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Abstract

Formation of desired three-dimensional (3D) shapes from flat thin sheets with programmed non-
uniform deformation profiles is an effective strategy to create functional 3D structures. Liquid crystal
elastomers (LCEs) are of particular use in programmable shape morphing due to their ability to undergo
large, reversible, and anisotropic deformation in response to a stimulus. Here we consider a rectangular
monodomain LCE thin sheet divided into one high- and one low-temperature strip, which we dub a ‘bistrip’.
Upon activation, a discontinuously patterned, anisotropic in-plane stretch profile is generated, and induces
buckling of the bistrip into a rolled shape with a transitional bottle neck. Based on the non-Euclidean plate
theory, we derive an analytical model to quantitatively capture the formation of the rolled shapes from a
flat bistrip with finite thickness by minimizing the total elastic energy involving both stretching and bending
energies. Using this analytical model, we identify the critical thickness at which the transition from the
unbuckled to buckled configuration occurs. We further study the influence of the anisotropy of the stretch
profile on the rolled shapes by first converting prescribed metric tensors with different anisotropy to a
unified metric tensor embedded in a bistrip of modified geometry, and then investigating the effect of each

parameter in this unified metric tensor on the rolled shapes. Our analysis sheds light on designing shape
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morphing of LCE thin sheets, and provides quantitative predictions on the 3D shapes that programmed LCE

sheets can form upon activation for various applications.
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1. Introduction

Shape morphing from an initially flat sheet to a desired three-dimensional (3D) shape triggered by
a stimulus is an effective approach for fabricating complex 3D structures with advanced functionalities. By
patterning spatially varied stimuli-induced strain, shape morphing has been achieved in various responsive
11,12

materials, such as hydrogels'™, liquid crystal elastomers (LCEs)’'%, and shape memory polymers

These two-dimensional (2D)-to-3D shape transitions have been used in a wide range of applications,

15,16 17,18

including biomedical devices'*!'4, soft actuators and sensors'>!®, and mechanical metamaterials

To transition a flat sheet to a desired 3D shape, it is necessary to induce spatially non-uniform
stresses inside the material upon activation'®?°. A through-thickness stress variation can generate a bending
moment and thus out-of-plane deformation. An in-plane stress variation, on the other hand, can drive out-
of-plane buckling of a flat sheet into a 3D shape. Although both types of stress variations can trigger shape
transition of a flat sheet to 3D shape, the buckling-induced shape transition relying on in-plane stress
variations has the following three advantages: (1) it broadens the accessible 3D shapes incorporating both
Gaussian and mean curvatures; (2) it requires patterning of only a single material layer, which can be easily

32425 and

achieved using numerous 2D patterning techniques such as lithography?>!%2'-23_ direct ink writing
laser cutting®; (3) buckling-induced shapes are much more robust to external loads than those induced by

pure bending, since the energy to deform the former scales with the film thickness ~h, while the energy to

deform the latter scales as ~h3 72728,

Though many systems have been explored for their use in shape morphing, LCEs are particularly

useful due to the coupling of orientational order of constituent mesogens with polymer conformation™"'®,



Upon activation by heating, the orientational order of mesogens reduces, yielding large and anisotropic
deformation. Recently, we demonstrated a method'” to prescribe various in-plane stretch profiles to a flat
monodomain LCE sheet by spatially patterning the concentration of plasmonic gold nanoparticles which
produce heat upon illumination. Under uniform illumination, a non-uniform distribution of gold
nanoparticles causes a gradient in photothermal heat generation, and therefore non-uniform in-plane stretch,
yielding out-of-plane buckling of the flat sheet. Compared to spatially programming director
orientation’-%242329-32 this method can be widely generalized to most LCE systems with a simple fabrication
process. The shape morphing of flat LCE sheets with prescribed in-plane stretch profiles can be captured

3334 which, like the Foppl-von Karman (FvK) plate theory®, takes into

by the non-Euclidean plate theory
account both bending and stretching energies. In this theory, strains are measured with respect to a reference
metric tensor, which is defined by the prescribed in-plane stretch profile and is not necessarily immersible
in a 3D Euclidean space. In our previous study'’, we have linked a prescribed in-plane stretch profile to the
3D shape for a LCE sheet with an infinitesimal thickness by minimizing the bending energy among all the
isometric immersions, in which the actual metric tensors fully obey the prescribed metric tensors, leading
to zero stretching energy. As the thickness increases, the actual metric tensor deviates from the prescribed

metric tensor as a result of the interplay between the bending and stretching energies. In this paper, we will

address the thickness effect on the shape morphing of LCE sheets.

To study this problem, we choose the simple bistrip geometry, where a rectangular monodomain
LCE sheet is divided into two strips, i.e. the high- and low-temperature strips (Fig. 1A). The high-
temperature strip contains gold nanoparticles (dark strips in Fig. 1B), and generates more photothermal heat
upon illumination than the low-temperature strip that contains no gold nanoparticles (transparent strips in
Fig. 1B), leading to a nearly step distribution in temperature (Fig. 1A) and thus a discretely patterned in-
plane stretch profile. As a LCE shrinks along the director and elongates in the perpendicular direction upon
heating, the induced stretch profile in a bistrip LCE highly depends on its initial director. We find in both

experiments (Fig. 1B) and finite element (FE) simulations (Fig. 1C) that upon illumination, a bistrip, with



the initial director n either parallel (Ieft) or perpendicular (right) to the interface between the two strips, can
roll into a nearly axisymmetric shape, which consists of two nearly cylindrical regions smoothly connected
via a transitional bottle neck. However, the rolled shape is strongly affected by the anisotropy of the
prescribed stretch profile. There are extensive studies on the rolled shape formation in isotropically

deformed gel bistrips?'***’, but not on anisotropically deformed LCE bistrips, to the best of our knowledge.

