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We study suitable singular metrics attaining the optimal value 
in the Riemannian Penrose inequality. More precisely, we 
demonstrate that the singular metric is necessarily smooth in 
properly specified coordinates. When applied to hypersurfaces 
enclosing the horizon in a spatial Schwarzschild manifold, the 
result gives the rigidity of isometric hypersurfaces with the 
same mean curvature.
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1. Introduction

In this paper, we prove a rigidity theorem for a pair of Riemannian manifolds with 
nonnegative scalar curvature, with boundary. The theorem may be viewed as the rigidity 
part of the Riemannian Penrose inequality on manifolds with corners along a hypersur-
face. We assume all manifolds have dimension n ≤ 7.
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Theorem 1.1. Let (Ωn, gΩ), (Nn, gN ) be a compact manifold, an asymptotically flat man-
ifold, with nonnegative scalar curvature, with boundary ∂Ω, ∂N , respectively. Suppose the 
boundaries ∂Ω and ∂N satisfy the following

(i) ∂Ω is the disjoint union of two pieces, ΣH and Σ, where ΣH has zero mean curvature 
and is strictly outer-minimizing in (Ω, gΩ);

(ii) ∂N is outer-minimizing in (N, gN ); and
(iii) Σ is isometric to ∂N , with the induced metrics; and under the isometry, HΩ ≥ HN , 

where HΩ is the mean curvature of Σ in (Ω, gΩ) with respect to the outward normal, 
and HN is the mean curvature of ∂N in (N, gN ) with respect to the infinity pointing 
normal.

Let m(g) be the mass of (N, g) and let |ΣH | be the area of ΣH in (Ω, gΩ). Suppose

m(g) = 1
2

(
|ΣH |
ωn−1

)n−2
n−1

,

where ωn−1 is the area of the standard round (n − 1)-dimensional sphere. Then

• Σ and ∂N have the same second fundamental forms;
• Σ (and hence ∂N) isometrically embeds in a spatial Schwarzschild manifold

(Mm, gm) =
({

x ∈ Rn : |x| ≥
(m

2
) 1

n−2
}
,
(
1 + m

2 |x|2−n
) 4

n−2
g0

)

with mass m = m(g). Here g0 is the Euclidean metric on Rn. Moreover, the image of 
this embedding and the Schwarzschild horizon ∂Mm enclose a bounded domain Ωm

in Mm; and
• (Ω, gΩ) is isometric to (Ωm, gm) and (N, gN ) is isometric to the complement of Ωm

in (Mm, gm).

The condition that ΣH is strictly outer-minimizing in (Ω, gΩ) means that any hyper-
surface Σ′ in Ω, which encloses ΣH , has area strictly greater than |ΣH |. Similarly, ∂N is 
outer-minimizing in (N, gN ) means that any hypersurface Σ′′ in N , which encloses ∂N , 
has area greater than or equal to the area of ∂N .

In Theorem 1.1, we state the conclusion in a geometric manner. From a more analytic 
perspective, our proof of Theorem 1.1 indeed gives a regularity result that asserts suitable 
singular metrics realizing the optimal value in the Riemannian Penrose inequality is 
smooth in properly specified coordinates. We formulate this conclusion in the following 
remark.

Remark 1.1. Under the assumptions of Theorem 1.1, one can consider a new differentiable 
manifold obtained from Ω and N as follows.



S. Lu, P. Miao / Journal of Functional Analysis 281 (2021) 109231 3

Let U+ be a Gaussian tubular neighborhood of ∂N in (N, gN ) so that U+ is diffeo-
morphic to [0, ε) × ∂N for some ε > 0 and gN = dt2 + g+

t in U+. Similarly, let U− be a 
Gaussian tubular neighborhood of Σ in (Ω, gΩ) so that U− is diffeomorphic to (−ε, 0] ×Σ
and gΩ = dt2 + g−t in U−. Here {g+

t }t≥0, {g−t }t≤0 denote a family of metrics on ∂N , Σ, 
respectively. Since Σ is isometric to ∂N , identifying Σ with ∂N via the given isometry, 
one may assume g+

t = g−t at t = 0. Let M be the topological manifold obtained by gluing 
Ω and N so that Σ and ∂N are identified via the given isometry. Define the differentiable 
structure on M so that it is determined by the open covering consisting of {Ω, N, U}, 
where U = U− ∪ U+ = (−ε, ε) × Σ.

