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Abstract—Most existing deep neural networks are static, which means they can only perform inference at a fixed complexity. But the
resource budget can vary substantially across different devices. Even on a single device, the affordable budget can change with
different scenarios, and repeatedly training networks for each required budget would be incredibly expensive. Therefore, in this work,
we propose a general method called MutualNet to train a single network that can run at a diverse set of resource constraints. Our
method trains a cohort of model configurations with various network widths and input resolutions. This mutual learning scheme not only
allows the model to run at different width-resolution configurations but also transfers the unique knowledge among these
configurations, helping the model to learn stronger representations overall. MutualNet is a general training methodology that can be
applied to various network structures (e.g., 2D networks: MobileNets, ResNet, 3D networks: SlowFast, X3D) and various tasks (e.g.,
image classification, object detection, segmentation, and action recognition), and is demonstrated to achieve consistent improvements
on a variety of datasets. Since we only train the model once, it also greatly reduces the training cost compared to independently
training several models. Surprisingly, MutualNet can also be used to significantly boost the performance of a single network, if dynamic
resource constraints are not a concern. In summary, MutualNet is a unified method for both static and adaptive, 2D and 3D networks.
Code and pre-trained models are available at https://github.com/taoyang1122/MutualNet.

Index Terms—Dynamic neural networks, adaptive inference, efficient neural networks, deep learning
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1 INTRODUCTION

D EEP neural networks have triumphed over various
perception tasks including image classification [1], [2],

[3], object detection [4], [5], semantic segmentation [6], [7]
and so on. However, most existing deep neural networks
are static, which means they can only run at a specific
resource constraint. For example, MobileNet [3] has 4.2M
model parameters and 569M FLOPs. After training, the
model can only do inference at this specific complexity. If
we want to reduce the model complexity, we have to re-
train a smaller model; otherwise, the performance will drop
substantially. As shown in Table 1, a regular MobileNet has
70.6% Top-1 accuracy on ImageNet. However, if we only
use half of its channels (width = 0.5×) to do inference,
the performance drops to 0.4%. This is almost the same
accuracy as a simple random guess. But if we re-train the
MobileNet-0.5× from scratch, it can achieve 63.3% Top-1
accuracy [3]. A similar trend is observed if the network
width is unchanged (width = 1.0×) while the input image
resolution is reduced. Although the performance does not
drop as dramatically as by reducing the network width, the
gap between the smaller resolution and full resolution is still
quite large. These results indicate that regular deep neural
networks can not generalize well to other network widths
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TABLE 1
Reducing MobileNet complexity by width or resolution at runtime. The

network fails to achieve a good performance without re-training.

Width 1.0× 0.75× 0.5×
re-train 3 7 3 7 3 7

Acc (%) 70.6 70.6 68.4 14.2 63.3 0.4

Resolution 224× 224 160× 160 128× 128

re-train 3 7 3 7 3 7

Acc (%) 70.6 70.6 67.2 65.0 64.4 57.7

and image resolutions, and restrains their effectiveness to a
specific resource budget.

In real-world applications, however, the computing ca-
pacity of different devices can vary significantly. A model
may be small for a high-end GPU but too heavy to run
on mobile devices. A common practice is to adopt a global
width multiplier [3], [8], [9] to adjust the model size, but still,
models of different scales need to be re-trained for many
devices. Besides, even on the same device, the resource
budgets can change. For example, the battery condition of
mobile devices imposes constraints on the computational
budget of many operations. Similarly, a task may have
specific priorities at any given time, requiring a dynamic
computational budget throughout its deployment phases.
To meet various resource constraints, one needs to deploy
several different scaled networks on the device and switch
among them. However, this naive solution is highly in-
efficient and not scalable due to two main reasons. First,
deploying several models will have a much higher memory
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footprint than a single model. Second, if a model has to
cover a new resource constraint, a new model has to be re-
trained and deployed on the device. Previous works [10],
[11] propose to train a network that can run at different
network widths. However, they ignore the input dimension,
thus failing to achieve a practical accuracy-efficiency trade-
off, and their method is only evaluated on image classifi-
cation. In this paper, we propose a unified framework to
mutually learn a single network, which can run at differ-
ent network widths (network scale) and input resolutions
(input scale). The effectiveness of our method is thoroughly
evaluated on different 2D and 3D (spatio-temporal) network
structures on different tasks.

We first start with 2D deep neural networks where the
inputs are images. The inference complexity of a 2D network
is determined by both the network scale and input scale.
In our approach, we consider different width-resolution
configurations for different accuracy-efficiency trade-offs.
Our goal is to train a network that can generalize well
to various width-resolution configurations. Therefore, our
training framework only requires minor changes to the
regular training process, making it simple yet effective.
During the training phase, besides training the full model
(e.g., 1.0×-224 (width-resolution) on ImageNet), we addi-
tionally sample several other configurations (sub-networks
by the network width and images of different sizes) and
train them jointly with the full model. Note that the sub-
networks share the weights of the full-network, so this
does not introduce extra model parameters. This mutual
training framework not only enables the model to do in-
ference at different width-resolution configurations but also
facilitates knowledge transfer among the configurations and
further enhances their overall performance. In Section 3.1,
we demonstrate that distinct sub-networks may make their
predictions based on different semantic regions. Due to the
weight sharing strategy, sub-networks can naturally share
their knowledge with each other, which helps all the sub-
networks to learn more diversified representations.

Apart from 2D networks, 3D (spatio-temporal) networks
have achieved excellent performance on video tasks, but
they generally require more computation (tens or even
hundreds of GFLOPs per video clip) and training time than
2D networks on large-scale datasets. This makes training
and deploying several 3D networks even less practical than
the 2D case. Therefore, we further extend our method to
3D networks where the inputs are videos instead of images.
Most 3D networks [12], [13], [14], [15] are driven by expand-
ing 2D convolutional layers in image architectures [1], [2],
[16] into 3D convolutions. For these direct extensions, our
method can be easily applied by jointly sampling the spatial
and temporal dimensions. Recently, SlowFast [17] proposes
a two-branch structure to deal with spatial and temporal
dimensions asymmetrically. The Slow branch captures spa-
tial semantics while the Fast branch captures fine temporal
information. Following this idea, we conduct an asymmet-
rical sampling where we only sample sub-networks on the
Slow branch, while keeping the Fast branch unchanged to
provide complementary information for the adaptive Slow
branch.

MutualNet is simple but surprisingly effective. On image
classification tasks, our method significantly outperforms

previous adaptive networks [10], [11] on various struc-
tures. Surprisingly, it also outperforms individually-trained
models at different configurations. Thanks to its simplicity,
MutualNet can be easily applied to other tasks including
object detection, instance segmentation and action recogni-
tion. To the best of our knowledge, we are the first ones
to demonstrate adaptive networks on these tasks, which
also achieve consistent improvements over individually-
trained networks. We further demonstrate that MutualNet
is promising methodology to serve as a general training
strategy to boost the performance of a single network. It
achieves comparable or better performance than state-of-
the-art training techniques, e.g., data augmentation [18],
[19], regularization [20], [21], SENet [22].

This work is an extension of the conference version [23].
In this paper, we make the following important extensions:

• We present more results on ImageNet image clas-
sification with different network architectures (e.g.,
MobileNetv1, MobileNetv2, ResNet-50). Our method
consistently outperforms previous adaptive net-
works [10], [11] and individually-trained networks.

• We extend the method to 3D (spatio-temporal) net-
works for action recognition. We design two sub-
network sampling strategies for one-branch and two-
branch structures.