In this paper, we establish an analytical model based on the non-Euclidean plate theory to capture
the rolled shapes from LCE bistrips with finite thicknesses, and identify the critical thickness at which the
transition from an unbuckled to buckled configuration occurs. To investigate the influence of the stretch
anisotropy on the rolled shapes, we convert the prescribed metric tensors in LCE bistrips with initial director
either parallel or perpendicular to the interface into a unified metric tensor embedded in a bistrip with
modified geometry. Using this analytical model, we study the effect of each parameter in the unified metric
tensor on the rolled shapes from bistrips. The quantitative agreement between the analytical model and FE

simulations validates our analysis.
2. Modeling shape morphing of LCE bistrips

We model a bistrip of length L, width w, and thickness h (Fig. 1A) using the reduced 2D non-

Euclidean plate theory?*-436

, in which the bistrip is represented by its mid-surface, and the prescribed metric
tensor @ of this mid-surface may not be immersible in a 3D Euclidean space. a of the bistrip is determined
by a prescribed in-plane stretch profile,
2
ff 2
where u and v are the two surface coordinates of the mid-surface (Fig. 2A), and A, and A, are the

discretely patterned in-plane stretches in the u and v directions, respectively. The two stretches 4,, and 4,

are assumed to depend solely on v, which can be described by the following sigmoid functions:
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where 1,, (1,) represents the stretch of the low-temperature strip in the u (v) direction, A, (A,) represents
the stretch difference between the high- and low-temperature strips in the u (v) direction, p represents the
width of the low-temperature strip normalized by the total width w, § denotes the smoothness of the step
change in the stretch, and 105 /w is defined as the normalized width of the transition region through which
the stretch reduces by 0.99A,,(4,) in the u (v) direction. A positive A,, (4,) indicates Ay |y<pw > Aulvspw
(Avlv<pw > Aylvspw). The anisotropic stretch profiles highly depend on the initial director n of LCE

bistrips. We find that in our experiments when n || u, A, = 0.92 and A,, = 0.15'° (Fig. 1A left; Appendix).

The stretch in the v direction can be determined by incompressibility A, = 1/,/A,,, yielding 1, =

1/y2, = 1.04and A, = 1/y/2, — 1/\/A, — A, = —0.097. Whenn || v, 1, = 0.92 and A, = 0.15 (Fig.

1A right). Correspondingly, A,, = 1.04 and A, = —0.097 due to incompressibility. The Gaussian

curvature K corresponding to the prescribed metric tensor @ is*®

—EK = —T}' + T, T4 + TATE — TATE — T4 T, 3)
where E = 27, (' )" denotes the derivative with respect to v, and T, (a, 8,y = 1,2) are the Christoffel

symbols of @ and equal
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Substituting Eq. (4) into Eq. (3) yields
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Based on the non-Euclidean plate theory****%, the elastic energy of the bistrip can be expressed as

Etotal = Estretch + Ebend> (6)

where Egiretch 18 the stretching energy



Estretch = uThfoL f(;”(aaﬁc—l]/n + d“”c‘zﬁ")(a — C_l)aﬁ (a— C_l)yn Jl]aldv du, (7)

and Ejengq 1s the bending energy

Ebend = ”1—’123 fOL fo‘”(a“ﬁ arm + a®afm)b,gb,, Jlaldv du. 3
In Egs. (7) and (8), a is the actual metric tensor and b is the actual curvature tensor of the mid-surface. The
actual Gaussian curvature K can be expressed in terms of the components of @ and their derivatives®®. The
stretching energy in Eq. (7) is associated with changes of distances in the mid-surface from its prescribed
metric tensor @, and the bending energy in Eq. (8) is associated with changes of curvatures from the flat
configuration. Note that Egiretch~h and Epenqg~h3. When the bistrip is extremely thin (h — 0), it prefers
obeying its prescribed metric tensor @ such that Egipere, = 0, and the total energy goes with Epenq. We call
this condition as the thin limit or isometric immersion. When the bistrip is extremely thick (hVK > 1), it
remains flat with only in-plane stretching such that E,.pq = 0, and the total energy goes with Egiretch. We
call this condition as the thick limit. Within these two limits, the 3D shape of the bistrip is determined by

the interplay between Egiretch and Epeng.

Next, we try to minimize the elastic energy Eiqta1 in Eq. (6) with the prescribed metric tensor @ in
Eq. (1). Given that the bistrips consistently roll into axisymmetric shapes in the experiments (Fig. 1), we
seek solutions under the assumption of surface of revolution. Therefore, the actual metric tensor a and
curvature tensor b are assumed to depend solely on the axial coordinate v . With appropriate

parameterization, a@ and b can be diagonal, i.e.

az[E%v) G?v)]’bz[e(ov) gg;)]' ®

Based on the Gauss formula and Mainardi-Codazzi equations®**, the terms e(v) and g(v) in b can be

expressed in terms of E (v) and G (v):

2 = E” (10)
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where c is an integration constant. To determine the shape of the mid-surface, we need to find E (v), G (v),
and ¢ such that Eiy¢, in Eq. (6) is minimized. This minimization can be performed by either numerical
optimization or a variational approach (Appendix). Since the two methods are equivalent, here we only

show the numerical optimization.