On this differentiable manifold M , consider a Lipschitz metric g given by

g = gΩ on Ω, and g = gN on N.

If (Ω, gΩ) and (N, gN ) satisfy m(g) = 1
2

(
|ΣH |
ωn−1

)n−2
n−1 , Theorem 3.1 in Section 3 shows that 

g is smooth across Σ and the manifold (Mn, g) is isometric to (Mm, gm) with m = m(g).

Our main motivation to consider Theorem 1.1 is the rigidity case of the localized 
Riemannian Penrose inequality studied in [12]. As a corollary of Theorem 1.1, equality 
in Theorem 1.1 of [12] holds if and only if the compact manifold in that setting is 
isometric to the domain enclosed by the image of the relevant isometric embedding into 
(Mm, gm) and the Schwarzschild horizon ∂Mm.

Another motivation for us is to study the rigidity of isometric hypersurfaces with the 
same mean curvature in (Mm, gm). For convenience, we make the following definition.

Definition 1.2. In an ambient Riemannian manifold, we say two hypersurfaces Σ and Σ̃
are H-isometric if there is an isometry F : Σ → Σ̃ such that H̃(F (p)) = H(p), ∀ p ∈ Σ. 
Here H, H̃ are the mean curvatures of Σ, Σ̃, respectively.

A corollary of Theorem 1.1 and Remark 1.1 is

Corollary 1.3. Let Σ ⊂ (Mm, gm) be a closed hypersurface enclosing the horizon ∂Mm

in a spatial Schwarzschild manifold with mass m > 0. Suppose Σ is outer-minimizing. If 
Σ̃ is another hypersurface enclosing ∂M which is H-isometric to Σ, then Σ̃ = Σ up to a 
rigid motion of (Mm, gm).

The rigidity of H-isometric hypersurfaces seems an interesting question that links the 
isometric embedding problem in Riemannian geometry to the context of quasi-local mass 
in general relativity. In the Euclidean space R3, a classic result of Cohn-Vossen [5] shows 
that convex surfaces are rigid. Recently Li and Wang [11] gave counterexamples which 
illustrate the lack of rigidity even for convex surfaces if the ambient manifold is not a 
space form. On the other hand, relativistic consideration in relation to the Bartnik mass 
[1] seems to suggest H-isometric surfaces can be rigid if the ambient manifold is static. 
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In a spatial Schwarzschild manifold (Mm, gm), such a rigidity was shown by Chen and 
Zhang [4] for suitable convex surfaces in dimension 3. Analogous results were given by 
Li, Wang and the second author [10] among star-shaped hypersurfaces in an (Mm, gm)
of general dimensions.

We now explain the proof of Theorem 1.1. A main tool we use is Bray’s proof of 
the Riemannian Penrose inequality (RPI) in dimension three [2] and Bray-Lee’s proof 
of the RPI for dimensions n ≤ 7 [3]. We use the flow produced in [2,3] to perturb the 
singular metric g constructed in Remark 1.1, and analyze the case that the mass has a 
zero derivative. This relates to another ingredient in the proof, which is a revisit of the 
rigidity case of the Riemannian positive mass theorem with corners along a hypersurface.

Theorem 1.4. Let (Ωn, gΩ), (Nn, gN ) be a compact manifold, an asymptotically flat man-
ifold, with nonnegative scalar curvature, with boundary ∂Ω, ∂N , respectively. Suppose ∂Ω
is isometric to ∂N , and under the isometry, the mean curvatures satisfy HΩ ≥ HN . If 
m(gN ) = 0, then

• ∂Ω and ∂N have the same second fundamental forms; and
• the manifold (M, g), constructed by gluing (Ω, gΩ) and (N, gN ) in Remark 1.1, is 

smooth and is isometric to (Rn, g0).

We give an account of previously known results that relate to Theorems 1.1 and 1.4. 
Both rigidity questions are tied to the quasi-local mass problem (see [19,12] for instance). 
If the manifolds are spin, Shi and Tam proved Theorem 1.4 in [19]. Without the spin 
assumption, McFeron and Székelyhidi [16] proved a variation of Theorem 1.4, from which 
Theorem 1.4 is derived. We will explain how the results in [16] implies Theorem 1.4 in 
Proposition 2.1. In the case of Riemannian Penrose inequality with corners, the rigidity 
part was studied by Shi, Wang and Yu [21] in 3-dimension, and the manifolds were shown 
to be static with zero scalar curvature and, under an additional geometric condition, 
(Ω, gΩ) was proven to be isometric to a region in (Mm, gm). Theorem 1.1 was also proved 
by the authors [13] for the case n = 3, in the setting of the localized Penrose inequality 
[12].