• We conduct extensive experiments to evaluate the
effectiveness of MutualNet on 3D networks. Our
method outperforms state-of-the-art networks (e.g.,
SlowFast, X3D) on Kinetics-400 at different resource
budgets. The effectiveness of the learned representa-
tion is also validated via cross-dataset transfer (Cha-
rades dataset [24]) and cross-task transfer (action
detection on AVA dataset [25]).

• We present an analysis of the theoretical complexity
of our method. We also report the wall-clock timings
in practice. Our method requires just a fraction of
the training cost compared to independently training
several models. For inference, MutualNet deploys a
single model rather than several individually-trained
models to cope with dynamic budgets.

The remainder of the paper is organized as follows. In
Section 2, we review some related works. In Section 3 and
Section 4, we introduce MutualNet on 2D and 3D networks
respectively. In Section 5, we analyze and compare the train-
ing complexity of MutualNet and independent networks.
Experimental results are compared in Section 6. Finally, in
Section 7, we conclude our work.

2 RELATED WORK

Light-weight Networks. There has recently been a flurry of
interest in designing light-weight networks. MobileNets [3],
[8] factorize the standard 3×3 convolution into a 3×3 depth-
wise convolution and a 1 × 1 pointwise convolution which
reduces computation cost by several times. ShuffleNets [9],
[26] separate the 1 × 1 convolution into group convolu-
tions and shuffle the groups to further improve accuracy-
efficiency trade-offs. ShiftNet [27] introduces a zero-flop
shift operation to reduce computation cost. AdderNet [28]
trades the massive multiplications in deep neural networks
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for much cheaper additions. GhostNet [29] leverages cheap
linear transformations to generate more ghost feature maps.
Most recent works [30], [31], [32] also apply neural architec-
ture search methods to search efficient network structures.
However, none of them consider the varying resource con-
straints during runtime in real-world applications. To meet
different resource budgets, these methods need to train and deploy
several models and switch among them, which is inefficient and
not scalable.

Adaptive/Dynamic Neural Networks. There is a grow-
ing interest in the area of dynamic and adaptive neural
networks. One category of methods [33], [34], [35], [36]
perform dynamic inference conditioned on the input. The
core principle of these methods is to utilize less computation
for easy samples and reserve more computation for hard
ones. MSDNet [33] proposes a multi-scale and coarse-to-
fine densenet framework. It has multiple classifiers and can
make early predictions for easy instances. RANet [34] mo-
tivates its design with the idea that low-resolution images
are enough for classifying easy samples, while only hard
samples need high-resolution input. GFNet [35] processes
a sequence of small patches from the original images and
terminates inference once the model is sufficiently confident
about its prediction. There are also many recent works
[36], [37], [38], [39], [40] aiming to reduce spatial and
temporal redundancies in videos for action recognition by
dynamically processing input frames and fusing feature
maps. Inspired by SENet [22], a series of works [41], [42],
[43] also propose to learn dynamic attention for different
samples. Our method is closer to another category of meth-
ods [10], [11], [44], [45], [46] where the dynamic routes
are determined by the resource budgets. NestedNet [44]
uses a nested sparse network consisting of multiple levels
to meet various resource requirements. SlimmableNet [10],
[11] proposes to train several sub-networks together and
perform inference at different network widths. However, it
fails to achieve a strong accuracy-efficiency trade-off since it
ignores the input dimension. Later works [45], [46] further
integrate other dimensions (e.g., depth and kernel size) into
the training framework, but they do so with neural architec-
ture search (NAS) and thereby require a very complex and
expensive training process. Furthermore, their effectiveness
is only evaluated on image classification, while our method
is thoroughly evaluated on image classification, detection,
segmentation and action recognition.

Spatio-temporal (3D) Networks. The basic idea of video
classification architectures stems from 2D image classifica-
tion models. The works reported in [12], [13], [14] build
3D networks by extending 2D convolutional filters [1], [2],
[16], [47] to 3D filters along the temporal axis; then the 3D
filters are used to learn spatio-temporal representations in a
similar way to their 2D counterparts. Later works [17], [48],
[49], [50] propose to treat the spatial and temporal domains
differently. The authors in [48] posit that a bottom-heavy
structure is better than naive 3D structures in both accuracy
and speed. In [49], [50], 3D filters are split into 2D+1D filters,
which reduce the heavy computational cost of 3D filters
and improve the performance. SlowFast [17] further shows
that space and time should not be handled symmetrically
and introduces a two-path structure to deal with slow and
fast motion separately. Several works [51], [52], [53] also

1.0x-224 0.75x-128

Fig. 1. Class activation maps (CAM) of different model configurations
(the network is ResNet-50 and is trained on ImageNet). Larger model
configuration focuses more on details (e.g., face) while the smaller one
focuses more on the contour (e.g., body).

leverage the group convolution and channel-wise separable
convolution in 2D networks to reduce computational cost.
Recently, [54], [55], [56] explore neural architecture search
(NAS) techniques to automatically learn spatio-temporal
network structures. However, all these structures are static.
We are the first to achieve adaptive 3D networks which also out-
perform state-of-the-art independently-trained models [15], [17].

Multi-dimension Trade-off. The computational cost and
accuracy of a model is determined by both the input size
and network size. There is a growing interest [15], [57], [58]
in achieving better accuracy-efficiency trade-offs by balanc-
ing different model dimensions (e.g., image resolution, net-
work width and depth). In [58], networks are pruned from
multiple dimensions to achieve better accuracy-complexity
trade-offs. EfficientNet [57] performs a grid-search on dif-
ferent model dimensions and expands the configuration to
larger models. X3D [15] shares similar ideas with Efficient-
Net but focuses on spatio-temporal networks. It expands
a 2D network along different dimensions to a 3D one.
In [15], [57], the optimal model configuration is searched
for a static model and different configurations are trained
independently in the process. However, we aim to learn an
adaptive network which can fit various resource budgets. We train
various intrinsic configurations jointly and share knowledge
between them, which largely saves the training time and
improves the overall performance.

3 2D MUTUALNET

Standard 2D models are trained at a fixed width-spatial
configuration (e.g., 1.0×-224 on ImageNet). However, the
model does not generalize well to other configurations
during inference as shown in Table 1. In our method,
we randomly sample different width-spatial configurations
during training, so the model can run effectively at various
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Randomly select a resolution from {224, 192, 
160, 128} as input to each sub-network

Full network (1.0×)

Width (# of channels)

Sub-network 2 (𝜸𝒘𝟐×)

224x224 192x192 128x128160x160224x224

Ground truth
CE

Sub-network 1 (𝜸𝒘𝟏×) Sub-network 3 (0.25×)

…

KL KL KL

0.25 x (width of the full network)Two random width ratios 𝜸𝒘𝟏, 𝜸𝒘𝟐 ∈ (𝟎. 𝟐𝟓, 𝟏)
𝜸𝒘𝟏 𝜸𝒘𝟐

Fig. 2. An example to illustrate the training process of MutualNet. The network width range is [0.25×, 1.0×], input resolution is chosen from {224,
192, 160, 128}. This can achieve a computation range of [13, 569] MFLOPs on MobileNet v1 backbone. We follow [11] to sample 4 networks,
i.e., upper-bound full width network (1.0×), lower-bound width network (0.25×), and two random width ratios γw1 , γw2 ∈ (0.25, 1). For the full-
network, we constantly choose 224×224 resolution. For the other three sub-networks, we randomly select its input resolution. The full-network
is optimized with the ground-truth label using Cross Entropy loss (CE). Sub-networks are supervised by the prediction of the full-network using
Kullback–Leibler Divergence loss (KL). Weights are shared among different networks to facilitate mutual learning.

configurations during inference. Note that the computation
cost of a vanilla 2D convolutional layer is given by

K ×K × Ci × Co ×H ×W. (1)

Here, K denotes the kernel size, and Ci and Co respectively
denote the input and output channels of this layer, while
H and W respectively denote the height and width of
the output feature map. For a smaller model configuration,
e.g. 0.5×-160, the width is reduced by γw = 0.5 and the
spatial resolution is reduced by γs = 160/224 = 0.7. The
computation cost is reduced to

K ×K × γwCi × γwCo × γsH × γsW, (2)

which is ρ = γ2wγ
2
s times that of the original in Eq. 1. The

dynamic execution range of MutualNet is determined by
the range of γw and γs. The detailed settings of γw, γs and ρ
will be discussed in the following sections.