The process of the numerical optimization is as follows. First, we uniformly discretized the domain
of v into m points with an increment w/(m — 1). Then E (v), G(v), e(v), and g(v) were also discretized.
We used E;, G;, e;, and g; (i = 1, ..., m) to represent their values at point v; (0 < v; < w), respectively.
Second, we expressed e;, and g; in terms of E;, G;, and ¢ using Egs (10) and (11), in which the derivative
terms are approximated by the finite difference. Finally, we used unconstrained nonlinear programming

solver (fminunc) in Matlab to solve the following minimization problem
Erll:l(.'}l,rl(,‘ Etotal ’ (l = 1! ey m), (12)

where E;, G;, and c are to be determined. This minimization problem was solved iteratively for various
thicknesses. We started from the case with an extremely small thickness, i.e. h/w = 107°, and used the
solution of isometric immersion as the initial try, in which @ = @ and b is determined by minimizing Epepgq.
Then we gradually increased the thickness and used the solution of the previous step as an initial try of the

current step. This iteration stopped as the bending energy becomes negligible (Epend/Etota; < 0.001).

To demonstrate the process of minimizing Eq,1, We take a bistrip with L/w = 2.0 and the initial
director n parallel to the interface between high- and low-temperature strips as an example. In Figs. 2B and
C, we can see how Eqtq1/h (black dots), Eeng/h (blue dots), and Egiretcn/h (red dots) evolve with h/w.
When h/w is very small, the majority of Eiyta1 iS Epeng- As h/w increases, Epeng first increases and then
reduces to nearly zero, whereas Egi etcn iNCreases monotonically and becomes dominant. We define the

thickness at which Eyenq/Erotal decreases to below 0.001 as the critical thickness h¢.. When h/w is below



hee/w, the bistrip is considered in a buckled configuration. When h/w is above h./W, Egtretch

approaches Eiyta1, While Epeng goes to zero, indicating an unbuckled configuration.
Besides, we found the following scaling relations when h/w is very small (Fig. 2C),

Egtretcn/h ~h*, Epena/h ~h?. (13)
As shown in Eq. (7), Egtretcn/h i proportional to the quadratic of the differences between the components
of a and @. We plot the distributions of the metric differences @ — @ in the u (Fig. 2D upper) and v (Fig.
2D lower) directions for bistrips with very small h/w, and find that @ = @ except a transition region, and
the length of the transition region is unaffected by h/w. The maximum magnitudes of the metric differences
in the u and v directions are found to scale with (h/w)? when h/w is very small (Fig. 2E). Therefore, the
quadratic increase of the metric differences with h/w in a transition region results in the fourth power
scaling relation between Egiretcn/h and h. Epeng/h, on the other hand, not only scales quadratically with
the curvature tensor b, but also scales with h?, as shown in Eq. (8). By plotting the distributions of b in the
u (Fig. 2F upper) and v (Fig. 2F lower) directions for bistrips with very small h/w, we find that b is

independent of h/w. Thus, Eyenq/h and h show a quadratic power-law relation.

Once a and b are obtained by minimizing Eiqa, the shape of the bistrip can be uniquely
determined (Appendix). In Fig. 3, we plot the 3D shapes obtained from our analytical model (Fig. 3A-C,
Appendix), and compare them with the ones obtained from the FE simulations (Fig. 3D-F, Appendix) for
h/w = 0.005 (A and D), 0.015 (B and E), and 0.025 (C and F). Both the theory and the FE simulations
show that the bistrips roll around an axis perpendicular to the interface between the high- and low-
temperature strips. The rolled shape is composed of two nearly cylindrical regions connected by a
transitional bottle neck in which the Gaussian curvature alters from positive to negative. We define the
width of this transitional bottle neck region wy .5 as the distance between the maximum and the minimum
Gaussian curvatures (Fig. 3A). Away from the transitional bottle neck region, a obeys @, and the Gaussian

curvature is zero due to the homogeneous prescribed stretch. Thus, the stretching energy is mainly



concentrated within the bottle neck and favors a smaller w455, Whereas the bending energy is distributed
throughout the entire sheet and favors a smaller curvature. Both wy.,, and the curvature of the rolled shape
are determined by the competition between the stretching within the bottle neck and the bending across the
entire sheet. As the thickness of the bistrip increases, a deviates more from @. Accordingly, the portion of
the stretching energy increases and the portion of bending energy decreases, yielding an increase in Wipaps
and decrease in curvature (Fig. 3A-F). In Fig. 3G and H, we plot the profiles of the cross-section along (G)
and perpendicular (H) to the interface between the high- and low-temperature strips, and show that the
theory (circular dots) and the FE simulations (solid lines) are in quantitative agreement, which validates
our theory. The slight deviation at the edges results from the boundary effect that undermines the

axisymmetric assumption.

To further validate our analytical model, we study the rolled shape formation from bistrips with
different normalized widths of the low-temperature strip p ranging from 0.2 to 0.8 (Fig. 4A). All the bistrips
have L/w = 1.0, h/w = 0.005, and initial director parallel to the interface between the high- and low-
temperature strips. Fig. 4B-D show the deformed shapes of the bistrips obtained from experiments (Fig.
4B), FE simulations (Fig. 4C), and theory (Fig. 4D), from which we can see that the bistrips roll around an
axis perpendicular to the interface and form a transitional bottle neck at the interface, regardless of p. The
bottle neck moves along the rolling axis while maintains its width wy.,p,5 as p increases. The FE simulations
can quantitatively capture the rolled shapes observed in the experiments. The theory can provide good
predictions on the rolled shapes close to the bottle neck. Near the edges of the bistrips, the shapes predicted
by the theory deviate from those obtained in the FE simulations, since the axisymmetric assumption in the

theory no longer holds there.

