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Abstract  

 Formation of desired three-dimensional (3D) shapes from flat thin sheets with programmed non-

uniform deformation profiles is an effective strategy to create functional 3D structures. Liquid crystal 

elastomers (LCEs) are of particular use in programmable shape morphing due to their ability to undergo 

large, reversible, and anisotropic deformation in response to a stimulus. Here we consider a rectangular 

monodomain LCE thin sheet divided into one high- and one low-temperature strip, which we dub a ‘bistrip’. 

Upon activation, a discontinuously patterned, anisotropic in-plane stretch profile is generated, and induces 

buckling of the bistrip into a rolled shape with a transitional bottle neck. Based on the non-Euclidean plate 

theory, we derive an analytical model to quantitatively capture the formation of the rolled shapes from a 

flat bistrip with finite thickness by minimizing the total elastic energy involving both stretching and bending 

energies. Using this analytical model, we identify the critical thickness at which the transition from the 

unbuckled to buckled configuration occurs. We further study the influence of the anisotropy of the stretch 

profile on the rolled shapes by first converting prescribed metric tensors with different anisotropy to a 

unified metric tensor embedded in a bistrip of modified geometry, and then investigating the effect of each 

parameter in this unified metric tensor on the rolled shapes. Our analysis sheds light on designing shape 
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morphing of LCE thin sheets, and provides quantitative predictions on the 3D shapes that programmed LCE 

sheets can form upon activation for various applications. 
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1. Introduction 

 Shape morphing from an initially flat sheet to a desired three-dimensional (3D) shape triggered by 

a stimulus is an effective approach for fabricating complex 3D structures with advanced functionalities. By 

patterning spatially varied stimuli-induced strain, shape morphing has been achieved in various responsive 

materials, such as hydrogels1–4, liquid crystal elastomers (LCEs)5–10, and shape memory polymers11,12. 

These two-dimensional (2D)-to-3D shape transitions have been used in a wide range of applications, 

including biomedical devices13,14, soft actuators and sensors15,16, and mechanical metamaterials17,18. 

 To transition a flat sheet to a desired 3D shape, it is necessary to induce spatially non-uniform 

stresses inside the material upon activation19,20. A through-thickness stress variation can generate a bending 

moment and thus out-of-plane deformation. An in-plane stress variation, on the other hand, can drive out-

of-plane buckling of a flat sheet into a 3D shape. Although both types of stress variations can trigger shape 

transition of a flat sheet to 3D shape, the buckling-induced shape transition relying on in-plane stress 

variations has the following three advantages: (1) it broadens the accessible 3D shapes incorporating both 

Gaussian and mean curvatures; (2) it requires patterning of only a single material layer, which can be easily 

achieved using numerous 2D patterning techniques such as lithography2,10,21–23, direct ink writing3,24,25, and 

laser cutting26; (3) buckling-induced shapes are much more robust to external loads than those induced by 

pure bending, since the energy to deform the former scales with the film thickness ~ℎ, while the energy to 

deform the latter scales as ~ℎ3 7,27,28. 

 Though many systems have been explored for their use in shape morphing, LCEs are particularly 

useful due to the coupling of orientational order of constituent mesogens with polymer conformation5,7,16. 



Upon activation by heating, the orientational order of mesogens reduces, yielding large and anisotropic 

deformation. Recently, we demonstrated a method10 to prescribe various in-plane stretch profiles to a flat 

monodomain LCE sheet by spatially patterning the concentration of plasmonic gold nanoparticles which 

produce heat upon illumination. Under uniform illumination, a non-uniform distribution of gold 

nanoparticles causes a gradient in photothermal heat generation, and therefore non-uniform in-plane stretch, 

yielding out-of-plane buckling of the flat sheet. Compared to spatially programming director 

orientation7,8,24,25,29–32, this method can be widely generalized to most LCE systems with a simple fabrication 

process. The shape morphing of flat LCE sheets with prescribed in-plane stretch profiles can be captured 

by the non-Euclidean plate theory33,34, which, like the Föppl-von Kármán (FvK) plate theory35, takes into 

account both bending and stretching energies. In this theory, strains are measured with respect to a reference 

metric tensor, which is defined by the prescribed in-plane stretch profile and is not necessarily immersible 

in a 3D Euclidean space. In our previous study10, we have linked a prescribed in-plane stretch profile to the 

3D shape for a LCE sheet with an infinitesimal thickness by minimizing the bending energy among all the 

isometric immersions, in which the actual metric tensors fully obey the prescribed metric tensors, leading 

to zero stretching energy. As the thickness increases, the actual metric tensor deviates from the prescribed 

metric tensor as a result of the interplay between the bending and stretching energies. In this paper, we will 

address the thickness effect on the shape morphing of LCE sheets. 

To study this problem, we choose the simple bistrip geometry, where a rectangular monodomain 

LCE sheet is divided into two strips, i.e. the high- and low-temperature strips (Fig. 1A). The high-

temperature strip contains gold nanoparticles (dark strips in Fig. 1B), and generates more photothermal heat 

upon illumination than the low-temperature strip that contains no gold nanoparticles (transparent strips in 

Fig. 1B), leading to a nearly step distribution in temperature (Fig. 1A) and thus a discretely patterned in-

plane stretch profile. As a LCE shrinks along the director and elongates in the perpendicular direction upon 

heating, the induced stretch profile in a bistrip LCE highly depends on its initial director. We find in both 

experiments (Fig. 1B) and finite element (FE) simulations (Fig. 1C) that upon illumination, a bistrip, with 



the initial director 𝐧𝐧 either parallel (left) or perpendicular (right) to the interface between the two strips, can 

roll into a nearly axisymmetric shape, which consists of two nearly cylindrical regions smoothly connected 

via a transitional bottle neck. However, the rolled shape is strongly affected by the anisotropy of the 

prescribed stretch profile. There are extensive studies on the rolled shape formation in isotropically 

deformed gel bistrips21,36,37, but not on anisotropically deformed LCE bistrips, to the best of our knowledge.  

In this paper, we establish an analytical model based on the non-Euclidean plate theory to capture 

the rolled shapes from LCE bistrips with finite thicknesses, and identify the critical thickness at which the 

transition from an unbuckled to buckled configuration occurs. To investigate the influence of the stretch 

anisotropy on the rolled shapes, we convert the prescribed metric tensors in LCE bistrips with initial director 

either parallel or perpendicular to the interface into a unified metric tensor embedded in a bistrip with 

modified geometry. Using this analytical model, we study the effect of each parameter in the unified metric 

tensor on the rolled shapes from bistrips. The quantitative agreement between the analytical model and FE 

simulations validates our analysis. 

2. Modeling shape morphing of LCE bistrips 

 We model a bistrip of length 𝐿𝐿, width 𝑤𝑤, and thickness ℎ (Fig. 1A) using the reduced 2D non-

Euclidean plate theory33,34,36, in which the bistrip is represented by its mid-surface, and the prescribed metric 

tensor 𝒂𝒂� of this mid-surface may not be immersible in a 3D Euclidean space. 𝒂𝒂� of the bistrip is determined 

by a prescribed in-plane stretch profile, 

 
𝒂𝒂� = �𝜆𝜆𝑢𝑢

2 0
0 𝜆𝜆𝑣𝑣2

�, 
(1) 

where 𝑢𝑢  and 𝑣𝑣  are the two surface coordinates of the mid-surface (Fig. 2A), and 𝜆𝜆𝑢𝑢  and 𝜆𝜆𝑣𝑣  are the 

discretely patterned in-plane stretches in the 𝑢𝑢 and 𝑣𝑣 directions, respectively. The two stretches 𝜆𝜆𝑢𝑢 and 𝜆𝜆𝑣𝑣 

are assumed to depend solely on 𝑣𝑣, which can be described by the following sigmoid functions: 



 𝜆𝜆𝑢𝑢 = 𝜆̅𝜆𝑢𝑢 −
Δ𝑢𝑢

1+𝑒𝑒
−𝑣𝑣 𝑤𝑤⁄ −𝜌𝜌

𝛿𝛿 𝑤𝑤⁄
, 𝜆𝜆𝑣𝑣 = 𝜆̅𝜆𝑣𝑣 −

Δ𝑣𝑣

1+𝑒𝑒
−𝑣𝑣 𝑤𝑤⁄ −𝜌𝜌

𝛿𝛿 𝑤𝑤⁄
, (2) 

where 𝜆̅𝜆𝑢𝑢 (𝜆̅𝜆𝑣𝑣) represents the stretch of the low-temperature strip in the 𝑢𝑢 (𝑣𝑣) direction, Δ𝑢𝑢 (Δ𝑣𝑣) represents 

the stretch difference between the high- and low-temperature strips in the 𝑢𝑢 (𝑣𝑣) direction, 𝜌𝜌 represents the 

width of the low-temperature strip normalized by the total width 𝑤𝑤, 𝛿𝛿 denotes the smoothness of the step 

change in the stretch, and 10𝛿𝛿 𝑤𝑤⁄  is defined as the normalized width of the transition region through which 

the stretch reduces by 0.99Δ𝑢𝑢(Δ𝑣𝑣) in the 𝑢𝑢 (𝑣𝑣) direction. A positive Δ𝑢𝑢 (Δ𝑣𝑣) indicates 𝜆𝜆𝑢𝑢|𝑣𝑣<𝜌𝜌𝜌𝜌 > 𝜆𝜆𝑢𝑢|𝑣𝑣>𝜌𝜌𝜌𝜌 

(𝜆𝜆𝑣𝑣|𝑣𝑣<𝜌𝜌𝜌𝜌 > 𝜆𝜆𝑣𝑣|𝑣𝑣>𝜌𝜌𝜌𝜌 ). The anisotropic stretch profiles highly depend on the initial director 𝐧𝐧 of LCE 

bistrips. We find that in our experiments when 𝐧𝐧 ∥ 𝑢𝑢, 𝜆̅𝜆𝑢𝑢 = 0.92 and Δ𝑢𝑢 = 0.1510 (Fig. 1A left; Appendix). 