In Section 3.1, we first show that distinct model configu-
rations focus on different semantic information in an image.
Then, we introduce the training process of our method by a
concrete example. Section 3.3 explains the working mech-
anism of mutual learning from the perspective of model
gradients. Section 3.4 introduces how to deploy the model
and do inference at different resource budgets.

3.1 Knowledge in different 2D model configurations
We want to randomly sample different model configurations
in each training iteration to allow them to learn from each
other. However, is there any unique knowledge in different
model configurations that is beneficial for transferring to
others? The answer is yes. Fig. 1 shows the classification
activation maps (CAM) [59] of two model configurations.
The models are trained independently at the corresponding
configuration. We can see that these two models focus on
different semantic regions of the same object. The larger
model configuration (i.e., 1.0×-224) tends to focus on fine
details (e.g., face of the dog) while the smaller configuration

TABLE 2
Weakly-supervised localization accuracy of different model

configurations on ImageNet validation set using CAM [59]. The
backbone network is ResNet-50.

Model Config All Large Small
1.0×-224 37.9% 48.3% 8.7%
1.0×-160 25.2% 28.3% 12.9%
0.75×-128 24.8% 31.2% 8.3%

learns the global structures (e.g., the whole body). This can
be partially attributed to the downsampling of the input
resolution, where some fine-grained information is lost but
the object contour is enhanced. To further demonstrate that
different model configurations have varied attention, we
leverage their attention maps to conduct weakly-supervised
object localization using CAM [59] on the ImageNet valida-
tion set and compare their localization accuracy on large and
small objects. We define small objects as those with a ground
truth bounding box smaller than 20% of the image size, and
large objects as those with a ground truth bounding box
larger than 50% of the image size. A prediction is considered
correct if its IoU with the ground truth bounding box is
larger than 0.5. The results are shown in Table 2. We can see
that 1.0×-224 achieves the highest accuracy on all objects
and large objects, while 1.0×-160 performs better on small
objects. Also, 0.75×-128 has lower performance on small
objects but higher performance on large objects compared
to 1.0×-160. The results show that different configurations
focus on different semantic regions. Inspired by this obser-
vation, we leverage large configurations to supervise small
ones during training. This further enhances the knowledge
transfer among different configurations and helps the model
to learn more diversified representations.

3.2 2D Model training
We present an example to illustrate our training process in
Fig. 2. We set the adaptive width range as [0.25×, 1.0×],
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Fig. 3. An illustration of the mutual learning scheme. It allows the sub-network to learn multi-scale representations, in terms of both network width
and input image resolution.

and the adaptive resolutions as {224, 192, 160, 128}. Note
that one can adjust these settings according to the required
dynamic resource budgets. The depth and resolution can
even be larger than the default setting (1.0×-224) to scale
up the model as we show in Section 6. As shown in Fig.
2, we first follow [11] to sample four sub-networks, i.e.,
the smallest (0.25×), the largest (1.0×) and two random
width ratios γw1 , γw2 ∈ (0.25, 1). Then, unlike traditional
ImageNet training with 224×224 input, we resize the input
images to resolutions randomly chosen from {224, 196, 160,
128} and feed them into different sub-networks. We denote
the weights of a sub-network as W0:w, where w ∈ (0, 1] is
the width of the sub-network and 0 : w means the sub-
network adopts the first w × 100% weights of each layer of
the full network. IR=r represents a r × r input image. Then
N(W0:w, IR=r) represents the output of a sub-network with
width w and input resolution r × r. For the largest sub-
network (i.e., the full-network in Fig. 2), we always train it
with the highest resolution (224 × 224) and ground truth
label y. The loss for the full network is

lossfull = CrossEntropy(N(W0:1, IR=224), y). (3)

For the other sub-networks, we randomly pick an input
resolution from {224, 196, 160, 128} and supervise it with
the output of the full-network. As demonstrated in Section
3.1, this can transfer the unique knowledge in the full
configuration to other configurations and benefit the overall
performance. The loss for the i-th sub-network is

losssubi = KLDiv(N(W0:wi , IR=ri), N(W0:1, IR=224)),
(4)

where KLDiv is the Kullback-Leibler divergence which
measures the distance between two distributions. The total
loss is the summation of the full-network and sub-networks,
i.e.,

loss = lossfull +
3∑

i=1

losssubi . (5)

The reason for training the full-network with the highest res-
olution is that the highest resolution contains more details.
Also, the full-network has the strongest learning ability to
capture the discriminatory information from the image data.

3.3 Gradient analysis of mutual learning
To better understand why the proposed framework can
mutually learn from different widths and resolutions, we
perform a gradient analysis of the mutual learning process.
For ease of demonstration, we only consider two network

widths 0.4× and 0.8×, and two resolutions 128 and 192
in this example. As shown in Fig. 3, sub-network 0.4×
selects input resolution 128, sub-network 0.8× selects input
resolution 192. Then we can define the gradients for sub-
network 0.4× and 0.8× as ∂lW0:0.4,IR=128

∂W0:0.4
and ∂lW0:0.8,IR=192

∂W0:0.8
,

respectively. Since sub-network 0.8× shares weights with
0.4×, we can decompose its gradient as

∂lW0:0.8,IR=192

∂W0:0.8
=

∂lW0:0.8,IR=192

∂W0:0.4
⊕ ∂lW0:0.8,IR=192

∂W0.4:0.8
, (6)

where ⊕ is vector concatenation. Since the gradients of the
two sub-networks are accumulated during training, the total
gradients are computed as

∂L

∂W
=

∂lW0:0.4,IR=128

∂W0:0.4
+

∂lW0:0.8,IR=192

∂W0:0.8

=
∂lW0:0.4,IR=128

∂W0:0.4
+

(
∂lW0:0.8,IR=192

∂W0:0.4
⊕ ∂lW0:0.8,IR=192

∂W0.4:0.8

)
=

∂lW0:0.4,IR=128 + ∂lW0:0.8,IR=192

∂W0:0.4
⊕ ∂lW0:0.8,IR=192

∂W0.4:0.8
(7)

Therefore, the gradient for sub-network 0.4× is
∂lW0:0.4,IR=128

+∂lW0:0.8,IR=192

∂W0:0.4
, which consists of two parts.

The first part is computed by itself (0 : 0.4×) with 128× 128
input resolution. The second part is computed by a larger
sub-network 0.8× (i.e., 0 : 0.4× portion) with 192 × 192
input resolution. Thus the sub-network is able to capture
multi-scale representations from different input scales and
network scales. Due to the random sampling of network
width, every sub-network is able to learn multi-scale
representations in our framework. This allows the model
to significantly outperform even independently-trained
networks. Note that this is different from multi-scale data
augmentation as explained in Section 6.

