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Introduction
The Internet of Things (IoT) is a network of a variety of things or 
objects that are able to interact with each other and cooperate 
with their neighbors to reach common goals [1]. Advances in 
wireless communication (e.g., 5G) and artificial intelligence (AI) 
have created a synergistic move toward Artificial Intelligence of 
Things (AIoT) [2] , which consists of AI-empowered IoT devices 
that can analyze data used within devices and make proactive, 
intelligent, and accurate decisions without the involvement 
of humans. AIoT applications such as smart surveillance cam-
era networks, intelligent transportation, smart and connected 
healthcare, smart home, and smart grids have paved the way 
to build smart cities. Toward this, a myriad of smart edge devic-
es need to be installed, and a large number of AIoT devices 
produce enormous data. The rapid growth of the size of the 
data and the number of devices need AI-driven automated 
processing, often done in a centralized manner. The centralized 
machine learning model needs the training data to be collocat-
ed at a common server, and therefore needs to transfer a large 
amount of IoT device data from the network edge to the cen-
tral server. This imposes a huge burden on the communication 
networks while inducing severe vulnerability of data privacy.

Federated learning (FL) [3] is an emerging privacy-preserving 
deep learning paradigm that enables distributed neural model 
training on edge devices while keeping their data local to pre-
vent privacy leakage. In FL, the workers (e.g., IoT devices) only 
need to send their local model updates to the server that aggre-
gates these updates to continuously improve the shared global 
model. This approach significantly reduces the data privacy 
risk by only sending and receiving the computed local models 
to the server or vice versa rather than sending the data itself. 
Moreover, FL can greatly reduce the required number of com-
munication rounds for model convergence by increasing com-
putation parallelization, where more IoT devices are involved as 
workers, and by increasing local computation, where a worker 
performs multiple iterations of model updates before sending 
the updated model to the server. Through FL, IoT devices can 
still learn much more accurate models with small local datasets.

Classical FL relies on frequent centralized model aggregation, 
which may be applied for a single-hop IoT network, where the 
IoT devices are connected to each other and the central serv-
er over single-hop cellular or WiFi connections. Different from 
single-hop IoT systems that rely on cellular/WiFi systems with 
high infrastructure deployment and operational costs, wireless 
multihop IoT networks, consisting of a mesh of interconnected 
wireless IoT devices, have been widely exploited to build cost-ef-
ficient large-scale IoT systems [1]. However, adopting centralized 
FL (CFL) over a multihop IoT network faces a significant chal-
lenge: a communication bottleneck at the central server. As the 
number of IoT devices increases, the full network load is forced 
to pass through the single server node, which leads to network 
congestion and thus greatly slows down model convergence. In 
addition, the server carries the full responsibility of aggregation 
and has an unavoidable single point of failure.

Decentralized FL (DFL) [4, 5] is an emerging FL paradigm 
that can effectively address the aforementioned limitations of 
CFL. Under DFL, in each epoch, all workers update their local 
models via multiple stochastic gradient descent (SGD) itera-
tions. Then each worker averages its local model only with its 
neighbors. By removing the single point of aggregation, DFL 
can lead to a robust learning framework with increased scalabil-
ity. Moreover, distributing the traffic load from a central node 
can maximize the utilization of a network’s bandwidth and 
accelerate the model convergence speed.