The stretch in the 𝑣𝑣  direction can be determined by incompressibility 𝜆𝜆𝑣𝑣 = 1 �𝜆𝜆𝑢𝑢⁄ , yielding 𝜆̅𝜆𝑣𝑣 =

1 �𝜆̅𝜆𝑢𝑢⁄ = 1.04 and Δ𝑣𝑣 = 1 �𝜆̅𝜆𝑢𝑢⁄ − 1 �𝜆̅𝜆𝑢𝑢 − Δ𝑢𝑢⁄ = −0.097. When 𝐧𝐧 ∥ 𝑣𝑣, 𝜆̅𝜆𝑣𝑣 = 0.92 and Δ𝑣𝑣 = 0.15 (Fig. 

1A right). Correspondingly, 𝜆̅𝜆𝑢𝑢 = 1.04  and Δ𝑢𝑢 = −0.097  due to incompressibility. The Gaussian 

curvature 𝐾𝐾� corresponding to the prescribed metric tensor 𝒂𝒂� is38 

 −𝐸𝐸�𝐾𝐾� = −Γ�112
′ + Γ�121 Γ�112 + Γ�122 Γ�122 − Γ�112 Γ�222 − Γ�111 Γ�122 , (3) 

where 𝐸𝐸� = 𝜆𝜆𝑢𝑢2 , ( )′ denotes the derivative with respect to v, and Γ�𝛽𝛽𝛽𝛽
𝛼𝛼  (𝛼𝛼,𝛽𝛽, 𝛾𝛾 = 1, 2) are the Christoffel 

symbols of 𝒂𝒂� and equal 

 Γ�111 = 0, Γ�121 = Γ�211 = 𝜆𝜆𝑢𝑢′

𝜆𝜆𝑢𝑢
, Γ�221 = 0, Γ�112 = −𝜆𝜆𝑢𝑢𝜆𝜆𝑢𝑢′

𝜆𝜆𝑣𝑣2
, Γ�122 = Γ�212 = 0,Γ�222 = 𝜆𝜆𝑣𝑣′

𝜆𝜆𝑣𝑣
. (4) 

Substituting Eq. (4) into Eq. (3) yields 

 𝐾𝐾� = 𝜆𝜆𝑢𝑢′ 𝜆𝜆𝑣𝑣′−𝜆𝜆𝑢𝑢′′𝜆𝜆𝑣𝑣
𝜆𝜆𝑢𝑢𝜆𝜆𝑣𝑣3

. (5) 

Based on the non-Euclidean plate theory33,34,36, the elastic energy of the bistrip can be expressed as 

 𝐸𝐸total = 𝐸𝐸stretch + 𝐸𝐸bend, (6) 

where 𝐸𝐸stretch is the stretching energy 



 𝐸𝐸stretch = 𝜇𝜇ℎ
4 ∫ ∫ �𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛾𝛾𝛾𝛾 + 𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛽𝛽𝛽𝛽�(𝑎𝑎 − 𝑎𝑎�)𝛼𝛼𝛼𝛼(𝑎𝑎 − 𝑎𝑎�)𝛾𝛾𝛾𝛾

𝑤𝑤
0 �|𝒂𝒂�|𝑑𝑑𝑑𝑑𝐿𝐿

0 𝑑𝑑𝑑𝑑, (7) 

and 𝐸𝐸bend is the bending energy 

 𝐸𝐸bend = 𝜇𝜇ℎ3

12 ∫ ∫ �𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛾𝛾𝛾𝛾 + 𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛽𝛽𝛽𝛽�𝑏𝑏𝛼𝛼𝛼𝛼𝑏𝑏𝛾𝛾𝛾𝛾
𝑤𝑤
0 �|𝒂𝒂�|𝑑𝑑𝑑𝑑𝐿𝐿

0 𝑑𝑑𝑑𝑑. (8) 

In Eqs. (7) and (8), 𝒂𝒂 is the actual metric tensor and 𝒃𝒃 is the actual curvature tensor of the mid-surface. The 

actual Gaussian curvature 𝐾𝐾 can be expressed in terms of the components of 𝒂𝒂 and their derivatives38. The 

stretching energy in Eq. (7) is associated with changes of distances in the mid-surface from its prescribed 

metric tensor 𝒂𝒂�, and the bending energy in Eq. (8) is associated with changes of curvatures from the flat 

configuration. Note that 𝐸𝐸stretch~ℎ and 𝐸𝐸bend~ℎ3. When the bistrip is extremely thin (ℎ → 0), it prefers 

obeying its prescribed metric tensor 𝒂𝒂� such that 𝐸𝐸stretch → 0, and the total energy goes with 𝐸𝐸bend. We call 

this condition as the thin limit or isometric immersion. When the bistrip is extremely thick (ℎ√𝐾𝐾 ≫ 1), it 

remains flat with only in-plane stretching such that 𝐸𝐸bend = 0, and the total energy goes with 𝐸𝐸stretch. We 

call this condition as the thick limit. Within these two limits, the 3D shape of the bistrip is determined by 

the interplay between 𝐸𝐸stretch and 𝐸𝐸bend.  

 Next, we try to minimize the elastic energy 𝐸𝐸total in Eq. (6) with the prescribed metric tensor 𝒂𝒂� in 

Eq. (1). Given that the bistrips consistently roll into axisymmetric shapes in the experiments (Fig. 1), we 

seek solutions under the assumption of surface of revolution. Therefore, the actual metric tensor 𝒂𝒂 and 

curvature tensor 𝒃𝒃  are assumed to depend solely on the axial coordinate 𝑣𝑣 . With appropriate 

parameterization, 𝒂𝒂 and 𝒃𝒃 can be diagonal, i.e. 

 𝒂𝒂 = �𝐸𝐸(𝑣𝑣) 0
0 𝐺𝐺(𝑣𝑣)� ,𝒃𝒃 = �𝑒𝑒

(𝑣𝑣) 0
0 𝑔𝑔(𝑣𝑣)�. 

(9) 

Based on the Gauss formula and Mainardi-Codazzi equations36,38, the terms 𝑒𝑒(𝑣𝑣) and 𝑔𝑔(𝑣𝑣) in 𝒃𝒃 can be 

expressed in terms of 𝐸𝐸(𝑣𝑣) and 𝐺𝐺(𝑣𝑣): 

 𝑒𝑒2 = 𝑐𝑐𝑐𝑐 − 𝐸𝐸′2

4𝐺𝐺
, (10) 



 
𝑔𝑔2 = �𝐸𝐸′2𝐺𝐺+𝐸𝐸𝐸𝐸′𝐺𝐺′−2𝐸𝐸𝐸𝐸′′𝐺𝐺�

2

4𝐸𝐸2𝐺𝐺(4𝑐𝑐𝑐𝑐𝑐𝑐−𝐸𝐸′2) , 
(11) 

where 𝑐𝑐 is an integration constant. To determine the shape of the mid-surface, we need to find 𝐸𝐸(𝑣𝑣), 𝐺𝐺(𝑣𝑣), 

and 𝑐𝑐 such that 𝐸𝐸total in Eq. (6) is minimized. This minimization can be performed by either numerical 

optimization or a variational approach (Appendix). Since the two methods are equivalent, here we only 

show the numerical optimization. 

The process of the numerical optimization is as follows. First, we uniformly discretized the domain 

of 𝑣𝑣 into 𝑚𝑚 points with an increment 𝑤𝑤 (𝑚𝑚− 1)⁄ . Then 𝐸𝐸(𝑣𝑣), 𝐺𝐺(𝑣𝑣), 𝑒𝑒(𝑣𝑣), and 𝑔𝑔(𝑣𝑣) were also discretized. 

We used 𝐸𝐸𝑖𝑖, 𝐺𝐺𝑖𝑖, 𝑒𝑒𝑖𝑖, and 𝑔𝑔𝑖𝑖 (𝑖𝑖 = 1, … ,𝑚𝑚) to represent their values at point 𝑣𝑣𝑖𝑖 (0 ≤ 𝑣𝑣𝑖𝑖 ≤ 𝑤𝑤), respectively. 