3.4 2D Model inference

After training, the model is able to run at various width-
resolution configurations. To deploy the model, we need
to find the best-performed model configuration under each
particular resource constraint. For evaluation, after follow-
ing the training example in Section 3.2, we first sample
the network widths from 0.25× to 1.0× with a step-size
of 0.05×. Then we sample the input resolutions from {224,
192, 160, 128}. We evaluate all these width-resolution config-
urations on a validation set which gives us a configuration-
accuracy table. Similarly, we can evaluate the computational
cost (e.g., FLOPs) of each model configuration which gives
us a configuration-complexity table. Note that different
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model configurations may have the same computational
cost (e.g., on MobileNet v1, the computational cost of 0.6×-
224 and 0.7×-192 are both ∼210 MFLOPs). So the final step
is to find the best-performing model configuration for each
resource budget, from which we can get the complexity-
configuration query table. For real deployment, we only
need to deploy the MutualNet model (which is of the same
size as a regular model) and the query table. Then given
a resource constraint, we can look up the query table and
inference the model at the corresponding optimal configu-
ration. Note that the feature statistics (mean and variance)
are different across different model configurations, so we
can not use one set of batch normalization (BN) statistics for
all configurations. We follow [11] to perform BN statistics
calibration for each model configuration. Before evaluation,
we forward several batches of data to update the BN statis-
tics for a specific configuration. There is no re-training so
that the whole process is fast and only needs to be done
once.

4 3D MUTUALNET

To show the effectiveness of MutualNet as a general train-
ing framework, we further extend our method to spatio-
temporal (3D) network structures, where the inputs are
videos. A popular way to model spatio-temporal informa-
tion in videos is to extend 2D convolutions to 3D convolu-
tions. The computation cost of a vanilla 3D convolutional
layer is given by

K ×K ×K × Ci × Co ×H ×W × T. (8)

Here, K denotes the kernel size, and Ci and Co respectively
are the input and output channels of this layer. H , W , T
denote the spatial-temporal size of the output feature map.
Similar to 2D networks, we sample model configurations by
network width, spatial and temporal resolution. Following
the notations in Section 3, we denote a model configuration
by width-spatial-temporal. The scaling coefficients γw and
γr are the same as defined before. γt is the temporal resolu-
tion coefficient where γt ∈ [0, 1]. The computational cost is
reduced to

K ×K ×K × γwCi × γwCo × γsH × γsW × γtT. (9)

The computational cost is now reduced by ρ = γ2wγ
2
sγt

times. For single-branch structures [12], [13], [15], which
are extended from 2D networks, our method can be easily
applied by randomly sampling both spatial and temporal
dimensions during training. For two-branch structures such
as SlowFast [17], where spatial and temporal dimensions
are processed asymmetrically, we conduct asymmetric sam-
pling.

In the following sections, we first show that the temporal
dimension can bring additional knowledge to be transferred
among different model configurations. Then we explain the
training details of one-branch and two-branch structures.

4.1 Knowledge in different 3D model configurations

Temporal modeling is essential in 3D networks. Following
2D MutualNet, we first demonstrate that different model

configurations will focus on different spatial-temporal se-
mantic regions. Fig. 4 shows the spatial and temporal distri-
butions of network activation following CAM [59]. Higher
value means more contribution to the final logit value.
Although both models generate the prediction as “headbut-
ting”, their decisions are based on different areas of different
frames. The input of the left model has 8 frames, and the 2nd
and 8th frames contribute the most to the final prediction.
While the right model only has 4 input frames, where those
two key frames in the left model are not sampled. So it has
to learn other semantic information, forcing a change in both
temporal and spatial activation distributions. For example,
the activation value of the 5th frame exceeds that of the 3rd
frame in the right model, which is the opposite case in the
left model. The spatial attention areas are also unique in
the two models. In the first frame, the attention is on the
shoulder in the left model, but shifts to the face in the right
model indicating that a varied set of visual cues is captured.

4.2 3D Model training
4.2.1 One-branch structure
In one-branch structures, the 3D convolutions are directly
extended from 2D convolutions so that we can apply the
mutual learning strategy in the same way as 2D networks.
The left half of Fig. 5 shows how mutual training works
in single pathway structures. In each training iteration, we
sample two sub-networks (by the width factor γw) in addi-
tion to the full-network. Sub-networks share the parameters
with the full-network in the same way as 2D networks. The
full-network is fed with the highest spatial-temporal res-
olution inputs, while sub-networks are fed with randomly
downsampled inputs. Similar to 2D MutualNet training, the
full-network is supervised by the ground-truth label while
sub-networks are supervised by the full-network to facilitate
knowledge transfer. The total loss is the summation of the
full-network’s loss and sub-networks’ losses.

4.2.2 Two-branch structure
Recently, SlowFast [17] proposes that the temporal dimen-
sion should not be processed symmetrically to the spatial
dimension, as slow and fast motions contain different infor-
mation for identifying an action class. SlowFast shows that a
lightweight fast pathway, which aims to capture fine motion
information, is a good complement to the slow pathway,
which mainly captures spatial semantics. This inspires us
to leverage multiple-pathway trade-offs in 3D MutualNet.
The structure is shown in the right half of Fig. 5. Since
the fast pathway is lightweight (about 10% of the overall
computation), reducing its spatial-temporal resolution or
network width is not beneficial for the overall computation-
accuracy trade-off. In two-branch structures, we keep the
respective γw, γs, γt = 1 for the Fast pathway so that it
can provide complementary information for the Slow path
with its own γw, γs, γt ≤ 1. Note that this complementary
information is not only on temporal resolution but also on spatial
resolution.
Adaptive Fusion. Given fixed temporal resolutions for two
pathways, the fusion is conducted by lateral connections
with time-strided convolution in SlowFast [17]. However,
since all the three dimensions (γw, γs, γt) of the Slow pathway
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Fig. 4. Class activation map along spatial and temporal dimensions of two network configurations. X-axis is the frame index number and y-axis is
the normalized activation value. The action is “headbutting” from the Kinetics-400 dataset.
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Fig. 5. An overview of 3D MutualNet training. Left is for single-pathway structures, which is similar to 2D MutualNet training. Right is for multiple-
pathway structures, where only the Slow branch is downsampled. The two branches are fused by the proposed Adaptive Fusion block.

can change during training, directly applying the time-strided
convolution does not work for our framework. Therefore, we
design an adaptive fusion block for multiple-pathway 3D
MutualNet.

Normal Layer Fusion Layer
C C+2βC

Slow Fast

Fig. 6. An illustration of adaptive fusion on network channels.

Following SlowFast [17], we denote the feature shape
of a standard Slow pathway as {T, S2, C}, where S is
the spatial resolution and C is the number of chan-
nels. Then the feature shape of adaptive Slow pathway
is {γtT, (γsS)2, γwC}. The feature shape of Fast pathway
remains {αT, S2, βC} as in [17] (α, β are hyperparameters
defined in [17]. α = 8, β = 1/8 for SlowFast 4×16). Follow-
ing the settings in [17], we first perform a 3D convolution
of 5 × 12 kernel with 2βC output channels and a stride
of α. The output feature shape of this convolution layer is
{T, S2, 2βC}. To fuse it with the adaptive Slow pathway
(whose shape is {γtT, (γsS)2, γwC}), we perform a spatial
interpolation and temporal down-sampling to make the out-
put shape {γtT, (γsS)2, 2βC}. Then the final feature shape
after the fusion is {γtT, (γsS)2, (γw + 2β)C}. As shown in
Fig. 6, normal convolution layers of adaptive Slow pathway
have γwC channels indexing from the left, while the first

TABLE 3
Training cost of MutualNet and independent models of different scales.

