
IEEE Internet of Things Magazine • March 202230 2576-3180/22/$25.00 © 2022 IEEE

Pinyarash Pinyoanuntapong, Wesley Houston Huff, Minwoo Lee, Chen Chen, and Pu Wang

Toward Scalable and Robust AIoT via
Decentralized Federated Learning

Introduction
The Internet of Things (IoT) is a network of a variety of things or
objects that are able to interact with each other and cooperate
with their neighbors to reach common goals [1]. Advances in
wireless communication (e.g., 5G) and artificial intelligence (AI)
have created a synergistic move toward Artificial Intelligence of
Things (AIoT) [2] , which consists of AI-empowered IoT devices
that can analyze data used within devices and make proactive,
intelligent, and accurate decisions without the involvement
of humans. AIoT applications such as smart surveillance cam-
era networks, intelligent transportation, smart and connected
healthcare, smart home, and smart grids have paved the way
to build smart cities. Toward this, a myriad of smart edge devic-
es need to be installed, and a large number of AIoT devices
produce enormous data. The rapid growth of the size of the
data and the number of devices need AI-driven automated
processing, often done in a centralized manner. The centralized
machine learning model needs the training data to be collocat-
ed at a common server, and therefore needs to transfer a large
amount of IoT device data from the network edge to the cen-
tral server. This imposes a huge burden on the communication
networks while inducing severe vulnerability of data privacy.

Federated learning (FL) [3] is an emerging privacy-preserving
deep learning paradigm that enables distributed neural model
training on edge devices while keeping their data local to pre-
vent privacy leakage. In FL, the workers (e.g., IoT devices) only
need to send their local model updates to the server that aggre-
gates these updates to continuously improve the shared global
model. This approach significantly reduces the data privacy
risk by only sending and receiving the computed local models
to the server or vice versa rather than sending the data itself.
Moreover, FL can greatly reduce the required number of com-
munication rounds for model convergence by increasing com-
putation parallelization, where more IoT devices are involved as
workers, and by increasing local computation, where a worker
performs multiple iterations of model updates before sending
the updated model to the server. Through FL, IoT devices can
still learn much more accurate models with small local datasets.

Classical FL relies on frequent centralized model aggregation,
which may be applied for a single-hop IoT network, where the
IoT devices are connected to each other and the central serv-
er over single-hop cellular or WiFi connections. Different from
single-hop IoT systems that rely on cellular/WiFi systems with
high infrastructure deployment and operational costs, wireless
multihop IoT networks, consisting of a mesh of interconnected
wireless IoT devices, have been widely exploited to build cost-ef-
ficient large-scale IoT systems [1]. However, adopting centralized
FL (CFL) over a multihop IoT network faces a significant chal-
lenge: a communication bottleneck at the central server. As the
number of IoT devices increases, the full network load is forced
to pass through the single server node, which leads to network
congestion and thus greatly slows down model convergence. In
addition, the server carries the full responsibility of aggregation
and has an unavoidable single point of failure.

Decentralized FL (DFL) [4, 5] is an emerging FL paradigm
that can effectively address the aforementioned limitations of
CFL. Under DFL, in each epoch, all workers update their local
models via multiple stochastic gradient descent (SGD) itera-
tions. Then each worker averages its local model only with its
neighbors. By removing the single point of aggregation, DFL
can lead to a robust learning framework with increased scalabil-
ity. Moreover, distributing the traffic load from a central node
can maximize the utilization of a network’s bandwidth and
accelerate the model convergence speed.

Despite its great advantages, existing DFL solutions do have
compromises and areas for possible improvement. A common
DFL paradigm is synchronous optimization, where the work-
ers from a local group (e.g., one-hop neighbors) must receive
the models from each other and finish their respective model
averaging before stepping into the next epoch. For example,
HADFL [5] defines a synchronization topology containing work-
ers that need to synchronize their model updates and aggrega-
tion. The probability-based worker selection is further adopted
to mitigate the impact of stragglers. Moreover, HADFL needs to
enforce model consensus by letting the synchronized workers
broadcast their models to other non-synchronized workers. The
collaborative FL algorithm [6] lets the workers, which cannot
reach the central server directly, perform synchronized distribut-
ed FL with their one-hop neighbors, while the other workers still
follow CFL. This synchronous nature, however, makes FL very
vulnerable to stragglers (i.e., slow workers), which can greatly
slow down the overall model convergence speed.

