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Abstract

Resin based three-dimensional (3D) printing is popular for many applications including
replicating geologic porous media samples. This study is the first to explore resin-based 3D
printing of reactive porous media. Here, digital light projection (DLP) 3D printing of sandstone
replicates was performed using photosensitive resin mixed with calcite of varying amounts.
Printed samples were imaged in 3D using X-ray micro computed tomography (uCT). Printed
sample porosities are consistent and close to the original mesh porosity. Calcite volume fractions
are generally in agreement with the calcite content in the resin mixture. Calcite accessible
surface areas are similar to published values for real sandstones and calcite dissolution was
observed in acidic batch experiments, evidence of its surface reactivity. DLP printing is thereby
promising for fabricating reactive porous media samples.

1 Introduction

3D printing of porous media has shown utility for replicating pore networks in undisturbed soil
and rock samples [1-4], exploring hydraulic properties [5] and studying rock mechanics [6,7].
However, exploration of 3D printing for understanding reactive mineral systems in porous media
remains limited.

Geochemical reaction rates are poorly understood due to inherent sample heterogeneity [8]. Even
samples collected from the same formation have varying pore network structures and minerology
[9]. 3D printing of reactive porous media would enable controlled investigation of geochemical
reactions for varying conditions.

3D printing microparticles in resin has been studied for various applications [10,11], but not for
fabrication of reactive porous media. Printing reactive porous media was first explored using
calcite containing filaments using Fused Filament Fabrication (FFF) [12]. Accessible calcite
surface area agreed well with real sandstones but challenges with printing resolution and defects
resulted in internal voids and printing failure [12].

Here, DLP 3D printing, which has numerous advantages over FFF (including print resolution
[13,14]), is explored for fabricating reactive porous media containing calcite. Photosensitive
resin is mixed with varying calcite volume percentages and pore structures of a real sandstone
sample printed. The resulting printed samples analyzed using pCT imaging.

2 Methodology

Commercial ANYCUBIC resin (density 1.1g/cm®) was used. Iceland spar calcite crystals were
crushed manually and sieved through a 90pum mesh, captured on a 63pum mesh. This particle size
range is detectable by uCT while not interfering with the printing process. Calcite powder and
resin were combined and thoroughly mixed in a beaker at varied calcite volume fractions of 3, 5,
and 7v%. Calcite content was determined gravimetrically based on the density of calcite
(2.71g/em?)[15].

A 3D Bentheimer sandstone pCT image was downloaded from Digital Rock Portal [16]. The
image was cropped, denoised using a median filter, segmented to grains and pores, and the
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selected region of interest (grain) converted into a 3D mesh in Dragonfly. The mesh was
enlarged 20x to match the 3D printer resolution and exported as a (.stl) file.

An ANYCUBIC Photon 3D DLP printer was used. The 3D model was sliced into 25um layers
using Photon Workshop V2.1.26 and printed at 45° with supports (~6 hr print time). The 7v%
calcite mixture was also printed at 50um layer thickness (~3 hr print time). After printing,
supports were removed, and the object washed using 70v% isopropyl alcohol and deionized
water to remove excess resin followed by a 10 minute UV chamber post-cure.

Printed samples were imaged with pCT using a Zeiss Xradia 620 Versa 3D microscope at a
resolution of 12.5um. Images were processed and analyzed to determine porosity, calcite volume
fraction, total and calcite accessible surface area, and normalized calcite surface area (details in
supplementary information).

Printed sample reactivity was examined in batch experiments. A sample without calcite and the
5v% calcite sample were immersed in pH 3.5 HCI solutions at room temperature (18°C) and pH
monitored. Calcium concentration was measured in the final solution using ICP-OES.

3 Results

3D uCT images of the Bentheimer sandstone, resulting mesh, and 20x magnified 3D printed
sample with 5v% calcite are shown in Figure 1. The mesh porosity is 21.83% while the reported
porosity from the original pCT image is 22.64% [16].

