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ABSTRACT: We revisit the collocation method of Manzhos and Carrington [J. Chem. Phys.,
2016, 145, 224110] in which a distributed localized (e.g., Gaussian) basis is used to set up a
generalized eigenvalue problem to compute the eigenenergies and eigenfunctions of a
molecular vibrational Hamiltonian. Although the resulting linear algebra problem involves full
matrices, the method provides a number of important advantages, namely, (i) it is very simple
both conceptually and numerically, (ii) it can be formulated using any set of internal molecular
coordinates, (iii) it is flexible with respect to the choice of the basis, (iv) no integrals need to
be computed, and (v) it has the potential to significantly reduce the basis size through
optimizing the placement and the shapes of the basis functions. In the present paper, we
explore the latter aspect of the method using the recently introduced, and here further
improved, quasi-regular grids (QRGs). By computing the eigenenergies of the four-atom
molecule of formaldehyde, we demonstrate that a QRG-based distributed Gaussian basis is
superior to the previously used choices.

■ INTRODUCTION
The computation of quantum vibrational spectra of molecular
systems has long been and remains to be one of the challenges of
computational chemistry. Given a quantum system with d-active
degrees of freedom, first, one chooses a suitable coordinate
system and a suitable set of basis functions. Then, by evaluating
the matrix elements of the Hamiltonian operator on this basis,
the problem of calculating the energy levels and the wave
functions is reduced to an eigenvalue problem. Likewise, a
generalized eigenvalue problem is obtained if the basis is not
orthogonal. There are a number of strategies to approach this
problem, each having its own pros and cons, long histories, and
long citation lists. For example, in the so-called “grid methods”,
the solution of the Schrödinger equation is usually represented
using a direct-product grid. There are then no potential energy
integrals that need to be computed, and typically, the resulting
eigenvalue problem involves sparse matrices, which can be
diagonalized using very efficient iterative eigensolvers that only
need a function that multiplies a vector by a sparse matrix.
However, the major drawback of such methods is the
exponential proliferation of the number of grid points with
dimensionality

N c dκ= · (1)

We note though that the “curse of dimensionality” is the very
nature of any basis method, regardless of whether a primitive
direct-product grid or state-of-the-art functions are chosen. The
two constants, c and κ, do depend on this choice though, which
may result in a substantial reduction (or increase) in the total
size of the basis, the largest possible κ would usually correspond

to a direct-product grid. At the same time, a simple pruning of a
direct-product grid by retaining the points (r(i)) that appear
within the energy cutoff region

V Er( )i( )
cut< (2)

often results in a noticeable reduction of both c and κ. However,
recalling the well-known paradox that most of the mass (or
volume) of a high-dimensional orange is in its skin, not the
pulp,1 the problem with covering a region of interest in a high-
dimensional space uniformly by a grid (or localized basis
functions) becomes apparent: even after pruning according to
eq 2, most of the grid points still end up being wasted in the
peripheral region, i.e., the region of least importance, where the
wave function is small and not oscillatory.
To avoid the severe exponential scaling of uniform grids, one

may need to give up the benefits of sparse linear algebra. In this
context, a distributed Gaussian basis (DGB) is a particularly
popular option with a long history going back several decades
(see, e.g., refs 2−6). Gaussians can form a convenient and
flexible framework for solving the Schrödinger equation. There
is a hope that this flexibility can be exploited so that an optimal,
compact, and efficient basis can be constructed. Consequently, a
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number of authors have introduced different Gaussian place-
ment methods (see, e.g., refs 7−11).
A semirigorous semiclassical argument12 implies that an

optimal distribution of grid points to represent the wave
function should be something of the form

E E V V E

V E
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r r
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( )
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cut
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cut

cut
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=
[ + Δ − ] <

≥ (3)

where V(r) is the potential energy, and Ecut and ΔE are the
adjustable parameters that depend on the system and the energy
range of interest. The same expression was also implemented by
Garashchuk and Light,7 although instead of d/2, they used an
adjustable constant γ, and concluded that γ = 1 was a reasonable
choice for both the d = 2 and 3 cases. Also note that Manzhos
and Carrington9 used γ = 1 for H2CO (d = 6). In the present
work, we follow the latter paper very closely. For this reason,
from here onward, we will refer to it as M&C.
Even assuming that an optimal distribution function for the

