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Abstract
Federated Learning (FL) over wireless multi-hop edge com-

puting networks, i.e., multi-hop FL, is a cost-effective dis-

tributed on-device deep learning paradigm. This paper presents

FedEdge simulator, a high-fidelity Linux-based simulator,

which enables fast prototyping, sim-to-real code, and knowl-

edge transfer for multi-hop FL systems. FedEdge simulator is

built on top of the hardware-oriented FedEdge experimental

framework with a new extension of the realistic physical layer

emulator. This emulator exploits trace-based channel model-

ing and dynamic link scheduling to minimize the reality gap

between the simulator and the physical testbed. Our initial

experiments demonstrate the high fidelity of the FedEdge sim-

ulator and its superior performance on sim-to-real knowledge

transfer in reinforcement learning-optimized multi-hop FL.
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1 Introduction
In distributed machine learning, federated learning (FL)[1] is

envisioned as a breakthrough technology, enabling machine

learning to work in a distributed manner. In FL, worker nodes

compute the model updates locally and send them to the server

to update the shared global model. This prohibits raw data

exchange and reduces potential data privacy risks. The edge

computing devices interconnected by the wireless multi-hop

network constitute the multi-hop wireless edge computing net-

work. Enabling FL over multi-hop wireless edge computing

networks (i.e., multi-hop FL) not only can augment AI experi-

ences for urban mobile users, but also can democratize AI and

make it accessible in a low-cost manner to everyone, including

the large population of people in low-income communities,

under-developed regions, and disaster areas. Despite its great

advantages, the convergence of multi-hop FL can be greatly

slowed down by the noisy and bandwidth-limited multi-hop

wireless links. To address this fundamental challenge, we

exploited multi-agent reinforcement learning (MA-RL) for

FL optimization, which minimizes the networked induced la-

tency by learning the forwarding paths with the least delay for

FL traffic flows [2, 3]. To demonstrate the practical impact of

our proposed solution, we developed the FedEdge [3], which

is the first experimental framework in the literature for FL

over multi-hop wireless edge computing networks. FedEdge

thus enables fast prototyping, deployment, and evaluation of

novel FL algorithms along with machine learning based FL

system optimization methods in real-life wireless devices.

Although FedEdge can provide valuable and broader in-

sights into the practical performance of FL in the field, Fed-

Edge can only run on physical wireless devices. It demands

much higher training time when testing a number of differ-

ent networking and computing configurations. Scaling the

testbed with a more extensive setup makes the computational

demands even worse. Simulations provide a cost-efficient

and scalable solution to this problem. Running multiple phys-

ical layer simulations simultaneously significantly reduces

the training time for faster convergence. In addition, high

fidelity simulation environment can facilitate the training of
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Figure 1. Overview of Sim-to-Real Transfer

the effective reinforcement learning (RL) policies during the

exploration stage and enable sim-to-real knowledge trans-

fer [4], where the knowledge, e.g., Q networks, learnt from

simulations, can be transferred to the real testbed to enhance

the efficiency of RL-based approaches. A major impediment

is that the only existing network environment simulator to

support such requirements is ns3-gym[5]. ns3-gym is a simu-

lator that integrates the ns-3 and an RL simulation interface,

OpenAI gym [6]. It has a wide range of ML and RL appli-

cations to simulate various wired and wireless environments.

However, the usage of a real network stack with recent imple-

mentations of ns3 using direct execution code (DCE) [7] is

quite limited due to the lack of significant community effort

and limited flexibility/programmability in SDN/open-flow en-

vironments. ns-3’s implementation of open-flow switch is a

class ‘OpenFlowSwitchNetDevice’ and does not have access

to the programmable flow tables.

1.1 Challenges
Overall, we believe the following challenges in the wireless

networking domain limit the progress of federated learning

in wireless multi-hop networks.

• Existence of reality gap: Even with the overwhelm-

ing success of reinforcement learning and federated

learning for SD-WAN [3], training the models on sim-

ulations and directly executing them on real networks

yields poor performance due to the differences between

the physical layer simulators and real networks.

