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Abstract 1 Introduction

Federated Learning (FL) over wireless multi-hop edge com-
puting networks, i.e., multi-hop FL, is a cost-effective dis-
tributed on-device deep learning paradigm. This paper presents
FedEdge simulator, a high-fidelity Linux-based simulator,
which enables fast prototyping, sim-to-real code, and knowl-
edge transfer for multi-hop FL systems. FedEdge simulator is
built on top of the hardware-oriented FedEdge experimental
framework with a new extension of the realistic physical layer
emulator. This emulator exploits trace-based channel model-
ing and dynamic link scheduling to minimize the reality gap
between the simulator and the physical testbed. Our initial
experiments demonstrate the high fidelity of the FedEdge sim-
ulator and its superior performance on sim-to-real knowledge
transfer in reinforcement learning-optimized multi-hop FL.

In distributed machine learning, federated learning (FL)[1] is
envisioned as a breakthrough technology, enabling machine
learning to work in a distributed manner. In FL, worker nodes
compute the model updates locally and send them to the server
to update the shared global model. This prohibits raw data
exchange and reduces potential data privacy risks. The edge
computing devices interconnected by the wireless multi-hop
network constitute the multi-hop wireless edge computing net-
work. Enabling FL over multi-hop wireless edge computing
networks (i.e., multi-hop FL) not only can augment Al experi-
ences for urban mobile users, but also can democratize Al and
make it accessible in a low-cost manner to everyone, including
the large population of people in low-income communities,
under-developed regions, and disaster areas. Despite its great
advantages, the convergence of multi-hop FL can be greatly
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wireless links. To address this fundamental challenge, we
exploited multi-agent reinforcement learning (MA-RL) for
FL optimization, which minimizes the networked induced la-
tency by learning the forwarding paths with the least delay for
FL traffic flows [2, 3]. To demonstrate the practical impact of
our proposed solution, we developed the FedEdge [3], which
is the first experimental framework in the literature for FL.
over multi-hop wireless edge computing networks. FedEdge
thus enables fast prototyping, deployment, and evaluation of
novel FL algorithms along with machine learning based FL.
system optimization methods in real-life wireless devices.
Although FedEdge can provide valuable and broader in-
sights into the practical performance of FL in the field, Fed-
Edge can only run on physical wireless devices. It demands
much higher training time when testing a number of differ-
ent networking and computing configurations. Scaling the
testbed with a more extensive setup makes the computational
demands even worse. Simulations provide a cost-efficient
and scalable solution to this problem. Running multiple phys-
ical layer simulations simultaneously significantly reduces
the training time for faster convergence. In addition, high
fidelity simulation environment can facilitate the training of
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Figure 1. Overview of Sim-to-Real Transfer

the effective reinforcement learning (RL) policies during the
exploration stage and enable sim-to-real knowledge trans-
fer [4], where the knowledge, e.g., Q networks, learnt from
simulations, can be transferred to the real testbed to enhance
the efficiency of RL-based approaches. A major impediment
is that the only existing network environment simulator to
support such requirements is ns3-gym[5]. ns3-gym is a simu-
lator that integrates the ns-3 and an RL simulation interface,
OpenAl gym [6]. It has a wide range of ML and RL appli-
cations to simulate various wired and wireless environments.
However, the usage of a real network stack with recent imple-
mentations of ns3 using direct execution code (DCE) [7] is
quite limited due to the lack of significant community effort
and limited flexibility/programmability in SDN/open-flow en-
vironments. ns-3’s implementation of open-flow switch is a
class ‘OpenFlowSwitchNetDevice’ and does not have access
to the programmable flow tables.

1.1 Challenges

Overall, we believe the following challenges in the wireless
networking domain limit the progress of federated learning
in wireless multi-hop networks.

e Existence of reality gap: Even with the overwhelm-
ing success of reinforcement learning and federated
learning for SD-WAN [3], training the models on sim-
ulations and directly executing them on real networks
yields poor performance due to the differences between
the physical layer simulators and real networks.