Second, we expressed 𝑒𝑒𝑖𝑖, and 𝑔𝑔𝑖𝑖 in terms of 𝐸𝐸𝑖𝑖, 𝐺𝐺𝑖𝑖, and 𝑐𝑐 using Eqs (10) and (11), in which the derivative 

terms are approximated by the finite difference. Finally, we used unconstrained nonlinear programming 

solver (fminunc) in Matlab to solve the following minimization problem 

 min
𝐸𝐸𝑖𝑖,𝐺𝐺𝑖𝑖,𝑐𝑐 

𝐸𝐸total , (𝑖𝑖 = 1, … ,𝑚𝑚), (12) 

where 𝐸𝐸𝑖𝑖, 𝐺𝐺𝑖𝑖, and 𝑐𝑐 are to be determined. This minimization problem was solved iteratively for various 

thicknesses. We started from the case with an extremely small thickness, i.e. ℎ 𝑤𝑤⁄ = 10−6, and used the 

solution of isometric immersion as the initial try, in which 𝒂𝒂 = 𝒂𝒂� and 𝒃𝒃 is determined by minimizing 𝐸𝐸bend. 

Then we gradually increased the thickness and used the solution of the previous step as an initial try of the 

current step. This iteration stopped as the bending energy becomes negligible (𝐸𝐸bend 𝐸𝐸total⁄ ≤ 0.001). 

 To demonstrate the process of minimizing 𝐸𝐸total, we take a bistrip with 𝐿𝐿 𝑤𝑤⁄ = 2.0 and the initial 

director 𝐧𝐧 parallel to the interface between high- and low-temperature strips as an example. In Figs. 2B and 

C, we can see how 𝐸𝐸total ℎ⁄  (black dots), 𝐸𝐸bend ℎ⁄  (blue dots), and 𝐸𝐸stretch ℎ⁄  (red dots) evolve with ℎ 𝑤𝑤⁄ . 

When ℎ 𝑤𝑤⁄  is very small, the majority of 𝐸𝐸total is 𝐸𝐸bend. As ℎ 𝑤𝑤⁄  increases,  𝐸𝐸bend first increases and then 

reduces to nearly zero, whereas 𝐸𝐸stretch increases monotonically and becomes dominant. We define the 

thickness at which 𝐸𝐸bend 𝐸𝐸total⁄  decreases to below 0.001 as the critical thickness ℎcr. When ℎ 𝑤𝑤⁄  is below 



ℎcr 𝑤𝑤⁄ , the bistrip is considered in a buckled configuration. When ℎ 𝑤𝑤⁄  is above ℎcr 𝑤𝑤⁄ , 𝐸𝐸stretch 

approaches 𝐸𝐸total, while 𝐸𝐸bend goes to zero, indicating an unbuckled configuration.  

Besides, we found the following scaling relations when ℎ 𝑤𝑤⁄  is very small (Fig. 2C), 

 𝐸𝐸stretch ℎ⁄ ~ℎ4,𝐸𝐸bend ℎ⁄ ~ℎ2. (13) 

As shown in Eq. (7), 𝐸𝐸stretch ℎ⁄  is proportional to the quadratic of the differences between the components 

of 𝒂𝒂 and 𝒂𝒂�. We plot the distributions of the metric differences 𝒂𝒂 − 𝒂𝒂� in the 𝑢𝑢 (Fig. 2D upper) and 𝑣𝑣 (Fig. 

2D lower) directions for bistrips with very small ℎ 𝑤𝑤⁄ , and find that 𝒂𝒂 = 𝒂𝒂� except a transition region, and 

the length of the transition region is unaffected by ℎ 𝑤𝑤⁄ . The maximum magnitudes of the metric differences 

in the 𝑢𝑢 and 𝑣𝑣 directions are found to scale with (ℎ 𝑤𝑤⁄ )2 when ℎ 𝑤𝑤⁄  is very small (Fig. 2E). Therefore, the 

quadratic increase of the metric differences with ℎ 𝑤𝑤⁄  in a transition region results in the fourth power 

scaling relation between 𝐸𝐸stretch ℎ⁄  and ℎ. 𝐸𝐸bend ℎ⁄ , on the other hand, not only scales quadratically with 

the curvature tensor 𝒃𝒃, but also scales with ℎ2, as shown in Eq. (8). By plotting the distributions of 𝒃𝒃 in the 

𝑢𝑢 (Fig. 2F upper) and 𝑣𝑣 (Fig. 2F lower) directions for bistrips with very small ℎ 𝑤𝑤⁄ , we find that 𝒃𝒃 is 

independent of ℎ 𝑤𝑤⁄ . Thus, 𝐸𝐸bend ℎ⁄  and ℎ show a quadratic power-law relation. 

 Once 𝒂𝒂  and 𝒃𝒃  are obtained by minimizing 𝐸𝐸total , the shape of the bistrip can be uniquely 

determined (Appendix). In Fig. 3, we plot the 3D shapes obtained from our analytical model (Fig. 3A-C, 

Appendix), and compare them with the ones obtained from the FE simulations (Fig. 3D-F, Appendix) for 

ℎ 𝑤𝑤⁄  = 0.005 (A and D), 0.015 (B and E), and 0.025 (C and F). Both the theory and the FE simulations 

show that the bistrips roll around an axis perpendicular to the interface between the high- and low-

temperature strips. The rolled shape is composed of two nearly cylindrical regions connected by a 

transitional bottle neck in which the Gaussian curvature alters from positive to negative. We define the 

width of this transitional bottle neck region 𝑤𝑤trans as the distance between the maximum and the minimum 

Gaussian curvatures (Fig. 3A). Away from the transitional bottle neck region, 𝒂𝒂 obeys 𝒂𝒂�, and the Gaussian 

curvature is zero due to the homogeneous prescribed stretch. Thus, the stretching energy is mainly 



concentrated within the bottle neck and favors a smaller 𝑤𝑤trans, whereas the bending energy is distributed 

throughout the entire sheet and favors a smaller curvature. Both 𝑤𝑤trans and the curvature of the rolled shape 

are determined by the competition between the stretching within the bottle neck and the bending across the 

entire sheet. As the thickness of the bistrip increases, 𝒂𝒂 deviates more from 𝒂𝒂�. Accordingly, the portion of 

the stretching energy increases and the portion of bending energy decreases, yielding an increase in 𝑤𝑤trans 

and decrease in curvature (Fig. 3A-F). In Fig. 3G and H, we plot the profiles of the cross-section along (G) 

and perpendicular (H) to the interface between the high- and low-temperature strips, and show that the 

theory (circular dots) and the FE simulations (solid lines) are in quantitative agreement, which validates 

our theory. The slight deviation at the edges results from the boundary effect that undermines the 

axisymmetric assumption. 

To further validate our analytical model, we study the rolled shape formation from bistrips with 

different normalized widths of the low-temperature strip 𝜌𝜌 ranging from 0.2 to 0.8 (Fig. 4A). All the bistrips 

have 𝐿𝐿 𝑤𝑤⁄ = 1.0, ℎ 𝑤𝑤⁄ = 0.005, and initial director parallel to the interface between the high- and low-

temperature strips. Fig. 4B-D show the deformed shapes of the bistrips obtained from experiments (Fig. 

4B), FE simulations (Fig. 4C), and theory (Fig. 4D), from which we can see that the bistrips roll around an 

axis perpendicular to the interface and form a transitional bottle neck at the interface, regardless of 𝜌𝜌. The 

bottle neck moves along the rolling axis while maintains its width 𝑤𝑤trans as 𝜌𝜌 increases. The FE simulations 

can quantitatively capture the rolled shapes observed in the experiments. The theory can provide good 

predictions on the rolled shapes close to the bottle neck. Near the edges of the bistrips, the shapes predicted 

by the theory deviate from those obtained in the FE simulations, since the axisymmetric assumption in the 

theory no longer holds there. 

3. Influence of stretch anisotropy on the formation of rolls from LCE bistrips 

 We learn from Fig. 1 that a bistrip with the initial director either parallel or perpendicular to the 

interface between the high- and low-temperature strips can roll into approximately axisymmetric shapes 

upon activation. However, the rolled shapes for the parallel and perpendicular cases are different, indicating 



that the shape morphing depends on the anisotropy of the prescribed in-plane stretch. In this section, we 

study the influence of the stretch anisotropy on the rolled shapes. We first show that a bistrip with a 

prescribed metric tensor of different anisotropy, corresponding to initial director either parallel or 

perpendicular to the interface, can be converted to a bistrip of modified geometry with a unified metric 

tensor. Then we investigate how each parameter in this unified metric tensor influences the formation of 

rolled shapes from LCE bistrips. 