Despite its great advantages, existing DFL solutions do have 
compromises and areas for possible improvement. A common 
DFL paradigm is synchronous optimization, where the work-
ers from a local group (e.g., one-hop neighbors) must receive 
the models from each other and finish their respective model 
averaging before stepping into the next epoch. For example, 
HADFL [5] defines a synchronization topology containing work-
ers that need to synchronize their model updates and aggrega-
tion. The probability-based worker selection is further adopted 
to mitigate the impact of stragglers. Moreover, HADFL needs to 
enforce model consensus by letting the synchronized workers 
broadcast their models to other non-synchronized workers. The 
collaborative FL algorithm [6] lets the workers, which cannot 
reach the central server directly, perform synchronized distribut-
ed FL with their one-hop neighbors, while the other workers still 
follow CFL. This synchronous nature, however, makes FL very 
vulnerable to stragglers (i.e., slow workers), which can greatly 
slow down the overall model convergence speed.
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In this article, we propose the fi rst composable generic DFL 
framework, which can operate in either synchronous mode or 
asynchronous mode. In particular, the asynchronous DFL mode 
can avoid the communication bottleneck of CFL via decen-
tralized local model updates while mitigating the impact of 
stragglers via asynchronous model averaging. In the preliminary 
experiments, we demonstrate the superior convergence perfor-
mance of DFL compared to CFL and showcase the robustness 
of asynchronous DFL in the presence of stragglers.

References [7, 8] provide a comprehensive survey of the 
challenges and solutions for applying FL algorithms over 
wireless communication networks, such as compression, 
wireless resource management, FL algorithm design, over-
the-air computation, and privacy/security issues. However, 
these works do not provide detailed discussion and experi-
mental evaluations on the distributed FL algorithms that are 
essential for AIoT applications. Our article aims to generalize 
the algorithmic foundation of DFL by proposing a simple 
framework that can easily transform into synchronous or 
asynchronous DFL algorithms with minimal code change. 
Moreover, to the best of our knowledge, our asynchronous 
DFL (Async-DFL) is also the first FL framework in the liter-
ature that is fully asynchronous, without requiring any wait 
time. The most relevant work to our Async-DFL is the asyn-
chronous decentralized parallel stochastic gradient descent 
(AD-PSGD) algorithm [9]. However, there are two major 
diff erences between Async-DFL and AD-PSGD. First, AD-PS-
GD is actually a semi-asynchronous solution, and Async-
DFL is a fully asynchronous scheme. In particular, AD-PSGD 
requires each worker to wait for the local model from one 
of its neighbors and then performs model aggregation. With 
Async-DFL, each worker does not need to wait for the model 
from any of its neighbors, and it opportunistically aggregates 
the local models it has already received. Second, Async-DFL 
is federated in the sense that it relies on the edge devices, 
local data, and production networks to perform distribut-
ed model training. Therefore, similar to FedAvg, Async-DFL 
exploits local SGD to improve communication efficiency, 
where each worker updates its local model by performing 
multiple rounds of SGD before sending it to the aggrega-
tion server. Meanwhile, Async-DFL needs to achieve model 
convergence under non-independent and identically distrib-
uted (IID) data distribution. On the contrary, AD-PSGD is 
designed for distributed deep learning in data centers, where 
the communication cost is not an issue and the data across 
all the workers are IID. Therefore, AD-PSGD only needs 
each worker to update its local model with SGD for one 
round and then sends the updated model or gradient to the 
parameter server over a high-speed communication link.

centrAlIZed federAted leArnIng
One of the key challenges of machine learning is fi nding the best 
way to make use of as much data and processing power to train 
the learning model in the shortest possible time. Over time, it has 
been found that it is more cost- and time-eff ective to divide the 
work among many cheaper and weaker edge devices than try to 
place it all on a single expensive, powerful machine. In the past, 
traditionally this form of machine learning relied on a central 
server to read the data of IoT edge devices. This has been able 
to provide a wealth of data on which models can train; howeer, it 
not only places a great computational load on the central server 
but also completely opens the edge devices to critical privacy 
concerns whose relevance in real-world problems is ongoing.

The FL paradigm changes this. Its operation can be broken 
down into two key elements: the workers and the aggrega-
tor(s). In FL, the IoT device’s data itself is never read or taken 
by a source from outside the device. Rather, each device takes 
on the shared responsibility of training, with each worker device 
having its own local model being trained. Aggregator devices 
are central servers responsible for receiving the models of work-
ers from across the network, then summing, averaging, and/or 
refactoring them to a composite new model, and then broad-
casting across the network for the next round of training.

