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Abstract—Ease of use and transparent access to elastic re-
sources have attracted many applications away from traditional
platforms toward serverless functions. Many of these applica-
tions, such as machine learning, could benefit significantly from
GPU acceleration. Unfortunately, GPUs remain inaccessible from
serverless functions in modern production settings. We present
DGSF, a platform that transparently enables serverless functions
to use GPUs through general purpose APIs such as CUDA. DGSF
solves provisioning and utilization challenges with disaggregation,
serving the needs of a potentially large number of functions
through virtual GPUs backed by a small pool of physical GPUs on
dedicated servers. Disaggregation allows the provider to decouple
GPU provisioning from other resources, and enables significant
benefits through consolidation. We describe how DGSF solves
GPU disaggregation challenges including supporting API trans-
parency, hiding the latency of communication with remote GPUs,
and load-balancing access to heavily shared GPUs. Evaluation
of our prototype on six workloads shows that DGSF’s API
remoting optimizations can improve the runtime of a function
by up to 50% relative to unoptimized DGSF. Such optimizations,
which aggressively remove GPU runtime and object management
latency from the critical path, can enable functions running over
DGSF to have a lower end-to-end time than when running on
a GPU natively. By enabling GPU sharing, DGSF can reduce
function queueing latency by up to 53%. We use DGSF to augment
AWS Lambda with GPU support, showing similar benefits.

Index Terms—cloud computing, serverless, FaaS, GPU, API
remoting

I. INTRODUCTION

There has been an exodus of event triggered applications
from traditional application deployment on infrastructure as
a service (IaaS) toward deployment using serverless func-
tions [1], [2], [3] (or function-as-a-service, FaaS) due to
benefits like fast access to elastic resources and offloading
of operational concerns like infrastructure management. Many
applications that are a good fit for serverless could enjoy
significant performance improvements from GPU acceleration.
Unfortunately, current access to accelerators from server-
less functions is nonexistent in production services. Some
providers enable GPU acceleration indirectly through special-
ized library APIs (e.g. AWS Elastic Inference exposes ML
APIs like TensorFlow) but such services are not accessible
to serverless functions and, moreover, do not provide general
purpose access to GPU programming frameworks like CUDA.

The simplest way for an infrastructure provider to support
serverless GPUs is to provision some subset of machines
in a cluster with GPUs (e.g., by deploying CUDA-enabled

containers [4], [5]). However, this quickly leads to a sticky
provisioning challenge for the provider. Installing GPUs in all
machines is prohibitively expensive and will lead to significant
under-utilization of GPUs because many functions do not use
them. Installing GPUs in just some of the machines can lower
that cost, but leads to a difficult problem: matching functions
that need CPUs, host memory and GPUs with machines that
actually have the required resources requires complex high-
latency scheduling algorithms, and remains an active area
of research [6], [7], [8], [9]. We believe current serverless
providers do not support accelerators because they lack a
practical solution: it is difficult to provision the infrastructure
in a cost- and complexity-effective way.

A compelling alternative, which is the focus of this paper,
is to disaggregate the physical GPUs. Disaggregation allows
the provider to independently manage and scale CPU and
GPU resources to minimize cost and maximize utilization.
Disaggregation simplifies the scheduling problem by turning
a 2-dimensional problem into two 1-dimensional problems.
Without disaggregation, scheduling is more complex because
both CPU and GPU requirements must be satisfied by a single
host, while with disaggregation, CPU and GPU requirements
are decoupled.

However, realizing a disaggregated system to support GPUs
for serverless functions requires solutions to a handful of
different challenges which we address in this paper:

C1 Preserving the serverless programming model: remote
GPU should appear local. Requesting and utilizing a GPU
should not require any management or knowledge of its
location.

C2 Preserving the performance promise of GPU acceleration
in the face of overheads introduced by remote execution.

C3 Balancing load and maximizing utilization of remote
GPUs.

We present DGSF, a platform for enabling general, trans-
parent and disaggregated GPUs for serverless functions. DGSF
makes use of API remoting [10], [11] specialized for server-
less, allowing a virtual GPU for a serverless function to be
backed by part of a physical GPU on a remote server, selected
from a disaggregated pool. DGSF uses API remoting-based
GPU virtualization to share those servers across potentially
many functions, consolidating GPUs to increase utilization.
DGSF solves C1 by transparently supporting the GPU run-



time API (our prototype uses CUDA) in such a way that
the GPU appears to be local from the perspective of the
function. DGSF solves C2 by optimizing the API remoting
library to the serverless setting through special handling of
interposed API calls. For example, the GPU runtime context
and common handles are precreated and pooled to reduce
initialization overhead. DGSF solves C3 using online load
balancing through transparent migration across GPUs. By
collecting information during runtime, DGSE’s GPU server
can fix GPU load imbalance by moving the execution of an
application from one GPU to another.