 Suppose we have a bistrip of length 𝐿𝐿, width 𝑤𝑤, thickness ℎ, and the metric tensor 𝒂𝒂� in Eq. (1) is 

applied onto this bistrip (Fig. 5A). Given that 𝒂𝒂� is diagonal, it can be divided into the parts without stretch 

mismatch 𝒂𝒂�1, 𝒂𝒂�2, and the part with stretch mismatch and thus generating in-plane stresses, 𝒂𝒂�∗ (Appendix), 

where 

 
𝒂𝒂�1 = �1 0

0 𝜆𝜆𝑣𝑣2
� ,𝒂𝒂�2 = ��𝜆̅𝜆𝑢𝑢�

2 0
0 1

� ,𝒂𝒂�∗ = �(𝜆𝜆𝑢𝑢
∗ )2 0
0 1

�, 
(14) 

corresponding to a stress-free deformation in the 𝑣𝑣 direction, and a homogeneous and an inhomogeneous 

deformation in the 𝑢𝑢 direction, respectively, and 

 𝜆𝜆𝑢𝑢∗ = 𝜆𝜆𝑢𝑢 𝜆̅𝜆𝑢𝑢⁄ . (15) 

Please note that this decomposition of 𝒂𝒂� into 𝒂𝒂�1, 𝒂𝒂�2, and 𝒂𝒂�∗ holds only if 𝒂𝒂� is diagonal, as shown in Eq. 

(1). Since shape morphing of LCE bistrips is elastic and conservative, the obtained shape should be 

independent of loading paths. Therefore, applying 𝒂𝒂�1, 𝒂𝒂�2, and 𝒂𝒂�∗ one by one (Path 2 in Fig. 5A) should 

result in the same 3D shape as applying 𝒂𝒂� once (Path 1 in Fig. 5A). After 𝒂𝒂�1 is applied, the bistrip is 

stretched along the 𝑣𝑣 direction by 𝜆𝜆𝑣𝑣. As a consequence, the current width of the bistrip 𝑤𝑤∗ becomes 

 𝑤𝑤∗ = ∫ 𝜆𝜆𝑣𝑣(𝑣𝑣)d𝑣𝑣𝑤𝑤
0 , (16) 

and the current surface coordinate 𝑣𝑣∗ can be expressed as 

 𝑣𝑣∗ = ∫ 𝜆𝜆𝑣𝑣(𝜏𝜏)d𝜏𝜏𝑣𝑣
0 . (17) 



After 𝒂𝒂�2 is applied, the bistrip is stretched homogeneously along the 𝑢𝑢 direction by 𝜆̅𝜆𝑢𝑢, yielding a new 

length 𝐿𝐿∗ = 𝜆̅𝜆𝑢𝑢𝐿𝐿 and a new surface coordinate 𝑢𝑢∗ = 𝜆̅𝜆𝑢𝑢𝑢𝑢. By far, the bistrip remains unbuckled, since no 

variation in the in-plane stress is generated. We further apply the metric tensor 𝒂𝒂�∗ onto the bistrip with the 

new width 𝑤𝑤∗ and length 𝐿𝐿∗. Note that 𝒂𝒂�∗ only involves stretches 𝜆𝜆𝑢𝑢∗  in the 𝑢𝑢∗ direction, which can be 

expressed with respect to 𝑣𝑣∗ in the following unified form 

 𝜆𝜆𝑢𝑢∗ (𝑣𝑣∗) = 1 − Δ𝑢𝑢∗

1+𝑒𝑒
−𝑣𝑣
∗ 𝑤𝑤∗⁄ −𝜌𝜌∗
𝛿𝛿∗ 𝑤𝑤∗⁄

, (18) 

where Δ𝑢𝑢∗ = Δ𝑢𝑢 𝜆̅𝜆𝑢𝑢⁄ , and 𝜌𝜌∗ and 𝛿𝛿∗ can be obtained by finding the least-square fitting of Eq. (18) to a set of 

pairs (𝑣𝑣∗,𝜆𝜆𝑢𝑢∗ ) given by combining Eqs. (15) and (17). By minimizing the total elastic energy, the rolled 

shape for the bistrip with 𝒂𝒂�∗ and modified geometry can be determined. 

 To confirm that the rolled shapes following Path 1 and 2 (Fig. 5A) are identical, we consider a 

bistrip of thickness ℎ = 0.005𝑤𝑤 and length 𝐿𝐿 = 2𝑤𝑤, with an equal width of the high- and low-temperature 

strips and the initial director perpendicular to the interface between the two strips. Upon activation, the 

bistrip undergoes shrinkage in the 𝑣𝑣 direction by 𝜆𝜆𝑣𝑣, which can be quantified by Eq. (2) with 𝜆̅𝜆𝑣𝑣 = 0.92, 

Δ𝑣𝑣 = 0.15, 𝛿𝛿 𝑤𝑤⁄ = 0.02, and 𝜌𝜌 = 0.5. Due to the incompressibility, the bistrip undergoes expansion in the 

𝑢𝑢 direction by 𝜆𝜆𝑢𝑢 = 1 �𝜆𝜆𝑣𝑣⁄ , yielding 𝜆̅𝜆𝑢𝑢 = 1.04 and Δ𝑢𝑢 = −0.097. Given the in-plane stretch profiles, the 

prescribed metric tensor 𝒂𝒂� is determined, and the rolled shape can be then obtained using the analytical 

model (Path 1 in Fig. 5A). Following Path 2, the bistrip is first shrunk in the 𝑣𝑣 direction by 𝜆𝜆𝑣𝑣 due to 𝒂𝒂�1, 

and then expanded in the 𝑢𝑢 direction by 𝜆̅𝜆𝑢𝑢 due to 𝒂𝒂�2, resulting in a flat stress-free bistrip of a modified 

width 𝑤𝑤∗ = 0.845𝑤𝑤 and length 𝐿𝐿∗ = 2.085𝑤𝑤. Finally, 𝒂𝒂�∗ involving stretch 𝜆𝜆𝑢𝑢∗  with Δ𝑢𝑢∗ = −0.093, 𝜌𝜌∗ =

0.544 and 𝛿𝛿∗ 𝑤𝑤⁄ = 0.0168 is applied to the new bistrip, yielding a rolled shape that can be captured by the 

analytical model. In Fig. 5, we plot the 3D shapes predicted by the analytical model following Path 1 and 

2 and the FE simulation, and compare their profiles of the cross-section along (B) and perpendicular to (C) 

the interface between the two strips. The rolled shapes from Path 1 and 2 match perfectly, indicating that 

the shape morphing following Path 1 and 2 is equivalent. The quantitative agreement between the 



theoretical predictions (circular dots) and the FE simulation results (solid lines) validates our theory (Fig. 

5B and 5C). 

 Having converted a prescribed metric tensor in LCE bistrips with initial director either parallel or 

perpendicular to the interface into a unified metric tensor, we will next investigate the influence of each 

parameter in this unified metric tensor on the rolled shape formation from bistrips with a finite thickness. 

Note that bistrips with an infinitely small thickness (ℎ → 0) adopt the isometric immersion of 𝒂𝒂�∗  that 

minimizes the bending energy. Using Eq. (5), we can obtain the Gaussian curvature, 

 𝐾𝐾∗ = −𝜆𝜆𝑢𝑢∗′′

𝜆𝜆𝑢𝑢∗
. (19) 

Then the width of the transitional bottle neck region 𝑤𝑤trans∗  can be obtained by 

 𝑤𝑤trans∗

𝑤𝑤∗ = 𝑣𝑣∗

𝑤𝑤∗�𝐾𝐾min
∗ − 𝑣𝑣∗

𝑤𝑤∗�𝐾𝐾max
∗

≈ 2.634 𝛿𝛿∗

𝑤𝑤∗, 
(20) 

where 𝑣𝑣
∗

𝑤𝑤∗�𝐾𝐾max
∗

 and 𝑣𝑣
∗

𝑤𝑤∗�𝐾𝐾min
∗  are the normalized 𝑣𝑣∗ that maximizes and minimizes 𝐾𝐾∗, respectively, and can 

be computed by solving 𝐾𝐾∗′ = 0. From Eq. (20) we can see that 𝑤𝑤trans∗  depends only on 𝛿𝛿∗/𝑤𝑤∗ for bistrips 

with an infinitely small thickness. Next, we will show that as the thickness becomes finite, more parameters 

play roles in influencing 𝑤𝑤trans∗ . For convenience, we will remove all the “*” in Eq. (18). 

 We first investigate the effect of the stretch mismatch Δ𝑢𝑢 between the high- and low-temperature 

strips on the rolled shapes, as shown in Fig. 6. We fix 𝜌𝜌 = 0.5 and 𝛿𝛿 𝑤𝑤⁄ = 0.02, while changing Δ𝑢𝑢 from 

0.002 to 0.1. As Δ𝑢𝑢 increases, the critical thickness ℎcr 𝑤𝑤⁄ , which is defined as the thickness at which 

𝐸𝐸bend 𝐸𝐸total⁄ = 0.001, also increases (Fig. 6A), indicating that a higher stretch mismatch can trigger 

buckling of a thicker bistrip into a rolled shape. When ℎ = 0 (black lines in Fig. 6B and 6C), the isometric 

immersion containing zero stretching energy is adopted. An increase in Δ𝑢𝑢 leads to more bending energy 

and thus larger average mean curvature 𝐻𝐻avg over the entire width (black line in Fig. 6B). The width of the 

transitional bottle neck 𝑤𝑤trans is unaffected by Δ𝑢𝑢 and equals 2.634𝛿𝛿 𝑤𝑤⁄ = 0.0527 (Eq. (20)) (black line 

in Fig. 6C). As ℎ increases, the actual metric deviates from the prescribed metric within the bottle neck, 



yielding an increase in the portion of stretching energy and a decrease in the portion of bending energy. 