Gaussian centers, r( ), is known explicitly, its implementation is
still not straightforward because one wants to satisfy several
conditions at the same time. For example, while it is easy to
generate a pseudo-random sequence distributed according to
any distribution function using the Monte Carlo method,13,14

such an uncorrelated random sequence would have “islands” of
points that appear arbitrarily close to each other and “gaps”, i.e.,
relatively large regions without points. It is hard to imagine that
such a grid would be optimal. Accordingly, Garashchuk and
Light proposed a scheme that partially addressed this problem
and which we will refer to as quasi-random + rejection. Namely,
a uniform low-discrepancy quasi-random (e.g., Sobol) se-
quence15−17 can be generated in a domain of interest. Such
low-discrepancy sequences suppress the previously stated
clustering problem. A sequence r(i) with the desired distribution
can then be produced by a rejection scheme in which the points

are retained with probability r( )i( )∼ . However, the rejection
step destroys the nice low-discrepancy structure present in the
original sequence, making the new sequence look like a mouth
with broken teeth, i.e., back to the islands and gaps (see below).
One could possibly compensate for the locally nonuniform
distribution of Gaussian centers by customizing the widthmatrix
for each Gaussian depending on its environment, but this would
certainly turn the basis optimization into a very nontrivial
problem. There is an additional problem one would need to
address; the linear dependencies that inevitably arise due to
some points appearing arbitrarily close. Such linear depend-
encies lead to numerical instabilities when solving the
generalized eigenvalue problem.
To this end, in our recent paper,18 we introduced a new type

of grid, a quasi-regular grid (QRG), which seems to address all of
the concerns that exist in the quasi-random + rejection scheme.
A QRG is obtained by treating the grid points as particles
interacting via a short-range pairwise energy functional. The
short-range pair potential depends locally on the given
distribution function r( ) and is designed to maintain a correct
scaling law relating to the nearest-neighbor distance to r( ). In
the next section, we revisit our QRG approach and propose an
improved version, which is simpler than the original ansatz and
yet is numerically more efficient. We then review the collocation
method,19,20 which was recently adapted by M&C9 to the
challenging problem of the four-atom molecule of form-
aldehyde, H2CO. One of the great advantages of the collocation

method in combination with the DGB approach is its extreme
simplicity. In this approach, all of the potential energy integrals
are avoided and the action of the kinetic energy operator on the
wave function is evaluated numerically. The latter trick allows
one to use any convenient set of internal coordinates and not
worry about the very complex form of the Laplacian operator.
The last section will apply the methodology to compute
vibrational energy levels of formaldehyde.

■ QRG ANSATZ REVISITED

Consider a general (not necessarily normalized) distribution
function r( ) 0≥ with a finite support d∈  . Our goal is to

construct a set of points (or “particles”) r i( ) ∈ (i = 1, ..., N),
which (a) locally have a regular (possibly, closed-packed)
arrangement and (b) globally are distributed according to r( ).
Clearly, the two conditions, (a) and (b), are mutually
contradictory and as such can only be satisfied approximately.
That is, the local regular arrangement around each point r(i) is
ideally a spherical shell of nearest neighbors with radius
rmin(r

(i)). For condition (b), it is then natural to require the
scaling law

r r r( ) ( ) d
min

1/κ= [ ]−
(4)

to be satisfied approximately for any r = r(i) with some constant
κ. Here, for the construction of a QRG, we propose both an
improved and simplified (compared to that in ref 18) solution
based on the minimization of the energy functional

ur r( , , ) minN

i

N

j

N

ij
(1) ( )