Lack of reliable training environment: The performance
of machine learning techniques like FL and RL depends
on the training data and a reliable training environment.
For many reasons, such as lack of knowledge, time, or
resources to build the wireless environment, researchers
usually tend to work directly on the testbed setup and
spend a large amount of training time to develop mod-
els.

Need for wireless multi-hop simulator: The existing
wireless simulators mainly support infrastructure-based
wireless environments with single-radio single-channel
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per link which seriously limits the ability to simulate
realistic usage settings. They do not account for multi-
channel multi-radio based multi-hop network opera-
tions which are increasingly becoming realistic. Specif-
ically, using multi-channel multi-radios for wireless
mesh backbone networks will tremendously reduce the
interference from other nodes and increase the overall
performance.

Therefore, we build a physical simulator for wireless multi-
hop networks called FedEdge simulator to address the current
problems of emulating a wireless multi-hop network and
integrate it with our FedEdge framework. This approach will
give FedEdge the advantage of being the first framework
to incorporate a fully functional multi-agent reinforcement
wireless network for federated edge computing, which enable
to develop and test wireless networks involving federated
learning with high fidelity simulations.

1.2 Contributions

To the best of our knowledge, our implementation is the first
attempt in the wireless networking domain to test and validate
knowledge transfer from simulation to reality in federated
computing with multi-agent reinforcement networking. Our
objective in this work is to build a custom realistic physical
layer simulator called FedEdge simulator to integrate with
our existing FedEdge architecture as shown in Figure 2. Fol-
lowing are our contributions in this paper:

e Simulation to real code transfer: Using real-time pro-

duction environments such as OpenFlow software switches

and Linux software tools such as mac80211_hwsim,
hostapd, wpa_supplicant, Linux Namespace Contain-
ers (LXC), Traffic Control (TC), and Netlink protocol
in the simulator enables rapid development and test-
ing of the code and porting the same codebase to real
testbed environments. This reduces the development
and debugging times and promotes productivity.
Simulation to real knowledge transfer: Our implemen-
tation of the FedEdge simulator using the dynamic link
scheduling method reduces the reality gap between the
simulations and actual physical networks. Integrated
with our existing FedEdge framework, the simulator
can help develop accurate models and yield better sim-
ulation to real transfer performance.

e Accelerated prototyping for training: Multiple simul-
taneous runs enable FL. and RL to quickly discover
hyper-parameters such as the number of local training
round, regularization parameters for model updates, the
number of stragglers, model tuning, learning rate, and
exploration parameters. FedEdge simulator allows us
to evaluate several configurations in parallel thereby
speeding up the model selection for the development
cycle.
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2 Preliminaries

In this section we briefly provide a background on the fun-
damental concepts and components considered for our inte-
grated simulation and testbed framework.

2.1 Accelerating Multi-hop FL via Multi-Agent RL

A multi-hop FL[2, 3] system consists of a central server that
serves as an aggregator and a multi-hop wireless link to edge
servers, referred as workers. The architecture of FL across a
multi-hop wireless network is shown in Figure 2. FL. methods
are developed to manage distributed neural network training
over numerous devices, where each device has its own train-
ing data and the goal is to train a common model with an
objective to minimize the training loss.

FL methods use a standard optimization technique called
local stochastic gradient descent (SGD) to unravel the above
optimization problem, which alternates between local SGD
iteration and global model averaging for multiple rounds. The
worker seeks to decrease its local loss F¥w throughout each
round by conducting H mini-batch SGD iterations. After iter-
ating through H local SGD iterations, the worker nodes send
their updates to the server, which averages the collected local
models and aggregates them into a global model. The updated
global model is distributed to the workers, and this process
continues again. Due to the dynamic nature of wireless multi-
hop networks, high and nomadic end-to-end delays become
the governing factor in determining the convergence times in
multi-hop FL.