3. Influence of stretch anisotropy on the formation of rolls from LCE bistrips

We learn from Fig. 1 that a bistrip with the initial director either parallel or perpendicular to the
interface between the high- and low-temperature strips can roll into approximately axisymmetric shapes

upon activation. However, the rolled shapes for the parallel and perpendicular cases are different, indicating



that the shape morphing depends on the anisotropy of the prescribed in-plane stretch. In this section, we
study the influence of the stretch anisotropy on the rolled shapes. We first show that a bistrip with a
prescribed metric tensor of different anisotropy, corresponding to initial director either parallel or
perpendicular to the interface, can be converted to a bistrip of modified geometry with a unified metric
tensor. Then we investigate how each parameter in this unified metric tensor influences the formation of

rolled shapes from LCE bistrips.

Suppose we have a bistrip of length L, width w, thickness h, and the metric tensor & in Eq. (1) is
applied onto this bistrip (Fig. 5A). Given that a is diagonal, it can be divided into the parts without stretch
mismatch @4, @,, and the part with stretch mismatch and thus generating in-plane stresses, a* (Appendix),
where
.

v

(1.)° 0] a*z[u;;)z o] (14)
o 1l 0o 1F

corresponding to a stress-free deformation in the v direction, and a homogeneous and an inhomogeneous

deformation in the u direction, respectively, and

AL = A/, (15)
Please note that this decomposition of @ into a;, @,, and a@* holds only if a is diagonal, as shown in Eq.
(1). Since shape morphing of LCE bistrips is elastic and conservative, the obtained shape should be
independent of loading paths. Therefore, applying @, a@,, and @* one by one (Path 2 in Fig. 5A) should
result in the same 3D shape as applying a once (Path 1 in Fig. 5A). After @, is applied, the bistrip is

stretched along the v direction by A4,,. As a consequence, the current width of the bistrip w* becomes

w* = fgvl,,(v)dv, (16)

and the current surface coordinate v* can be expressed as

v* = fovlv(r)d‘r. (17)



After @, is applied, the bistrip is stretched homogeneously along the u direction by 4,,, yielding a new
length L* = 2,,L and a new surface coordinate u* = A, u. By far, the bistrip remains unbuckled, since no
variation in the in-plane stress is generated. We further apply the metric tensor @* onto the bistrip with the
new width w* and length L*. Note that @* only involves stretches A;, in the u* direction, which can be

expressed with respect to v* in the following unified form

T (o) = 1 - B (18)

_U*/W*—p*’
1+e & /w*

where A}, = A, /A, and p* and §* can be obtained by finding the least-square fitting of Eq. (18) to a set of
pairs (v*, 4;,) given by combining Egs. (15) and (17). By minimizing the total elastic energy, the rolled

shape for the bistrip with @* and modified geometry can be determined.

To confirm that the rolled shapes following Path 1 and 2 (Fig. 5A) are identical, we consider a
bistrip of thickness h = 0.005w and length L = 2w, with an equal width of the high- and low-temperature
strips and the initial director perpendicular to the interface between the two strips. Upon activation, the
bistrip undergoes shrinkage in the v direction by A,,, which can be quantified by Eq. (2) with 4, = 0.92,

A, = 0.15, 5 /w = 0.02, and p = 0.5. Due to the incompressibility, the bistrip undergoes expansion in the

u directionby 1,, = 1/ \/A_v, yielding A, = 1.04 and A, = —0.097. Given the in-plane stretch profiles, the
prescribed metric tensor @ is determined, and the rolled shape can be then obtained using the analytical
model (Path 1 in Fig. 5A). Following Path 2, the bistrip is first shrunk in the v direction by 4,, due to @,
and then expanded in the u direction by 4,, due to @,, resulting in a flat stress-free bistrip of a modified
width w* = 0.845w and length L* = 2.085w. Finally, @ involving stretch A;, with A;, = —0.093, p* =
0.544 and 6*/w = 0.0168 is applied to the new bistrip, yielding a rolled shape that can be captured by the
analytical model. In Fig. 5, we plot the 3D shapes predicted by the analytical model following Path 1 and
2 and the FE simulation, and compare their profiles of the cross-section along (B) and perpendicular to (C)
the interface between the two strips. The rolled shapes from Path 1 and 2 match perfectly, indicating that

the shape morphing following Path 1 and 2 is equivalent. The quantitative agreement between the



theoretical predictions (circular dots) and the FE simulation results (solid lines) validates our theory (Fig.

5B and 5C).

Having converted a prescribed metric tensor in LCE bistrips with initial director either parallel or
perpendicular to the interface into a unified metric tensor, we will next investigate the influence of each
parameter in this unified metric tensor on the rolled shape formation from bistrips with a finite thickness.
Note that bistrips with an infinitely small thickness (h — 0) adopt the isometric immersion of a* that

minimizes the bending energy. Using Eq. (5), we can obtain the Gaussian curvature,

C_ A (19)
K*= -5

Then the width of the transitional bottle neck region wyy.,5s can be obtained by

~ 26342 (20)
w

*
Kmin Kmax

v*
*

v* . .. . .
where " and —|  are the normalized v* that maximizes and minimizes K, respectively, and can
K,

max w min
be computed by solving K*' = 0. From Eq. (20) we can see that w;;.,,s depends only on §*/w* for bistrips
with an infinitely small thickness. Next, we will show that as the thickness becomes finite, more parameters

play roles in influencing wyy,ns. For convenience, we will remove all the “*” in Eq. (18).