1 1

∑ ∑··· = →
= = (5)

with a (purely repulsive) short-range pair potential

u r r r( )ij
i d i j m( ) 1/ ( ) ( )= {[ ] || − || }α

−
(6)

where for a positive-definite matrix α, we defined the α-norm of
vector r by

r r r( )T 1/2α|| || ≔α (7)

The choice of the adjustable parameter m is probably not
important, as long as the potential is truly “short-range”, which
can be achieved by, e.g.,m = 9 + d. The role of α will be clarified
later.
Due to the strong short-range repulsion, the particles r(j) are

expected to arrange themselves locally to resemble a quasi (i.e.,
not quite perfect)-closed-packed structure. Moreover, the lack
of attractive terms in the energy functional (these terms were
included in the original formulation18) enormously simplifies
the energy landscape that now has only a small number of local
minima, which are all structurally equivalent. At the same time,
the functional form of uij is the key to maintaining the scaling law
(eq 4), i.e., defining the distance between the nearest neighbors
in accordance with the local density of points r( ). Due to the
absence of the attractive terms, there is no need to normalize

r( ). To this end, the minimization of can be carried out by
the simulated annealing method,21 in which case, one can
conveniently move one particle at a time, thus exploiting the
pairwise nature of the energy functional.
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■ ASSESSMENT OF QUASI-REGULARITY USING
SCALED RADIAL CORRELATION FUNCTION:
TWO-DIMENSIONAL (2D) NUMERICAL EXAMPLE

To assess the “local regularity” of a set of points {r(i)} (i = 1, ...,
N), we consider the radial pair correlation function (more
precisely, the corresponding histogram) scaled with respect to
the distribution function r( )

g r
N

r
r

r r

r
( )

1
( )i

N

j i

i j

isc
1

( ) ( )

min
( )

i

k
jjjjjj

y

{
zzzzzz∑ ∑ δ≔ −

|| − ||α
= ≠ (8)

The constant, κ, in eq 4 is generally unknown, but to make eq 8
meaningful, we can replace it with its lower-bound estimate,e.g.

N
rr

1
( )

j

N
j d

j
1

( ) 1/
,min∑κ =

= (9)

where the actual nearest-neighbor distance for jth particle is

r j Nr rmin ( 1, ..., )j i
i j

,min
( ) ( )≔ || − || =α (10)

To this end, the sharpness of the first peak in gsc(r) can be used
to assess the local regularity (condition (a)), and its appearance
at r ∼ 1, to assess how well condition (b) is satisfied.
Here, we demonstrate the QRG assessment method using the

2D distribution function r( ) (cf. eq 3) arising from the 2D
Morse potential

V Dr( ) (e 1)
k

w r

1

2
2k k∑= −

=

−

(11)

with Ecut = 11.5 and ΔE = 1.0, and the Morse parameters: D =
12.0, w1 = 0.2041241, and w2 = 0.18371169. The appearance of
the QRG grid will be compared with the following established
grid layouts:

1. Direct-product: a uniformly spaced direct-product grid
truncated at Ecut.

2. Uniform quasi-random: a uniformly distributed 2D low-
discrepancy quasi-random sequence (in this work, we use
the Sobol sequence15−17), truncated at Ecut.

3. Uniform pseudo-random + rejection: starting with a
uniformly distributed pseudo-random sequence r(i) in a

Figure 1.Different methods (see the text) to generateN = 350 grid points for the 2DMorse potential (eq 11) within the cutoff range V(r) < Ecut = 11.5
(indicated by the red contour line). The two top panels show uniformly distributed grids. The nonuniform grids in the two bottom panels follow the
distribution, r( ), defined by eq 3 (ΔE = 1.0).
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sufficiently large domain, one retains only the points that

satisfy the inequality r( )/i
i

( )
max ξ> , where ξi is a

random number uniformly distributed in the [0;1]
interval.