To address such problems, MA-RL was proposed to mini-
mize the wall-clock convergence time to achieve the desired
FL accuracy. The problem was formulated as a multi-agent
Markov decision Process (MA-MDP) and solved by model-
free multi-agent reinforcement learning. In this case, each
router is an agent, which observes the network states (e.g.,
the source IP and destination IP of the incoming FL packet)
and learns the optimal networking policy (e.g., the forward-
ing action at each router) based on the reward signals (i.e.,
negative per-hop delay) with an objective to maximize the
expected total return (i.e., end-to-end delay) from the initial
state (i.e., when the FL packet entering the network) to the
terminal state (i.e., when the FL packet leaving the network).

2.2 FedEdge Experimental Framework

FedEdge (Figure 2) is the experimental prototype framework
developed to support wireless multi-hop federated learning.
To fast prototype multi-hop FL in the physical wireless de-
vices, we developed FedEdge framework that includes fed-
erated computing and federated networking [3]. Each com-
ponent is built in a layered approach where each layer has
bidirectional communications to upper or lower layers. In
general, federated computing involves customizing and con-
figuring FL functionality, and federated networking is an
Al-oriented wireless network operating system that is mainly

responsible for fast and reliable wireless network links be-
tween the aggregator node and worker nodes. The main goal
of this component is to optimize the wireless network through
Al-enabled algorithms to perform route optimizations and pro-
vide in-band telemetry data. Federated computing contains
three layers: (1) Datasets layer that stores the training datasets
for FL, (2) Compute layer that provides core functionalities,
for instance, to train a model and store the trained model, and
finally (3) Communication layer that uses FedEdge COMM
protocol to establish and maintain connections with aggre-
gator and worker nodes. Similar to the federated computing
component, the federated networking component has three
layers that include (1) Dataplane Layer that integrates soft-
ware switch to allow programmable packet switching and
the in-band telemetry, (2) The Network Core Layer that han-
dles the traditional network functions such as node discovery,
maintaining network links, counters and status database, and
(3) RL App layer that contains the actor-critic RL agent for
learning delay-optimized routes at the edge nodes. The in-
tegration of the simulator to FedEdge architecture is simple
because of the modularity of FedEdge, which can use the
topology built by the FedEdge simulator and train the RL
agent on the wireless multi-hop backbone network.

2.3 FedEdge Physical Testbed

A software-defined wireless mesh network testbed was de-
ployed in Woodward Hall at the University of North Car-
olina at Charlotte (UNCC). This testbed consists of 10 Gate-
works routers connected with three of WLE900VX wireless
interface cards to enable the multi-radio wireless node and
run with Ubuntu 20.04 as the operating system. Each mesh
router was configured to operate in Mesh Point (MP) mode,
with fixed 2.4 and 5 GHz channel, 20 Mhz channel width
in 802.11ac operating mode, and 15 dBm transmit power.
Then, three wireless interfaces were bridged to a data plane
with a programmable packet handling routine (i.e., OpenFlow
flow table). Besides, we deployed 10 of Nvidia Jetson as edge
computing nodes.

3 FedEdge Simulator Design and Prototyping
3.1 FedEdge simulator overview

FedEdge simulator is able to mimic electronic hardware wire-
less radio and its operations to model an environment inside
a computer system. It uses virtualized hardware and Linux-
based software tools to build and maintain wireless networks.
Most of the tools used are Linux in-built tools namely IP
namespaces for containerization, mac80211_hwsim[8] to cre-
ate virtual radio interfaces, iw tool to manage the radio in-
terfaces, and batman_adv[9] for shortest path routing. The
simulator is completely built using the python language and al-
lows the use of open-flow softswitch [10] for software-defined
networking. In this section, we describe the framework of the
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FedEdge simulator, the modes of operation, workflow, and
channel modeling.