We first investigate the effect of the stretch mismatch A,, between the high- and low-temperature
strips on the rolled shapes, as shown in Fig. 6. We fix p = 0.5 and § /w = 0.02, while changing A,, from
0.002 to 0.1. As A, increases, the critical thickness h../w, which is defined as the thickness at which
Epend/Etotal = 0.001, also increases (Fig. 6A), indicating that a higher stretch mismatch can trigger
buckling of a thicker bistrip into a rolled shape. When h = 0 (black lines in Fig. 6B and 6C), the isometric
immersion containing zero stretching energy is adopted. An increase in A,, leads to more bending energy
and thus larger average mean curvature Hyyg over the entire width (black line in Fig. 6B). The width of the
transitional bottle neck wy,ps is unaffected by A,, and equals 2.634 §/w = 0.0527 (Eq. (20)) (black line

in Fig. 6C). As h increases, the actual metric deviates from the prescribed metric within the bottle neck,



yielding an increase in the portion of stretching energy and a decrease in the portion of bending energy.
Correspondingly, Wirans increases (Fig. 6C) and H,y decreases (Fig. 6B) for an increasing h and a fixed
Ay. Furthermore, a bistrip with finite h bends more (larger Hyy) for a larger A, (Fig. 6B and 6D-G). Its
transitional bottle neck region occupies almost the entire width (Wi.4ns = W) When A, is infinitely small,

and quickly shrinks and becomes saturated as A, increases (Fig. 6C-G).

We then study how the smoothness of the step change in the stretch profile § influences the rolled
shapes. InFig. 7, we fix p = 0.5 and A,, = 0.05, while changing § /w from 0.01 to 0.06. As § /w increases,
i.e. the step change in the stretch profile becomes smoother, the critical thickness h../w decreases (Fig.
7A). The bistrip adopting an isometric immersion (h = 0) bends less (smaller Hyyg) for a smoother stretch
profile (larger 6 /w) (black line in Fig. 7B). Its Wi ans/W linearly increases with § /w at a rate of 2.634 (Eq.
(20)) (black line in Fig. 7C). For bistrips with non-zero h, their H,y, decreases (Fig. 7B and 7D-G) and
Wirans increase (Fig. 7C-G), with an increasing 6. The Hayg-6 and Wyrans-6 relations shift downward (Fig.
7B) and upward (Fig. 7C), respectively, as h increases due to the same reason as discussed in Fig. 6B and

C.

Furthermore, we study how the normalized width of the low-temperature strip p influences the
rolled shapes (Fig. 8). We fix §/w = 0.02 and A, = 0.05, while changing p from 0.2 to 0.8. As p
increases, the interface between the high- and low-temperature strips moves along the width direction.
Correspondingly, the critical thickness h../w changes non-monotonically: it first increases and then
decreases as the interface moves from the edge to the center of the bistrips (Fig. 8A). This non-monotonic
change is because the regions near the free boundaries have less constraints on bending, and thus even thick
bistrips prefer bending to stretching if the interface is close to the free boundary. However, an interface too
close to the free boundary leads to an incomplete bottle neck, yielding higher constraints on bending and

thus smaller h... Unlike the effect of A, and 6 /w, p has a very limited effect on H,q (Fig. 8B, 8D-G) and



Wirans (Fig. 8C-G). Similar to Fig. 6 and 7, as h increases, H,yg decreases (Fig. 8B) and Wypap increases

(Fig. 8C).

We summarize the influence of A, §, and p defined in Eq. (18), as well as thickness h on the shape
morphing of rolled shapes as follows. A larger stretch mismatch A, can trigger the formation of rolled
shapes from thicker bistrips and cause a larger curvature Hy,yg for bistrips with h < h¢, but has little
influence on the width of the transitional bottle neck Wy, When A, is not small. A smoother step change
in the stretch profile, i.e. larger &, reduces the critical threshold hc, and Hyyg, but enlarges Wipaps. p only
changes the position of the bottle neck but not Wirans and Hayg. As the bottle neck approach the free
boundaries, h. increases. For a given stretch profile (4,,, §, and p are fixed), a thicker bistrip tends to bend

less (smaller Hy,yg) and has a wider bottle neck (larger Wipaps).

4. Conclusion

In this paper, we have studied the rolled shape formation from LCE bistrips subjected to discretely
patterned in-plane stretch profiles. We establish an analytical model based on the non-Euclidean plate
theory, which can predict the shape morphing of LCE bistrips with finite thicknesses from flat to rolled
shapes by minimizing the total elastic energy. Our analytical model, FE simulations, and experiments are
in good agreement, which verifies our theory. We find that when the thickness % is very small, the bending
energy Epeng is dominant and Epenq/h scales with h?, whereas the stretching energy Egiretch/h scales
with h*. As & increases and eventually reaches the critical thickness Ay, Egtretch/h becomes dominant and
Eyeng/h reduces to zero. To investigate the influence of the anisotropy of the stretch on the rolled shapes,
we convert the prescribed metric tensors in LCE bistrips with initial director either parallel or perpendicular
to the interface into a unified metric tensor embedded to a bistrip with modified geometry. We then study
the effect of each parameter in this unified metric tensor and the thickness on the critical thickness, average
curvature, and the bottle neck width of the rolled shapes. As a result, as the stretch mismatch A,, increases

or the step of the stretch profile § decreases, the critical thickness h., increases, the average mean curvature