4. Uniform quasi-random+ rejection: same as the above, but
r(i) is a 2D Sobol sequence.

We also refer the reader to our recent paper,18 where some of
these grids were used to solve the Schrödinger equation with the
2D and three-dimensional (3D) Morse potential, and the
superiority of QRG was demonstrated.
The results forN = 350 comparing the fivemethods are shown

in Figures 1 and 2. The top two panels in Figure 1 show two
types of uniform grids: a direct-product grid and quasi-random
grid. While the quasi-random grid seems to have a somewhat
better appearance near the edges, the main drawback of both
grid layouts is that too many points are wasted in the region
(close to the cutoff line) where the wave functions are smooth
and less oscillatory. As a consequence, given the fixed total
number of points N = 350, both grids are too sparse in the
central region where the wave functions are oscillatory and need
a dense grid for an adequate representation. The bottom-left
panel in Figure 1 shows a 2D grid generated by a pseudo-random
sequence distributed according to the desired distribution
function (eq 3). The clustering of grid points and presence of
gaps throughout the domain of interest is apparent and is a well-
known drawback of pseudo-random sampling. The bottom-right
panel shows the grid obtained by the rejection method from the
originally uniform 2D Sobol sequence (i.e., the sequence the
beginning part of which appears in the top-right panel). Yet, the
bottom two panels look very similar. The reason is due to the
rejection process. To construct this 350-point grid, a large
number of points (∼10 000) had to be rejected leading to an
almost complete loss of correlations between the remaining
points, consequently bringing back the unwanted gaps.
To this end, Figure 2 shows the QRG result using the same

number (N = 350) of points. The density of the QRG points is
consistent with the desired distribution (eq 3) and is locally
regular (i.e., locally has uniform spacing between nearest
neighbors). The appearance of the QRG, at least visually, is
ideal. In addition, the quality of this QRG is confirmed by the

radial correlation function gsc(r), which does show a relatively
sharp peak at r ∼ 1.

■ CALCULATING THE VIBRATIONAL SPECTRUM OF
AMOLECULE USING THE COLLOCATIONMETHOD
AND INTERNAL COORDINATES

In this section, we briefly describe the collocation method,19,20

which was also recently used by M&C9 to compute the
vibrational spectrum of formaldehyde, H2CO. In the latter
paper, the authors demonstrated that the method could be both
improved and simplified further by using the most convenient
set of internal coordinates and evaluating the kinetic energy
matrix elements numerically.
Assuming any internal coordinate system r = (r1, ..., rd) that

describes a molecule (d = 3Natoms− 6) or its part, the vibrational
Hamiltonian reads

H T V r( )̂ = ̂ + (12)

in which the kinetic energy operator is written using the 3Natoms
Cartesian coordinates

T
m x2i

N

i i1

3 2 2

2

atoms

∑̂ = − − ℏ ∂
∂= (13)

Consider a set of grid points r i d( ) ∈  (i = 1, ..., N), where each
point is associated with a basis function, localized in its vicinity.
A convenient (albeit not required) choice corresponds to
Gaussians

i Nr r r( ) exp ( 1, ..., )i
i( ) 2

i( )Φ ≔ [−|| − || ] =
α (14)

where the norm ∥...∥α(i) is defined by eq 7 with the coordinate
dependence of the width matrix α(i) to be specified later.
In the collocation approach, one defines a grid of collocation

points r i d( ) ∈  (i = 1, ...,Nc) at which the Schrödinger equation
must be satisfied

H E r( ) ( ) 0j( )̂ − Ψ = (15)

Here, the first N points are set to coincide with the Gaussian
centers, and the remaining points are generated separately (see
below). By defining the overlap and Hamiltonian matrices

Figure 2. Sampling of theMorse potential (see the caption in Figure 1) by a quasi-regular grid. The compromise between achieving local regularity and
the desired distribution r( ) is assessed by the sharpness of the peak at r ∼ 1 in the radial correlation function, gsc(r).
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HS r H r( ); ( )ji i
j

ji i
j( ) ( )≔ Φ ≔ ̂ Φ (16)

and expanding the eigenfunctions using the Gaussian basis

r c r( ) ( )
i

N

i i
1

∑Ψ = Φ
= (17)

we arrive at the rectangular generalized eigenvalue problem

EH S c( ) 0− = (18)