Our DGSF prototype provides functions with CUDA run-
time version 10.1. We study the performance of the pro-
totype with six benchmark applications (§VII) that use the
CUDA API directly or use GPU-enabled libraries, like CuPy,
OpenCV, TensorFlow and ONNX Runtime. This paper makes
the following contributions.

e DGSF uses novel tecniques to specialize API remoting
for the serverless environment. DGSF’s APl remoting
optimizations can improve the runtime of a function by
up to 50% relative to unoptimized DGSF.

+ We describe new techniques for live migration that use
low-level GPU memory management APIs in a novel
way to preserve identical address space mappings at the
destination GPU.

o We explore the policy space to increase utilization under
different server loads. During a burst of functions, DGSF
increases average GPU utilization by 16%.

o We evaluate DGSF on six workloads (§VII). On a heavy
load of GPU functions, DGSF with GPU sharing can
complete all requests in 20% less time relative to DGSF
without GPU sharing.

II. BACKGROUND

Removing the burden of developers to manage infrastructure
to execute applications is a key motivator for serverless
functions. During function deployment the developer publishes
its code, dependencies, and how much memory the function
requires to run. After a function is deployed to a serverless
provider, many concurrent requests to that function can be
satisfied for developer and user, with all the management being
done by the provider. Providers impose limitations on the
functions, like small temporary storage, removal of external
network addressability, limited execution time and lack of
support to external resources like accelerators. We argue that
missing accelerator support is untenable.

GPUs are vital for meeting the performance requirements of
modern computationally demanding workloads. For example,
recent work in machine learning shows that as model complex-
ity increases, so does the total time to perform inference [12].
CPUs are unable to meet the performance goals for these
complex models [12]; they require hardware acceleration, but
cloud-accessible GPUs currently are cut off from the serverless
ecosystem. One recent study found that small batch sizes can
lead the GPU to utilization under 15% [12]. Other accelerators

TABLE I: Feature comparison of existing API remoting systems.

System APIA GPU ‘Live‘ Disaggregation Supports

Y Remoting ~ Sharing  Migration sereg Serverless
AVA [11] v v v v X
rCUDA [10] v v X v X
DCUDA [23] X v Ve X X
Bitfusion [22] v v X v X
Gandiva [24] X v v X X
Antman [25] X v X X X
Kim et al. [4] X v X X v
OSCAR [5] v v X v v
DGSF v v v v v

such as Google’s tensor processing units are similarly un-
derutilized [13]. Techniques to effectively share GPUs across
serverless functions are urgently needed.

The closest commercial solution to provide GPUs in a
serverless fashion is AWS Elastic Inference (EI), which pro-
vides accelerators that are backed by a fraction or an entire
GPU, but are exclusive to machine learning inference accelera-
tion. EI requires applications to use modified ML libraries that
interpose library functions and remote function calls through
gRPC to servers with GPUs. EI is only supported in limited
environments: EC2 VMs, SageMaker environments and ECS
containers. There is no direct support for serverless functions
(Lambda).

DGSFE’s goal is to enable the use of GPUs by serverless
functions, while not adding more limitations to the user
and not making management harder for the provider. Using
DGSF, the developer specifies the amount of GPU memory
a function requires just like it does for host memory. GPU
support for serverless would ideally be as fast as a local
GPU (for the client) and easy to consolidate onto a limited
number of physical GPUs (for the provider). GPU utilization is
notoriously difficult to consolidate [14], [15], [16], [17], [18].
DGSF consolidates optimistically by scheduling applications
that fit in one GPU. But DGSF has a contingency plan in case
the scheduling choice was not optimal: migrate execution to
a different GPU.

Virtualization through remote execution removes the need
for GPUs to be physically in the same machine that will
execute a function and allows late binding of physical GPUs
to functions. There are many flavors of remoting, such as
remoting the PCI bus[17] and remoting driver and/or API
calls [19], [20], [21], [11], [22]. DGSF supports GPUs for
serverless functions by virtualizing GPUs at the runtime API
layer (CUDA), allowing many serverless functions to use a
small number of remote GPU-provisioned VM instances. For
the provider, the approach retains the “schedule anywhere”
benefits of serverless because serverless functions that need
GPUs can be scheduled on machines without requiring those
machines be provisioned with physical GPUs. Moreover, it
increases utilization of GPU-capable machines by sharing
them. DGSF is optimized to ensure GPUs accessed using API
remoting are as fast as possible, using techniques that range
from generic batching to serverless-specific optimizations such
as pre-initialization of remote GPUs to hide startup latency.

