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1. Introduction

In this paper, we prove a rigidity theorem for a pair of Riemannian manifolds with
nonnegative scalar curvature, with boundary. The theorem may be viewed as the rigidity
part of the Riemannian Penrose inequality on manifolds with corners along a hypersur-
face. We assume all manifolds have dimension n < 7.
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Theorem 1.1. Let (Q", gqa), (N™, gn) be a compact manifold, an asymptotically flat man-
ifold, with nonnegative scalar curvature, with boundary 0N, ON, respectively. Suppose the
boundaries 02 and ON satisfy the following

(i) 09 is the disjoint union of two pieces, X and X, where Xy has zero mean curvature
and is strictly outer-minimizing in (2, gq);
(ii) ON is outer-minimizing in (N, gn); and
(iii) X is isometric to ON, with the induced metrics; and under the isometry, Hq > Hy,
where Hq is the mean curvature of 2 in (2, go) with respect to the outward normal,
and Hy is the mean curvature of ON in (N, gn) with respect to the infinity pointing
normal.

Let m(g) be the mass of (N,g) and let |Sg| be the area of Xy in (Q,gq). Suppose

n—2
1 |2H| n-1
m(g) = 5 (w 1> y
n—

where w,_1 is the area of the standard round (n — 1)-dimensional sphere. Then

e Y and ON have the same second fundamental forms;
o X (and hence ON ) isometrically embeds in a spatial Schwarzschild manifold

0go) = (e slol = ()77 (14 Bl ) )

with mass m = m(g). Here gy is the Euclidean metric on R™. Moreover, the image of
this embedding and the Schwarzschild horizon OM,,, enclose a bounded domain .,
in M,,,; and

e (9, 9q) is isometric to (Qm, gm) and (N, gn) is isometric to the complement of Qpp,
in My, gm)-

The condition that ¥ is strictly outer-minimizing in (2, gg) means that any hyper-
surface ¥/ in Q, which encloses ¥, has area strictly greater than |Xg|. Similarly, ON is
outer-minimizing in (V, giy) means that any hypersurface ¥” in N, which encloses ON,
has area greater than or equal to the area of ON.

In Theorem 1.1, we state the conclusion in a geometric manner. From a more analytic
perspective, our proof of Theorem 1.1 indeed gives a regularity result that asserts suitable
singular metrics realizing the optimal value in the Riemannian Penrose inequality is
smooth in properly specified coordinates. We formulate this conclusion in the following
remark.

Remark 1.1. Under the assumptions of Theorem 1.1, one can consider a new differentiable
manifold obtained from 2 and N as follows.
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Let Uy be a Gaussian tubular neighborhood of ON in (N, gy) so that Uy is diffeo-
morphic to [0,€) x N for some ¢ > 0 and gy = dt?> + g; in U,. Similarly, let U_ be a
Gaussian tubular neighborhood of ¥ in (£, go) so that U_ is diffeomorphic to (—e, 0] x X
and go = dt? + g; in U_. Here {g;" }+>0, {g; }t+<o denote a family of metrics on ON, ¥,
respectively. Since ¥ is isometric to dN, identifying ¥ with ON via the given isometry,
one may assume g;" = g; at t = 0. Let M be the topological manifold obtained by gluing
Q and N so that ¥ and N are identified via the given isometry. Define the differentiable
structure on M so that it is determined by the open covering consisting of {Q2, N, U},
where U = U_ U U4 = (—¢€,¢) X X.

On this differentiable manifold M, consider a Lipschitz metric g given by

g=gqoon ), and g=gy on N.

n—2

If (2, go) and (N, gn) satisfy m(g) = 1 ( Bl ) m’ Theorem 3.1 in Section 3 shows that

2 Wn—1

g is smooth across ¥ and the manifold (M™, g) is isometric to (M, gm) with m = m(g).