That is, each eigenvalue E, eq 18, is associated withNc equations
and N unknown coefficients c = (c1, ..., cN)

T. One practical way
to solve this (overdetermined) problem is to reduce it to a
square N × N generalized eigenvalue problem as, e.g.9

ES H S S c( ) 0T T− = (19)

Note here that in the special case ofNc =N, one does not need to
multiply by ST, a step that is not only expensive (scales as ∼N3)
but also makes the original problem (eq 18) more ill-
conditioned. However, given a fixed Gaussian basis, increasing
the number of collocation points, Nc, improves the accuracy of
the computed eigenvalues noticeably (see Figure 5), while the
matrix construction is still comparable or (depending on Nc)
even less expensive than the solution of the (nonsymmetric)
generalized eigenvalue problem.
To avoid very complicated algebra involving internal

coordinates, r = r(x), the action of the kinetic energy operator
(eq 13) on the basis functions at each collocation point, i.e.,
T̂Φ(r(j)), is evaluated numerically by finite difference in the
Cartesian space.9

Although no integrals involving the potential energy surface
(PES) are computed, the method is numerically exact as long as
the evaluation of ∇2Φi(r

(j)) by finite difference is accurate and
the basis is large enough.

Here, we assume that an optimal distribution function r( )i( )

for the positions of the Gaussian centers is defined using eq 3.
Again note that we do not need to normalize r( ). The positive-
definite matrix α that appears in the definition of the norm in eq
7 is set to be diagonal

rdiag 1/ kα ≔ { Δ } (20)

with Δrk defining the range spanned by the Gaussian centers
along the kth degree of freedom (k = 1, ..., d).
All of the previous experience using DGBs22−26 suggests that

their quality not only depends very much on how the Gaussian
centers are distributed but is also very sensitive to the choices of
the Gaussian widths, αi. A wrong choice for the latter (e.g., too
narrow or too wide) may result in a poor approximation of the
wave functions or ill-conditioned matrices or both. Clearly, the
optimal choice for α(i) must depend on the local distribution of
the Gaussian centers around the ith Gaussian. At the same time,
one cannot afford to make the protocol for optimizing the width
matrices α(i) too elaborate. In the present case, the procedure of
choosing α(i) can be made straightforward18 since the local
arrangement of Gaussian centers is the same everywhere, except
for a scaling factor. Consequently, we use the following
simplified recipe

b
r

i

i

( )

,min
2α α≔

(21)

where ri,min is the distance to the nearest neighbor from the ith
point (cf. eq 4), and b ∼ 1 is the only adjustable parameter.

To this end, we note again that numerical instabilities are
often encountered when DGBs are employed, especially when
using nonuniform grids. For example, when two grid points
appear too close, the corresponding Gaussians become linearly
dependent. This, in turn, leads to a large condition number for
both the Hamiltonian and the overlap matrices. A QRG
minimizes this very problem as it eliminates the clustering of the
grid points. In addition, eq 21 assures that all of the adjacent
Gaussians have similar overlap.

■ NUMERICAL DETAILS
In our numerical demonstration, we consider the four-atom
molecule of formaldehyde, H2CO. This choice was motivated by
M&C9 who used essentially the method formulated in the
previous section. We implemented the same PES, i.e., that from
Carter,27 and the same set of bond-angle internal coordinates
(rCO, rCH1

, rCH2
, θ1, θ2, ϕ). The difference is in the choice of the

points defining the Gaussian centers r(i) and the Gaussian width
matrices α(i). M&C placed their Gaussians using the same
procedure as that implemented to construct the bottom-right
panel of Figure 1, i.e., the uniform quasi-random + rejection
scheme. In the present case, the Gaussian centers are placed
using a QRG. M&C used the same diagonal matrix α for all
Gaussians but the values for its elements were set in a
nontransparent fashion, which possibly resulted from an
additional optimization not explained in the paper. In the
present case, the only adjustable parameter for the Gaussian
widths was b (cf. eq 21), which was then set to b = 1 for all of the
reported results. However, additional calculations (not
reported) confirmed that the stability of the results depends
on the specific parameters used, meaning further optimization is
always possible for a given system. Of note, a larger basis will
have a larger region of stability for a given value of b, and this
stability region decreases as the basis size decreases.
Several calculations were performed using N = 10k, 15k, and

20k (i.e., 10 000, 15 000, and 20 000, respectively). The
parameters of these calculations are given in Table 1. The
grids were constructed according to the following simple
protocol.