The Riemannian Penrose inequality was first proved by Huisken and Ilmanen [8] for 
connected horizon, and by Bray [2] for general horizon, both in dimension 3. In [3], 
Bray and Lee established the inequality for dimension n ≤ 7. As the proof of Theo-
rem 1.1 makes use of Bray and Lee’s work [3], Theorem 1.1 satisfies the same dimension 
assumption.

2. Rigidity of PMT with corners along a hypersurface

In this section, we revisit the rigidity case of the Riemannian positive mass theorem 
[18,24] formulated on manifolds with corners along a hypersurface.
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We say (Mn, g) is an asymptotically flat manifold with corners along a hypersurface 
S if the following conditions hold:

(1) M is a smooth differentiable manifold and S ⊂ M is a compact, embedded two-sided 
hypersurface which can be disconnected;

(2) g is a C0 metric on M , g is smooth away from S, and (M \K, g) is asymptotically 
flat for some compact set K containing S;

(3) there exists a smooth open neighborhood U of S such that U is diffeomorphic to 
S × (−ε, ε) on which the metric g takes the form of g = dt2 + gt. Here S = S × {0}
under this diffeomorphism, and gt denotes the induced metric on S× {t}. Moreover, 
if U+ denotes S × [0, ε) and U− denotes S × (−ε, 0] in U , g is smooth up to the 
boundary S in U+ and U−, respectively.

We emphasize that all future regularity assertions of g we are about to make will 
be with respect to the differential structure specified on U above. In geometric applica-
tions, this will not impose any restriction, because one can always glue two Riemannian 
manifolds along their isometric boundary S in the way specified in Remark 1.1.

Given such an (M, g) with corners along S, we say it satisfies the mean curvature 
condition across S if H− ≥ H+ (see [17]). Here H+, H− denote the mean curvature of 
Σ in (U+, g), (U−, g) with respect to the normal vectors ∂t, respectively. We note that 
this condition is intrinsic and it remains unchanged if one switches t and −t.

A main observation in this section is the following rigidity statement, which is built 
on the result of McFeron and Székelyhidi [16].

Proposition 2.1. Let (Mn, g) be an asymptotically flat manifold with corners along a 
hypersurface S. Suppose g has nonnegative scalar curvature away from S and satisfies the 
mean curvature condition across S. If m(g) = 0, then S has the same second fundamental 
forms in its both sides in M , the metric g is smooth, and (Mn, g) is isometric to the 
Euclidean space (Rn, g0).

Proof. Under the given assumptions, it was proved in Theorem 18 of [16] that there 
is a C1,α diffeomorphism φ0 : Mn → Rn such that φ0 is an isometry. We claim this 
φ0 is indeed C1,1. The reason is as follows. The proof in [16] considered the solution 
{g(t)}t>0 to the usually called h-flow (see [22]) with an initial condition (M, g). The 
properties of g ensures g(t), t > 0, has nonnegative scalar curvature. If m(g) = 0, each 
(M g(t)) is isometric to (Rn, g0) and the h-flow is acting by diffeomorphisms. By writing 
g(t) = φ∗

t (g0), the proof of Theorem 18 on page 439 in [16] showed that the family of 
diffeomorphisms {φt} are bounded in C1,1, and has a subsequence that converges in C1,α

to a diffeomorphism φ0. Thought not stated in [16], the C1,1 bound on {φt} ensures that 
the limit φ0 is C1,1 itself.