• Lack of reliable training environment: The performance

of machine learning techniques like FL and RL depends

on the training data and a reliable training environment.

For many reasons, such as lack of knowledge, time, or

resources to build the wireless environment, researchers

usually tend to work directly on the testbed setup and

spend a large amount of training time to develop mod-

els.

• Need for wireless multi-hop simulator: The existing

wireless simulators mainly support infrastructure-based

wireless environments with single-radio single-channel

per link which seriously limits the ability to simulate

realistic usage settings. They do not account for multi-

channel multi-radio based multi-hop network opera-

tions which are increasingly becoming realistic. Specif-

ically, using multi-channel multi-radios for wireless

mesh backbone networks will tremendously reduce the

interference from other nodes and increase the overall

performance.

Therefore, we build a physical simulator for wireless multi-

hop networks called FedEdge simulator to address the current

problems of emulating a wireless multi-hop network and

integrate it with our FedEdge framework. This approach will

give FedEdge the advantage of being the first framework

to incorporate a fully functional multi-agent reinforcement

wireless network for federated edge computing, which enable

to develop and test wireless networks involving federated

learning with high fidelity simulations.

1.2 Contributions
To the best of our knowledge, our implementation is the first

attempt in the wireless networking domain to test and validate

knowledge transfer from simulation to reality in federated

computing with multi-agent reinforcement networking. Our

objective in this work is to build a custom realistic physical

layer simulator called FedEdge simulator to integrate with

our existing FedEdge architecture as shown in Figure 2. Fol-

lowing are our contributions in this paper:

• Simulation to real code transfer: Using real-time pro-

duction environments such as OpenFlow software switches

and Linux software tools such as mac80211_hwsim,

hostapd, wpa_supplicant, Linux Namespace Contain-

ers (LXC), Traffic Control (TC), and Netlink protocol

in the simulator enables rapid development and test-

ing of the code and porting the same codebase to real

testbed environments. This reduces the development

and debugging times and promotes productivity.

• Simulation to real knowledge transfer: Our implemen-

tation of the FedEdge simulator using the dynamic link

scheduling method reduces the reality gap between the

simulations and actual physical networks. Integrated

with our existing FedEdge framework, the simulator

can help develop accurate models and yield better sim-

ulation to real transfer performance.

• Accelerated prototyping for training: Multiple simul-

taneous runs enable FL and RL to quickly discover

hyper-parameters such as the number of local training

round, regularization parameters for model updates, the

number of stragglers, model tuning, learning rate, and

exploration parameters. FedEdge simulator allows us

to evaluate several configurations in parallel thereby

speeding up the model selection for the development

cycle.
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2 Preliminaries
In this section we briefly provide a background on the fun-

damental concepts and components considered for our inte-

grated simulation and testbed framework.

2.1 Accelerating Multi-hop FL via Multi-Agent RL
A multi-hop FL[2, 3] system consists of a central server that

serves as an aggregator and a multi-hop wireless link to edge

servers, referred as workers. The architecture of FL across a

multi-hop wireless network is shown in Figure 2. FL methods

are developed to manage distributed neural network training

over numerous devices, where each device has its own train-

ing data and the goal is to train a common model with an

objective to minimize the training loss.

FL methods use a standard optimization technique called

local stochastic gradient descent (SGD) to unravel the above

optimization problem, which alternates between local SGD

iteration and global model averaging for multiple rounds. The

worker seeks to decrease its local loss Fkw throughout each

round by conducting H mini-batch SGD iterations. After iter-

ating through H local SGD iterations, the worker nodes send

their updates to the server, which averages the collected local

models and aggregates them into a global model. The updated

global model is distributed to the workers, and this process

continues again. Due to the dynamic nature of wireless multi-

hop networks, high and nomadic end-to-end delays become

the governing factor in determining the convergence times in

multi-hop FL.