As shown in Fig. 1a, the de facto CFL algorithm, FedAvg [10], 
and many of its variants are designed to handle distributed train-
ing of a common neural network, which can be modeled as a 
distributed parallel non-convex optimization problem with the 
training loss function as the optimization objective. To solve such 
a problem, each worker begins with the same initial untrained 
model, and then alternates between local SGD iteration and glob-
al model averaging for multiple (server-worker communication) 
rounds/epochs. During local SGD iteration, the worker tries to 
reduce its training loss F(w) by performing Hk mini-batch SGD iter-
ations with each iteration updating the local model weights. After 
fi nishing local model updates, the workers send their local models 
wk k ≤ K to the central server, which averages them to produce 
the updated global model accordingly. The new global model is 
broadcast to the workers, and the above procedure is repeated.

chAllenges of cfl
CFL serves as the next step, shifting from the traditional central-
ized paradigm to distributed machine learning; however, its cen-
tralized model aggregation nature still presents problems. As with 
any centralized approach, CFL presents an unavoidable commu-
nication bottleneck in the system. Although the computational 
load of training is distributed, the network traffi  c is still concen-
trated at one point, which places a strain on the central server’s 
throughput and does not fully utilize the bandwidth across the 
network. In addition, CFL often has to contend with multihop 

Figure 1. Federated learning in an IoT network: a) classical centralized FL;b) decentralized FL.
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communication, which further reduces its performance. With that 
being the case, CFL favors topologies like star networks that allow 
them to have all workers send their models in one hop; however, 
that type of network is infl exible and scales poorly compared to 
IoT mesh networks, which are more practical in real-world appli-
cations, leaving CFL to fare poorly in development.

decentrAlIZed federAted leArnIng
generIc decentrAlIZed fl frAmeWorK
generIc decentrAlIZed fl frAmeWorK

With our DFL, each worker communicates with one-hop neigh-
bors and shares the responsibility of aggregation as shown in Fig. 
1b. Rather than sending its local model to a central server node, 
the worker sends copies of its model to its network neighbors. 
This means that each worker is the aggregator for their own 
local model and those of their neighbors, without bearing the 
full responsibility of every worker’s model at once. Critically, DFL 
exploits the benefi ts of fast single-hop wireless connections, as 
opposed to the multihop variants of CFL. The ability of the work-
ers to operate without needing knowledge of a broader network 
or the supervision of a central server allows the framework a 
large degree of fl exibility, robustness, and scalability.

As shown in Fig. 1b, we propose a generic DFL framework 
that can be easily turned into either the synchronous DFL (Sync-
DFL) mode pr asynchronous DFL (Async-DFL) mode. Sync-DFL 
and Async-DFL share almost the same local training procedure 
that is iterating between local model update and local model 
aggregation, including:
• Model updates via local SGD
• Model broadcasting among one-hop neighbors
• Model receiving from neighbors

• Local model aggregation/averaging of its own model and 
received neighbor models

The above local training procedure is repeated until the pre-
defi ned number of training epochs is reached. After the local 
training is done, each worker sends its local model to the global 
aggregation node that performs the last-round global model 
aggregation on the received local models and produces the 
final inference model used by IoT devices. The global aggre-
gation node can be the gateway device that connects IoT net-
works to the Internet or a randomly selected regular IoT device.

