;c). By g1, we must have Uwp,) < 2_J£(wpl/€), and the fact that (§7); €
3wp, N 3wp, forces 3wp C Swp, . Let I” be the unique J-dyadic interval with £(I"”) = £(Ip)
and I” D I, and P” be the unique tri-tile in P; with Qp, = Qp and I, = I. The above
discussion shows that P’ <; P”. Finally, by r10, we learn that that P’ </, P”. In particular,
= wpy ¢ Swp, which by virtue of {(wp,) < 2‘J£(wpé) entails $ N g’ = @. Thus, (3.2)
holds true for T = T, 5, and k = 2. An identical argument verifies (3.2) for T = T, 5, and
k=3.

CI)PZ

220z AINr G uo Jasn (L|A) Ateqr SURIPSIAl O [00UDS AYISIOAIUN UCIBUIYSEAN Aq 61.62065/952S/L/2202/a101E/UIWI/Woo"dno"olwapede/:sdiy Wwoly papeojumod



5314 F. Di Plinio et al.

We now set T':= T\ T}, 3, and define T, 3y = {P € T': (é7), € 3wp,}. Repeating the
argument for T, 3 shows that T, 5, enjoys (3.2) for k = 1,3. We then set T" := T\ T 5,
and Ty; o) = {P € T" : (§7)3 € 3wp,}. Once again, Ty, 5, enjoys (3.2) for k = 1,2. We are left
with checking that T(; , 3, :== T"\ T; 3, enjoys (3.2) for k = 1,2, 3. By construction,

Dk €@p \3wp,  Vk=1,2,3PeT,s,
which yields

In particular, 2wp, C {2_1£(wpk) <|E—=EpPil < KGE(ka)}, and gl and separation of scales
by 27 > K10 leads to (3.2) for T = T(123 and k = 1,2,3. This completes the verification
of Remark 3.4.

A.5 Geometry of trees

In this subsection, we record some results on the geometry of trees described in [30,
Section 4] that we have repeately used. We begin with the definition of maximal tree
and of greedy selection process.

Given a top data (I, &), we call
T=TU&P) ={PeP:I,Cl & cwp, Vk=1,2,3}

is the maximal tree in P with top data (I,£). Note that if T" C P has top data (I,£), then
satisfies T' ¢ T{, &, P).

If P is a finite subset of a collection of rank 1 tri-tiles P; as specified in (2.10), a
selection process consists of choosing a tree T, from PP at step 1, and for j > 1, choosing

atree T;, ; from P\ U]z;=1 T,. We say that the selection process is greedy if at each step

j+1 .
J, the selected tree Tj is the maximal tree in P\ Uju;ll T, for some top data (I, ), namely
Tj =T{I,&,P\ U]u;ll T,). Note that the selection procedures used in Subsection 6.4 for

the proof of Lemma 3.13 are greedy.

Lemma A.4. [30, Lemma 4.4] Suppose that T is a tree constructed during a greedy
selection process. Then, property gl holds. That is, the frequency localization sets Q1 =
{Qp : P € T} are such that

Q,Q €Qq, Q) =¢Q) = a=Q
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Proof. We recall the notation T(j) = {P € T : £(Qp) = 277}, We have that
27 < t@p,) <K°27 < 20"V v k=1,2,3 VP e T().

As the intervals @p_come from a J-separated grid, £(op,) is constant as P € T(j) varies.
As (&1) € a)_Pkfor all P € T(j), this means that wp, = a)_P;vfor all P, P’ € T(j). As the intervals
wp,, P € T(j) are 20+ 10 separated and @p, C K8wp, C 27wp,, we learn that wp, = wp,
for all P,P' € T(j) and k = 1,2,3. That is, Qp = Qp for all P,P’ € T(j), which was our

claim. [ |

Lemma A.5. [30, Lemma 4.7] Suppose that T is a tree constructed during a greedy

selection process. Then, property g2 holds, that is, the spatial localization sets
Egr=|Jp:PeT,0p=0}, Qec0r

satisfy
Q,Q € Qr, 6(Q) < £(Q) = Ea1 D Eq .

Proof. By Lemma A.4, we may clearly assume ¢(Q) < £(Q’). We argue by contradiction.
Suppose that there exists P’ € T with Qp = Q" and I, ¢ Ej 1. Pick any P € T with Qp = Q.
Let P” be the unique tri-tile with Qp = Qp» and I, C Ip.. By dyadicity, €(Ip) < £(I7) and
the fact that I, C Ip, N I3, we have I, C It, which, together with Qp = Qp/, qualifies P” to
be in the maximal tree with top data (I, &7). This means that P’ was selected in a tree
T” with top data (Iy7, £&7») at an earlier stage than T. However, I, C It», and we also have
@pr, = wp C w_P;c, for all k, as ®p,, Wp,_ are intervals from a dyadic grid both containing
(7)%- Therefore, P’ qualified to be in the maximal tree with top data (I, &+) and would

not have been available at the time of T being selected. Contradiction. |

A consequence of the nesting property of Lemma A.5 is the following estimate:
if T is a tree constructed during a greedy selection process and @’ is the unique Q € Qr
with £(Q) = 27,

Z 27 T#3Eq 1+ < Il (A.6)
jeit
The proof (as well as the statement, in fact) is identical to that of [30, Lemma 4.8], and for

this reason, we omit it. We continue with further notation to define a suitable smoothed
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out version of the sets E, 1. Let T be a tree as defined in Subsection 3.1. Denote by It the

collection of J-dyadic intervals contained in I;; with the following properties:

(1) 3I does not contain any I, with P € T and
(2) the J-dyadic parent of I fails (1).

Define E'J- =UTel;: L) < 2-77y. Obviously Ej+1 C E'J
In the lemmata below, we also assume that T is a tree that has been constructed
during a greedy selection process. As the proofs involve the spatial components only,

they may be read word by word from the indicated reference and we do not repeat them.

Lemma A.7. [30, Lemma 4.10] Any two neighboring intervals in It differ by at most a
factor 27 in length. Further, the set E'J is a union of dyadic intervals of length 2~/ and

contains Eg; 1 if j € j.

Lemma A.8. [30, Lemma 4.11] If I, is a J-dyadic interval of length 2~J%o such that
3N Ejo # 0, then there is a tri-tile P € T with |Ip| < |I| such that I, C 10I,.

Lemma A.9. [30, Lemma 4.12] Let T be any tree. For each j € jr, let $2; be the collection

of connected components of ]:3] Then, there holds

> 27k, < ). (A.10)

Jeit

For each I € Qj, let Xf and x; denote the left and right endpoints of I, and let IJ‘? and IJ.r

denote the intervals

If = (xf — 2707 xf = 27078, o= (k] + 27072 x4 2707,

Then, the intervals If are disjoint as j varies in the integers with 2=% < |I;| and I varies
in QJ-. Moreover, if If is an interval in the above collection, then the distance to the next

interval I’f/ is at least 2770*2) Similar statements hold for the Ijr.

We conclude this appendix with the definition of x;, which appears first in

Proposition 4.3. For a fixed tree T, after construction of the sets ]:L'J-, set

jj(x) = 2700 X g g 9T | — )70, (A.11)
j/ZO yEanl

The estimate involving 3 [ 1; is proved in (4.16).
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