Begin by generating an initial set of points {r(i)} (i = 1, ..., N)
with Metropolis Monte Carlo using the distribution function

x( ) (eq 3), where each point is selected after Nskip = 1000
Monte Carlo steps to reduce correlations between points. Note
though that the present choice of Nskip is not essential since this
grid is now subject to optimization. This set of points is then
used to determine the rangesΔrk that define the norm ∥...∥α (eq
7). In the next step, a “greedy simulated annealingminimization”
(i.e., the only accepted moves are those resulting in a reduction
of the total energy) is applied to the set {r(i)} by minimizing the

energy functional r( )i( ){ } (eq 5). The convergence of the

Table 1. Parameters Used to Construct the QRGs for H2CO
a

data set QRG10k QRG15k QRG20k

N 10 000 15 000 20 000
Nc 500 000 750 000 1 000 000
Ecut (cm

−1) 15 000 15 000 15 000
ΔE (cm−1) 3000 5000 5000
b 1.0 1.0 1.0

aAn excessive number of collocation points were used to ensure
convergence. Minimal effort was made to optimize these parameters.
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minimization is monitored by observing the decrease of

r( )i( ){ } and by examining the scaled pair correlation function
gsc(r) (eq 8). As an example, in Figure 3, we show gsc(r) for the

QRG15k set. The sharp peak at r∼ 1 indicates both the achieved
local regularity of the grid and its consistency with the given
distribution function x( ).
The additional collocation points were generated using the

quasi-random + rejection scheme with the same distribution
function r( ). We note though that switching to the pseudo-
random + rejection scheme did not make a noticeable difference
(not reported here). Note also thatM&Cused a quasi-random+
rejection sequence for the collocation points, with the first N
points in the sequence defining the Gaussian centers.
To make sure that insufficient averaging over the collocation

grid would not contribute to the error, the maximum number of
collocation points was set to a large value, namely,Nc,max = 50N.
The convergence with respect to Nc was then monitored by
solving eq 19 for the intermediate values of Nc. As in ref 9, we
report the results for the lowest 50 eigenenergies.
As suggested by M&C, here the action of the kinetic energy

operator (eq 13) on the basis functions at each collocation point,
i.e., T̂Φi(r

(j)), is evaluated numerically by finite difference in the
Cartesian space using a five-point stencil. This allows one to
avoid very complicated algebra involving the representation of
the Laplacian in the bond-angle internal coordinates and also
makes the algorithm very general, i.e., not depending heavily on
the choice of the coordinate system.
The generalized eigenvalue problem (eq 19) is not symmetric,

and hence its eigenvalues are either real or come in complex-
conjugated pairs. However, the latter situation indicates poor
convergence, i.e., well-converged eigenenergies are always real.

■ RESULTS

Since the eigenenergies of formaldehyde have already been
reported byM&C,9 the purpose of this section is to use this well-
established numerical example as a benchmark to further assess
the methodology and demonstrate the superiority of a
distributed Gaussian basis using a QRG.
There are several factors contributing to the convergence of

the computed eigenenergies using the techniques described
above. Besides the quality of the Gaussian basis set and the size

and extension of the collocation grid, we would like to focus first
on the numerical errors associated with the evaluation of the
Hamiltonian matrix elements. Since the potential energy
integrals are avoided, the only numerical error is due to the
use of finite difference in the implementation of the Laplacian
operator. This simplicity comes with a price, namely, we were
unable to achieve very high accuracy, regardless of how elaborate
the finite-difference scheme was (i.e., either using three-point,
five-point, or seven-point stencil). For example, Figure 4 shows