Table I shows a feature comparison of existing API-



remoting and DGSF. Live migration is only partially provided
by existing work; these have an asterisk by the checkmark.
For example, Gandiva [24] supports migration at the library
level, relying on library functions that can snapshot-restore
its state, e.g. TensorFlow’s train. Saver, which snapshots
a training session than can then be restored at a different
location. DCUDA’s migration [23] on the other hand, uses peer
memory accesses to provide migration. When an application
is migrated to another GPU, DCUDA does not explicitly
move the data to the destination GPU’s memory: application
memory accesses may - and will - page fault and require
data to be read on-demand from the peer GPU which has
the data. These approaches are not fit for serverless because
they lack generality. When migrating it is desirable to move
data explicitly as to possibly create enough space for another
function to utilize. At the time of writing of this paper, DGSF
is the only GPU live migration approach that uses CUDA’s low
level memory management to maintain the application’s virtual
address space, but with physical allocations able to move
between physical GPUs transparently. Although existing work
can be used to provide GPUs to serverless functions, none rely
on specializations that enable an efficient deployment; DGSF
is the first system to meet all requirements.

III. MOTIVATION: CASE STUDY

Some of the authors participated in a large (100+ students)
graduate-level class where one of the assignments required
the students to implement a project using CUDA. The students
needed access to GPUs to write code, test and measure so they
could write their report. Most of the university’s lab machines
had no GPUs, and manually creating accounts and scheduling
student access to the very few machines with GPUs that the
research group had was not feasible. The best commercial
alternative was an external service which provides a web-based
IDE that runs on top of a GPU-enabled container. Even when
a container was not being actively used, the increased price
of the container with GPU was being charged. The class was
large and students were constantly using the service, so it was
eventually cutoff due to an explosion in cost to the provider,
leaving the students with no way to run their CUDA code.
With DGSF, the IDE could use regular cheap containers and,
when any code that uses the CUDA runtime API was executed,
a serverless function would be invoked to handle it. This can
reduce cost considerably since only GPU active use time is
billed.

IV. ScoPE

This work (Figure 1) explores how a function realizes API
remoting to a remote API server which has physical GPUs and
how API servers running inside a GPU server are managed
to increase GPU utilization. A GPU server is defined as a
disaggregated GPU machine: it contains GPUs and a few
CPUs and exclusively handles incoming API remoting. No
functions or external code are executed by a GPU server.
Scaling up GPU servers in DGSF is simple. A GPU server
only needs the address of the central serverless backend

Central Serverless

Backend
Function GPU Server
Server APT APT
Server Server
Function ||| [N O\
Environment GPU - GPU

Fig. 1: Architecture of a serverless deployments using DGSF. Components
in blue are the scope of this work. Components in yellow were developed
during this work but are out of the scope of this paper.

to signal it’s availability. After it is initialized and its API
servers created, it annouces it is ready to handle functions and
becomes a choice when a function requests a GPU. In our
prototype, GPU servers runs within a NVIDIA container to
simplify CUDA runtime versioning issues.

Outside the scope of this work is general serverless func-
tion management, such as scheduling functions requests to
execution environments and execution environment manage-
ment (creating and destroying environments for functions to
be executed on). Reducing startup time is a vital goal for
serverless research because each function’s execution requires
the initialization of a runtime that uses a deep software stack.
Because this area is well explored [26], [27], DGSF factors it
out by always using warm execution contexts. However DGSF
optimizes GPU startup latencies by initializing remote GPU
contexts in advance (§V-B).

Our DGSF prototype uses a fixed policy to choose, given a
function requesting a GPU, which GPU server to use. Different
policies can be used in a commercial deployment, such as
choosing the least loaded GPU server to optimize latency
or the opposite to increase utilization. Such policies would
depend on the quantity of GPU servers and their size. For our
evaluation we use one GPU server with four GPUs, but AWS
provides machines with up to eight GPUs.

V. DESIGN

This section details DGSF’s system architecture. DGSF is
agnostic to the serverless functions platform the functions run
on, so we describe the implementation platform in Section VI.

A. Serverless GPUs

DGSF uses API remoting to virtualize GPUs for serverless
functions. On a traditional machine with physically attached
GPUs, application processes access GPUs through vendors’
runtime libraries, such as CUDA libraries for NVIDIA GPUs.
With API remoting, a shim (guest library) is inserted to
interpose and intercept every API call which, through RPC,
are executed at a remote server (API server).