Figure 1 (a) uCT image of Bentheimer sample, (b) generated 3D mesh, and (c¢) 20x magnification printed sample
with 5v% calcite.

puCT images of the printed samples are shown in Figure 2(a-f) and analyzed properties given in
Table 1. The printed sample porosities are very consistent; 18.9%, 18.5% and 18.2%,
respectively (standard deviation of 0.28%), indicating minimal variation. This is good agreement
with the generated model porosity (21.8 %), similar to the difference seen in other studies
[17,18] likely due to trapping of resin in the micropores [18].
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Figure 2 Segmented uCT images of calcite (white) and polymer (gray) for the (a) 3v%, (c) 5v%,
and (e) 7v%. Segmented calcite particle distribution in (b) 3v%, (d) 5v%, and (f) 7v%.

The 3 and 5v% samples contain 2.76v% and 4.52v% calcite, respectively; in good agreement
with the resin calcite content. The 7v% calcite sample, however, only contains 2.52v% calcite,
significantly less than in the resin mixture. This is attributed to particle agglomeration and
settling, promoted by the large calcite content. To prevent this behavior, a sample was printed
with 7v% calcite using a 50 um layer thickness (reduced printing time). This significantly
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increased the calcite volume fraction (4.62v%) while maintaining the target porosity. However,
further optimization is needed for printing samples with targeted higher calcite contents.

From printed sample images, calcite is present throughout the sample (Figure 2(b,d,f)) with some
surface clumps observed. Calcite accessibility, defined as calcite on the surface of the structure
and accessible to reactive fluids, is quantified from the images (Table 1). Only a fraction of the
calcite present is accessible, 5.39%, 10.22% and 6.28% for 3, 5, and 7v% samples.

Table 1 Sample Properties Extracted from pCT Images of 3-D Printed Samples

Sample Property 3v% calcite 5v% calcite V% V%
calcite  calcite
Calcite in resin mixture (v%) 3 5 7 7
Printing layer thickness(pum) 25 25 25 50
Polymer in printed sample (v%) 97.24 95.48 07.48  95.42
Calcite in printed sample (v%) 2.76 4.52 2.52 4.57
Porosity of printed sample 18.9 % 18.5 % 182% 18.2%
Calcite accessibility (%) 5.39 10.22 6.28 8.85
Polymer accessibility (%) 94.61 89.78 93.72  91.15
Total surface area (m?) (x104) 5.12 6.00 5.36 5.76
Calcite accessible surface area (m?) 2.76 6.13 3.37 510 |
(x105)
Calcite in printed sample (g) 0.038 0.062 0.034 0.062
Normalized accessible calcite surface 7.35 9.96 9.82 8.20
area (m?/g) (x104)

Porous media reaction rates are largely controlled by reactive surface area. The total surface area,
calcite accessible surface area, and normalized accessible calcite surface area extracted from
printed sample images are in Table 1. Total accessible surface areas are similar, indicating good
agreement between the 3D printed pore structures. Slightly larger variations are found for calcite
accessible surface area, though within one order of magnitude, between samples.

The utility of this approach for reflecting porous media reactivity was probed by comparing
accessible calcite surface area with those quantified for actual sandstones, where good agreement
is found in comparison with a Paluxy sandstone (8.13x107* m?/g) [19]. Normalized calcite
surface areas are an order of magnitude higher than the 2.14x107> m?/g quantified for a 0.03v%
calcite volcanogenic sandstone sample, though lower accessible surface area for that sample is
possibly a result of clay coatings [20].

Batch acid dissolution experiments showed no pH change (Figure 3) or dissolved calcium for the
sample without calcite, whereas the 5v% calcite sample showed both a pH increase over 4 days
(Figure 3) and a calcium solution concentration of 5.15mg/L.
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Figure 3 pH evolution for 3D printed samples.

5 Conclusions

DLP 3D printing of reactive porous media was demonstrated where printed samples reflected the
reactive properties of real samples through inclusion of calcite within the resin at varied
amounts. 3D images of printed samples found calcite content to increase with the resin calcite
content, though for the highest volume fraction (7v%) particle settling reduced calcite content in
the printed specimen. Improvement (83%) in calcite content for the 7v% was achieved by
reducing printing time through a larger layer thickness (50pum). With regards to reproducibly
replicating porous media characteristics, the extracted porosity were reproducible (standard
deviation of 0.28%) and the normalized calcite accessible surface areas agree well with real
sandstone samples. Furthermore, calcite dissolution during the batch experiment validated the
reactivity of surface present calcite. Overall, DLP printing is a viable means to fabricate
replicable reactive porous media.
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