The diff erence between Sync-DFL and Async-DFL modes comes 
from two perspectives. First, they adopt different local model 
aggregation triggers. In Sync-DFL mode, local model aggregation 
begins whenever the model buff er is full, that is, the models from 
all one-hop neighbors arrive. Therefore, combined with the chain-
ing eff ect, the training clocks (i.e., training rounds) of all workers in 
the network are synchronized. In Async-DFL mode; local model 
aggregation is triggered whenever the predefi ned waiting time has 
passed. Therefore, each worker has to maintain its own training 
round counter. In this case, a slower worker may receive multiple 
updated local models from a faster worker that has already fi nished 
multiple rounds of training. In this case, the slower worker will only 
keep the most up-to-date one in the buffer. Similarly, the faster 
worker may receive a very “old” local model from a slower worker 
that is still in its early training round. Second, they adopt diff erent 
last-round global aggregation strategies. In Sync-DFL mode, all 
workers synchronize their local training so that the global aggrega-
tor can receive the models from all workers almost simultaneously. 
Therefore, all the local models are used for the fi nal global model 
aggregation. In Async-DFL mode, the workers fi nish local training 
at different time instances. Therefore, the global aggregator will 
only wait for the arrivals of a certain percentage of local models 
and then perform last-round global model aggregation.

One of the key features of the proposed framework relies 
on the model buff er design. The model buff er has two purpos-
es. First, it enables implicit inter-device synchronization for the 
Sync-DFL mode, which is explained in the following section. 
Second, it can be used to achieve the flexible speed-quality 
trade-off  between training convergence speed and model train-
ing accuracy/quality. Each model represents a diff erent subset 
of training data used to improve the overall training, so the 
more models aggregated the better. For the synchronous case, 
some workers must spend time waiting for each round of train-
ing, but the quality of each training round is maximized in doing 
so. For the asynchronous case, the speed-quality trade-off  can 
be adjusted based on how many local models arrive at the buf-
fer before the local model aggregation is performed.

synchronous dfl
With Sync-DFL, the workers follow two converse rules: first, 
they only aggregate once they have a full buff er, and second, 
they will always wait for their stragglers before beginning their 
own next round of training. Essentially, the worker’s buff er func-
tions as a clock to keep time with the rest of the network, as 
illustrated in Fig. 2a. Each worker works in the same global 
round and generally begins their model broadcasting at a sim-
ilar time. Once each worker finishes their broadcasting, they 
begin checking to see whether their buff er is full. If the buff er is 
not full, the worker knows that it is outpacing the network and 
will wait until the buff er is full to proceed. Therefore, the work-
ers aggregate within a similar time, emptying their respective 
buff ers and then moving on to the next round’s training.

Asynchronous dfl
Async-DFL subverts the approach of Sync-DFL. Rather than 
having workers wait to ensure an ideal or close-to-ideal aggre-
gation, it instead has the workers proceed regardless of the 
state of the buffer. It will always have at least its own model 
to aggregate even if the buffer is otherwise empty. Optional-
ly, it may have an adjustable wait timer for other workers to 

Figure 2. In synchronous DFL, workers keep time by waiting for 
the slowest workers to fi ll their buff ers before aggregating. In 
asynchronous DFL, the faster workers aggregate immediately 
no matter how full the buff er is, which allows them to 
avoid waiting but necessitates program robustness to 
handle communication at any time: a) synchronous DFL; b) 
asynchronous DFL.

(a)

(b)
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catch up. Over time, the faster workers begin 
to leave the slower workers behind, leading 
to the workers sharing their models with their 
neighbors regardless of what epoch step they 
are in, as shown in Fig. 2b. Eventually, they will 
end up with the workers training on different 
epochs until the stragglers are left to finish 
training on their own without further broad-
casts from their finished neighbors.

The Async-DFL method allows the fast-
er workers to proceed without waiting for the 
stragglers. Moreover, with this asynchronous 
design, the computing and networking can oper-
ate in parallel, where the model aggregation is carried on while 
the devices are sending and receiving the models. The reduced 
model sharing makes Async-DFL more subject to overfitting, 
which may worsen the per-epoch improvements to accuracy to 
the global testset. However, as long as the worker is aggregat-
ing at least a partially full buffer, it will counteract overfitting as it 
converges, and in practice that is usually the case. As the worker 
communication is generally the limiting factor for overall epoch 
speed as opposed to the actual model training, avoiding unneces-
sary waiting or redundant communication is important to optimize 
convergence speed.