The backbone is MobileNet v1. ∗ indicates expected values.

MobileNet v1 Independent MutualNet
Scale ×0.1 ×0.3 ×0.5 ×0.7 ×0.9 ×1.0 ×0.02 ∼ ×1.0

MFLOPs 57 171 284 398 512 569 910∗

Total 1991 910∗

Mins/epoch 1∗ 3∗ 5∗ 7∗ 9∗ 10 20
Total 35∗ 20

convolution layer after each fusion has γwC + 2βC input
channels. The last 2βC channels are always kept for the
output of Fast pathway, while the first γwC channels from
the left can vary for each iteration. This operation enforces
an exact channel-wise correspondence between the fusion
features and the parameters in convolution layers.

4.3 3D Model inference

Similar to 2D networks, we need to find the best-performing
configuration at each resource constraint. We evaluate dif-
ferent width-spatial-temporal configurations on a validation
set. Then the complexity-configuration table can be obtained
by following the steps in Section 3.4. For real deployment,
the model and the table need to be maintained, and there-
fore the memory consumption is essentially the same as a
single model. The model can be adjusted according to the
table to meet different resource budgets.
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TABLE 4
Training cost of MutualNet and independent models of different scales.

The backbone is Slow-8×8. ∗ indicates expected values.

Slow-8×8 Independent MutualNet
Scale ×0.1 ×0.3 ×0.5 ×0.7 ×0.9 ×1.0 ×0.06 ∼ ×1.0

GFLOPs 5.5 16.4 27.3 38.2 49.1 54.5 74.8∗

Total 191 74.8∗

Mins/epoch 5.8∗ 17.4∗ 29.0∗ 40.6∗ 52.2∗ 58 69
Total 203∗ 69

5 COMPLEXITY OF MUTUALNET TRAINING

Since we additionally sample sub-networks during training,
MutualNet consumes more computational cost than train-
ing a single model. However, we show that the training
cost is several times less than training many independent
models. In Table 3, we measure the theoretical complexity
(i.e., FLOPs) and practical wall-clock time of training Mu-
tualNet and independent models. The network backbone is
MobileNetv1 [3]. In MutualNet, the width range is [0.25,
1.0]× and the resolution range is {224, 192, 160, 128}. This
achieves a dynamic constraint of [13, 569] MFLOPs, which
corresponds to a model scale from ×0.02 to ×1.0. Note that
we use 1.0× to denote the network width coefficient while
×1.0 to denote the overall model scale. For independent
training, we train a set of models where the smallest one
is ×0.1 and the stepsize is ×0.2. The FLOPs of MutualNet
training is estimated by taking the expectation of Eq. 2. The
wall-clock time of the full model (×1.0) and MutualNet is
measured on an 8×2080TI GPU sever with a batch-size of
1024. Other models’ training time is estimated by the model
FLOPs because the practical time depends on the manner
the model is scaled down. However, it should be higher than
the estimated values because the data loading/processing
time does not decrease if the model is scaled down. Table 3
shows that the training cost of MutualNet is around 2 times
of the full-model, but it is much smaller than independently
training each model.

We also evaluate the training cost on 3D networks (Slow-
8×8 [17]) in Table 4. The training time is measured on an
8×2080TI GPU sever with a batch-size of 64. In MutualNet,
the width range is [0.63, 1.0]×, spatial resolution is {142, 178,
224} and temporal resolution is {3, 5, 8}. This achieves a
model scale from ×0.06 to ×1.0. We also evaluate a group of
independent models from ×0.1 to ×1.0. We can see that al-
though the theoretical complexity of MutualNet is about 1.4
times of the full-model, the wall-clock time is only slightly
higher. This is because the data loading/processing is time-
consuming in 3D networks, the additional cost introduced
by sub-networks is therefore not that significant. In summary,
MutualNet saves time compared to independently training several
models, and it only needs to deploy one model to meet dynamic
resource constraints during inference.

6 EXPERIMENTS

We conduct extensive experiments to evaluate the effective-
ness of our proposed method. On 2D network structures, we
first present our results on ImageNet [60] classification to
illustrate the effectiveness of MutualNet. Next, we conduct

extensive ablation studies to analyze the mutual learning
scheme. Finally, we apply MutualNet to transfer learning
datasets and COCO [61] object detection and instance seg-
mentation to demonstrate its robustness and generalization
ability. On 3D network structures, we conduct experiments
on three video datasets following the standard evaluation
protocols. We first evaluate our method on Kinetics-400
[62] for action classification. Then we transfer the learned
representations to Charades [24] action classification and
AVA [25] action detection.

6.1 Evaluation on ImageNet Classification
We compare MutualNet with SlimmableNet (S-Net [10] and
US-Net [11]) and independently-trained networks on the
ImageNet dataset. We evaluate our framework on three
popular network structures, MobileNetv1 [3], MobileNetv2
[8] and ResNet-50 [1].

Implementation Details. We follow the settings in
SlimmableNet and make the comparison under the same
dynamic FLOPs constraints: [13, 569] MFLOPs on Mo-
bileNetv1, [57, 300] MFLOPs on MobileNetv2 and [660,
4100] MFLOPs on ResNet-50. The input image resolution
is randomly picked from {224, 192, 160, 128} unless spec-
ified. We use width scale [0.25, 1.0]× on MobileNetv1,
[0.7, 1.0]× on MobileNetv2 and [0.7, 1.0]× on ResNet-50.
The width lower bound is slightly higher than that in
SlimmableNet because we perform multi-dimension trade-
off during training. The other training settings are the same
as SlimmableNet.

Comparison with SlimmableNet. The Accuracy-FLOPs
curves are shown in Fig. 7. We can see that our method con-
sistently outperforms S-Net and US-Net on MobileNetv1,
MobileNetv2 and ResNet-50 backbones. Specifically, we
achieve significant improvements under small computa-
tion costs. This is because our framework considers both
network width and input resolution and can find a bet-
ter balance between them. For example, on MobileNet v1
backbone, if the resource constraint is 150 MFLOPs, US-Net
has to reduce the width to 0.5× given its constant input
resolution 224, while MutualNet can meet this budget by a
balanced configuration of (0.7× - 160), leading to a better
accuracy (65.6% (Ours) vs. 62.9% (US-Net) as listed in the
table of Fig. 7). Also, our framework is able to learn multi-
scale representations as demonstrated in Section 3.3, which
further boost the performance of each sub-network. We can
see that even for the same configuration (e.g., 1.0×-224) our
approach clearly outperforms US-Net, i.e., 72.4% (Ours) vs.
71.7% (US-Net) on MobileNet v1, 72.9% (Ours) vs. 71.5%
(US-Net) on MobileNet v2, and 78.1% (Ours) vs. 76.3% (US-
Net) on ResNet-50. (Fig. 7).