Abstract
As Artificial Intelligence of Things (AIoT) has become increasingly important for modern AI applications,federated learning (FL) is envisioned
to be the enabling technology for AIoT, especially for large-scale, data privacy-preserving scenarios. However, most existing FL is managed
in a centralized manner (CFL), which confronts the limitations of scalability given the AIoT device explosion. The key challenge faced by CFL
is the communication bottleneck at the central model aggregation server, which leads to a high server-to-worker communication delay and
thus severely slows down the model convergence. To address this challenge, this article introduces a generic decentralized FL (DFL) frame-
work that can operate in either synchronous (Sync-DFL) mode or asynchronous (Async-DFL) mode to alleviate the high communication
congestion around the central server. Moreover, Async-DFL is the first DFL in the literature to provide a generic FL framework that is fully
asynchronous and able to completely avoid worker waiting, which leads to robust distributed model training in the inherently heterogeneous
IoT environments, where stragglers (i.e., slow devices) are very common due to the largely varying computing/networking speeds of IoT
devices. Our DFL framework is implemented, deployed, and experimented with in both simulation and physical testbeds. The results show
that Async-DFL can accelerate the convergence speed of model training twice as fast as CFL, while maintaining convergence accuracy and

effectively combating the impact of the stragglers.

Digital Object Identifier: 10.1109/IOTM.006.2100216

Pinyarash Pinyoanuntapong, Wesley Houston Huff (corresponding author), Min-
woo Lee and Pu Wang are with the University of North Carolina at Charlotte, USA.
Chen Chen is with the University of Central Florida, USA.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 15,2022 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • March 2022 31

In this article, we propose the fi rst composable generic DFL
framework, which can operate in either synchronous mode or
asynchronous mode. In particular, the asynchronous DFL mode
can avoid the communication bottleneck of CFL via decen-
tralized local model updates while mitigating the impact of
stragglers via asynchronous model averaging. In the preliminary
experiments, we demonstrate the superior convergence perfor-
mance of DFL compared to CFL and showcase the robustness
of asynchronous DFL in the presence of stragglers.

References [7, 8] provide a comprehensive survey of the
challenges and solutions for applying FL algorithms over
wireless communication networks, such as compression,
wireless resource management, FL algorithm design, over-
the-air computation, and privacy/security issues. However,
these works do not provide detailed discussion and experi-
mental evaluations on the distributed FL algorithms that are
essential for AIoT applications. Our article aims to generalize
the algorithmic foundation of DFL by proposing a simple
framework that can easily transform into synchronous or
asynchronous DFL algorithms with minimal code change.
Moreover, to the best of our knowledge, our asynchronous
DFL (Async-DFL) is also the first FL framework in the liter-
ature that is fully asynchronous, without requiring any wait
time. The most relevant work to our Async-DFL is the asyn-
chronous decentralized parallel stochastic gradient descent
(AD-PSGD) algorithm [9]. However, there are two major
diff erences between Async-DFL and AD-PSGD. First, AD-PS-
GD is actually a semi-asynchronous solution, and Async-
DFL is a fully asynchronous scheme. In particular, AD-PSGD
requires each worker to wait for the local model from one
of its neighbors and then performs model aggregation. With
Async-DFL, each worker does not need to wait for the model
from any of its neighbors, and it opportunistically aggregates
the local models it has already received. Second, Async-DFL
is federated in the sense that it relies on the edge devices,
local data, and production networks to perform distribut-
ed model training. Therefore, similar to FedAvg, Async-DFL
exploits local SGD to improve communication efficiency,
where each worker updates its local model by performing
multiple rounds of SGD before sending it to the aggrega-
tion server. Meanwhile, Async-DFL needs to achieve model
convergence under non-independent and identically distrib-
uted (IID) data distribution. On the contrary, AD-PSGD is
designed for distributed deep learning in data centers, where
the communication cost is not an issue and the data across
all the workers are IID. Therefore, AD-PSGD only needs
each worker to update its local model with SGD for one
round and then sends the updated model or gradient to the
parameter server over a high-speed communication link.

centrAlIZed federAted leArnIng
One of the key challenges of machine learning is fi nding the best
way to make use of as much data and processing power to train
the learning model in the shortest possible time. Over time, it has
been found that it is more cost- and time-eff ective to divide the
work among many cheaper and weaker edge devices than try to
place it all on a single expensive, powerful machine. In the past,
traditionally this form of machine learning relied on a central
server to read the data of IoT edge devices. This has been able
to provide a wealth of data on which models can train; howeer, it
not only places a great computational load on the central server
but also completely opens the edge devices to critical privacy
concerns whose relevance in real-world problems is ongoing.