Simulation and Physical Testbed Evaluation 
of FL Management Modes

In our set of experiments, we investigate and study how Sync-
DFL and Async-DFL efficiently improve the convergence speed 
and performance of FL in both a simulated environment and a 
live network testbed. Our results are based on a set of exper-
iments in which we first ran a model training on the network 
in the centralized as well as decentralized, synchronous and 
asynchronous cases.

Experiment Setup
Heterogeneous Data Settings and Models: We use the federat-
ed learning benchmark datasets FEMINST with 62 classes from 
LEAF (https://leaf.cmu.edu/) and CIFAR-10 (https://www.cs.to-
ronto.edu/kriz/cifar.html) with 10 classes. We followed the 
non-IID data settings with realistic partition method from LEAF. 
For CIFAR-10, we use the Dirichlet distribution Dir(b) to create 
heterogeneous data partitions for all the workers in unbalanced 
settings. The degree of heterogeneity is controlled by the value 
of beta, which is 0.5 in our case. We model the computation/
communication heterogeneity by adding 40 s training delay 
for the stragglers. Our CNN is composed of two convolutional 
layers followed by a fully connected layer that utilize local SGD. 
The convolutional layers contain 32 and 64 layers, respective-
ly and are attached via a 2  2 max pooling layer. The fully 
connected layer contains 128 units with ReLU activation and 
outputs into the final layer as fully connected with softmax acti-
vation, whose size is around 5.8 MB, which represents low 
communication traffic. Then we evaluate a CIFAR-10 dataset 
with a deep neural network model, MobileNet [11], whose size 
is about 15 MB, representing high traffic volume.

CFL Baseline and DFL Implementations: We adopt our cus-
tom-designed FedEdge experiential framework [12] to imple-
ment the CFL, Sync-DFL, and Async-DFL solutions. We utilize 
the widely adopted FedAvg [10] as the CFL baseline. FedEdge 
[13, 14, 12] is a software-defined experiential framework with 
an integrated federated computing module empowered by Ten-
sorFlow and a software-defined wireless multihop networking 
module based on Mininet-wifi [15].

FedEdge is the first experimental framework in the literature 
for FL over multihop wireless edge computing networks (e.g., IoT 
networks), which allowed us to quickly prototype, deploy, and 
evaluate novel FL algorithms along with machine-learning-based 
system optimization methods in both simulated and real wireless 

devices. The experimental framework, FedML 
[10], has been used in exploring the possibilities 
of Sync-DFL. However, given that decentralized 
FedML’s primary purpose is benchmarking rather 
than development, it is not designed for a live 
running environment for its results or set up with 
a network topology common to real-world appli-
cations in their experiments. Moreover, FedML 
does not support the generic DFL framework 
that enables both Sync-DFL and Async-DFL.

Physical Testbed Setup: The multihop wire-
less edge computing network is used as the 
physical IoT network testbed [12]. This testbed 

consists of 10 wireless edge computing nodes (i.e., IoT work-
ers), where each node includes a wireless embedded router 
for communication and an Nvidia Xavier node for computing. 
The wireless routers are connected with three wireless interface 
cards to enable the multi-radio wireless node. Each mesh router 
is in mesh point (MP) mode, with fixed 2.4 and 5 GHz channel, 
20 MHz channel width in 802.11ac operating mode, and 15 
dBm transmit power. The state-of-the-art Batman-adv is used 
for distributed multihop routing, which establishes the serv-
er-to-worker in the Sync-DFL case. We connect a server to R1, 
and worker 9 served as a straggler with a delay of 40 s. Each 
experiment runs for 30 global epochs and 5 local rounds with 
a batch size of 10 and a learning rate of 0.002 for both CNN 
(2Conv +2FC) and MobileNet models.