Comparison with Independently Trained Networks.
We compare the performance of MutualNet and US-Net
with independently-trained networks (denoted by I-Net)
under different width-resolution configurations in Fig. 8.
In I-Net, the resolutions are selected from {224, 192, 160,
128}. Width are selected from {1.0×, 0.75×, 0.5×, 0.25×}
on MobileNet v1&v2 and {1.0× 0.75×} on ResNet-50. From
Fig. 8 we can see that US-Net only achieves comparable
(in many cases worse) performance compared to I-Net,
while MutualNet consistently outperforms US-Net and I-
Net on three backbones. Even at the same width-resolution
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Fig. 7. Comparisons of Accuracy-FLOPs curves of MutualNet, S-Net and US-Net. In the tables, we compare some points on the curves by their
configurations, the corresponding FLOPs and accuracy.
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Fig. 8. Comparisons of Accuracy-FLOPs curves of MutualNet, US-Net and I-Net.

configuration, which may not be the best configuration,
MutualNet can achieve much better performance than I-
Net. This demonstrates that MutualNet not only finds the
better width-resolution balance but also learns stronger
representations by the mutual learning scheme.

Balanced Width-Resolution Configuration via Mutual
Learning. One may apply different resolutions to US-Net
during inference to yield improvement over the original
US-Net. However, this way the optimal width-resolution
balance can be achieved due to lack of width-resolution
mutual learning. In one experiment, we evaluate US-Net
at width scale [0.25, 1.0]× with input resolutions {224,
192, 160, 128} and denote this improved model as US-
Net+. In Fig. 9, we plot the Accuracy-FLOPs curves of our
method and US-Net+ based on MobileNet v1 backbone,
and highlight the selected input resolutions with different
colors. As we decrease the FLOPs (569 → 468 MFLOPs),
MutualNet first reduces network width to meet the con-
straint while keeping the 224×224 resolution (red line in
Fig. 9). After 468 MFLOPs, MutualNet selects lower input
resolution (192) and then continues reducing the width to
meet the constraint. On the other hand, US-Net+ cannot
find such balance. It always slims the network width and
uses the same (224) resolution as the FLOPs decreasing until
it goes to really low. This is because US-Net+ does not
incorporate input resolution into the learning framework.
Simply applying different resolutions during inference cannot

achieve the optimal width-resolution balance.
Comparison with EfficientNet. EfficientNet [57] ac-

knowledges the importance of balancing among network
width, depth and resolution. But they are considered as
independent factors. The authors use grid search over these
three dimensions and train each model configuration inde-
pendently to find the optimal one under certain constraint,
while MutualNet incorporates width and resolution in a
unified training framework. To show the benefits of the
mutual learning shceme, we compare MutualNet with the
best model scaling that EfficientNet finds for MobileNet v1
at 2.3 BFLOPs (scale up baseline by ×4.0). To cover this
model scale we scale up MutualNet by using a width range
of [1.0×, 2.0×], and select resolutions from {224, 256, 288,
320}. This makes MutualNet executable in the range of [0.57,
4.5] BFLOPs. We pick the best performing width-resolution
configuration at 2.3 BFLOPs. The results are compared in
Table 5. Although EfficientNet claims to find the optimal
scaling compound, its performance is much worse than
MutualNet. This is because EfficientNet fails to leverage
the information in other configurations, while MutualNet
captures multi-scale representations for each model config-
uration thanks to the width-resolution mutual learning.

Comparison with Multi-scale Data Augmentation. In
multi-scale data augmentation, the network may take im-
ages of different resolutions in different training iterations.
But within each iteration, the network weights are still op-
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Fig. 9. The width-resolution trade-offs at different resource constraints. The Accuracy-FLOPs curves are based on MobileNet v1 backbone. We
highlight the selected resolution under different FLOPs with different colors. For example, the solid green line indicates that when the constraint
range is [41, 215] MFLOPs, our method constantly selects input resolution 160 but reduces the width to meet the resource constraint. Best viewed
in color.

TABLE 5
Comparison with EfficienNet to scale up MobileNetv1 by ×4 on

ImageNet. d: depth, w: width, r: resolution.

Model Best Model FLOPs Top-1 Acc
EfficientNet [57] d = 1.4, w = 1.2, r = 1.3 2.3B 75.6%

MutualNet w = 1.6, r = 1.3 2.3B 77.1%

TABLE 6
Comparison between MutualNet and multi-scale data augmentation.

Model ImageNet Top-1 Acc
MobileNet v2 (1.0× - 224) - Baseline 71.8%

Baseline + Multi-scale data augmentation 72.0%
MutualNet (MobileNet v2 backbone) 72.9%

timized in the direction of the same resolution. In contrast,
our method randomly samples several sub-networks which
share weights with each other. Since sub-networks can select
different image resolutions, the weights are optimized in the
direction of mixed resolution in each iteration as illustrated
in Fig. 3. This enables each sub-network to effectively learn
multi-scale representations from both network width and
resolution. To validate the superiority of our mutual learn-
ing scheme, we apply multi-scale data augmentation to I-
Net and US-Net and explain the difference with MutualNet.

I-Net + Multi-scale data augmentation. We train Mo-
bileNetv2 (1.0× width) with multi-scale images. To have
a fair comparison, input images are randomly sampled
from scales {224, 192, 160, 128} and the other settings are
the same as MutualNet. As shown in Table 6, multi-scale
data augmentation only marginally improves the baseline
(MobileNetv2) while MutualNet (MobileNetv2 backbone)
clearly outperforms both of them by considerable margins.

US-Net + Multi-scale data augmentation. Different from
our framework which feeds different scaled images to dif-

US-Net+multi-scale
MultualNet

Fig. 10. MutualNet and US-Net + multi-scale data augmentation.

ferent sub-networks, in this experiment, we randomly choose
a scale from {224, 192, 160, 128} and feed the same scaled
image to all sub-networks in each iteration. That is, each
sub-network takes the same image resolution. In this way,
the weights are still optimized towards a single resolution
direction in each iteration. For example, as illustrated in Fig.
3, the gradient of the sub-network 0.4× in MutualNet is
∂lW0:0.4,IR=128

+∂lW0:0.8,IR=192

∂W0:0.4
, while in US-Net + multi-scale

it would be ∂lW0:0.4,IR=128
+∂lW0:0.8,IR=128

∂W0:0.4
. With more sub-

networks and input scales involved, the difference between
their gradient flows becomes more distinct. As shown in
Fig. 10, our method clearly outperforms US-Net + multi-
scale data augmentation over the entire FLOPs spectrum.
This experiment is based on MobileNetv2 with the same
settings as in Sec. 6.1. These experiments demonstrate that the
improvement comes from our mutual learning scheme rather than
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Fig. 11. Comparison of independently-trained networks (I-Net) and Mu-
tualNet with the MobileNetV3 backbone.
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Fig. 12. Contribution of the KLDiv loss to the overall performance.

the multi-scale data augmentation.
Combine with Dynamic Blocks. As reviewed in Section

2, there is a category of dynamic networks where the adap-
tive weights are determined by the input. We show that
MutualNet can be directly combined with these networks
by applying our method to MobileNetV3 [32], where the
dynamic blocks are implemented by Squeeze and Excitation
(SE) [22]. When sampling sub-networks, we multiply the
width factor to both the backbone network and SE block.
Then the full-network and sub-networks can be trained in
the same way as other models. We compare MutualNet
and independently trained MobileNetV3 (denoted by I-Net)
at different configurations in Fig. 11. Note that the results
of MobileNetV3 are reproduced by us since we could not
strictly follow the settings in the original paper (the authors
trained MobileNetV3 on 4×4 TPU Pod with a batch size
of 4096). We train the network on an 8-GPU server for
150 epochs with a batch size of 1024. The initial learning
rate is 0.4 with cosine decay schedule. Our reproduced
performance is 0.4% lower than that in the original pa-
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Fig. 13. Accuracy-FLOPs curves of different width lower bounds.