The FL paradigm changes this. Its operation can be broken
down into two key elements: the workers and the aggrega-
tor(s). In FL, the IoT device’s data itself is never read or taken
by a source from outside the device. Rather, each device takes
on the shared responsibility of training, with each worker device
having its own local model being trained. Aggregator devices
are central servers responsible for receiving the models of work-
ers from across the network, then summing, averaging, and/or
refactoring them to a composite new model, and then broad-
casting across the network for the next round of training.

As shown in Fig. 1a, the de facto CFL algorithm, FedAvg [10],
and many of its variants are designed to handle distributed train-
ing of a common neural network, which can be modeled as a
distributed parallel non-convex optimization problem with the
training loss function as the optimization objective. To solve such
a problem, each worker begins with the same initial untrained
model, and then alternates between local SGD iteration and glob-
al model averaging for multiple (server-worker communication)
rounds/epochs. During local SGD iteration, the worker tries to
reduce its training loss F(w) by performing Hk mini-batch SGD iter-
ations with each iteration updating the local model weights. After
fi nishing local model updates, the workers send their local models
wk k ≤ K to the central server, which averages them to produce
the updated global model accordingly. The new global model is
broadcast to the workers, and the above procedure is repeated.

chAllenges of cfl
CFL serves as the next step, shifting from the traditional central-
ized paradigm to distributed machine learning; however, its cen-
tralized model aggregation nature still presents problems. As with
any centralized approach, CFL presents an unavoidable commu-
nication bottleneck in the system. Although the computational
load of training is distributed, the network traffi c is still concen-
trated at one point, which places a strain on the central server’s
throughput and does not fully utilize the bandwidth across the
network. In addition, CFL often has to contend with multihop

Figure 1. Federated learning in an IoT network: a) classical centralized FL;b) decentralized FL.

Local DatasetLocal Model

Local DatasetLocal Model

Local DatasetLocal Model

Local Model

Neighbor Model

AIoT Node

Local DatasetLocal Model

AIoT Node AIoT Node

AIoT Node

1

2

3
4

3

4
Local Model
Aggrega on

Synchronous Asynchronous

Buffer Time-out

Wait for neighbor
models

1 2 3

2 Broadcast model to
1-hop neighbors

Perform final global
model averaging

5

Local Training
Process

For t = 1,2,.., T Do (t:round index)

Local Model update: 1

Central Sever

Global Model

Local DatasetLocal Model

Local DatasetLocal Model

Local Dataset
Local Model

Perform Local SGD for k itera ons

1

Distribute Updated
Global Model to Devices

3

2 Global Model Aggrega on:

Local Model

Global Model

AIoT Node

Local Model Updated

(a) (b)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 15,2022 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • March 202232

communication, which further reduces its performance. With that
being the case, CFL favors topologies like star networks that allow
them to have all workers send their models in one hop; however,
that type of network is infl exible and scales poorly compared to
IoT mesh networks, which are more practical in real-world appli-
cations, leaving CFL to fare poorly in development.

decentrAlIZed federAted leArnIng
generIc decentrAlIZed fl frAmeWorK
generIc decentrAlIZed fl frAmeWorK

With our DFL, each worker communicates with one-hop neigh-
bors and shares the responsibility of aggregation as shown in Fig.
1b. Rather than sending its local model to a central server node,
the worker sends copies of its model to its network neighbors.
This means that each worker is the aggregator for their own
local model and those of their neighbors, without bearing the
full responsibility of every worker’s model at once. Critically, DFL
exploits the benefi ts of fast single-hop wireless connections, as
opposed to the multihop variants of CFL. The ability of the work-
ers to operate without needing knowledge of a broader network
or the supervision of a central server allows the framework a
large degree of fl exibility, robustness, and scalability.

As shown in Fig. 1b, we propose a generic DFL framework
that can be easily turned into either the synchronous DFL (Sync-
DFL) mode pr asynchronous DFL (Async-DFL) mode. Sync-DFL
and Async-DFL share almost the same local training procedure
that is iterating between local model update and local model
aggregation, including:
• Model updates via local SGD
• Model broadcasting among one-hop neighbors
• Model receiving from neighbors

• Local model aggregation/averaging of its own model and
received neighbor models

The above local training procedure is repeated until the pre-
defi ned number of training epochs is reached. After the local
training is done, each worker sends its local model to the global
aggregation node that performs the last-round global model
aggregation on the received local models and produces the
final inference model used by IoT devices. The global aggre-
gation node can be the gateway device that connects IoT net-
works to the Internet or a randomly selected regular IoT device.