Correspondingly, 𝑤𝑤trans increases (Fig. 6C) and 𝐻𝐻avg decreases (Fig. 6B) for an increasing ℎ and a fixed 

Δ𝑢𝑢. Furthermore, a bistrip with finite ℎ bends more (larger 𝐻𝐻avg) for a larger Δ𝑢𝑢 (Fig. 6B and 6D-G). Its 

transitional bottle neck region occupies almost the entire width (𝑤𝑤trans → 𝑤𝑤) when Δ𝑢𝑢 is infinitely small, 

and quickly shrinks and becomes saturated as Δ𝑢𝑢 increases (Fig. 6C-G). 

 We then study how the smoothness of the step change in the stretch profile 𝛿𝛿 influences the rolled 

shapes. In Fig. 7, we fix 𝜌𝜌 = 0.5 and Δ𝑢𝑢 = 0.05, while changing 𝛿𝛿 𝑤𝑤⁄  from 0.01 to 0.06. As 𝛿𝛿 𝑤𝑤⁄  increases, 

i.e. the step change in the stretch profile becomes smoother, the critical thickness ℎcr 𝑤𝑤⁄  decreases (Fig. 

7A). The bistrip adopting an isometric immersion (ℎ = 0) bends less (smaller 𝐻𝐻avg) for a smoother stretch 

profile (larger 𝛿𝛿 𝑤𝑤⁄ ) (black line in Fig. 7B). Its 𝑤𝑤trans 𝑤𝑤⁄  linearly increases with 𝛿𝛿 𝑤𝑤⁄  at a rate of 2.634 (Eq. 

(20)) (black line in Fig. 7C). For bistrips with non-zero ℎ, their 𝐻𝐻avg decreases (Fig. 7B and 7D-G) and 

𝑤𝑤trans increase (Fig. 7C-G), with an increasing 𝛿𝛿. The 𝐻𝐻avg-𝛿𝛿 and 𝑤𝑤trans-𝛿𝛿 relations shift downward (Fig. 

7B) and upward (Fig. 7C), respectively, as ℎ increases due to the same reason as discussed in Fig. 6B and 

C.  

Furthermore, we study how the normalized width of the low-temperature strip 𝜌𝜌 influences the 

rolled shapes (Fig. 8). We fix 𝛿𝛿 𝑤𝑤⁄ = 0.02  and Δ𝑢𝑢 = 0.05 , while changing 𝜌𝜌  from 0.2 to 0.8. As 𝜌𝜌 

increases, the interface between the high- and low-temperature strips moves along the width direction. 

Correspondingly, the critical thickness ℎcr 𝑤𝑤⁄  changes non-monotonically: it first increases and then 

decreases as the interface moves from the edge to the center of the bistrips (Fig. 8A). This non-monotonic 

change is because the regions near the free boundaries have less constraints on bending, and thus even thick 

bistrips prefer bending to stretching if the interface is close to the free boundary. However, an interface too 

close to the free boundary leads to an incomplete bottle neck, yielding higher constraints on bending and 

thus smaller ℎcr. Unlike the effect of Δ𝑢𝑢 and 𝛿𝛿 𝑤𝑤⁄ , 𝜌𝜌 has a very limited effect on 𝐻𝐻avg (Fig. 8B, 8D-G) and 



𝑤𝑤trans (Fig. 8C-G). Similar to Fig. 6 and 7, as ℎ increases, 𝐻𝐻avg decreases (Fig. 8B) and 𝑤𝑤trans increases 

(Fig. 8C). 

 We summarize the influence of Δ𝑢𝑢, 𝛿𝛿, and 𝜌𝜌 defined in Eq. (18), as well as thickness ℎ on the shape 

morphing of rolled shapes as follows. A larger stretch mismatch Δ𝑢𝑢 can trigger the formation of rolled 

shapes from thicker bistrips and cause a larger curvature 𝐻𝐻avg  for bistrips with ℎ < ℎcr , but has little 

influence on the width of the transitional bottle neck 𝑤𝑤trans when Δ𝑢𝑢 is not small. A smoother step change 

in the stretch profile, i.e. larger 𝛿𝛿, reduces the critical threshold ℎcr and 𝐻𝐻avg, but enlarges 𝑤𝑤trans. 𝜌𝜌 only 

changes the position of the bottle neck but not 𝑤𝑤trans and 𝐻𝐻avg . As the bottle neck approach the free 

boundaries, ℎcr increases. For a given stretch profile (Δ𝑢𝑢, 𝛿𝛿, and 𝜌𝜌 are fixed), a thicker bistrip tends to bend 

less (smaller 𝐻𝐻avg) and has a wider bottle neck (larger 𝑤𝑤trans). 

4. Conclusion 

 In this paper, we have studied the rolled shape formation from LCE bistrips subjected to discretely 

patterned in-plane stretch profiles. We establish an analytical model based on the non-Euclidean plate 

theory, which can predict the shape morphing of LCE bistrips with finite thicknesses from flat to rolled 

shapes by minimizing the total elastic energy. Our analytical model, FE simulations, and experiments are 

in good agreement, which verifies our theory. We find that when the thickness h is very small, the bending 

energy 𝐸𝐸bend  is dominant and 𝐸𝐸bend ℎ⁄  scales with ℎ2, whereas the stretching energy 𝐸𝐸stretch ℎ⁄  scales 

with ℎ4. As h increases and eventually reaches the critical thickness ℎcr, 𝐸𝐸stretch ℎ⁄  becomes dominant and 

𝐸𝐸bend ℎ⁄  reduces to zero. To investigate the influence of the anisotropy of the stretch on the rolled shapes, 

we convert the prescribed metric tensors in LCE bistrips with initial director either parallel or perpendicular 

to the interface into a unified metric tensor embedded to a bistrip with modified geometry. We then study 

the effect of each parameter in this unified metric tensor and the thickness on the critical thickness, average 

curvature, and the bottle neck width of the rolled shapes. As a result, as the stretch mismatch Δ𝑢𝑢 increases 

or the step of the stretch profile 𝛿𝛿 decreases, the critical thickness ℎcr increases, the average mean curvature 



𝐻𝐻avg increases, and the width of the transitional bottle neck 𝑤𝑤trans decreases until a saturated value. The 

normalized width of the low-temperature strip 𝜌𝜌 only changes the position of the bottle neck and the critical 

thickness ℎcr , but not 𝑤𝑤trans  and 𝐻𝐻avg . Our analysis provides an analytical tool for designing shape 

morphing using LCE thin sheets, and can be extended to shape morphing of other isotropic or anisotropic 

materials. 

Appendix 

1. LCE fabrication 

Liquid crystal elastomer nanocomposites were prepared as previously reported10. The diacrylate 

mesogen RM82, n-dodecylamine, and 8-amino-1-octanol were mixed in a 1.1:0.5:0.5 molar ratio with 1 

wt% Irgacure 651 in a vial and melted to form a mesogenic liquid. The molten mixture was subsequently 

infiltrated via capillary action into alignment cells consisting of two glass slides coated with Elvamide 

polyimide (DuPont), rubbed with a velvet cloth, and glues together with 50 µm glass spacer beads. Next, 

samples were held at 55 °C overnight to catalyze oligomerization of the oligomers and subsequently 

polymerized at room temperature under UV light (10 mW cm-2). Following polymerization, LCE films 

were harvested from the cells using a razor blade. 

2. Nanocomposite fabrication 

A gold nanoparticle precursor solution was prepared from 200 µL of HAuCl4 in acetone (0.12 M), 

200 µL of oleylamine in toluene (0.44 M), and Irgacure (0.44 M). The solution was subsequently diluted 

with 800 µL toluene and vortexed vigorously, and LCE films cut to the desired dimensions were submersed 

in the solution. The films were allowed to absorb the gold-containing solution for several minutes. 

Following equilibrium swelling, films were removed from the solution, blotted gently with tissue paper to 

remove excess solution, placed on a glass slide, and sandwiched between a photomask. Photomasks were 

prepared in Adobe Illustrator and printed on transparency films (Apollo Laser Printer Transparency Film). 

Samples were patterned via exposure with 30 mW cm-2 365 nm light (ThorLabs) for 10 s, immersed in 



acetone for 60 min to remove unreacted gold salt, and dried under gentle vacuum. Nanocomposite 

absorbance was controlled by modulating the light dose via grayscale photomasks that vary from 0% black 

(transparent) to 100% black (opaque). To specify the actuation behavior described in this work, LCE 

bistrips were created by using a photomask with a 0% black strip and a 100% black strip, yielding materials 

with a photothermal (i.e. high temperature) and non-photothermal (i.e. low temperature) strip, respectively. 

3. Photoactuation experiments 

To evaluate shape morphing of patterned LCE bistrips upon illumination, samples were held 

isothermally on a hot plate at 85 °C and illuminated with a 530 nm green LED (200 mW cm-2). Depending 

on the transparency of the photomask, the stretch λ due to photothermal heating can be programmed from 

0.77 (0% black) to 0.92 (100% black). Shape transformations were recorded using a camera (Nikon 5500) 

fitted with a macro lens. 