H,yg increases, and the width of the transitional bottle neck wyrans decreases until a saturated value. The
normalized width of the low-temperature strip p only changes the position of the bottle neck and the critical
thickness hcp, but not Wirans and Hayg. Our analysis provides an analytical tool for designing shape
morphing using LCE thin sheets, and can be extended to shape morphing of other isotropic or anisotropic

materials.
Appendix
1. LCE fabrication

Liquid crystal elastomer nanocomposites were prepared as previously reported'’. The diacrylate
mesogen RM82, n-dodecylamine, and 8-amino-1-octanol were mixed in a 1.1:0.5:0.5 molar ratio with 1
wt% Irgacure 651 in a vial and melted to form a mesogenic liquid. The molten mixture was subsequently
infiltrated via capillary action into alignment cells consisting of two glass slides coated with Elvamide
polyimide (DuPont), rubbed with a velvet cloth, and glues together with 50 pm glass spacer beads. Next,
samples were held at 55 °C overnight to catalyze oligomerization of the oligomers and subsequently
polymerized at room temperature under UV light (10 mW cm™). Following polymerization, LCE films

were harvested from the cells using a razor blade.
2. Nanocomposite fabrication

A gold nanoparticle precursor solution was prepared from 200 pL of HAuCl, in acetone (0.12 M),
200 pL of oleylamine in toluene (0.44 M), and Irgacure (0.44 M). The solution was subsequently diluted
with 800 pL toluene and vortexed vigorously, and LCE films cut to the desired dimensions were submersed
in the solution. The films were allowed to absorb the gold-containing solution for several minutes.
Following equilibrium swelling, films were removed from the solution, blotted gently with tissue paper to
remove excess solution, placed on a glass slide, and sandwiched between a photomask. Photomasks were
prepared in Adobe Illustrator and printed on transparency films (Apollo Laser Printer Transparency Film).

Samples were patterned via exposure with 30 mW c¢cm™ 365 nm light (ThorLabs) for 10 s, immersed in



acetone for 60 min to remove unreacted gold salt, and dried under gentle vacuum. Nanocomposite
absorbance was controlled by modulating the light dose via grayscale photomasks that vary from 0% black
(transparent) to 100% black (opaque). To specify the actuation behavior described in this work, LCE
bistrips were created by using a photomask with a 0% black strip and a 100% black strip, yielding materials

with a photothermal (i.e. high temperature) and non-photothermal (i.e. low temperature) strip, respectively.
3. Photoactuation experiments

To evaluate shape morphing of patterned LCE bistrips upon illumination, samples were held
isothermally on a hot plate at 85 °C and illuminated with a 530 nm green LED (200 mW c¢m™). Depending
on the transparency of the photomask, the stretch A due to photothermal heating can be programmed from
0.77 (0% black) to 0.92 (100% black). Shape transformations were recorded using a camera (Nikon 5500)

fitted with a macro lens.

4. Finite element simulations

The LCE sheets were modeled using the following neo-classical free energy density**

¥ =§[Tr(§‘1F§oFT) - 3] +§(] —1)2—pulnj, (A1)

where u is the shear modulus, K is the bulk modulus, F is the deformation gradient and /] = det(F), g isa
temperature-dependent three-dimensional normalized step-length tensor that describes the anisotropy of
LCEs with respect to the isotropic phase in the current configuration*’, and g, denotes g in the reference

configuration in the nematic phase. The normalized step-length tensor g can be expressed as

g=g.[1+(2L-1)n@n|,n=""

g1 [Fnol®

(A2)

where g and g, are eigenvalues of g parallel and perpendicular to the director, respectively, satisfying
Jgidt = 1,Iisa3-by-3 identity matrix, n is a unit vector along the director, and no denotes # in the reference

configuration. The prescribed metric tensor a that maps the reference configuration in the nematic phase to



the current configuration can be expressed as @ = g gy, yielding the prescribed stretch 4 along the director

as the following, according to Eq. (1)

A=ag/ o> (A3)

where gy is the eigenvalue of g, parallel to the director. We fit the stretch-temperature relation to the

experimental data and obtain

120-T
60

A= 0.6\/1 +1.778 ,60°C < T < 120°C. (A4)

The above stretch-temperature relation indicates that nematic LCEs start to deform at 60 °C and
continuously deform until 120 °C, yielding a maximum stretch of 0.6 parallel to the director. Using Eq.
(A4), prescribed stretch patterns were converted into temperature distributions, which are assigned to LCE

sheets as predefined fields in FE simulations.

We used the commercial software Abaqus/Standard for our FE simulations. We implemented the
free energy in Eq. (A1) in Abaqus by writing a user-defined material subroutine (UMAT) (Supplementary
material). The element type is the 3D hybrid quadratic brick with reduced integration (Abaqus type
C3D20RH). A mesh refinement study was performed to ensure that there are at least three elements along
the thickness and that the aspect ratio of a single element is no greater than 5. As a result, approximately 3
x 10* elements are involved in each finite element model. The LCE sheets in all the simulations have free
boundary conditions. Artificial damping was introduced into the static general procedure such that a LCE
sheet can snap to a stable equilibrium state when loss of stability occurs. The damping factor in the
simulations was determined based on the fraction of dissipated energy; it is set as 1 x 107>, a value that can

suppress instabilities without having a significant effect on the solutions.

5. Energy minimization using variational approach



The minimization of elastic energy Eiyt5 in Eq. (6) can be performed by a variational approach.
The total elastic energy Eyota can be expressed as a functional in terms of functions E (v), G (v), integration

constant ¢, and variable v,
Eotal = 1L fi, QIE(),E'(v),E" (v),G(v), G'(v), ¢, v]dv. (A5)

Taking variation of Ey, With respect to E(v), G(v), and ¢, and setting the first variation to be zero give

the following Euler-Lagrange equations

- (22) + () =0 o
- (22) =0 w
2o, (A8)
and boundary conditions at v = 0 and w
(@) =0 w
29 =0, (A10)
22 =0 (A1)

From Eq. (A8), we can express ¢ in terms of E(v),E'(v),E"(v),G(v), and G'(v). Substituting this
expression of ¢ into Egs. (A6-7) and (A9-11) yields a sixth-order ODE system, which can be solved by the

ODE solver (bvp4c) in Matlab.