The diff erence between Sync-DFL and Async-DFL modes comes
from two perspectives. First, they adopt different local model
aggregation triggers. In Sync-DFL mode, local model aggregation
begins whenever the model buff er is full, that is, the models from
all one-hop neighbors arrive. Therefore, combined with the chain-
ing eff ect, the training clocks (i.e., training rounds) of all workers in
the network are synchronized. In Async-DFL mode; local model
aggregation is triggered whenever the predefi ned waiting time has
passed. Therefore, each worker has to maintain its own training
round counter. In this case, a slower worker may receive multiple
updated local models from a faster worker that has already fi nished
multiple rounds of training. In this case, the slower worker will only
keep the most up-to-date one in the buffer. Similarly, the faster
worker may receive a very “old” local model from a slower worker
that is still in its early training round. Second, they adopt diff erent
last-round global aggregation strategies. In Sync-DFL mode, all
workers synchronize their local training so that the global aggrega-
tor can receive the models from all workers almost simultaneously.
Therefore, all the local models are used for the fi nal global model
aggregation. In Async-DFL mode, the workers fi nish local training
at different time instances. Therefore, the global aggregator will
only wait for the arrivals of a certain percentage of local models
and then perform last-round global model aggregation.

One of the key features of the proposed framework relies
on the model buff er design. The model buff er has two purpos-
es. First, it enables implicit inter-device synchronization for the
Sync-DFL mode, which is explained in the following section.
Second, it can be used to achieve the flexible speed-quality
trade-off between training convergence speed and model train-
ing accuracy/quality. Each model represents a diff erent subset
of training data used to improve the overall training, so the
more models aggregated the better. For the synchronous case,
some workers must spend time waiting for each round of train-
ing, but the quality of each training round is maximized in doing
so. For the asynchronous case, the speed-quality trade-off can
be adjusted based on how many local models arrive at the buf-
fer before the local model aggregation is performed.

synchronous dfl
With Sync-DFL, the workers follow two converse rules: first,
they only aggregate once they have a full buff er, and second,
they will always wait for their stragglers before beginning their
own next round of training. Essentially, the worker’s buff er func-
tions as a clock to keep time with the rest of the network, as
illustrated in Fig. 2a. Each worker works in the same global
round and generally begins their model broadcasting at a sim-
ilar time. Once each worker finishes their broadcasting, they
begin checking to see whether their buff er is full. If the buff er is
not full, the worker knows that it is outpacing the network and
will wait until the buff er is full to proceed. Therefore, the work-
ers aggregate within a similar time, emptying their respective
buff ers and then moving on to the next round’s training.

Asynchronous dfl
Async-DFL subverts the approach of Sync-DFL. Rather than
having workers wait to ensure an ideal or close-to-ideal aggre-
gation, it instead has the workers proceed regardless of the
state of the buffer. It will always have at least its own model
to aggregate even if the buffer is otherwise empty. Optional-
ly, it may have an adjustable wait timer for other workers to

Figure 2. In synchronous DFL, workers keep time by waiting for
the slowest workers to fi ll their buff ers before aggregating. In
asynchronous DFL, the faster workers aggregate immediately
no matter how full the buff er is, which allows them to
avoid waiting but necessitates program robustness to
handle communication at any time: a) synchronous DFL; b)
asynchronous DFL.

(a)

(b)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 15,2022 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • March 2022 33

catch up. Over time, the faster workers begin
to leave the slower workers behind, leading
to the workers sharing their models with their
neighbors regardless of what epoch step they
are in, as shown in Fig. 2b. Eventually, they will
end up with the workers training on different
epochs until the stragglers are left to finish
training on their own without further broad-
casts from their finished neighbors.

The Async-DFL method allows the fast-
er workers to proceed without waiting for the
stragglers. Moreover, with this asynchronous
design, the computing and networking can oper-
ate in parallel, where the model aggregation is carried on while
the devices are sending and receiving the models. The reduced
model sharing makes Async-DFL more subject to overfitting,
which may worsen the per-epoch improvements to accuracy to
the global testset. However, as long as the worker is aggregat-
ing at least a partially full buffer, it will counteract overfitting as it
converges, and in practice that is usually the case. As the worker
communication is generally the limiting factor for overall epoch
speed as opposed to the actual model training, avoiding unneces-
sary waiting or redundant communication is important to optimize
convergence speed.