4. Finite element simulations 

 The LCE sheets were modeled using the following neo-classical free energy density39,40 

𝜓𝜓 = 𝜇𝜇
2
�Tr�𝒈𝒈�−1𝐅𝐅𝒈𝒈�0𝐅𝐅T� − 3�+ 𝐾𝐾

2
(𝐽𝐽 − 1)2 − 𝜇𝜇 ln 𝐽𝐽,                                 (A1) 

where µ is the shear modulus, K is the bulk modulus, F is the deformation gradient and 𝐽𝐽 = det(𝐅𝐅), 𝒈𝒈� is a 

temperature-dependent three-dimensional normalized step-length tensor that describes the anisotropy of 

LCEs with respect to the isotropic phase in the current configuration40, and 𝒈𝒈�0 denotes 𝒈𝒈� in the reference 

configuration in the nematic phase. The normalized step-length tensor 𝒈𝒈� can be expressed as 

𝒈𝒈� = 𝑔𝑔�⊥ �𝐈𝐈 + �𝑔𝑔�∥
𝑔𝑔�⊥
− 1�𝒏𝒏⨂𝒏𝒏� ,𝒏𝒏 = 𝐅𝐅𝒏𝒏0

|𝐅𝐅𝒏𝒏0|,                                             (A2) 

where 𝑔𝑔�∥ and 𝑔𝑔�⊥ are eigenvalues of 𝒈𝒈� parallel and perpendicular to the director, respectively, satisfying 

𝑔𝑔�∥𝑔𝑔�⊥2 = 1, I is a 3-by-3 identity matrix, n is a unit vector along the director, and n0 denotes n in the reference 

configuration. The prescribed metric tensor 𝒂𝒂� that maps the reference configuration in the nematic phase to 



the current configuration can be expressed as 𝒂𝒂� = 𝒈𝒈�𝒈𝒈�0−1, yielding the prescribed stretch λ along the director 

as the following, according to Eq. (1) 

𝜆𝜆 = �𝑔𝑔�∥ 𝑔𝑔�0∥⁄ ,                                                                (A3) 

where 𝑔𝑔�0∥ is the eigenvalue of 𝒈𝒈�0 parallel to the director. We fit the stretch-temperature relation to the 

experimental data and obtain 

𝜆𝜆 = 0.6�1 + 1.778 120−𝑇𝑇
60

,60℃ ≤ 𝑇𝑇 ≤ 120℃.                                 (A4) 

The above stretch-temperature relation indicates that nematic LCEs start to deform at 60 ℃ and 

continuously deform until 120 ℃, yielding a maximum stretch of 0.6 parallel to the director. Using Eq. 

(A4), prescribed stretch patterns were converted into temperature distributions, which are assigned to LCE 

sheets as predefined fields in FE simulations.  

 We used the commercial software Abaqus/Standard for our FE simulations. We implemented the 

free energy in Eq. (A1) in Abaqus by writing a user-defined material subroutine (UMAT) (Supplementary 

material). The element type is the 3D hybrid quadratic brick with reduced integration (Abaqus type 

C3D20RH). A mesh refinement study was performed to ensure that there are at least three elements along 

the thickness and that the aspect ratio of a single element is no greater than 5. As a result, approximately 3 

× 104 elements are involved in each finite element model. The LCE sheets in all the simulations have free 

boundary conditions. Artificial damping was introduced into the static general procedure such that a LCE 

sheet can snap to a stable equilibrium state when loss of stability occurs. The damping factor in the 

simulations was determined based on the fraction of dissipated energy; it is set as 1 × 10−5, a value that can 

suppress instabilities without having a significant effect on the solutions. 

5. Energy minimization using variational approach 



 The minimization of elastic energy 𝐸𝐸total in Eq. (6) can be performed by a variational approach. 

The total elastic energy 𝐸𝐸total can be expressed as a functional in terms of functions 𝐸𝐸(𝑣𝑣), 𝐺𝐺(𝑣𝑣), integration 

constant 𝑐𝑐, and variable 𝑣𝑣, 

𝐸𝐸total = 𝜇𝜇𝜇𝜇 ∫ 𝑄𝑄[𝐸𝐸(𝑣𝑣),𝐸𝐸′(𝑣𝑣),𝐸𝐸′′(𝑣𝑣),𝐺𝐺(𝑣𝑣),𝐺𝐺′(𝑣𝑣), 𝑐𝑐, 𝑣𝑣]d𝑣𝑣𝑤𝑤
0 .                                 (A5) 

Taking variation of 𝐸𝐸total with respect to 𝐸𝐸(𝑣𝑣), 𝐺𝐺(𝑣𝑣), and 𝑐𝑐, and setting the first variation to be zero give 

the following Euler-Lagrange equations 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− �𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸′
�
′

+ � 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸′′

�
′′

= 0,                                                  (A6) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− �𝜕𝜕𝜕𝜕

𝜕𝜕𝐺𝐺′
�
′

= 0,                                                        (A7) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,                                                              (A8) 

and boundary conditions at 𝑣𝑣 = 0 and 𝑤𝑤 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸′

− � 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸′′

�
′

= 0,                                                            (A9) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸′′

= 0,                                                                (A10) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐺𝐺′

= 0.                                                                (A11) 

From Eq. (A8), we can express 𝑐𝑐  in terms of 𝐸𝐸(𝑣𝑣),𝐸𝐸′(𝑣𝑣),𝐸𝐸′′(𝑣𝑣),𝐺𝐺(𝑣𝑣) , and 𝐺𝐺′(𝑣𝑣) . Substituting this 

expression of 𝑐𝑐 into Eqs. (A6-7) and (A9-11) yields a sixth-order ODE system, which can be solved by the 

ODE solver (bvp4c) in Matlab. 

6. 3D surfaces reconstruction given metric and curvature tensors 

 A 3D surface with metric tensor a and curvature tensor b satisfying Gauss and Mainardi-Codazzi 

equations36,38 can be reconstructed using the following method. Let  



𝒓𝒓(𝑢𝑢, 𝑣𝑣) = (𝑥𝑥(𝑢𝑢, 𝑣𝑣),𝑦𝑦(𝑢𝑢, 𝑣𝑣), 𝑧𝑧(𝑢𝑢, 𝑣𝑣) )                                               (A12) 

be a parametrization of a 3D surface S with the following a and b  

𝒂𝒂 = �𝐸𝐸(𝑢𝑢, 𝑣𝑣) 𝐹𝐹(𝑢𝑢, 𝑣𝑣)
𝐹𝐹(𝑢𝑢, 𝑣𝑣) 𝐺𝐺(𝑢𝑢, 𝑣𝑣)� ,𝒃𝒃 = �

𝑒𝑒(𝑢𝑢, 𝑣𝑣) 𝑓𝑓(𝑢𝑢, 𝑣𝑣)
𝑓𝑓(𝑢𝑢, 𝑣𝑣) 𝑔𝑔(𝑢𝑢, 𝑣𝑣)�,                                      (A13) 

where u (𝑢𝑢min ≤ 𝑢𝑢 ≤ 𝑢𝑢max) and v (𝑣𝑣min ≤ 𝑣𝑣 ≤ 𝑣𝑣max) are the two surface coordinates, as shown in Fig. 

2A (𝑢𝑢min = 0,𝑢𝑢max = 𝐿𝐿, 𝑣𝑣min = 0, and 𝑣𝑣max = 𝑤𝑤). Every point on the surface S has a local frame formed 

by the vectors r,u, r,v and N, where ( ),u and ( ),v denote partial derivative of ( ) with respect to u and v, 

respectively, and N is the normal vector of the surface S. The derivatives of the vectors r,u, r,v and N can be 

expressed in the basis {r,u, r,v, N } as38 

𝒓𝒓,𝑢𝑢𝑢𝑢 = Γ111 𝒓𝒓,𝑢𝑢 + Γ112 𝒓𝒓,𝑣𝑣 + 𝑒𝑒𝑵𝑵,
𝒓𝒓,𝑢𝑢𝑢𝑢 = Γ121 𝒓𝒓,𝑢𝑢 + Γ122 𝒓𝒓,𝑣𝑣 + 𝑓𝑓𝑵𝑵,
𝒓𝒓,𝑣𝑣𝑣𝑣 = Γ221 𝒓𝒓,𝑢𝑢 + Γ222 𝒓𝒓,𝑣𝑣 + 𝑔𝑔𝑵𝑵,

𝑵𝑵,𝑢𝑢 = 𝛼𝛼1𝒓𝒓,𝑢𝑢 + 𝛼𝛼2𝒓𝒓,𝑣𝑣,
𝑵𝑵,𝑣𝑣 = 𝛽𝛽1𝒓𝒓,𝑢𝑢 + 𝛽𝛽2𝒓𝒓,𝑣𝑣 ,

                                                     (A14) 

where the coefficient Γ𝑖𝑖𝑖𝑖𝑘𝑘 (i, j, k = 1, 2) are the Christoffel symbols of S, which can be computed in terms of 