To address such problems, MA-RL was proposed to mini-

mize the wall-clock convergence time to achieve the desired

FL accuracy. The problem was formulated as a multi-agent

Markov decision Process (MA-MDP) and solved by model-

free multi-agent reinforcement learning. In this case, each

router is an agent, which observes the network states (e.g.,

the source IP and destination IP of the incoming FL packet)

and learns the optimal networking policy (e.g., the forward-

ing action at each router) based on the reward signals (i.e.,

negative per-hop delay) with an objective to maximize the

expected total return (i.e., end-to-end delay) from the initial

state (i.e., when the FL packet entering the network) to the

terminal state (i.e., when the FL packet leaving the network).

2.2 FedEdge Experimental Framework
FedEdge (Figure 2) is the experimental prototype framework

developed to support wireless multi-hop federated learning.

To fast prototype multi-hop FL in the physical wireless de-

vices, we developed FedEdge framework that includes fed-

erated computing and federated networking [3]. Each com-

ponent is built in a layered approach where each layer has

bidirectional communications to upper or lower layers. In

general, federated computing involves customizing and con-

figuring FL functionality, and federated networking is an

AI-oriented wireless network operating system that is mainly

responsible for fast and reliable wireless network links be-

tween the aggregator node and worker nodes. The main goal

of this component is to optimize the wireless network through

AI-enabled algorithms to perform route optimizations and pro-

vide in-band telemetry data. Federated computing contains

three layers: (1) Datasets layer that stores the training datasets

for FL, (2) Compute layer that provides core functionalities,

for instance, to train a model and store the trained model, and

finally (3) Communication layer that uses FedEdge COMM

protocol to establish and maintain connections with aggre-

gator and worker nodes. Similar to the federated computing

component, the federated networking component has three

layers that include (1) Dataplane Layer that integrates soft-

ware switch to allow programmable packet switching and

the in-band telemetry, (2) The Network Core Layer that han-

dles the traditional network functions such as node discovery,

maintaining network links, counters and status database, and

(3) RL App layer that contains the actor-critic RL agent for

learning delay-optimized routes at the edge nodes. The in-

tegration of the simulator to FedEdge architecture is simple

because of the modularity of FedEdge, which can use the

topology built by the FedEdge simulator and train the RL

agent on the wireless multi-hop backbone network.

2.3 FedEdge Physical Testbed
A software-defined wireless mesh network testbed was de-

ployed in Woodward Hall at the University of North Car-

olina at Charlotte (UNCC). This testbed consists of 10 Gate-

works routers connected with three of WLE900VX wireless

interface cards to enable the multi-radio wireless node and

run with Ubuntu 20.04 as the operating system. Each mesh

router was configured to operate in Mesh Point (MP) mode,

with fixed 2.4 and 5 GHz channel, 20 Mhz channel width

in 802.11ac operating mode, and 15 dBm transmit power.

Then, three wireless interfaces were bridged to a data plane

with a programmable packet handling routine (i.e., OpenFlow

flow table). Besides, we deployed 10 of Nvidia Jetson as edge

computing nodes.

3 FedEdge Simulator Design and Prototyping
3.1 FedEdge simulator overview
FedEdge simulator is able to mimic electronic hardware wire-

less radio and its operations to model an environment inside

a computer system. It uses virtualized hardware and Linux-

based software tools to build and maintain wireless networks.

Most of the tools used are Linux in-built tools namely IP

namespaces for containerization, mac80211_hwsim[8] to cre-

ate virtual radio interfaces, iw tool to manage the radio in-

terfaces, and batman_adv[9] for shortest path routing. The

simulator is completely built using the python language and al-

lows the use of open-flow softswitch [10] for software-defined

networking. In this section, we describe the framework of the
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FedEdge simulator, the modes of operation, workflow, and

channel modeling.

As shown in Figure 3, our simulator is built on top of traffic

control (tc) link [11] to shape the traffic on the egress inter-

face of each node based on the signal-to-noise ratio (SNR)

obtained from the channel models and interference models.