Simulation and Physical Testbed Evaluation
of FL Management Modes

In our set of experiments, we investigate and study how Sync-
DFL and Async-DFL efficiently improve the convergence speed
and performance of FL in both a simulated environment and a
live network testbed. Our results are based on a set of exper-
iments in which we first ran a model training on the network
in the centralized as well as decentralized, synchronous and
asynchronous cases.

Experiment Setup
Heterogeneous Data Settings and Models: We use the federat-
ed learning benchmark datasets FEMINST with 62 classes from
LEAF (https://leaf.cmu.edu/) and CIFAR-10 (https://www.cs.to-
ronto.edu/kriz/cifar.html) with 10 classes. We followed the
non-IID data settings with realistic partition method from LEAF.
For CIFAR-10, we use the Dirichlet distribution Dir(b) to create
heterogeneous data partitions for all the workers in unbalanced
settings. The degree of heterogeneity is controlled by the value
of beta, which is 0.5 in our case. We model the computation/
communication heterogeneity by adding 40 s training delay
for the stragglers. Our CNN is composed of two convolutional
layers followed by a fully connected layer that utilize local SGD.
The convolutional layers contain 32 and 64 layers, respective-
ly and are attached via a 2  2 max pooling layer. The fully
connected layer contains 128 units with ReLU activation and
outputs into the final layer as fully connected with softmax acti-
vation, whose size is around 5.8 MB, which represents low
communication traffic. Then we evaluate a CIFAR-10 dataset
with a deep neural network model, MobileNet [11], whose size
is about 15 MB, representing high traffic volume.

CFL Baseline and DFL Implementations: We adopt our cus-
tom-designed FedEdge experiential framework [12] to imple-
ment the CFL, Sync-DFL, and Async-DFL solutions. We utilize
the widely adopted FedAvg [10] as the CFL baseline. FedEdge
[13, 14, 12] is a software-defined experiential framework with
an integrated federated computing module empowered by Ten-
sorFlow and a software-defined wireless multihop networking
module based on Mininet-wifi [15].

FedEdge is the first experimental framework in the literature
for FL over multihop wireless edge computing networks (e.g., IoT
networks), which allowed us to quickly prototype, deploy, and
evaluate novel FL algorithms along with machine-learning-based
system optimization methods in both simulated and real wireless

devices. The experimental framework, FedML
[10], has been used in exploring the possibilities
of Sync-DFL. However, given that decentralized
FedML’s primary purpose is benchmarking rather
than development, it is not designed for a live
running environment for its results or set up with
a network topology common to real-world appli-
cations in their experiments. Moreover, FedML
does not support the generic DFL framework
that enables both Sync-DFL and Async-DFL.

Physical Testbed Setup: The multihop wire-
less edge computing network is used as the
physical IoT network testbed [12]. This testbed

consists of 10 wireless edge computing nodes (i.e., IoT work-
ers), where each node includes a wireless embedded router
for communication and an Nvidia Xavier node for computing.
The wireless routers are connected with three wireless interface
cards to enable the multi-radio wireless node. Each mesh router
is in mesh point (MP) mode, with fixed 2.4 and 5 GHz channel,
20 MHz channel width in 802.11ac operating mode, and 15
dBm transmit power. The state-of-the-art Batman-adv is used
for distributed multihop routing, which establishes the serv-
er-to-worker in the Sync-DFL case. We connect a server to R1,
and worker 9 served as a straggler with a delay of 40 s. Each
experiment runs for 30 global epochs and 5 local rounds with
a batch size of 10 and a learning rate of 0.002 for both CNN
(2Conv +2FC) and MobileNet models.

Network Simulation Setup: We first evaluated the perfor-
mance of the FL solutions in a FedEdge simulator [14]. To vali-
date and analyze the performance of the generic decentralized
FL framework, we established a wireless multihop IoT network
with 5  3 grid topology with 15 workers, as shown in Fig 3a.
The link bandwidth is set to be 24 Mb/s. Every worker’s neigh-
bors were the workers one hop away cardinally. For centralized
FL, worker 1 served as the network’s server node while also still
serving as a worker. In our straggler case experiments for the
CIFAR10 dataset, we treat worker 14 (5 network hops from
worker 1) as the straggler by adding 40 s delay to each training
epoch to simulate the limited computing power of IoT devices
or a CPU performance drop. Each run includes 5 local rounds
per global epoch with a batch size of 10, a learning rate of
0.002, and 50 global rounds.