Now let h+, h− denote the second fundamental forms of S in (U+, g), (U−, g), respec-
tively. Let S0 = φ0(S) ⊂ Rn, then S0 is a C1,1 hypersurface, and hence has a.e. defined 
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fundamental form. Denote this second fundamental form by h0. Let {∂α} be a local 
frame on S. Let ∂(0)

α = φ0∗(∂α), then {∂(0)
α } is a local C0,1 frame on S0. The Christoffel 

symbols of the induced metric on S0 with respect to {∂(0)
α }, wherever they are defined, 

agree with those of the induced metric on Σ with respect to {∂α} under the map φ0, 
because φ0 : S → S0 is an isometry. Also, φ0 sends the normal vector to S to the normal 
vector to S0. Thus, by the definition of second fundamental forms, h+ = φ∗

0(h0), a.e. on 
S. Similarly, h− = φ∗

0(h0), a.e. on S. These imply h+ = h−.
By the proof of Theorem 2 in [16], g is flat away from S. This and the fact S has the 

same second fundamental forms in U+ and U− imply that g is smooth across S in U . 
(See Lemma 4.1 in [19] for instance.) Hence, g is smooth on M and (M, g) is isometric 
to (Rn, g0). !

Theorem 1.4 follows from Proposition 2.1 and the construction of (M, g) in Re-
mark 1.1. Proposition 2.1 also implies the rigidity of H-isometric hypersurfaces in 
Euclidean spaces.

Corollary 2.2. Let Σ and Σ̃ be two closed hypersurfaces in Rn. If Σ and Σ̃ are H-isometric, 
then they differ by a rigid motion of Rn.

It is worth of noting that there are no topological assumptions on Σ, Σ̃ above. In the 
classic study of isometric surfaces in R3, results are often restricted to 2-spheres due to 
various convexity assumptions on the surface.

Next, we examine the rigidity case of Bray’s mass-capacity inequality, Theorem 9 in 
[2], for manifolds with corners along a hypersurface.

Given an asymptotically flat manifold (Mn, g) with corners along a hypersurface Σ, 
with nonempty boundary ∂M , as the metric is Lipschitz, there exists a function ϕ sat-
isfying






∆gϕ(x) = 0, in M

ϕ(x) = 0, on ∂M

ϕ(x) → 1, as x → ∞.

(2.1)

Standard elliptic theory shows ϕ ∈ W 2,p
loc (M) for any p > n, hence ϕ ∈ C1,α

loc (M) for any 
α ∈ (0, 1), ϕ is smooth away from Σ, and ϕ is smooth up to ∂M . The asymptotically 
flatness of g implies ϕ satisfies

ϕ(x) = 1 − E(g)
2|x|2−n

+ o(|x|2−n), as x → ∞. (2.2)

Here E(g) > 0 is a constant known as the capacity of ∂M in (M, g).

Proposition 2.3. Let (Mn, g) be an asymptotically flat manifold with corners along a 
hypersurface Σ. Suppose g has nonnegative scalar curvature away from Σ and satisfies 
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the mean curvature condition across Σ. If M has nonempty boundary ΣH that has zero 
mean curvature, then

m(g) ≥ 1
2E(g).

Moreover, if m(g) = 1
2E(g), then Σ has the same second fundamental forms in its two 

sides in (M, g), g is smooth across Σ, and (M, g) is isometric to a spatial Schwarzschild 
manifold outside the horizon.

Proof. We start with a property of harmonic functions at and near the singular hyper-
surface Σ. Since g is smooth up to Σ from its both sides in M , the restriction of ϕ to Σ
is indeed smooth, and ϕ is smooth up to Σ from its both sides in M . See Proposition 
3.1 and Remark 3.1 in [7] for this claim.

We proceed by conformally deforming g as in [2]. More precisely, we first reflect 
(M, g) across ΣH and denote the resulting manifold by (M̃, g). Clearly, (M̃, g) is an 
asymptotically flat manifold with two ends, with corners along a hypersurface S =
Σ ∪ ΣH ∪ Σ′, where Σ′ is the image of Σ under the reflection map. Let ϕ̃ be the odd 
extension of ϕ to M̃ , and let

g̃ =
(1 + ϕ̃

2

) 4
n−2

g on M̃. (2.3)

At the infinity of M , m(g̃) is related to m(g) by m(g̃) = m − 1
2E(g). Moreover, (M̃, ̃g)

satisfies the following:

(i) g̃ is smooth up to S in its both sides in M̃ . Here we used the above-mentioned 
regularity of ϕ at and near Σ.

(ii) If M− denotes the image of M under the reflection in M̃ and Ω− = M− ∪ {o}
denotes the one-point compactification of M− by including a point o representing 
the infinity of M−, then g̃ is W 1,q

loc near o for some q > n. This is a result of the 

harmonic conformal factor 1 + ϕ

2 → 0 as x → o. (See Lemma 6.1 in [14] and Lemma 

4.3 in [6] for instance.)
(iii) On M̃ ∪ {o}, g̃ has nonnegative scalar curvature away from S ∪ {o}, and satisfies 

the mean curvature condition across S.