the differences in the eigenvalues using the five-point stencil
scheme with three different step sizes: 0.01, 0.001, and 0.0001
(mass-scaled coordinates, atomic units). Apparently, the
corresponding error increases with the energy from less than 1
cm−1 for the lowest eigenenergies to about 2 cm−1 for some of
the highest ones. Consequently, one cannot expect the overall
error in the eigenenergies to be smaller than the finite-difference
error. We noticed though that when the basis is increased, the
finite-difference error decreases. Also, in the special case of Nc =
N (i.e., when the collocation points coincide with the Gaussian
centers), the finite-difference error turns out to be negligibly
small for either the three-point or five-point stencil. This can be
explained by the fact that in this special case the kinetic energy
matrix is diagonally dominated, with the diagonal elements
obtained by evaluating the second derivatives of the Gaussians at
their maxima. At the maxima, the quadratic approximation is
expected to be excellent, assuming the step size, Δx, is not too
large. Note also that regardless of how complicated the choice of
internal coordinates is, numerically exact alternatives for
evaluating second derivatives always exist (see, for example,
ref 28).
Although the case of Nc = N is noticeably faster as it avoids

matrix multiplication by ST (cf. eq 19) and, in addition, it does
not suffer from the finite-difference error, Figure 5 clearly
demonstrates that using a sufficiently large Nc (∼20N) allows
one to substantially reduce the eigenenergy errors compared to
that of Nc = N.
To this end, Table 2 presents our results for the first 50

eigenenergies using N = 10, 15, and 20k, together with the most
accurate results of M&C using N = 40k and Nc = 400k. Overall,
the agreement is good between all four sets of calculations and is
within a few or several wavenumbers. Figures 6 and 7 visualize
the same information in a graphical form. More specifically,

Figure 3. Quality of the 6d QRG constructed for H2CO is assessed
using the scaled radial pair correlation function (set QRG15k: N =
15 000, ΔE = 5000 cm−1, Ecut = 15 000 cm−1).

Figure 4. Differences between the eigenenergies (using the QRG15k
basis set) when the five-point stencil method is applied while varying
the step size Δx.
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Figure 6 shows the differences between the eigenenergies of the
two pairs of sets, QRG15k−QRG20k and QRG15k−QRG10k;
Figure 7 shows the energy differences between our QRG15k
data set andN = 40k data set fromM&C. For reference, Figure 8
shows the intrinsic comparison between the three sets reported
by M&C using N = 40k, 30k, and 25k. We note that the
discrepancies between the latter three data sets are within a
range similar to those between our data sets.
Based on these comparisons, we can definitely conclude that

using a QRG to place the Gaussian basis functions is
advantageous compared to the previously used approach9

based on the quasi-random + rejection scheme, with an
improvement of about a factor of 3. These improvements will
be instrumental in future works where systems with larger
dimensionality and/or more complex dynamics (e.g., involving
large amplitude motion) are investigated.

■ CONCLUSIONS
In this paper, we revisited our previously introduced method of
sampling a general distribution function r( ) using QRGs.18

The revised version is simpler in both the formulation and
implementation, very robust, numerically efficient, and has no
adjustable parameters. More precisely, due to the special
repulsive form of the pair pseudo-potential, we were able to
avoid the expensive normalization of r( ) present in the
previous version. Moreover, the resulting energy functional is
well behaved, i.e., all of the local minima are structurally
indistinguishable and hence a minimization always results in a
correct structure. This was not the case in the previous version of
the method in which, due to the presence of the attractive term
in the pair pseudo-potential, a wrong choice in the adjustable
parameters could result in holes or even cavities.
The present test calculations of the lowest 50 eigenenergies of

formaldehyde demonstrate that a Gaussian basis arranged
according to a QRG has superior qualities resulting in about a
factor of 3−4 reduction in the total number of Gaussians needed
to maintain the same accuracy as the previously used quasi-
random Gaussian basis.9 Moreover, the regular local arrange-
ment of the Gaussian centers allows one to implement a
straightforward procedure for choosing the Gaussian width
matrices, which appears to be a nontrivial issue otherwise.