6. 3D surfaces reconstruction given metric and curvature tensors

A 3D surface with metric tensor @ and curvature tensor b satisfying Gauss and Mainardi-Codazzi

36,38

equations’®~® can be reconstructed using the following method. Let



r(w,v) = (x(w,v),y(w,v),z(u,v)) (Al2)
be a parametrization of a 3D surface S with the following a and b

— E(w,v) F(u,v) _ e(u,v) f(u’v)
a_[F(u,v) Gu'” "~ lfwv) guwv)l (A13)

where u (Upin < U < Upax) and V (Vpin < U < Vpax) are the two surface coordinates, as shown in Fig.
2A (Umin = 0, Umax = L, Vimin = 0,and vy, = w). Every point on the surface S has a local frame formed
by the vectors r,, r, and N, where ( ), and ( ), denote partial derivative of ( ) with respect to u and v,
respectively, and NV is the normal vector of the surface S. The derivatives of the vectors r,, ¥, and N can be
expressed in the basis {r,, r,, N } as*®
Ty =Thry, +TAr, +eN
au = aTu T Ty ’
—rl 2
Ty =Ty + Tiory + fN,
Ty, = [5ory + 41, + gN, (Al14)

N‘u = alr’u + azr‘v,
N,v = ﬂlr,u + ﬁzr,v:

where the coefficient Fl-'j (i,j, k=1, 2) are the Christoffel symbols of .S, which can be computed in terms of

E, F, G and their derivatives,

1 _ GEy+FE,—2FFy 5 _ 2EFy—FEy—EE,
hWw=— "=
2(EG-F?) 2(EG-F?)
GE,—FG EG,—FE
I, =T} =2 —2T=TH=-A2—2=
1 _ —FGy—GGy+2GF, 5 _ EGy+FGy—2FF,
Ly =—— I =,
2(EG-F?) 2(EG-F?)
and
__ fF—eG __ eF—fE __ gF-fG _ fF—gE
@1 = pop @2 = oo B = pep P = e (A16)

We first fix u = Uy, and sety; =1,y, =7r,,y3 = N,y, = 1,,. Eq. (Al14) can be rewritten as



V1 0 1 0 07y,
d |Y2 0 22 g lez Y2
0 0
0 f

alvs B, ||y (A17)
Ya F12 Iyl s
which can be solved numerically under the following initial values
ylluzumin,v=vmin = rluzumin,vzvmin =(0,0,0)
_ _ [ Fo EoGo—F2
Ve umtimnv=vinin = Ty =, = <JE_ e ’0> (A18)

Y3|u=umin,v=vmin = N|u=umin,v=vmin =(0,0,1)
y4|u=uminv'7=”min = rvulu:uminm=vmin - ( ' Eo, 0, 0)
where Eo, Fy, and Gy are the components of the metric tensor & at the point (¢min, Vmin). Then we uniformly
discretize the domain of v with small increments. For a given v; (Vpin < Vi < Vnpax), WE can set x; =

T, X, =74,x3 = N, x4 =1,, and rewrite Eq. (A7) as

X1 0 071y
2
a [*2 0 F11 e Ifill|x (A19)
du | X3 0 0(1 0 0(2 X3 |’
X 2 X
4 0 Tfy f TfllXe
which can be solved numerically under the following initial values
xlluzumin,v=vi = rluzumin,vzvi = ylluzumin,v=vi
X2 lu=uminv=v; = rru|u=umin,v=vi = Valumumin=v, (A20)
X3 |u=umin,v=vi = N|u=umin,v=vi =3 |u=umin,v=vi
x4|u=umin,v=vi = r,vl =2 |u=umin,v=vi

U=Umin,V=Vi

Thus far, we have obtained the parameterization r of surface S based on the metric tensor a and curvature

tensor b.

7. Decomposition of a prescribed metric tensor @

The position vector of a point on a 2D surface with the metric tensor @ (Eq. (1)) in Euclidean 3D

space can be expressed as



p(u,v) = x(we, +y(v)e,, (A21)

where u and v are surface coordinates, e, and e,, are the base vectors in Cartesian coordinate system, and

x(u) and y(v) are the corresponding position components, respectively. Given @ in Eq. (1), we obtain
3]
— =], and Pl Ayp. (A22)

This 2D surface with @ can be formed by the following three deformation steps. The first step is applying
a stretch A, in the v direction, yielding the following position vector p; and corresponding metric tensor

ala

_ _ 1 0
Prwv) = uey + f; 2 (dre, @ = g | (A23)
Setv* = [ Ov A, (t)dt and apply the coordinate transformation from (u, v) to (u, v*), we have
p1(w,v*) =ue, +v'e,. (A24)

The next step is applying a homogeneous stretch A,, in the u direction, yielding the following position

vector p, and corresponding metric tensor @,

= \2
p2(u,v*) = L,ue, +v'e,, a, = [(Au) 0]. (A25)
0 1

We change the coordinates from (u, v*) to (u*, v*) by setting u* = A,,u. Then, p, can be rewritten as
p(u,v)=u'e, +v'e,. (A26)
The third step is applying stretches A;, in the u* direction, yielding the following position vector p* and

corresponding metric tensor a*,

*\2
P (U, v") = X" (W )ey + v'ey, @ = [(Ag) ‘1)] (A27)



ax* L s . . ) . _
ai*. To ensure that applying @,, @,, and @* sequentially yields a surface with metric tensor @,

where 4;, =

p should equal p*. Therefore, x(u) = x*(u*) and y(v) = v*. With Eq. (A22), we have