Our main motivation to consider Theorem 1.1 is the rigidity case of the localized
Riemannian Penrose inequality studied in [12]. As a corollary of Theorem 1.1, equality
in Theorem 1.1 of [12] holds if and only if the compact manifold in that setting is
isometric to the domain enclosed by the image of the relevant isometric embedding into
(M, gmm) and the Schwarzschild horizon OM,,.

Another motivation for us is to study the rigidity of isometric hypersurfaces with the
same mean curvature in (M, g,,). For convenience, we make the following definition.

Definition 1.2. In an ambient Riemannian manifold, we say two hypersurfaces ¥ and &
are H-isometric if there is an isometry F : X — ¥ such that H(F(p)) = H(p), Vp € X.
Here H, H are the mean curvatures of X, ¥, respectively.

A corollary of Theorem 1.1 and Remark 1.1 is

Corollary 1.3. Let X C (M., gm) be a closed hypersurface enclosing the horizon OM,,
in a spatial Schwarzschild manifold with mass m > 0. Suppose ¥ is outer-minimizing. If
Y is another hypersurface enclosing &M which is H-isometric to 3, then ¥ =3 up to a
rigid motion of (M, gm)-

The rigidity of H-isometric hypersurfaces seems an interesting question that links the
isometric embedding problem in Riemannian geometry to the context of quasi-local mass
in general relativity. In the Euclidean space R3, a classic result of Cohn-Vossen [5] shows
that convex surfaces are rigid. Recently Li and Wang [11] gave counterexamples which
illustrate the lack of rigidity even for convex surfaces if the ambient manifold is not a
space form. On the other hand, relativistic consideration in relation to the Bartnik mass
[1] seems to suggest H-isometric surfaces can be rigid if the ambient manifold is static.
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In a spatial Schwarzschild manifold (M, g ), such a rigidity was shown by Chen and
Zhang [4] for suitable convex surfaces in dimension 3. Analogous results were given by
Li, Wang and the second author [10] among star-shaped hypersurfaces in an (M,,, gm,)
of general dimensions.

We now explain the proof of Theorem 1.1. A main tool we use is Bray’s proof of
the Riemannian Penrose inequality (RPI) in dimension three [2] and Bray-Lee’s proof
of the RPI for dimensions n < 7 [3]. We use the flow produced in [2,3] to perturb the
singular metric g constructed in Remark 1.1, and analyze the case that the mass has a
zero derivative. This relates to another ingredient in the proof, which is a revisit of the
rigidity case of the Riemannian positive mass theorem with corners along a hypersurface.

Theorem 1.4. Let (Q™, gq), (N™, gn) be a compact manifold, an asymptotically flat man-
ifold, with nonnegative scalar curvature, with boundary 02, ON , respectively. Suppose OS2
is isometric to ON, and under the isometry, the mean curvatures satisfy Hq > Hy. If
m(gn) =0, then

e 00 and ON have the same second fundamental forms; and
e the manifold (M, g), constructed by gluing (2, ga) and (N,gn) in Remark 1.1, is
smooth and is isometric to (R™, go).

We give an account of previously known results that relate to Theorems 1.1 and 1.4.
Both rigidity questions are tied to the quasi-local mass problem (see [19,12] for instance).
If the manifolds are spin, Shi and Tam proved Theorem 1.4 in [19]. Without the spin
assumption, McFeron and Székelyhidi [16] proved a variation of Theorem 1.4, from which
Theorem 1.4 is derived. We will explain how the results in [16] implies Theorem 1.4 in
Proposition 2.1. In the case of Riemannian Penrose inequality with corners, the rigidity
part was studied by Shi, Wang and Yu [21] in 3-dimension, and the manifolds were shown
to be static with zero scalar curvature and, under an additional geometric condition,
(€2, ga) was proven to be isometric to a region in (M, g,,). Theorem 1.1 was also proved
by the authors [13] for the case n = 3, in the setting of the localized Penrose inequality
[12].