The particular type of point singularity at o does not affect the positive mass theorem. 
Applying the proof of Theorem 18 in [16], combined with the proof of Theorem 7.2 in 
[20], one has m(g̃) ≥ 0, and if m(g̃) = 0, M̃ ∪ {o} is diffeomorphic to Rn and g̃ is flat 
away from S ∪ {o}. (If n = 3, it was shown in [9] that a much weaker type of point 
singularity suffices.)

Suppose m(g̃) = 0. Since g̃ is flat around o, we can assume g̃ is smooth across o by 
revising the differential structure near o if needed. Precisely, this follows from Theorem 
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3.1 in [23]. Now (M̃ ∪ {o}, ̃g) is only potentially singular at S and m(g̃) = 0. By Propo-
sition 2.1, S has the same fundamental forms in its two sides in (M̃, ̃g), g̃ is smooth 
(with respect to the differential structure specified by the Gaussian neighborhoods of S
relative to g̃), and (M̃ ∪ {o}, ̃g) is isometric to (Rn, g0).

Back on (M, g), as ϕ is C1 across Σ, it follows from the conformal change formula 
of second fundamental forms that Σ has the same fundamental forms in its two sides in 
(M, g). Hence, g is C1,1 across Σ, and ϕ is C2,α in U . Since g̃ has zero curvature in U+
and U−, and ϕ is C2 in U , a calculation similar to Lemma 4.1 in [19] shows ∂2

t gt|t=0 in 
U+ and U− agree at Σ. As a result, g is C2,1 across Σ and ϕ is C3,α in U . Repeating 
this argument, we have g and ϕ are smooth in U . The same argument also shows ΣH is 
totally geodesic in (M, g), g and ϕ̃ are smooth near ΣH in M̃ .

To complete the proof, by (2.3), ψ̃ = 2
1+ϕ̃ > 0 is harmonic on (M̃, ̃g) that is isometric 

to (Rn \ {0}, g0). Therefore, 2
1+ϕ̃ = 1 + m

2|x|n−2 for some constant m > 0. We conclude 
that (M, g) is isometric to a spatial Schwarzschild manifold outside its horizon. !

3. Proof of Theorem 1.1 and Corollary 1.3

We use Proposition 2.3 and the conformal flow in [2,3] to prove the following theorem, 
which implies Theorem 1.1. We emphasize that the conformal flow in [2,3] is used only 
to produce a perturbation of the metric, thus we do not require the long term behavior 
of the flow if the initial data is a manifold with corners.

Theorem 3.1. Let (Mn, g) be an asymptotically flat manifold with corners along a hy-
persurface Σ. Suppose g has nonnegative scalar curvature away from Σ and satisfies the 
mean curvature condition across Σ. Suppose M has nonempty boundary ΣH that satisfies

• ΣH has zero mean curvature;
• ΣH is strictly outer-minimizing; and
• m(g) = 1

2

(
|ΣH |
ωn−1

)n−2
n−1 .

Then Σ has the same second fundamental forms in its two sides in (M, g), g is smooth 
across Σ, and (M, g) is isometric to a spatial Schwarzschild manifold outside the horizon.

Proof. We adopt the notations in [2,3]. On M , let g0 = g and define gt = ut(x) 4
n−2 g0, 

where ut is defined by

ut(x) = 1 +
t∫

0

vs(x)ds

and vt(x) satisfies
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




∆g0vt(x) = 0, outside Σ(t)
H

vt(x) = 0, on and inside Σ(t)
H

lim
x→∞

vt(x) = − e−t.

(3.1)

Here Σ(t)
H is the outmost minimal area enclosure of ΣH = Σ(0)

H in (M, gt). Because ΣH is 
disjoint from Σ in the initial (M, g) and g is Lipschitz across Σ, an examination of the 
proof of Theorem 2 in [2] and Theorem 2.2 in [3] shows that {gt}|t|<ε exists for small ε, 
and Σ(t)

H does not touch ΣH for t > 0 and converges to ΣH as t → 0. As a result, for 
small t, Σ(t)

H does not touch Σ and is minimal and strictly outer-minimizing in (M, gt).
For convenience, let Mt denote the exterior of Σ(t)

H in M . Since vt is harmonic on 
(Mt, g0), as in the proof of Proposition 2.3, we know the restriction of vt to Σ is smooth, 
and vt is smooth up to Σ from its both sides in M . The same conclusion also holds for 
ut.