There is no switching of frames from kernel to user space,

ensuring zero copies thereby reducing the overhead. Link

scheduler comes into the play in tclink mode to dynamically

schedule the links between nodes and runs for every 5 seconds

and interacts with the medium simulator to introduce signal

fading and interference between the nodes. Figure 4 describes

the flow of the link scheduler. Once the simulator starts and

builds the necessary wireless medium parameters such as sig-

nal fading, interference, and propagation loss, several threads

are created for each node in the topology building stage based

on the number of the interfaces each node contains.

3.2 Simulator Workflow
3.2.1 Stages. This section describes the general workflow

for the FedEdge simulator and its input and output. The in-

put to the simulator is a JSON file that contains context re-

lated to the topology. Parsing the input configuration file, the

simulator builds the wireless medium parameters and con-

structs the topology. The topology is constructed using the

mac80211_hwsim driver, and the links between the nodes are

created using the iw tool if the topology is a complete mesh.

In addition, the simulator uses wpa_supplicant and hostapd

for client-based connections. If the topology contains a SDN

controller setup, the simulator configures the OpenFlow data-

path connections on the nodes and connects the nodes to the

controller. Next, the simulator uses a link scheduler to update

link parameters of each interface.

3.2.2 Channel Modelling. FedEdge simulator supports multi-

hop wireless mesh networks and standard UAV networks.

Propagation models available in the simulator are traditional

static channel models such as Log Distance, Log-Normal

Shadowing, etc. In addition, custom models can be integrated

into the simulator that also includes GAN-Based Channel

Model [12] and Trace-Based Channel Model. In stage 1, the

channel model name is parsed from the input configuration

file. The propagation loss is calculated between the nodes and

stored in the simulator database based on the model. In stage

2, the simulator uses the same information to calculate the

wireless parameters.

3.2.3 Trace-Based Channel Model. Verifying or evaluat-

ing a wireless network is the most challenging task given the

random, unpredictable nature of the wireless medium. Trace-

based channel modeling is an essential technique to replay

or reproduce the wireless scenarios from testbed to simulator

or vice versa. This approach will provide the required data

to model complex wireless systems. Trace-based modeling

in the FedEdge simulator works in two modes: replay an

existing trace and trace generation for a given input topology.

Trace Replay: FedEdge simulator can replay the trace for

each interface independent of a node. For replaying trace, the

simulator checks the topology file for trace file locations and

processes the files of each interface. Threads are generated

based on the number of replay files and passed to the link

scheduler. Based on the signal level on each trace file, the

link scheduler runs the traffic control (tc) and sets the band-

width on each interface of the replay nodes periodically until

the trace files are complete. The node’s interfaces excluded

from the trace replay are manually updated by the simulator

and link scheduler based on the input channel model and

interference model.

Trace Generator: The second mode of the trace model

works to generate the trace logs, which can be used to replay

on the testbed, visualize or train data for machine learning.

When the trace functions are executed, they take the input
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from the parsed input configuration and learn the replay in-

terfaces. The program works in reverse order compared to

replay, where it takes in the interface names and produces

the trace files in a csv file format, which contains time, MCS

index, RSSI, loss, and traffic rate. The link scheduler captures

the data every 5 seconds until an interrupt occurs. Based on

user-selected channel models, interference models, and the

topology of the network, the simulator calculates and records

all the parameters to the trace files.

4 Experimental Evaluation
In this study, we present our experiments in the following

scenarios. First, we evaluate the physical layer of FedEdge

simulator by comparing the FL experiments alone without

MA-RL on both simulator and physical testbed. Next, we

compare the reality gap difference by training MA-RL agents

in on online fashion in both environments. Last, we study the

effect of knowledge transfer of the MA-RL by evaluating the

pre-trained model’s performance in the physical testbed.