Performance and Communication Comparisons
We evaluate the model convergence by observing the learn-
ing curves and the wall clock time when the testing accuracy
achieves certain thresholds (0.5, 0.6, 0.7, and 0.75), where all
methods can achieve the same maximum accuracy of 0.75
(Fig. 4). Table 1 summarizes the convergence time for all
methods to achieve the maximum testing accuracy. Note that
the computation time relative to the overall convergence time
is actually negligible; the vast majority of convergence time is
spent by nodes either sending models or waiting to receive a
particular model.

Model Convergence without Stragglers: Figures 4a–4c pres-
ent the performance comparison of FL in terms of accuracy and
wall clock convergence time of CFL, Sync-DFL, and Async-DFL
with no straggler case. We performed two sets of experiments in
the testbed. First, we consider LEAF dataset and CNN (2 Conv +
2 FC) as a lightweight model. Both Sync-DFL and CFL are able
to reach the same accuracy at a similar point of time, as shown
in Fig. 4a. However, we observe that CFL with MobileNet model
takes a longer time to converge because the Mobilenet model
is 3 larger than the 4 layers of CNN. For the 15-worker case
of CIFAR-10 and MobileNet in simulation shown in Fig. 4c,
both Sync-DFL and Async-DFL are able to achieve nearly 0.7
test accuracy within about 11 minutes in the simulation, outpac-
ing CFL taking roughly twice as long at 23 minutes to achieve
the same accuracy performance (all cases reaching a maximum
accuracy of about 0.75).

The Async-DFL
method allows the

faster workers to pro-
ceed without waiting

for the stragglers.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 15,2022 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • March 202234

The prolonged convergence time of CFL is due to the fact
that each worker needs to send their updated local model to
the central server through long and random multihop commu-
nication links in the IoT network, while the server needs to wait
for all models from workers to proceed to the next training
round. This causes network congestion to the bottleneck links
around the server at router 1.

Sync-DFL and Async-DFL, meanwhile, only require the work-
ers to send their updated models to their single-hop neighbors,
which can fully utilize the network bandwidth and more evenly
distribute traffi c load. This can eff ectively alleviate the FL traffi c
around bottleneck links. As a result, Sync-DFL and Async-DFL
reduce the model training time eff ectively by half in the exper-
iments without any noticeable loss in convergence accuracy.

Model Convergence with Stragglers: When a straggler is
introduced into the network, all FL solutions are aff ected by the
increased model convergence time, where Async-DFL is aff ect-
ed least, as shown in Figs. 4d–4f. Sync-DFL’s results resemble
more closely that of CFL. This is because both Sync-DFL and
CFL rely on synchronized local model training of all workers
in the network, and thus the convergence time of Sync-DFL
and CFL is directly aff ected by stragglers. However, compared
to CFL, Sync-DFL can still achieve higher convergence speed
because it confines the model exchange among single-hop
neighbors, while CFL still suff ers the communication bottleneck
issue around the central server. This eff ect can be expected to
continue as the network grows larger. Meanwhile, DFL’s net-

work traffi c is only limited to the workers’ number of single-hop
neighbors as the network scales up.

In the simulated test (Fig. 4f), Async-DFL reaches 0.70 accu-
racy by about 13 minutes. Both CFL and Sync-DFL reach the
same accuracy by around 86 and 75 minutes, respectively,
roughly a 6 increase in time to converge compared to Async-
DFL; the dramatic diff erence in tolerance can be seen visually in
Fig. 4f. In the testbed, LEAF is used to demonstrate a relatively
light job load in a live environment, whereas CIFAR-10 presents
a more rigorous training job. In LEAF with a straggler, Async-
DFL achieves more than 2 and 3 convergence speedup,
compared with Sync-DFL and CFL, respectively, when all meth-
ods achieve the same 70 percent and 75 percent accuracies.
In CIFAR-10 with testbed, compared with CFL and Sync-DFL,
Async-DFL takes 1.5 and 3 less convergence time respective-
ly to achieve the same maximum testing accuracy (75 percent).
For a larger simulated network, Async-DFL achieves 7speedup
compared to both CFL and Sync-DFL.

conclusIon And future dIrectIons
To cope with the growing need for AIoT systems, the article
examines and evaluates the efficacy of two different versions
of decentralized federated learning models by building a com-
posable generic decentralized FL framework. The experiment
results demonstrate the superior convergence performance of
DFL in multihop IoT networks compared to classic CFL. More-
over, the preliminary results show that Async-DFL can accel-
erate the model convergence speed while being very resilient
and robust in heterogeneous IoT environments with the inevi-
table presence of stragglers. Async-DFL shows great potential
to achieve the optimal trade-off between model convergence
speed and model quality for further large-scale AIoT networks,
which is worthy of further investigation.