E, F, G and their derivatives, 

Γ111 = 𝐺𝐺𝐸𝐸,𝑢𝑢+𝐹𝐹𝐸𝐸,𝑣𝑣−2𝐹𝐹𝐹𝐹,𝑢𝑢
2(𝐸𝐸𝐸𝐸−𝐹𝐹2) , Γ112 = 2𝐸𝐸𝐹𝐹,𝑢𝑢−𝐹𝐹𝐸𝐸,𝑢𝑢−𝐸𝐸𝐸𝐸,𝑣𝑣

2(𝐸𝐸𝐸𝐸−𝐹𝐹2) ,

Γ121 = Γ211 = 𝐺𝐺𝐸𝐸,𝑣𝑣−𝐹𝐹𝐺𝐺,𝑢𝑢
2(𝐸𝐸𝐸𝐸−𝐹𝐹2) , Γ122 = Γ212 = 𝐸𝐸𝐺𝐺,𝑢𝑢−𝐹𝐹𝐸𝐸,𝑣𝑣

2(𝐸𝐸𝐸𝐸−𝐹𝐹2)  ,

Γ221 = −𝐹𝐹𝐺𝐺,𝑣𝑣−𝐺𝐺𝐺𝐺,𝑢𝑢+2𝐺𝐺𝐹𝐹,𝑣𝑣
2(𝐸𝐸𝐸𝐸−𝐹𝐹2) , Γ222 = 𝐸𝐸𝐺𝐺,𝑣𝑣+𝐹𝐹𝐺𝐺,𝑢𝑢−2𝐹𝐹𝐹𝐹,𝑣𝑣

2(𝐸𝐸𝐸𝐸−𝐹𝐹2) ,

                                      (A15) 

and 

𝛼𝛼1 = 𝑓𝑓𝑓𝑓−𝑒𝑒𝑒𝑒
𝐸𝐸𝐸𝐸−𝐹𝐹2

,𝛼𝛼2 = 𝑒𝑒𝑒𝑒−𝑓𝑓𝑓𝑓
𝐸𝐸𝐸𝐸−𝐹𝐹2

,𝛽𝛽1 = 𝑔𝑔𝑔𝑔−𝑓𝑓𝑓𝑓
𝐸𝐸𝐸𝐸−𝐹𝐹2

,𝛽𝛽2 = 𝑓𝑓𝑓𝑓−𝑔𝑔𝑔𝑔
𝐸𝐸𝐸𝐸−𝐹𝐹2

.                                  (A16) 

We first fix u = 𝑢𝑢min, and set 𝑦𝑦1 = 𝒓𝒓,𝑦𝑦2 = 𝒓𝒓,𝑣𝑣 ,𝑦𝑦3 = 𝑵𝑵,𝑦𝑦4 = 𝒓𝒓,𝑢𝑢. Eq. (A14) can be rewritten as 



𝑑𝑑
𝑑𝑑𝑑𝑑
�

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4

� = �

0 1 0 0
0 Γ222 𝑔𝑔 Γ221
0 𝛽𝛽2 0 𝛽𝛽1
0 Γ122 𝑓𝑓 Γ121

� �

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4

�,                                             (A17) 

which can be solved numerically under the following initial values 

𝑦𝑦1|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min = 𝒓𝒓|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min = (0, 0, 0)

𝑦𝑦2|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min = 𝒓𝒓,𝑣𝑣�𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min
= � 𝐹𝐹0

�𝐸𝐸0
,�𝐸𝐸0𝐺𝐺0−𝐹𝐹0

2

𝐸𝐸0
, 0�

𝑦𝑦3|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min = 𝑵𝑵|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min = (0, 0, 1)

𝑦𝑦4|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min = 𝒓𝒓,𝑢𝑢�𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣min
= ��𝐸𝐸0, 0, 0�

,                      (A18) 

where E0, F0, and G0 are the components of the metric tensor a at the point (umin, vmin). Then we uniformly 

discretize the domain of v with small increments. For a given 𝑣𝑣𝑖𝑖 (𝑣𝑣min ≤ 𝑣𝑣𝑖𝑖 ≤ 𝑣𝑣max), we can set 𝑥𝑥1 =

𝒓𝒓, 𝑥𝑥2 = 𝒓𝒓,𝑢𝑢,𝑥𝑥3 = 𝑵𝑵, 𝑥𝑥4 = 𝒓𝒓,𝑣𝑣, and rewrite Eq. (A7) as 

𝑑𝑑
𝑑𝑑𝑑𝑑
�

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� = �

0 1 0 0
0 Γ111 𝑒𝑒 Γ112
0 𝛼𝛼1 0 𝛼𝛼2
0 Γ121 𝑓𝑓 Γ122

� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�,                                           (A19) 

which can be solved numerically under the following initial values 

𝑥𝑥1|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖 = 𝒓𝒓|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖 = 𝑦𝑦1|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖
𝑥𝑥2|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖 = 𝒓𝒓,𝑢𝑢�𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖

= 𝑦𝑦4|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖

𝑥𝑥3|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖 = 𝑵𝑵|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖 = 𝑦𝑦3|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖
𝑥𝑥4|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖 = 𝒓𝒓,𝑣𝑣�𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖

= 𝑦𝑦2|𝑢𝑢=𝑢𝑢min,𝑣𝑣=𝑣𝑣𝑖𝑖

.                             (A20) 

Thus far, we have obtained the parameterization r of surface S based on the metric tensor a and curvature 

tensor b. 

7. Decomposition of a prescribed metric tensor 𝒂𝒂� 

 The position vector of a point on a 2D surface with the metric tensor 𝒂𝒂� (Eq. (1))  in Euclidean 3D 

space can be expressed as 



𝝆𝝆�(𝑢𝑢, 𝑣𝑣) = 𝑥𝑥(𝑢𝑢)𝒆𝒆𝑢𝑢 + 𝑦𝑦(𝑣𝑣)𝒆𝒆𝑣𝑣,                                                      (A21) 

where 𝑢𝑢 and 𝑣𝑣 are surface coordinates, 𝒆𝒆𝑢𝑢 and 𝒆𝒆𝑣𝑣 are the base vectors in Cartesian coordinate system, and 

𝑥𝑥(𝑢𝑢) and 𝑦𝑦(𝑣𝑣) are the corresponding position components, respectively. Given 𝒂𝒂� in Eq. (1), we obtain 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜆𝜆𝑢𝑢 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜆𝜆𝑣𝑣.                                                         (A22) 

This 2D surface with 𝒂𝒂� can be formed by the following three deformation steps. The first step is applying 

a stretch 𝜆𝜆𝑣𝑣 in the 𝑣𝑣 direction, yielding the following position vector 𝝆𝝆�1 and corresponding metric tensor 

𝒂𝒂�1, 

𝝆𝝆�𝟏𝟏(𝑢𝑢, 𝑣𝑣) = 𝑢𝑢𝒆𝒆𝑢𝑢 + ∫ 𝜆𝜆𝑣𝑣(𝜏𝜏)d𝜏𝜏𝑣𝑣
0 𝒆𝒆𝑣𝑣, 𝒂𝒂�1 = �1 0

0 𝜆𝜆𝑣𝑣2
�.                                    (A23) 

Set 𝑣𝑣∗ = ∫ 𝜆𝜆𝑣𝑣(𝜏𝜏)d𝜏𝜏𝑣𝑣
0  and apply the coordinate transformation from (𝑢𝑢, 𝑣𝑣) to (𝑢𝑢, 𝑣𝑣∗), we have 

𝝆𝝆�𝟏𝟏(𝑢𝑢, 𝑣𝑣∗) = 𝑢𝑢𝒆𝒆𝑢𝑢 + 𝑣𝑣∗𝒆𝒆𝑣𝑣.                                                        (A24) 

The next step is applying a homogeneous stretch 𝜆̅𝜆𝑢𝑢 in the 𝑢𝑢 direction, yielding the following position 

vector 𝝆𝝆�2 and corresponding metric tensor 𝒂𝒂�2, 

𝝆𝝆�𝟐𝟐(𝑢𝑢, 𝑣𝑣∗) = 𝜆̅𝜆𝑢𝑢𝑢𝑢𝒆𝒆𝑢𝑢 + 𝑣𝑣∗𝒆𝒆𝑣𝑣, 𝒂𝒂�2 = ��𝜆̅𝜆𝑢𝑢�
2 0

0 1
�.                                    (A25) 

We change the coordinates from (𝑢𝑢, 𝑣𝑣∗) to (𝑢𝑢∗, 𝑣𝑣∗) by setting 𝑢𝑢∗ = 𝜆̅𝜆𝑢𝑢𝑢𝑢. Then, 𝝆𝝆�𝟐𝟐 can be rewritten as 

𝝆𝝆�𝟐𝟐(𝑢𝑢∗, 𝑣𝑣∗) = 𝑢𝑢∗𝒆𝒆𝑢𝑢 + 𝑣𝑣∗𝒆𝒆𝑣𝑣.                                                   (A26) 