As shown in Figure 3, our simulator is built on top of traffic
control (tc) link [11] to shape the traffic on the egress inter-
face of each node based on the signal-to-noise ratio (SNR)
obtained from the channel models and interference models.
There is no switching of frames from kernel to user space,
ensuring zero copies thereby reducing the overhead. Link
scheduler comes into the play in tclink mode to dynamically
schedule the links between nodes and runs for every 5 seconds
and interacts with the medium simulator to introduce signal
fading and interference between the nodes. Figure 4 describes
the flow of the link scheduler. Once the simulator starts and
builds the necessary wireless medium parameters such as sig-
nal fading, interference, and propagation loss, several threads
are created for each node in the topology building stage based
on the number of the interfaces each node contains.

3.2 Simulator Workflow

3.2.1 Stages. This section describes the general workflow
for the FedEdge simulator and its input and output. The in-
put to the simulator is a JSON file that contains context re-
lated to the topology. Parsing the input configuration file, the
simulator builds the wireless medium parameters and con-
structs the topology. The topology is constructed using the
mac80211_hwsim driver, and the links between the nodes are
created using the iw tool if the topology is a complete mesh.
In addition, the simulator uses wpa_supplicant and hostapd
for client-based connections. If the topology contains a SDN
controller setup, the simulator configures the OpenFlow data-
path connections on the nodes and connects the nodes to the
controller. Next, the simulator uses a link scheduler to update
link parameters of each interface.

3.2.2 Channel Modelling. FedEdge simulator supports multi-
hop wireless mesh networks and standard UAV networks.
Propagation models available in the simulator are traditional
static channel models such as Log Distance, Log-Normal
Shadowing, etc. In addition, custom models can be integrated
into the simulator that also includes GAN-Based Channel
Model [12] and Trace-Based Channel Model. In stage 1, the
channel model name is parsed from the input configuration
file. The propagation loss is calculated between the nodes and
stored in the simulator database based on the model. In stage
2, the simulator uses the same information to calculate the
wireless parameters.

3.2.3 Trace-Based Channel Model. Verifying or evaluat-
ing a wireless network is the most challenging task given the
random, unpredictable nature of the wireless medium. Trace-
based channel modeling is an essential technique to replay
or reproduce the wireless scenarios from testbed to simulator
or vice versa. This approach will provide the required data
to model complex wireless systems. Trace-based modeling
in the FedEdge simulator works in two modes: replay an
existing trace and trace generation for a given input topology.

Trace Replay: FedEdge simulator can replay the trace for
each interface independent of a node. For replaying trace, the
simulator checks the topology file for trace file locations and
processes the files of each interface. Threads are generated
based on the number of replay files and passed to the link
scheduler. Based on the signal level on each trace file, the
link scheduler runs the traffic control (tc) and sets the band-
width on each interface of the replay nodes periodically until
the trace files are complete. The node’s interfaces excluded
from the trace replay are manually updated by the simulator
and link scheduler based on the input channel model and
interference model.

Trace Generator: The second mode of the trace model
works to generate the trace logs, which can be used to replay
on the testbed, visualize or train data for machine learning.
When the trace functions are executed, they take the input
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from the parsed input configuration and learn the replay in-
terfaces. The program works in reverse order compared to
replay, where it takes in the interface names and produces
the trace files in a csv file format, which contains time, MCS
index, RSSI, loss, and traffic rate. The link scheduler captures
the data every 5 seconds until an interrupt occurs. Based on
user-selected channel models, interference models, and the
topology of the network, the simulator calculates and records
all the parameters to the trace files.

4 Experimental Evaluation

In this study, we present our experiments in the following
scenarios. First, we evaluate the physical layer of FedEdge
simulator by comparing the FL experiments alone without
MA-RL on both simulator and physical testbed. Next, we
compare the reality gap difference by training MA-RL agents
in on online fashion in both environments. Last, we study the
effect of knowledge transfer of the MA-RL by evaluating the
pre-trained model’s performance in the physical testbed.