The Riemannian Penrose inequality was first proved by Huisken and Ilmanen [8] for
connected horizon, and by Bray [2] for general horizon, both in dimension 3. In [3],
Bray and Lee established the inequality for dimension n < 7. As the proof of Theo-
rem 1.1 makes use of Bray and Lee’s work [3], Theorem 1.1 satisfies the same dimension
assumption.

2. Rigidity of PMT with corners along a hypersurface

In this section, we revisit the rigidity case of the Riemannian positive mass theorem
[18,24] formulated on manifolds with corners along a hypersurface.
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We say (M™, g) is an asymptotically flat manifold with corners along a hypersurface
S if the following conditions hold:

(1) M is a smooth differentiable manifold and S C M is a compact, embedded two-sided
hypersurface which can be disconnected;

(2) g is a C° metric on M, g is smooth away from S, and (M \ K, g) is asymptotically
flat for some compact set K containing S;

(3) there exists a smooth open neighborhood U of S such that U is diffeomorphic to
S x (—€,€) on which the metric g takes the form of g = dt? + g;. Here S = S x {0}
under this diffeomorphism, and ¢; denotes the induced metric on S x {t}. Moreover,
if U, denotes S x [0,¢) and U_ denotes S x (—¢,0] in U, ¢ is smooth up to the
boundary S in Uy and U_, respectively.

We emphasize that all future regularity assertions of g we are about to make will
be with respect to the differential structure specified on U above. In geometric applica-
tions, this will not impose any restriction, because one can always glue two Riemannian
manifolds along their isometric boundary S in the way specified in Remark 1.1.

Given such an (M, g) with corners along S, we say it satisfies the mean curvature
condition across S if H_ > H, (see [17]). Here Hy, H_ denote the mean curvature of
Y in (U4, g), (U-,g) with respect to the normal vectors d;, respectively. We note that
this condition is intrinsic and it remains unchanged if one switches ¢t and —t.

A main observation in this section is the following rigidity statement, which is built
on the result of McFeron and Székelyhidi [16].

Proposition 2.1. Let (M™,g) be an asymptotically flat manifold with corners along a
hypersurface S. Suppose g has nonnegative scalar curvature away from S and satisfies the
mean curvature condition across S. If m(g) = 0, then S has the same second fundamental
forms in its both sides in M, the metric g is smooth, and (M™,g) is isometric to the
Euclidean space (R™, go).

Proof. Under the given assumptions, it was proved in Theorem 18 of [16] that there
is a C%® diffeomorphism ¢¢ : M™ — R”™ such that ¢ is an isometry. We claim this
¢o is indeed C1'1. The reason is as follows. The proof in [16] considered the solution
{g(t)}+>0 to the usually called h-flow (see [22]) with an initial condition (M, g). The
properties of g ensures g(t), t > 0, has nonnegative scalar curvature. If m(g) = 0, each
(M g(t)) is isometric to (R™, go) and the h-flow is acting by diffeomorphisms. By writing
g(t) = @5 (go), the proof of Theorem 18 on page 439 in [16] showed that the family of
diffeomorphisms {¢;} are bounded in C1'1, and has a subsequence that converges in C'1»*
to a diffeomorphism ¢q. Thought not stated in [16], the C'*! bound on {¢;} ensures that
the limit ¢g is C1! itself.

Now let hy, h_ denote the second fundamental forms of S in (Uy, g), (U-, g), respec-
tively. Let Sy = ¢o(S) C R™, then Sy is a C1'! hypersurface, and hence has a.e. defined
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fundamental form. Denote this second fundamental form by ho. Let {0,} be a local
frame on S. Let 0% = ¢o, (Oa), then {8&0)} is a local C%! frame on Sy. The Christoffel
symbols of the induced metric on Sy with respect to {8((,,0)}, wherever they are defined,
agree with those of the induced metric on ¥ with respect to {J,} under the map ¢y,
because ¢g : S — S is an isometry. Also, ¢ sends the normal vector to S to the normal
vector to So. Thus, by the definition of second fundamental forms, hy = ¢§(hg), a.e. on
S. Similarly, h— = ¢§(ho), a.e. on S. These imply hy = h_.