The third step is applying stretches 𝜆𝜆𝑢𝑢∗  in the 𝑢𝑢∗ direction, yielding the following position vector 𝝆𝝆�∗ and 

corresponding metric tensor 𝒂𝒂�∗, 

𝝆𝝆�∗(𝑢𝑢∗, 𝑣𝑣∗) = 𝑥𝑥∗(𝑢𝑢∗)𝒆𝒆𝑢𝑢 + 𝑣𝑣∗𝒆𝒆𝑣𝑣, 𝒂𝒂�∗ = �(𝜆𝜆𝑢𝑢
∗ )2 0
0 1

�,                                (A27) 



where 𝜆𝜆𝑢𝑢∗ = 𝜕𝜕𝑥𝑥∗

𝜕𝜕𝑢𝑢∗
. To ensure that applying 𝒂𝒂�1, 𝒂𝒂�2, and 𝒂𝒂�∗ sequentially yields a surface with metric tensor 𝒂𝒂�, 

𝝆𝝆� should equal 𝝆𝝆�∗. Therefore, 𝑥𝑥(𝑢𝑢) = 𝑥𝑥∗(𝑢𝑢∗) and 𝑦𝑦(𝑣𝑣) = 𝑣𝑣∗. With Eq. (A22), we have 

𝜆𝜆𝑢𝑢 = 𝜆𝜆𝑢𝑢∗ 𝜆̅𝜆𝑢𝑢.                                                                 (A28) 
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Fig. 1. Formation of rolled shapes from LCE bistrips induced by discretely patterned in-plane stretch 

profiles. (A) A monodomain LCE thin sheet is equally divided into high- and low-temperature strips. The 

initial director is either parallel (left) or perpendicular (right) to the interface between the two strips. (B) 

Experimentally, LCE bistrips are fabricated by spatially patterning the concentration of plasmonic gold 

nanoparticles; upon illumination, the transparent strip without nanoparticles is at low temperature and the 

dark strip with nanoparticles is at high temperature. These bistrips roll into nearly axisymmetric shapes 

with the symmetry axes perpendicular to the interface between the high- and low-temperature strips. (C) 

The rolled shapes can be captured by the FE simulations. The contours in (C) denote the distributions of 

normalized Gaussian curvatures. 

  



 

Fig. 2. Determination of rolled shapes. (A) Discretely patterned in-plane stretch profile with a step 

distribution in a LCE sheet. (B and C) Dependence of the energy on the thickness in linear (B) and 

logarithmic (C) scales for the case with 𝜌𝜌 = 0.5,𝐿𝐿 = 2𝑤𝑤, and initial director 𝐧𝐧 parallel to the 𝑢𝑢 direction. 

The dots in black, blue, and red colors represent the total, bending, and stretching elastic energies, 

respectively. (D) The distribution of the differences between the components of the actual metric tensor 𝒂𝒂 

and the prescribed metric tensor 𝒂𝒂�  in the 𝑢𝑢  (upper, 𝑎𝑎𝑢𝑢 − 𝑎𝑎�𝑢𝑢 ) and 𝑣𝑣  (lower, 𝑎𝑎𝑣𝑣 − 𝑎𝑎�𝑣𝑣 ) directions when 

ℎ 𝑤𝑤⁄ = 3 × 10−6 (blue), 5 × 10−6 (red), and 7 × 10−6 (magenta). (E) Dependence of the maximum of 

𝑎𝑎𝑢𝑢 − 𝑎𝑎�𝑢𝑢 (blue) and 𝑎𝑎𝑣𝑣 − 𝑎𝑎�𝑣𝑣 (red) on ℎ 𝑤𝑤⁄ . (F) Distribution of the normalized components of the curvature 

tensor 𝒃𝒃 in the 𝑢𝑢 (upper) and 𝑣𝑣 (lower) directions when ℎ 𝑤𝑤⁄ = 3 × 10−6 (blue), 5 × 10−6 (red), and 7 ×

10−6 (magenta). 



 

Fig. 3. Quantitative comparison between the theory and FE simulations. (A-F) The rolled shapes obtained 

from the theory (A-C) and FE simulations (D-F) for LCE bistrips with the director parallel to the interface 

between the high- and low-temperature regions and of normalized thickness ℎ 𝑤𝑤⁄  = 0.005 (A and D), 0.015 

(B and E), and 0.025 (C and F). (G and H) The profiles of the cross-section along (G) and perpendicular to 

(H) the interface between the two strips. The circular dots represent analytical results, whereas the solid 

lines represent the results from FE simulations. The blue, red, and black colors denote ℎ 𝑤𝑤⁄ = 0.005, 0.015, 

and 0.025, respectively. 

  



 

Fig. 4. Comparison of the rolled shapes obtained from experiments, FE simulations, and theory for LCE 

bistrips with different 𝜌𝜌. (A) Patterns of the prescribed temperature distribution, corresponding to the in-

plane stretch distribution, with 𝜌𝜌 = 0.2 (1st column), 0.5 (2nd column), 0.6 (3rd column), and 0.8 (4th 

column). (B-D) The corresponding 3D shapes obtained from experiments (B), FE simulations (C), and 

theory (D). All the square LCE bistrips have a thickness of ℎ 𝑤𝑤⁄ = 0.005 and initial director 𝐧𝐧 parallel to the 

interface between the high- and low-temperature strips. 

  



 

Fig. 5. Conversion from a prescribed metric tensor 𝒂𝒂� in LCE bistrips with initial director either parallel or 

perpendicular to the interface into a unified metric tensor 𝒂𝒂�∗ embedded to a bistrip with modified geometry. 

(A) Shape morphing of a bistrip subjected to 𝒂𝒂� (Path 1) is equivalent to that of the bistrip with modified 

geometry subjected to 𝒂𝒂�∗ (Path 2). The rolled shapes predicted by the analytical model following Path 1 

and 2 and the FE simulation agree well. The profiles of the cross-section along (B) and perpendicular to (C) 

the interface between the high- and low-temperature strips based on Path 1 and 2 match perfectly. 

  



 

Fig. 6. The Effect of the stretch mismatch Δ𝑢𝑢 on the rolled shapes when 𝜌𝜌 = 0.5 and 𝛿𝛿 𝑤𝑤⁄ = 0.02. (A) The 

dependence of the normalized critical thickness ℎcr 𝑤𝑤⁄  on Δ𝑢𝑢 (black solid line). The gray region (ℎ 𝑤𝑤⁄ >

ℎcr 𝑤𝑤⁄ ) indicates unbuckled configurations, whereas the white region (ℎ 𝑤𝑤⁄ < ℎcr 𝑤𝑤⁄ )  indicates buckled 

configurations. (B and C) The influence of Δ𝑢𝑢 on the normalized average mean curvature 𝑤𝑤𝐻𝐻avg (B) and 

the width of the transitional bottle neck region 𝑤𝑤trans 𝑤𝑤⁄  (C) when ℎ 𝑤𝑤⁄ = 0 (isometric immersion in black), 

0.001 (blue), 0.003 (red), and 0.005 (magenta). (D-G) The rolled shapes obtained from the theory for 

different Δ𝑢𝑢 when ℎ 𝑤𝑤⁄  = 0.005. 

  



 

Fig. 7. The Effect of 𝛿𝛿 on the rolled shapes when 𝜌𝜌 = 0.5 and Δ𝑢𝑢 = 0.05. (A) The dependence of ℎcr 𝑤𝑤⁄  

on 𝛿𝛿 (black solid line). The gray region (ℎ 𝑤𝑤⁄ > ℎcr 𝑤𝑤⁄ ) indicates unbuckled configurations, whereas the 

white region (ℎ 𝑤𝑤⁄ < ℎcr 𝑤𝑤⁄ )  indicates buckled configurations. (B and C) The influence of 𝛿𝛿 on 𝑤𝑤𝐻𝐻avg (B) 

and 𝑤𝑤trans 𝑤𝑤⁄  (C) when ℎ 𝑤𝑤⁄ = 0 (isometric immersion in black), 0.001 (blue), 0.003 (red), and 0.005 

(magenta). (D-G) The rolled shapes obtained from the theory for different 𝛿𝛿 when ℎ 𝑤𝑤⁄ = 0.005. 

  



 

Fig. 8. The Effect of 𝜌𝜌 on the rolled shapes when 𝛿𝛿 𝑤𝑤⁄ = 0.02 and Δ𝑢𝑢 = 0.05. (A) The dependence of 

ℎcr 𝑤𝑤⁄  on 𝜌𝜌  (black solid line). The gray region (ℎ 𝑤𝑤⁄ > ℎcr 𝑤𝑤⁄ ) indicates unbuckled configurations, 

whereas the white region (ℎ 𝑤𝑤⁄ < ℎcr 𝑤𝑤⁄ )  indicates buckled configurations. (B and C) The influence of 𝜌𝜌 

on 𝑤𝑤𝐻𝐻avg (B) and 𝑤𝑤trans 𝑤𝑤⁄  (C) when ℎ 𝑤𝑤⁄ = 0 (isometric immersion in black), 0.001 (blue), 0.003 (red), 

and 0.005 (magenta). (D-G) The rolled shapes obtained from the theory for different 𝜌𝜌 when ℎ 𝑤𝑤⁄ = 0.005. 
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