As a result, (Mt, gt) is a manifold with corners along Σ, has nonnegative scalar curva-
ture away from Σ and satisfies the mean curvature condition across Σ. Since Σ(t)

H = ∂Mt

is outer-minimizing in (Mt, gt), the Riemannian Penrose inequality in [2,3], formulated 
for manifolds with corners [15], shows

m(gt) ≥
1
2

(
|Σ(t)

H |gt
ωn−1

)n−2
n−1

. (3.2)

Here |Σ(t)
H |gt is the area of Σ(t)

H in (M, gt). By Theorem 3 in [2] and Lemma 2.3 in [3], 
this area is a constant, that is

|Σ(t)
H |gt = |ΣH |. (3.3)

We are interested in the change of m(gt) at t = 0. By Equation (113) in [2] and Lemma 
2.7 in [3],

d

dt
|t=0m(gt) = −2m(g̃) = E(g) − 2m(g), (3.4)

where g̃, E(g) are the conformally deformed metric, the capacity constant, respectively, 
in the proof of Proposition 2.3. If m(g) > 1

2E(g), then

d

dt
|t=0m(gt) < 0. (3.5)

At t = 0, it is assumed m(g) = 1
2

(
|ΣH |
ωn−1

)n−2
n−1 . Thus, for small t > 0,

m(gt) <
1
2

(
|ΣH |
ωn−1

)n−2
n−1

. (3.6)
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This is a contradiction to (3.2) and (3.3).
Therefore, (M, g) satisfies m(g) = 1

2E(g). By the rigidity statement in Proposition 2.3, 
g is smooth across Σ and (M, g) is isometric to a spatial Schwarzschild manifold outside 
its horizon. !

Remark 3.1. Σ does not need to enclose the manifold boundary ΣH in Theorem 3.1.

Theorem 1.1 now follows from Theorem 3.1, because, if (M, g) is the manifold con-
structed from (Ω, gΩ) and (N, gN ) in Remark 1.1, then ΣH = ∂M is strictly outer-
minimizing in (M, g) by conditions (i) and (ii). Thus Theorem 3.1 applies to show g is 
smooth and (M, g) is isometric to a Schwarzschild manifold.

Corollary 1.3 follows from the following theorem.

Theorem 3.2. Let Σ ⊂ (Mm, gm) be a closed hypersurface enclosing the boundary ∂Mm

in a spatial Schwarzschild manifold with mass m > 0. Suppose Σ is outer-minimizing. 
Let Σ̃ ⊂ (Mm, gm) be another closed hypersurface enclosing ∂M. Suppose ι : Σ → Σ̃ is 
an isometry and H̃ ◦ ι(p) ≥ H(p) for any p ∈ Σ, where H, H̃ denote the mean curvature 
of Σ, Σ̃, respectively. Then Σ̃ = Σ up to a rigid motion of (Mm, gm).

Proof. Let Ω be the finite region bounded by Σ̃ and ∂Mm, ∂Mm is strictly outer-
minimizing in (Ω, gm). Let N be the unbounded region that is exterior to Σ, then Σ
is outer-minimizing in (N, gm). By Theorem 1.1 and Remark 1.1, the manifold (M, g)
constructed from (Ω, gm) and (N, gm) is smooth. In particular, Σ and Σ̃ have the same 
second fundamental forms, and gm has the same curvature quantities at p and F (p), 
∀ p ∈ Σ. Writing gm in the rotationally symmetric form gm =

(
1 − 2m

rn−2

)−1
dr2 + r2dσo, 

where σo is the standard round metric on the (n −1)-sphere, one knows the length square 
of the Ricci curvature of gm is |Ric(gm)|2 = n(n −1)(n −2)2m2r−2n. Since it is the same 
at p and F (p), we see that F preserves r. From this, it is not hard to see that F is the 
restriction of a rotation of (Mm, gm). !

In general, the outer-minimizing condition is a global condition that is not easy to 
check. However, in a Schwarzschild manifold, a local condition that Σ is star-shaped with 
positive mean curvature guarantees Σ is outer-minimizing. In particular, Theorem 3.2
applies to these Σ in (Mm, gm).
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