Network Simulation Setup: We first evaluated the perfor-
mance of the FL solutions in a FedEdge simulator [14]. To vali-
date and analyze the performance of the generic decentralized 
FL framework, we established a wireless multihop IoT network 
with 5  3 grid topology with 15 workers, as shown in Fig 3a. 
The link bandwidth is set to be 24 Mb/s. Every worker’s neigh-
bors were the workers one hop away cardinally. For centralized 
FL, worker 1 served as the network’s server node while also still 
serving as a worker. In our straggler case experiments for the 
CIFAR10 dataset, we treat worker 14 (5 network hops from 
worker 1) as the straggler by adding 40 s delay to each training 
epoch to simulate the limited computing power of IoT devices 
or a CPU performance drop. Each run includes 5 local rounds 
per global epoch with a batch size of 10, a learning rate of 
0.002, and 50 global rounds.

Performance and Communication Comparisons
We evaluate the model convergence by observing the learn-
ing curves and the wall clock time when the testing accuracy 
achieves certain thresholds (0.5, 0.6, 0.7, and 0.75), where all 
methods can achieve the same maximum accuracy of 0.75 
(Fig. 4). Table 1 summarizes the convergence time for all 
methods to achieve the maximum testing accuracy. Note that 
the computation time relative to the overall convergence time 
is actually negligible; the vast majority of convergence time is 
spent by nodes either sending models or waiting to receive a 
particular model.

Model Convergence without Stragglers: Figures 4a–4c pres-
ent the performance comparison of FL in terms of accuracy and 
wall clock convergence time of CFL, Sync-DFL, and Async-DFL 
with no straggler case. We performed two sets of experiments in 
the testbed. First, we consider LEAF dataset and CNN (2 Conv + 
2 FC) as a lightweight model. Both Sync-DFL and CFL are able 
to reach the same accuracy at a similar point of time, as shown 
in Fig. 4a. However, we observe that CFL with MobileNet model 
takes a longer time to converge because the Mobilenet model 
is 3 larger than the 4 layers of CNN. For the 15-worker case 
of CIFAR-10 and MobileNet in simulation shown in Fig. 4c, 
both Sync-DFL and Async-DFL are able to achieve nearly 0.7 
test accuracy within about 11 minutes in the simulation, outpac-
ing CFL taking roughly twice as long at 23 minutes to achieve 
the same accuracy performance (all cases reaching a maximum 
accuracy of about 0.75).

The Async-DFL 
method allows the 

faster workers to pro-
ceed without waiting 

for the stragglers.
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The prolonged convergence time of CFL is due to the fact 
that each worker needs to send their updated local model to 
the central server through long and random multihop commu-
nication links in the IoT network, while the server needs to wait 
for all models from workers to proceed to the next training 
round. This causes network congestion to the bottleneck links 
around the server at router 1.

Sync-DFL and Async-DFL, meanwhile, only require the work-
ers to send their updated models to their single-hop neighbors, 
which can fully utilize the network bandwidth and more evenly 
distribute traffi  c load. This can eff ectively alleviate the FL traffi  c 
around bottleneck links. As a result, Sync-DFL and Async-DFL 
reduce the model training time eff ectively by half in the exper-
iments without any noticeable loss in convergence accuracy.

Model Convergence with Stragglers: When a straggler is 
introduced into the network, all FL solutions are aff ected by the 
increased model convergence time, where Async-DFL is aff ect-
ed least, as shown in Figs. 4d–4f. Sync-DFL’s results resemble 
more closely that of CFL. This is because both Sync-DFL and 
CFL rely on synchronized local model training of all workers 
in the network, and thus the convergence time of Sync-DFL 
and CFL is directly aff ected by stragglers. However, compared 
to CFL, Sync-DFL can still achieve higher convergence speed 
because it confines the model exchange among single-hop 
neighbors, while CFL still suff ers the communication bottleneck 
issue around the central server. This eff ect can be expected to 
continue as the network grows larger. Meanwhile, DFL’s net-

work traffi  c is only limited to the workers’ number of single-hop 
neighbors as the network scales up.