Moreover, we will investigate semi-asynchronous DFL algo-
rithms, where each worker only synchronizes with a subset of its
one-hop neighbors, which can also dynamically change accord-
ing to model quality and channel condition. Moreover, the cur-
rent DFL algorithms generally assume all the workers are willing
to cooperate. This assumption may not hold in practical settings;
therefore, incentive schemes need to be developed for enhanc-
ing the cooperative gain. In addition, this article focuses on the
algorithmic foundation of DFL. It will be worth theoretically inves-
tigating the convergence bounds of Sync-DFL and Async-DFL.

AcKnoWledgments
This work is funded by Intel/NSF joint grant 2003198 and NSF
2008447.

references
[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,” Com-

puter Networks, vol. 54, no. 15, 2010, pp. 2787–2805; https://www.science-
direct.com/science/article/pii/S1389128610001568.

[2] J. Zhang and D. Tao, “Empowering Things With Intelligence: A Survey of the
Progress, Challenges, and Opportunities in Artifi cial Intelligence of Things,”
CoRR, vol. abs/2011.08612, 2020; https://arxiv.org/abs/2011.08612.

[3] J. Konečný et al., “Federated Learning: Strategies for Improving Communication
Effi ciency,” CoRR, vol. abs/1610.05492, 2016; http://arxiv.org/abs/1610.05492.

[4] X. Lian et al., “Can Decentralized Algorithms Outperform Centralized Algo-
rithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent,”
Proc. 31st Int’l. Conf. Neural Info. Processing Systems, ser. NIPS’17. Curran
Associates Inc., 2017, p. 5336–46.

[5] J. Cao et al., “Hadfl : Heterogeneityaware Decentralized Federated Learning
Framework,” Proc. 2021 58th ACM/IEEE Design Automation Conf., IEEE, 2021.

[6] M. Chen et al., “Wireless Communications for Collaborative Federated Learn-
ing in the Internet of Things,” CoRR, vol. abs/2006.02499, 2020; https://arxiv.
org/abs/2006.02499.

[7] M. Chen et al., “Distributed Learning in Wireless Networks: Recent Progress
and Future Challenges,” IEEE JSAC, 2021.

[8] W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks: A Comprehensive
Survey,” IEEE Commun. Surveys & Tutorials, vol. 22, no. 3, 2020, pp. 2031–63.

[9] X. Lian et al., “Asynchronous Decentralized Parallel Stochastic Gradient
Descent,” Proc. Int’l. Conf. Machine Learning, PMLR, 2018, pp. 3043–52.

[10] C. He et al., “Fedml: A Research Library and Benchmark for Federated
Machine Learning,” CoRR, vol. abs/2007.13518, 2020; http://arxiv.org/
abs/2007.13518.

Figure 3. IoT multihop network topologies: a) a) simulated
network topology; b) testbed topology.

R3

R4

R5

R6

R7

R9

W4W1 W7

W2 W5

W3 W6

R2

W9

W8

R1

R8

Server

R13

W13

W15

W14

R14

R10

R12

W10

W12

W11

R11

R15

Straggler

435G

435F

435E

435D

435C

435B

435A

Worker
10

423C

423B

423A

430E

430D

430C

430A

R9

410H

410G

410F

410E

410D

410C

410B

410A

409

403E

403D

403C

403B403A

R3

402A
 / 402

401

405
431

432A
 / 432B

STR1

409

409

R10

R1

R6 Worker
6

Worker
3

437

R7
Worker

7

411
436

425
424

422C

432A
 / 432B

R4

R2

R8

R5

Worker
1

Worker
8

Server

Worker
2

Worker
4

Worker
5

410A

Straggler

430B

Worker 9

(a)

(b)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 15,2022 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • March 2022 35

[11] A. G. Howard et al., “Mobilenets: Effi cient Convolutional Neural Networks
for Mobile Vision Applications,” 2017; http://arxiv.org/ abs/1704.04861.

[12] P. Pinyoanuntapong et al., “Edgeml: Toward Network-Accelerated Federated
Learning over Wireless Edge,” CoRR, vol. abs/2111.09410, 2021; http://arxiv.
org/abs/2111.09410.