Fig. 14. The effect of the number of randomly sampled sub-networks
during training. The backbone network is MobileNetV2. n = 1 means
one random width sub-network is sampled with the full-network and the
smallest sub-network (γw = 0.7).

per. MutualNet is trained on the same codebase with the
same settings. As shown in Fig. 11, MutualNet does not
outperforms independently-trained MobileNetV3 at large
model configurations. We conjecture this is caused by the
SE block in MobileNetV3. In MutualNet, sub-networks and
the full-network share the same SE block, but their channel
attention could be different (sub-networks do not have some
channels). Fitting the channel attention to sub-networks
may hurt the attention of the full-network, thus leading
to decreased performance. But at smaller configurations,
MutualNet is significantly better. Although the overall im-
provement may not be as significant as on other backbones,
MutualNet still has the advantage of covering a wide range
of resource constraints by a single model, which makes it
easier to deploy on resource-constrained devices. Still, we
think that investigating the effective combination of Mutual-
Net with other dynamic inference methods is an interesting
problem. We leave further study on this for future work.
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Fig. 15. Accuracy-FLOPs curves of different methods on different transfer learning datasets. MobileNet is trained independently at different model
configurations.

TABLE 7
Comparisons of the Top-1 Accuracy (%) of MutualNet and
state-of-the-art techniques for boosting a single network.

Method Cifar-10 Cifar-100 ImageNet
Baseline [1], [63] 96.1 81.2 76.5

Cutout [20] 96.9 81.6 77.1
SENet [22] / / 77.6

AutoAug [19] 97.4 82.9 77.6
ShakeDrop [21] 95.6 81.7 77.5

Mixup [18] 97.3 82.5 77.9
MutualNet 97.2 83.8 78.6

6.2 Abalation study

Effects of KL Divergence. During training, we leverage
the full-network to supervise sub-networks to enhance
knowledge transfer. Here we study how much does the
KL Divergence loss contribute to the overall performance.
As shown in Fig. 12, w/ KL is the original training process
and w/o KL denotes that the sub-networks are supervised
by the ground truth labels. The difference is very marginal
where the largest gap is less than 1%. This demonstrates that
the KL Divergence loss does benefit the performance, but
the main contribution is coming from the mutual learning
scheme as explained in Section 3.3.

Effects of Width Lower Bound. The dynamic constraint
is affected by the width lower bound. To study its effects,
we conduct experiments with three different width lower
bounds (0.7×, 0.8×, 0.9×) on MobileNetv2. The results in
Fig. 13 show that a higher lower bound gives better over-
all performance, but the dynamic range is narrower. One
interesting observation is that the performance of the full-
network (1.0×-224) is also largely improved as the width
lower bound increases from 0.7× to 0.9×. This property is
not observed in US-Net. We attribute this to the robust and
well-generalized multi-scale representations which can be
effectively re-used by the full-network, while in US-Net, the
full-network cannot effectively benefit from sub-networks.

Effect of the number of sub-networks. Fig. 14 shows
the performance with different numbers of random sub-
networks. The backbone network is MobileNetV2. We can
see that a larger number of sub-networks could slightly
improve the performance over the whole FLOPs spectrum,

but it will also increase the training cost. The results also
show that even one sub-network can achieve respectable
results.

Boosting Single Network Performance. As discussed
above, the performance of the full-network is greatly im-
proved as we increase the width lower bound. Therefore,
we can apply MutualNet to improve the performance of a
single full network if dynamic budgets is not the concern.
We compare our method with the popular performance-
boosting techniques (e.g., AutoAugmentation (AutoAug)
[19], SENet [22] and Mixup [18] etc.) to show its superiority.
We conduct experiments using WideResNet-28-10 [63] on
Cifar-10 and Cifar-100 [64] and ResNet-50 [1] on ImageNet
[60]. MutualNet adopts the width range [0.9, 1.0]× as it
achieves the best-performed full-network in Fig. 13. The
resolution is sampled from {32, 28, 24, 20} on Cifar-10 and
Cifar-100 and {224, 192, 160, 128} on ImageNet. WideRes-
Net is trained for 200 epochs following [63]. ResNet is
trained for 120 epochs. The results are compared in Table 7.
Surprisingly, MutualNet achieves substantial improvements
over other techniques even though it is designed to achieve
dynamic models. Note that MutualNet is model-agnostic
and is as easy as regular training process, so it can take
advantage of state-of-the-art network structures and data
augmentation techniques.

6.3 Transfer Learning
To evaluate the representations learned by our method,
we further conduct experiments on three popular transfer
learning datasets, Cifar-100 [64], Food-101 [65] and MIT-
Indoor67 [66]. Cifar-100 is for superordinate-level object
classification, Food-101 is for fine-grained classification and
MIT-Indoor67 is for scene classification. Such a large variety
of datasets can strongly demonstrate the robustness of the
learned representations. We compare our approach with US-
Net and MobileNetv1. We fine-tune ImageNet pre-trained
models with a batch size of 256, initial learning rate of 0.1
with cosine decay schedule and a total of 100 epochs. Both
MutualNet and US-Net are trained with width range [0.25,
1.0]× and tested with resolutions from {224, 192, 160, 128}.
The results are shown in Fig. 15. Again, our MutualNet
achieves consistently better performance compared to US-
Net and MobileNet. This verifies that MutualNet is able to
learn well-generalized representations.
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Fig. 16. mAP-FLOPs curves of MutualNet and US-Net on object detection (left) and instance segmentation (right). The results are based on
Mask-RCNN. All models follow the same training settings.
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Fig. 17. Visualization examples of MutualNet and US-Net on object detection and instance segmentation. Detection and segmentation results are
demonstrated by bounding boxes and masks respectively. To facilitate comparison, we use yellow boxes to highlight the objects that MutualNet
detects but US-Net fails. [Best viewed with zoom-in.]

6.4 Object Detection and Instance Segmentation

We also evaluate our method on COCO object detection and
instance segmentation [61]. The experiments are based on
Mask-RCNN-FPN [67], [68] and MMDetection [69] toolbox
on VGG-16 [47] backbone. We first pre-train VGG-16 on Im-
ageNet following US-Net and MutualNet respectively. Both
methods are trained with width range [0.25, 1.0]×. Then
we fine-tune the pre-trained models on COCO. The feature
pyramid network (FPN) neck and detection head are shared
among different sub-networks. For simplicity, each sub-
network is trained with the ground truth. The other training
procedures are the same as training ImageNet classification.
Following common settings in object detection, US-Net is
trained with image resolution 1000× 600. Our method ran-
domly selects resolutions from 1000 × {600, 480, 360, 240}.
All models are trained with 2× schedule for better conver-

gence and tested with different image resolutions. The mean
Average Precision (AP at IoU=0.50:0.05:0.95) are presented
in Fig. 16. These results reveal that our MutualNet signif-
icantly outperforms US-Net under all resource constraints.
Specifically, for the full network (1.0×-600), MutualNet sig-
nificantly outperforms both US-Net and independent net-
work. This again validates the effectiveness of our width-
resolution mutual learning scheme. Fig. 17 provides some
visual examples which reveal that MutualNet is more robust
to small-scale and large-scale objects than US-Net.

6.5 Evaluation on 3D networks

To the best of our knowledge, we are the first to achieve
adaptive 3D networks. So we only compare our method
with independently-trained networks. We conduct exper-
iments based on Slow/SlowFast [17] and X3D [15] back-

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 15,2022 at 17:15:12 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3138389, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

bones, which are state-of-the-art 3D network structures.
Following previous works [15], [17], we evaluate the method
on the following three video datasets.