By the proof of Theorem 2 in [16], ¢ is flat away from S. This and the fact S has the
same second fundamental forms in U, and U_ imply that g is smooth across S in U.
(See Lemma 4.1 in [19] for instance.) Hence, g is smooth on M and (M, g) is isometric
to (R, g0). O

Theorem 1.4 follows from Proposition 2.1 and the construction of (M,g) in Re-
mark 1.1. Proposition 2.1 also implies the rigidity of H-isometric hypersurfaces in
Euclidean spaces.

Corollary 2.2. Let Y and 3 be two closed hypersurfaces in R™. If ¥ and ¥ are H-isometric,
then they differ by a rigid motion of R™.

It is worth of noting that there are no topological assumptions on ¥, ¥ above. In the
classic study of isometric surfaces in R3, results are often restricted to 2-spheres due to
various convexity assumptions on the surface.

Next, we examine the rigidity case of Bray’s mass-capacity inequality, Theorem 9 in
[2], for manifolds with corners along a hypersurface.

Given an asymptotically flat manifold (M™, g) with corners along a hypersurface 3,
with nonempty boundary M, as the metric is Lipschitz, there exists a function ¢ sat-
isfying

x)=0, in M
xz) =0, on OM (2.1)

Ag‘ﬂ(
o(

p(x) = 1, as x — oo.

Standard elliptic theory shows ¢ € WP(M) for any p > n, hence ¢ € C1;% (M) for any
a € (0,1), ¢ is smooth away from 3, and ¢ is smooth up to M. The asymptotically
flatness of g implies ¢ satisfies

E(g)

- 22—

p(r) =

+o(|z[*™™), as x — oo. (2.2)

Here £(g) > 0 is a constant known as the capacity of OM in (M, g).

Proposition 2.3. Let (M™,g) be an asymptotically flat manifold with corners along a
hypersurface 3. Suppose g has nonnegative scalar curvature away from 3 and satisfies
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the mean curvature condition across 3. If M has nonempty boundary Xy that has zero
mean curvature, then

m(g) > =E(g)-

Moreover, if m(g) = %5(9), then ¥ has the same second fundamental forms in its two
sides in (M, g), g is smooth across ¥, and (M, g) is isometric to a spatial Schwarzschild

manifold outside the horizon.

Proof. We start with a property of harmonic functions at and near the singular hyper-
surface Y. Since g is smooth up to X from its both sides in M, the restriction of ¢ to %
is indeed smooth, and ¢ is smooth up to ¥ from its both sides in M. See Proposition
3.1 and Remark 3.1 in [7] for this claim.

We proceed by conformally deforming g as in [2]. More precisely, we first reflect
(M, g) across Xy and denote the resulting manifold by (]\7, g). Clearly, (M7 g) is an
asymptotically flat manifold with two ends, with corners along a hypersurface S =
YU Xy UY, where ¥/ is the image of ¥ under the reflection map. Let ¢ be the odd
extension of ¢ to M , and let

4
1 2\ n—2 —
G= (%) g on M. (2.3)

At the infinity of M, m(g) is related to m(g) by m(§) = m — 3€(g). Moreover, (M, §)

satisfies the following:

(i) g is smooth up to S in its both sides in M. Here we used the above-mentioned
regularity of ¢ at and near 3.

(i) If M_ denotes the image of M under the reflection in M and Q_ = M_ U {o}
denotes the one-point compactification of M_ by including a point o representing

the infinity of M_, then § is I/Vllocq near o for some ¢ > n. This is a result of the
T

harmonic conformal factor — 0 as x — o. (See Lemma 6.1 in [14] and Lemma

4.3 in [6] for instance.)
(iii) On M U {0}, ¢ has nonnegative scalar curvature away from S U {o}, and satisfies
the mean curvature condition across S.