In the simulated test (Fig. 4f), Async-DFL reaches 0.70 accu-
racy by about 13 minutes. Both CFL and Sync-DFL reach the 
same accuracy by around 86 and 75 minutes, respectively, 
roughly a 6 increase in time to converge compared to Async-
DFL; the dramatic diff erence in tolerance can be seen visually in 
Fig. 4f. In the testbed, LEAF is used to demonstrate a relatively 
light job load in a live environment, whereas CIFAR-10 presents 
a more rigorous training job. In LEAF with a straggler, Async-
DFL achieves more than 2 and 3 convergence speedup, 
compared with Sync-DFL and CFL, respectively, when all meth-
ods achieve the same 70 percent and 75 percent accuracies. 
In CIFAR-10 with testbed, compared with CFL and Sync-DFL, 
Async-DFL takes 1.5 and 3 less convergence time respective-
ly to achieve the same maximum testing accuracy (75 percent). 
For a larger simulated network, Async-DFL achieves 7speedup 
compared to both CFL and Sync-DFL.

conclusIon And future dIrectIons
To cope with the growing need for AIoT systems, the article 
examines and evaluates the efficacy of two different versions 
of decentralized federated learning models by building a com-
posable generic decentralized FL framework. The experiment 
results demonstrate the superior convergence performance of 
DFL in multihop IoT networks compared to classic CFL. More-
over, the preliminary results show that Async-DFL can accel-
erate the model convergence speed while being very resilient 
and robust in heterogeneous IoT environments with the inevi-
table presence of stragglers. Async-DFL shows great potential 
to achieve the optimal trade-off  between model convergence 
speed and model quality for further large-scale AIoT networks, 
which is worthy of further investigation.

Moreover, we will investigate semi-asynchronous DFL algo-
rithms, where each worker only synchronizes with a subset of its 
one-hop neighbors, which can also dynamically change accord-
ing to model quality and channel condition. Moreover, the cur-
rent DFL algorithms generally assume all the workers are willing 
to cooperate. This assumption may not hold in practical settings; 
therefore, incentive schemes need to be developed for enhanc-
ing the cooperative gain. In addition, this article focuses on the 
algorithmic foundation of DFL. It will be worth theoretically inves-
tigating the convergence bounds of Sync-DFL and Async-DFL.
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Figure 4. Comparison of centralized and decentralized federated learning performance in simulation and testbed environments (LEAF 
and CIFAR-10), each with cases having no straggler or having a straggler with a 40 s per local training round: a) testbed: LEAF 
(CNN 2 Conv + 2 FC) (no straggler); b) testbed: CIFAR-10 (MobileNet) (no straggler); c) simulation: CIFAR-10 (MobileNet) (no 
straggler); d) testbed: LEAF (CNN 2 Conv + 2 FC) (with straggler; e) testbed: CIFAR-10 (MobileNet) (with straggler); f) simulation: 
CIFAR-10 (MobileNet) (with straggler).
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Table 1. The total convergence time to achieve maximum (75%) of test accuracy and the corresponding computation time in parenthe-
ses (in minutes).

Methods

Testbed Simulation

FMNIST (4 layers CNNs) Acc (75%) CIFAR-10 (MobileNet) 
Acc (75%)

CIFAR-10 (MobileNet) 
Acc (75 %)

Non-straggler Straggler Non-straggler Straggler Non-straggler Straggler

CFL 33 (1) 175 (1) 110 (2) 175 (2) 23 (1) 140 (1)

Sync-DFL 23 (1) 110 (1) 45 (2) 110 (2) 35 (1) 140 (1)

Async-DFL 15 (1) 50 (1) 38 (2) 75 (2) 25 (1) 20 (1)
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