[13] P. Pinyoanuntapong et al., “Fedair: Towards Multi-Hop Federated Learning
Over-the-Air,” Proc. IEEE SPAWC, 2020.

[14] P. Pinyoanuntapong et al., “Sim-to-Real Transfer in Multi-Agent Reinforcement
Networking for Federated Edge Computing,” CoRR, vol. abs/2110.08952,
2021; http://arxiv.org/abs/2110.08952.

[15] R. R. Fontes et al., “Mininet-Wifi : Emulating Software-Defi ned Wireless Networks,”
Proc. 2015 11th Int’l. Conf. Network and Service Management, 2015, pp. 384–89.

bIogrAPhIes
PINYARASH PINYOANUNTAPONG is a Ph.D. student in the Department of Computer
Science, University of North Carolina at Charlotte. He received his B.Eng. degree
in computer engineering in 2016 and Master of Science in computer networks in
2017 from Wichita State University. His research interests include reinforcement
learning, federated learning, and wireless networks.

HOUSTON HUFF is a Ph.D. student in the College of Computing and Informatics
at the University of North Carolina at Charlotte. He received his B.S. degree in
computer science with a minor in physics in 2020, and is currently in his fi rst year
of Ph.D. study. His research interests include augmented/virtual reality, machine
learning, network communication, and artifi cial intelligence.

MINWOO LEE is an assistant professor in the Department of Computer Science,
University of North Carolina at Charlotte. He received a Ph.D. degree in comput-
er science from Colorado State University in 2017. His current research interests
include foundational machine learning problems including adaptive systems,
transfer learning, knowledge representation, robust knowledge augmentation,
interactive learning, and evidence-driven explanation and reasoning.

CHEN CHEN is an assistant professor at the Center for Research in Computer
Vision, University of Central Florida. He received his Ph.D. degree from the
Department of Electrical Engineering, University of Texas at Dallas in 2016 where
he received the David Daniel Fellowship (Best Doctoral Dissertation Award). His
research interests include computer vision, effi cient deep learning, and federated
learning. He is an Associate Editor of IEEE Transactions on Circuits and Systems for
Video Technology, the Journal on Real-Time Image Processing, and the IEEE Journal
on Miniaturization for Air and Space Systems.

PU WANG received his B.Eng. degree in electrical engineering from Beijing Insti-
tute of Technology, China, in 2003, and his M.Eng. degree in electrical and com-
puter engineering from Memorial University of Newfoundland , Canada, in 2008.
He received his Ph.D. degree in electrical and computer engineering from the
Georgia Institute of Technology, Atlanta in August 2013. Currently, he is an
associate professor with the Department of Computer Science at the University
of North Carolina at Charlotte. His current research interests focus on AI for
networked systems, including reinforcement learning for networking optimization,
distributed/federated learning over wireless edge computing, deep learning for
wireless/radar sensing, and swarming intelligence for multi-robot systems.

Figure 4. Comparison of centralized and decentralized federated learning performance in simulation and testbed environments (LEAF
and CIFAR-10), each with cases having no straggler or having a straggler with a 40 s per local training round: a) testbed: LEAF
(CNN 2 Conv + 2 FC) (no straggler); b) testbed: CIFAR-10 (MobileNet) (no straggler); c) simulation: CIFAR-10 (MobileNet) (no
straggler); d) testbed: LEAF (CNN 2 Conv + 2 FC) (with straggler; e) testbed: CIFAR-10 (MobileNet) (with straggler); f) simulation:
CIFAR-10 (MobileNet) (with straggler).

(a) (b) (c)

(d) (e) (f)

Table 1. The total convergence time to achieve maximum (75%) of test accuracy and the corresponding computation time in parenthe-
ses (in minutes).

Methods

Testbed Simulation

FMNIST (4 layers CNNs) Acc (75%) CIFAR-10 (MobileNet)
Acc (75%)

CIFAR-10 (MobileNet)
Acc (75 %)

Non-straggler Straggler Non-straggler Straggler Non-straggler Straggler

CFL 33 (1) 175 (1) 110 (2) 175 (2) 23 (1) 140 (1)

Sync-DFL 23 (1) 110 (1) 45 (2) 110 (2) 35 (1) 140 (1)

Async-DFL 15 (1) 50 (1) 38 (2) 75 (2) 25 (1) 20 (1)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 15,2022 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