The particular type of point singularity at o does not affect the positive mass theorem.
Applying the proof of Theorem 18 in [16], combined with the proof of Theorem 7.2 in
[20], one has m(g) > 0, and if m(g) = 0, MU {o} is diffeomorphic to R™ and g is flat
away from S U {o}. (If n = 3, it was shown in [9] that a much weaker type of point
singularity suffices.)

Suppose m(g) = 0. Since § is flat around o, we can assume g is smooth across o by
revising the differential structure near o if needed. Precisely, this follows from Theorem
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3.1 in [23]. Now (MU {0}, g) is only potentially singular at S and m(g) = 0. By Propo-
sition 2.1, S has the same fundamental forms in its two sides in (M ,J), g is smooth
(with respect to the differential structure specified by the Gaussian neighborhoods of S
relative to ¢), and (MU {0}, §) is isometric to (R™, go).

Back on (M, g), as ¢ is C! across ¥, it follows from the conformal change formula
of second fundamental forms that ¥ has the same fundamental forms in its two sides in
(M, g). Hence, g is C*! across ¥, and ¢ is C*“ in U. Since § has zero curvature in U,
and U_, and ¢ is C? in U, a calculation similar to Lemma 4.1 in [19] shows 8?¢;|,—¢ in
U, and U_ agree at X. As a result, g is C?! across ¥ and ¢ is C*“ in U. Repeating
this argument, we have g and ¢ are smooth in U. The same argument also shows X is
totally geodesic in (M, g), g and ¢ are smooth near Xy in M.

To complete the proof, by (2.3), ¥ = %@ > ( is harmonic on (M, g) that is isometric
to (R™\ {0}, go). Therefore, pﬁ—¢
that (M, g) is isometric to a spatial Schwarzschild manifold outside its horizon. 0O

=1+ i’lrl% for some constant m > 0. We conclude

3. Proof of Theorem 1.1 and Corollary 1.3

We use Proposition 2.3 and the conformal flow in [2,3] to prove the following theorem,
which implies Theorem 1.1. We emphasize that the conformal flow in [2,3] is used only
to produce a perturbation of the metric, thus we do not require the long term behavior
of the flow if the initial data is a manifold with corners.

Theorem 3.1. Let (M™,g) be an asymptotically flat manifold with corners along a hy-
persurface ¥. Suppose g has nonnegative scalar curvature away from ¥ and satisfies the
mean curvature condition across Y. Suppose M has nonempty boundary Xy that satisfies

o Y has zero mean curvature;
o Xy is strictly outer-minimizing; and

n—2
) n—1
« mig) =4 (22"

Then % has the same second fundamental forms in its two sides in (M,g), g is smooth
across &, and (M, g) is isometric to a spatial Schwarzschild manifold outside the horizon.

Proof. We adopt the notations in [2,3]. On M, let go = g and define g; = ut(x)ﬁgo,
where u; is defined by

t

w(z) =1+ / vs(z)ds

0

and vy (z) satisfies
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Agyvi(x) = 0, outside 2&?

v¢(x) = 0, on and inside E(If[) (3.1)
xhﬁrgo v(z) =—e "

Here Z(I? is the outmost minimal area enclosure of X g = Zg) in (M, g¢). Because X is

disjoint from ¥ in the initial (M, g) and g is Lipschitz across 3, an examination of the
proof of Theorem 2 in [2] and Theorem 2.2 in [3] shows that {g;}; <. exists for small ¢,
and Eg) does not touch Xy for ¢ > 0 and converges to Xy as t — 0. As a result, for
small t, E%) does not touch ¥ and is minimal and strictly outer-minimizing in (M, g¢).