With all of the appealing properties and advantages of the
present methodology, which involves the easy-to-construct
efficient and compact Gaussian basis and the following
collocation approach to set up a generalized eigenvalue problem,
the only remaining serious drawback of the overall methodology

Figure 5. Intrinsic error for set QRG15k obtained by taking the
difference between the computed eigenenergies when using only the
Gaussian centers (Nc =N) and the eigenenergies when using the largest
number of collocation points (Nc = 750 000). Also shown is the
intrinsic error for the same set QRG15k but with Nc = 30 000.

Table 2. Fifty Lowest Eigenenergies for H2CO with Respect
to the Ground-State Energy (First Row) for the Three Basis
Sets Described in Table 1a

QRG10k QRG15k QRG20k 40k (M&C)

5774.24 5774.98 5774.56 5775.3
1166.54 1166.61 1166.75 1166.9
1250.40 1250.44 1250.41 1250.6
1500.47 1500.30 1500.03 1499.7
1746.06 1746.50 1746.28 1747.0
2326.84 2326.88 2326.84 2326.8
2421.62 2421.64 2421.71 2422.0
2497.44 2497.79 2497.56 2498.2
2668.14 2666.90 2666.75 2666.3
2719.18 2719.91 2719.22 2720.6
2775.42 2778.51 2777.80 2780.9
2838.41 2840.30 2840.06 2842.4
2905.07 2905.79 2905.66 2906.0
3000.17 3000.50 3000.02 3001.5
3001.80 3001.35 3000.75 3002.1
3237.85 3239.65 3238.84 3240.3
3468.54 3471.24 3470.93 3472.6
3480.70 3481.20 3480.69 3480.7
3586.04 3586.22 3585.93 3586.4
3674.49 3674.82 3674.64 3675.2
3740.25 3742.34 3741.02 3742.3
3828.80 3826.30 3824.87 3825.5
3887.45 3887.57 3886.80 3887.7
3932.72 3937.00 3936.32 3939.2
3935.10 3937.81 3936.53 3940.3
3989.94 3992.77 3993.11 3995.8
4026.21 4030.62 4028.76 4033.0
4056.47 4058.31 4057.64 4058.2
4079.48 4083.73 4082.39 4085.5
4163.37 4164.65 4164.09 4164.4
4170.13 4166.73 4167.11 4166.3
4193.34 4195.43 4193.66 4196.4
4243.21 4249.72 4247.22 4250.9
4247.25 4251.15 4249.36 4253.4
4331.21 4336.10 4333.88 4337.6
4398.72 4399.54 4398.35 4397.8
4462.42 4468.55 4465.94 4467.3
4495.78 4501.01 4496.02 4507.6
4515.39 4523.12 4521.57 4527.9
4561.92 4569.45 4567.97 4571.6
4618.84 4624.38 4623.11 4624.1
4628.42 4629.58 4627.51 4629.5
4726.54 4732.04 4730.27 4730.4
4729.75 4734.18 4732.22 4734.1
4744.45 4745.66 4744.93 4745.2
4841.30 4843.36 4841.70 4843.5
4924.97 4926.96 4925.87 4926.6
4946.91 4958.41 4954.51 4953.1
4975.21 4980.67 4976.28 4976.7
4982.57 4983.69 4980.56 4983.6

aThe final columns are the best results from ref 9. All results are in
cm−1.
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seems to be the consequence of using a nonorthogonal basis and
hence the need to deal with the numerical solution of a large
generalized eigenvalue problem. Here, two issues need to be
addressed: (1) how to solve for the lowest eigenvalues (and

eigenvectors) using iterative methods and (2) parallelization of
whatever generalized eigenvalue solver is used. Currently,
neither of the two issues seem to have a satisfactory solution.
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