4.1 Experiment Setup
Network Environment Setup: To evaluate the gap between

the simulated network and the real testbed environment, we

identically set up the topology with the same wireless con-

ditions with 10 routers, 9 workers, and a server as shown in

Figure 1. We set up our FedEdge framework to work on top of

the physical layer of the simulator by using shortest path rout-

ing and MA-RL to route packets. A replay simulation runs

by inputting the RSSI signal logs from the testbed backbone

nodes in WiNSLAB at UNCC. The simulator uses the link

scheduler and updates the bandwidth on the link interfaces

based on the signal seen at the point of the replay time. The

link scheduler converts the signal to traffic rate based on MCS

index table of 802.11ac 20MHz channels specified at [13].

Model and Dataset: The CNN model has two convolution

layers, with 32 and 64 filters respectively. Each convolutional

layer is attached with a 2x2 max pooling layer. The convolu-

tions are followed by a fully connected layer with 128 units

with ReLU activation. The final output layer consists of a

fully connected layer with sofmax activation. The learning

rate of 0.1 is used for local SGD in all workers and the model

size is 5.8 Mbytes. We test the model with the well-known

FEMNIST benchmark dataset, the extended federated version

of MNIST [14] from the LEAF[15], which consists of 62

classes.

4.2 Main Results
Simulator Fidelity Evaluation: Figure 5 examines the close-

ness of the realistic physical layer in the proposed simula-

tion to the physical testbed with the experimental results of

shortest-path routing in both environments. Both FL experi-

ments lead to the same iteration convergence performance at
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Figure 5. Loss convergence of FL after 20 epochs of shortest-

path routing in FedEdge simulator (red) and on testbed (blue)

which they achieve the same loss after running the same num-

ber of epochs (Figure 5(a)) and slightly different wall-clock

time (Figure 5(b)). Therefore, we verify that both environ-

ments are almost identical.

In the FL experiment with RL-based routing, where each

agent is trained in an online fashion in simulator and physical

testbed, the iteration loss convergence in terms of global

rounds are identical as shown in Figure 6. However, an online

RL routing in the simulator achieves slightly better wall-

clock time than in the testbed after 50 epochs, which is only

2 minutes difference. Given the identical protocol stacks for

both, the results confirm that the FedEdge simulator narrows

the reality gap effectively.
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Figure 6. Loss convergence comparison results after 50

epochs of On-policy softmax in FedEdge simulator (red),

On-policy softmax on Testbed Online learning (blue), On-

policy softmax on Testbed Target testing (black)

MA-RL Sim-to-real Knowledge Transfer: Now, we eval-

uate the initial sim-to-real transfer performance of the online

MA-RL routing given the verified close reality gap. We pre-

train MA-RL agents in a simulated environment and transfer

the learned knowledge (Q-table of each agent) to the testbed

for the target testing, where we freeze the Q-table and allow

an agent to only exploit the pre-trained softmax policy. In Fig-

ure 6, we observe that online training both on the simulator

and testbed achieve a better performance in terms of wall-

clock time compared to the target testing in the testbed. This

is because the frozen target testing lost adaptability to re-learn

the dynamic FL traffic patterns in the wireless environment.
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Figure 7. Time and average time per round of On-policy

softmax in FedEdge simulator (red), On-policy softmax on
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However, the gap between the target testing in the testbed

and both online trainings is marginal. Figure 7(a) shows that

training time per epoch for both testbed experiments follow

the same trend, which are around 72-80 seconds per epoch

and slightly slower than the online simulator. Figure 7(b)

shows that the average time and variance per epoch of all the

approaches across 50 rounds of FL communications.

5 CONCLUSIONS
MA-RL knowledge transfer in FL over wireless multi-hop

network is challenging due to the reality gap between the code

base and entire stack from the physical layer to the application

layer. In this paper, we presented a fully functional approach

for transfer learning from simulation to reality in wireless fed-

erated edge computing networks. Moreover, we implemented

a real physical testbed to validate the proposed FedEdge sim-

ulator for effective sim-to-real transfer. Our results confirm

the high fidelity of the proposed FedEdge simulator that sig-

nificantly minimizes the gap from real testbed.
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