For convenience, let M; denote the exterior of Zg) in M. Since v; is harmonic on
(M, go), as in the proof of Proposition 2.3, we know the restriction of v; to X is smooth,
and vy is smooth up to X from its both sides in M. The same conclusion also holds for
Uy

As a result, (M, g;) is a manifold with corners along 3, has nonnegative scalar curva-
ture away from X and satisfies the mean curvature condition across 3. Since n®) = OM;
is outer-minimizing in (M, g;), the Riemannian Penrose inequality in [2,3], formulated
for manifolds with corners [15], shows

n—2
(t) n—1
1/(|X
mig) > ; ('L) . (32)

Here |Eg)\gt is the area of E%) in (M, g¢). By Theorem 3 in [2] and Lemma 2.3 in [3],
this area is a constant, that is

=05 = 1Za]- (3.3)

We are interested in the change of m(g;) at ¢ = 0. By Equation (113) in [2] and Lemma
2.7 in [3],

L oom(g) = ~2m(3) = £(g) — 2m(g), (3.4

where g, £(g) are the conformally deformed metric, the capacity constant, respectively,
in the proof of Proposition 2.3. If m(g) > $€(g), then

d
E\tzom(gt) < 0. (35)
n_ff
At t =0, it is assumed m(g) = % (Eﬂ) """ . Thus, for small ¢ > 0,

m(g) < % <@> - (3.6)
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This is a contradiction to (3.2) and (3.3).
Therefore, (M, g) satisfies m(g) = 1£(g). By the rigidity statement in Proposition 2.3,
g is smooth across ¥ and (M, g) is isometric to a spatial Schwarzschild manifold outside

its horizon. O
Remark 3.1. X does not need to enclose the manifold boundary ¥y in Theorem 3.1.

Theorem 1.1 now follows from Theorem 3.1, because, if (M, g) is the manifold con-
structed from (£2,gq) and (N,gn) in Remark 1.1, then ¥y = OM is strictly outer-
minimizing in (M, g) by conditions (i) and (ii). Thus Theorem 3.1 applies to show g is
smooth and (M, g) is isometric to a Schwarzschild manifold.

Corollary 1.3 follows from the following theorem.

Theorem 3.2. Let ¥ C (M,,,, g,n) be a closed hypersurface enclosing the boundary OM,,
in a spatial Schwarzschild manifold with mass m > 0. Suppose ¥ is outer-minimizing.
Let ¥ C (M, ) be another closed hypersurface enclosing OM. Suppose ¢ : ¥ — Y s
an isometry and H o v(p) = H(p) for any p € &, where H, H denote the mean curvature
of ¥, ¥, respectively. Then ¥ =% up to a rigid motion of (M, gm).

Proof. Let Q be the finite region bounded by ¥ and dM,,, OM,, is strictly outer-
minimizing in (€2, g,,). Let N be the unbounded region that is exterior to ¥, then ¥
is outer-minimizing in (N, ¢g,,). By Theorem 1.1 and Remark 1.1, the manifold (M, g)
constructed from (£, g,,) and (V, g, ) is smooth. In particular, ¥ and > have the same
second fundamental forms, and g, has the same curvature quantities at p and F(p),

Vp € X. Writing ¢,,, in the rotationally symmetric form g, = (1 — 73]1‘2 ) 1 dr? +r2do,,
where o, is the standard round metric on the (n—1)-sphere, one knows the length square
of the Ricci curvature of gy, is |Ric(gm)|? = n(n —1)(n —2)?m?r=2". Since it is the same
at p and F(p), we see that F preserves r. From this, it is not hard to see that F' is the

restriction of a rotation of (M, g,,). O

In general, the outer-minimizing condition is a global condition that is not easy to
check. However, in a Schwarzschild manifold, a local condition that X is star-shaped with
positive mean curvature guarantees ¥ is outer-minimizing. In particular, Theorem 3.2
applies to these X in (M, gm).
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