Kinetics-400 [62] is a large scale action classification
dataset with ∼240k training videos and 20k validation
videos trimmed as 10s clips. However, since some of the
YouTube video links have expired, we can not download
the full dataset. Our Kinectic-400 only has 237,644 out of
246,535 training videos and 19,761 validation videos. The
training set is about 4% less than that in SlowFast [17] and
some of the videos have a duration less than 10s. This leads
to an accuracy drop of 0.6% on Slow-8×8, 1.2% on SlowFast-
4×16 and 0.93% on X3D-M as we reproduce the results
with the officially released codes [70]. Charades [24] is a
multi-label action classification dataset with longer activity
duration. The average activity duration is ∼30 seconds.
The dataset is composed of ∼9.8k training videos and 1.8k
validation videos in 157 classes. The evaluation metric is
mean Average Precision (mAP). AVA [25] is a video dataset
for spatio-temporal localization of human actions. It consists
of 211k training and 57k validation video segments. We
follow previous works [17] to report the mean Average
Precision (mAP) on 60 classes using an IoU threshold of
0.5.

Implementation Details. For single-pathway structures,
we adopt Slow 8×8 and X3D-M as our backbone. For
multiple-pathway structures we use SlowFast 4×16 due to
the limitation of GPU memory. For Slow and SlowFast, the
width factor γw is uniformly sampled from [0.63, 1.0]×.
The spatial resolution factor is γs ∈ {0.63, 0.80, 1.0}
(corresponding to {142, 178, 224}) and the temporal res-
olution factor is γt ∈ {0.4, 0.63, 1.0} (corresponding
to {3, 5, 8}). For X3D-M, the width factor γw is uni-
formly sampled from [0.63, 1.0]×. The spatial resolution
factor is γs ∈ {0.63, 0.71, 0.86, 1.0} (corresponding to
{142, 160, 192, 224}) and the temporal resolution factor is
γt ∈ {0.4, 0.6, 0.8, 1.0} (corresponding to {6, 9, 12, 16}).
Other training settings are the same as the official codes
[70].

6.5.1 Main results
Evaluation on Kinetics-400. In Fig. 18, we report the results
of MutualNet on different backbones along with its sepa-
rated trained counterparts. The original results (reported in
paper) are denoted as “-P” and our reproduced results using
official code [70] are denoted as “-R”. We report both results
to have a fair comparison since we can not reproduce the
original results due to lack of data. For results of MutualNet,
we use different line colors to show different dimensions
for accuracy-efficiency trade-off. Red means the spatial res-
olution is reduced to meet the dynamic resource budget in
this range. Similarly, green stands for temporal resolution
and blue stands for network width. Black indicates multiple
dimensions are involved for one trade-off step.

As shown in Fig. 18, MutualNet consistently outper-
forms its separately trained counterparts on three network
backbones. It achieves significant improvements over our
reproduced results and shows clear advantages over the
reported results in the paper. The improvement is even more
significant (3.5% on Slow backbone and 1.6% on SlowFast
backbone) for small resource budgets. This is because our

TABLE 8
Comparison of different models on Charades.

model pretrain mAP GFLOPs×views
CoViAR, R-50 [73] ImageNet 21.9 N/A
Asyn-TF, VGG16 [74] ImageNet 22.4 N/A
MultiScale TRN [75] ImageNet 25.2 N/A
Nonlocal, R-101 [76] ImageNet+Kinetics 37.5 544× 30
Slow-8×8 Kinetics 34.7 54.5× 30
MutualNet-Slow-8×8 Kinetics 35.6 54.5× 30

method allows the model to find a better width-spatial-
temporal trade-off at each resource budget. And the mutual
learning scheme can transfer the knowledge in large config-
urations to small models to further improve its performance.
On X3D-M backbone, our method achieves consistent im-
provements under different budgets. Note that X3D finds
the best-performed model configuration by a search process.
It trains many model configurations independently and
choose the best one, while MutualNet train all configura-
tions jointly which saves training time and improves the
overall performance.

Comparison with state-of-the-art. Based on X3D-M
backbone, we compare MutualNet with state-of-the-art
methods [15], [17], [53], [71] for action recognition in Fig. 19.
The results are based on 10-view testing. Note that the x-
axis is in log-scale for better visualization. We can see that
based on the state-of-the-art structure (X3D), MutualNet
substantially outperforms previous works (including X3D).
This reveals MutualNet is a general training framework and
can benefit from improved model structures.

6.5.2 Transfer learning
Evaluation on Chrades. We finetune the models trained on
Kinetics-400 on Charades. For SlowFast models, we use the
pre-trained models reproduced by us for a fair comparison.
For MutualNet models, we do not perform adaptive training
during finetuning. That means both SlowFast models and
MutualNet models follow the same finetuning process on
Charades. The only difference is the pre-trained models. We
follow the training settings in the released codes [70]. Since
we train the model on 4 GPUs, we reduce the batch-size and
base learning rate by half following the linear scaling rule
[72]. All other settings remain unchanged. As can be seen
in Table 8, MutualNet model outperforms its counterpart
(Slow-8×8) by 0.9% without increasing the computational
cost. Note that the only difference lies in the pre-trained
model, so the improvement demonstrate that our method
helps the network learn effective and well-generalized rep-
resentations which are transferable across different datasets.

Evaluation on AVA Detection. Similar to the experi-
ments in Charades, we follow the same training settings
as the released SlowFast codes [70]. The detector is similar
to Faster R-CNN [5] with minimal modifications adopted
for video. The region proposals are pre-computed by an
off-the-shelf person detector. Experiments are conducted on
AVA v2.1. All models are trained on a 4-GPU machine for
20 epochs with a batch-size of 32. The base learning rate
is 0.05 with linear warm-up for the first 5 epochs. The
learning rate is reduced by a factor of 10 at the 10th and 15th
epochs. Both SlowFast pre-trained models and MutualNet
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Fig. 18. Comparison of MutualNet and its independently trained counterparts under different computational constraints for video action recognition.
Both the results in the corresponding papers and our reproduced results are reported for a fair comparison. Our reproduced results are lower
because of lack of training data.
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Fig. 19. Comparison of MutualNet-X3D-M with state-of-the-art 3D net-
works. X-axis is in log-scale.

TABLE 9
Comparison of different models on AVA v2.1.

model flow pretrain mAP
I3D [13] Kinetics-400 14.5
I3D [13] X Kinetics-400 15.6
ACRN, S3D [77] X Kinetics-400 17.4
ATR, R-50+NL [78] Kinetics-400 20.0
Slow-8×8 Kinetics-400 20.2
MutualNet-Slow-8×8 Kinetics-400 20.6

pre-trained models are finetuned following the standard
training procedure; the only difference is the pre-trained
models. As shown in Table 9, MutualNet pre-trained model
also outperforms SlowFast and previous methods. Note that
only the pre-trained weights are different in the experi-
ments, so the improvements are not marginal and clearly
demonstrate the effectiveness of the learned representations.

7 CONCLUSION

This paper presents a method to mutually learn from differ-
ent model configurations. After training, the model can do
inference at different resource budgets to achieve adaptive

accuracy-efficiency trade-offs. Extensive experiments have
shown that it significantly improves inference performance
per FLOP on various network structures, datasets and tasks.
The mutual learning scheme is also a promising training
strategy for boosting single network performance. The gen-
erality of the proposed method allows it to translate well to
generic problem domains.
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