4.1 Experiment Setup

Network Environment Setup: To evaluate the gap between
the simulated network and the real testbed environment, we
identically set up the topology with the same wireless con-
ditions with 10 routers, 9 workers, and a server as shown in
Figure 1. We set up our FedEdge framework to work on top of
the physical layer of the simulator by using shortest path rout-
ing and MA-RL to route packets. A replay simulation runs
by inputting the RSSI signal logs from the testbed backbone
nodes in WiNSLAB at UNCC. The simulator uses the link
scheduler and updates the bandwidth on the link interfaces
based on the signal seen at the point of the replay time. The
link scheduler converts the signal to traffic rate based on MCS
index table of 802.11ac 20MHz channels specified at [13].

Model and Dataset: The CNN model has two convolution
layers, with 32 and 64 filters respectively. Each convolutional
layer is attached with a 2x2 max pooling layer. The convolu-
tions are followed by a fully connected layer with 128 units
with ReLU activation. The final output layer consists of a
fully connected layer with sofmax activation. The learning
rate of 0.1 is used for local SGD in all workers and the model
size is 5.8 Mbytes. We test the model with the well-known
FEMNIST benchmark dataset, the extended federated version
of MNIST [14] from the LEAF[15], which consists of 62
classes.

4.2 Main Results

Simulator Fidelity Evaluation: Figure 5 examines the close-
ness of the realistic physical layer in the proposed simula-
tion to the physical testbed with the experimental results of
shortest-path routing in both environments. Both FL experi-
ments lead to the same iteration convergence performance at
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Figure 5. Loss convergence of FL after 20 epochs of shortest-
path routing in FedEdge simulator (red) and on testbed (blue)

which they achieve the same loss after running the same num-
ber of epochs (Figure 5(a)) and slightly different wall-clock
time (Figure 5(b)). Therefore, we verify that both environ-
ments are almost identical.

In the FL experiment with RL-based routing, where each
agent is trained in an online fashion in simulator and physical
testbed, the iteration loss convergence in terms of global
rounds are identical as shown in Figure 6. However, an online
RL routing in the simulator achieves slightly better wall-
clock time than in the testbed after 50 epochs, which is only
2 minutes difference. Given the identical protocol stacks for
both, the results confirm that the FedEdge simulator narrows
the reality gap effectively.
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Figure 6. Loss convergence comparison results after 50
epochs of On-policy softmax in FedEdge simulator (red),
On-policy softmax on Testbed Online learning (blue), On-
policy softmax on Testbed Target testing (black)

MA-RL Sim-to-real Knowledge Transfer: Now, we eval-
uate the initial sim-to-real transfer performance of the online
MA-RL routing given the verified close reality gap. We pre-
train MA-RL agents in a simulated environment and transfer
the learned knowledge (Q-table of each agent) to the testbed
for the target testing, where we freeze the Q-table and allow
an agent to only exploit the pre-trained softmax policy. In Fig-
ure 6, we observe that online training both on the simulator
and testbed achieve a better performance in terms of wall-
clock time compared to the target testing in the testbed. This
is because the frozen target testing lost adaptability to re-learn
the dynamic FL traffic patterns in the wireless environment.
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However, the gap between the target testing in the testbed
and both online trainings is marginal. Figure 7(a) shows that
training time per epoch for both testbed experiments follow
the same trend, which are around 72-80 seconds per epoch
and slightly slower than the online simulator. Figure 7(b)
shows that the average time and variance per epoch of all the
approaches across 50 rounds of FL. communications.

S CONCLUSIONS

MA-RL knowledge transfer in FL over wireless multi-hop
network is challenging due to the reality gap between the code
base and entire stack from the physical layer to the application
layer. In this paper, we presented a fully functional approach
for transfer learning from simulation to reality in wireless fed-
erated edge computing networks. Moreover, we implemented
a real physical testbed to validate the proposed FedEdge sim-
ulator for effective sim-to-real transfer. Our results confirm
the high fidelity of the proposed FedEdge simulator that sig-
nificantly minimizes the gap from real testbed.
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