Ay = Ay (A28)
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Fig. 1. Formation of rolled shapes from LCE bistrips induced by discretely patterned in-plane stretch
profiles. (A) A monodomain LCE thin sheet is equally divided into high- and low-temperature strips. The
initial director is either parallel (left) or perpendicular (right) to the interface between the two strips. (B)
Experimentally, LCE bistrips are fabricated by spatially patterning the concentration of plasmonic gold
nanoparticles; upon illumination, the transparent strip without nanoparticles is at low temperature and the
dark strip with nanoparticles is at high temperature. These bistrips roll into nearly axisymmetric shapes
with the symmetry axes perpendicular to the interface between the high- and low-temperature strips. (C)
The rolled shapes can be captured by the FE simulations. The contours in (C) denote the distributions of

normalized Gaussian curvatures.
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Fig. 2. Determination of rolled shapes. (A) Discretely patterned in-plane stretch profile with a step

distribution in a LCE sheet. (B and C) Dependence of the energy on the thickness in linear (B) and

logarithmic (C) scales for the case with p = 0.5, L = 2w, and initial director n parallel to the u direction.

The dots in black, blue, and red colors represent the total, bending, and stretching elastic energies,

respectively. (D) The distribution of the differences between the components of the actual metric tensor a

and the prescribed metric tensor @ in the u (upper, a,, — @, ) and v (lower, a, — a@,,) directions when

h/w =3 X 107 (blue), 5 X 107° (red), and 7 X 10~° (magenta). (E) Dependence of the maximum of

a, — a, (blue) and a,, — a,, (red) on h/w. (F) Distribution of the normalized components of the curvature

tensor b in the u (upper) and v (lower) directions when h/w = 3 x 107 (blue), 5 x 1076 (red), and 7 X

107° (magenta).
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Fig. 3. Quantitative comparison between the theory and FE simulations. (A-F) The rolled shapes obtained
from the theory (A-C) and FE simulations (D-F) for LCE bistrips with the director parallel to the interface
between the high- and low-temperature regions and of normalized thickness h/w = 0.005 (A and D), 0.015
(B and E), and 0.025 (C and F). (G and H) The profiles of the cross-section along (G) and perpendicular to
(H) the interface between the two strips. The circular dots represent analytical results, whereas the solid
lines represent the results from FE simulations. The blue, red, and black colors denote h/w= 0.005, 0.015,

and 0.025, respectively.
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Fig. 4. Comparison of the rolled shapes obtained from experiments, FE simulations, and theory for LCE

bistrips with different p. (A) Patterns of the prescribed temperature distribution, corresponding to the in-
plane stretch distribution, with p = 0.2 (I1st column), 0.5 (2nd column), 0.6 (3rd column), and 0.8 (4th
column). (B-D) The corresponding 3D shapes obtained from experiments (B), FE simulations (C), and
theory (D). All the square LCE bistrips have a thickness of h/w= 0.005 and initial director n parallel to the

interface between the high- and low-temperature strips.
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Fig. 5. Conversion from a prescribed metric tensor @ in LCE bistrips with initial director either parallel or
perpendicular to the interface into a unified metric tensor @* embedded to a bistrip with modified geometry.
(A) Shape morphing of a bistrip subjected to a (Path 1) is equivalent to that of the bistrip with modified
geometry subjected to @* (Path 2). The rolled shapes predicted by the analytical model following Path 1
and 2 and the FE simulation agree well. The profiles of the cross-section along (B) and perpendicular to (C)

the interface between the high- and low-temperature strips based on Path 1 and 2 match perfectly.
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Fig. 6. The Effect of the stretch mismatch A,, on the rolled shapes when p = 0.5 and 6 /w = 0.02. (A) The
dependence of the normalized critical thickness h../w on A,, (black solid line). The gray region (h/w >
h./w) indicates unbuckled configurations, whereas the white region (h/w < h../w) indicates buckled
configurations. (B and C) The influence of A,, on the normalized average mean curvature wH,yq (B) and
the width of the transitional bottle neck region Wy4ns/W (C) when h/w = 0 (isometric immersion in black),
0.001 (blue), 0.003 (red), and 0.005 (magenta). (D-G) The rolled shapes obtained from the theory for

different A,, when h/w = 0.005.
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on § (black solid line). The gray region (h/w > h../w) indicates unbuckled configurations, whereas the
white region (h/w < h/w) indicates buckled configurations. (B and C) The influence of § on wHyyg (B)
and Wipans/W (C) when h/w = 0 (isometric immersion in black), 0.001 (blue), 0.003 (red), and 0.005

(magenta). (D-G) The rolled shapes obtained from the theory for different § when h/w = 0.005.



—hiw=0

G 1.2 —nw=0001 912
— hiw = 0.003 A A A
0.08; Unbuckled 1 —h/w = 0.005 0.1/D E F G
& 2
s g 2
= 0.06f ° 0.8 < 0.08
s &
0.04} 06— 0.06
Buckled o ' F ¢’
0.02 0.4 0.04
02 04 06 08 02 04 06 08 02 04 06 08

p=03 p=04 p=05 p=0.6 5

Fig. 8. The Effect of p on the rolled shapes when §/w = 0.02 and A, = 0.05. (A) The dependence of
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