In DGSF, the guest library captures all CUDA and CUDA
related libraries, such as cuDNN and cuBLAS, and forwards
them through TCP connections. API servers run on a host
with physically attached GPUs (GPU server) and executes
API calls on behalf of the guest application, via the vendor’s
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Fig. 2: Internal architecture of DGSF.
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runtime library. By interposing at the runtime library, DGSF
supports transparent GPU acceleration for applications that use
the runtime library directly or indirectly, for example, through
libraries like TensorFlow for machine learning or CuPy for
scientific and array computation that have support for CUDA.

Figure 2 summarizes the architecture of DGSF. A GPU
server consist of a set of physical GPUs, a centralized
manager, a monitor and API servers. When a GPU server
is provisioned, the first piece that runs is the manager, which
is responsible for setting up the environment, checking the
available GPUs and creating the monitor and the initial idle
API servers. Once set up, it sends the serverless backend a
message announcing that it is ready and how many functions
it can handle (one per API server created). The manager then
idles until it is shut down, passing all responsibilities to the
monitor. The monitor is the main piece of the GPU server,
maintaining statistics about the state of each GPU and API
server and handling incoming function GPU requests by using
scheduling policies to choose an appropriate API server. The
monitor tracks how much memory is allocated by each API
server and the memory and processor utilization of each GPU.
Using its local information, the monitor can observe each
application’s behavior and decide whether or not to rearrange
the API servers and their assigned GPUs. To illustrate this
utility, consider a scenario where a GPU is being overwhelmed
with API calls from two API servers, while there is an idle
GPU. The monitor can decide to move one of the workers to
the idle GPU to balance the load. This process is called API
server migration and is described in Section V-D along with
a scenario in which imbalance happens.

An API server is a process that handles exclusively one
serverless function at a time and executes them on an actual
physical GPU. An API server is a process created by the
manager. It is initially assigned to one of the physically
available GPUs. While handling requests for a function, the
GPU assignment can change using migration. A serverless
function may make any number of GPU API calls. Migration
occurs at API call boundaries. When the current serverless
function finishes, the API server changes its current GPU to the
originally assigned one, if a migration happened. API servers
are processes, thus multiple can share a physical GPU.

API calls done by the function are interposed and forwarded

to an API server through TCP, which then handles the call
either by executing it on a physical GPU or, if the API is
restricted, simulating the result of the call. This is necessary
because information internal to the GPU server should not be
available to the function. For example, if the function asks how
many GPUs there are through the cudaGetDeviceCount
function, the API server should always reply with 1. In
subsection V-B we describe the other API calls that require
special handling.

Before the API functions of a serverless function start being
remoted, the guest library must first (D talk to the monitor of
a GPU server (which was chosen by the serverless backend)
to receive the address of an API server. With the address of
an API server, the guest library Q) sends information about
its kernels and can start remoting. The API server constantly
(B sends updates messages to the monitor so that it can keep
track of utilization of each GPU. An API server is initially
bound to a GPU @ and will execute all remoted APIs in that
GPU. During message exchange between the API server and
the monitor, the latter can decide to move the former to another
GPU (3.

B. API Remoting Specializations for Serverless

API calls made by the function are interposed by DGSFE'’s
custom preloaded library that is running underneath the ap-
plication. There are two classes of APIs: remotable and
localizable. Localizable APIs are not forwarded since they can
be immediately responded by the guest library using inter-
nally cached information or can be safely ignored. Remotable
APIs require the guest library to use our TCP-based RPC
mechanism to talk to the API server and request execution.
Some remotable APIs are forwarded but not realized as-is.
For example, for cudnnCreate, which simply creates a
handle necessary to use cuDNN, the API server can pre-
create a pool of these handles and simply return one of them
when the API is called. For remotable API calls, some require
special attention: ones that do memory management, kernel
launching and device management functions.

Memory management. APIs such as cudaMalloc and
cudaFree are captured and handled in a special way be-
cause DGSF does not use general device memory allocation
functions. Instead, DGSF manually creates memory allocations
on GPUs, reserves virtual address ranges and maps the allo-
cation to the reserved virtual address using CUDA’s universal
virtual addresses and low-level memory management. This is
necessary because if an API server is moved from one GPU to
another, it must keep the same virtual addresses to ensure that
all memory accesses done by the application are correct. By
keeping information about all memory management functions,
DGSF knows exactly how much memory an application is
using and ensure that it is not violating its limits. Virtual
address conflicts cannot occur because there is one virtual
address space per CUDA context, and each API server in
DGSF has, by construction, one CUDA context per GPU.

Kernel launches. A kernel launch takes as parameter a kernel
function pointer. These function pointers are unique to each



CUDA context, thus, different for each GPU. For this reason
the API server must make sure it is using the correct pointer
for the current context in case the API server has migrated.
DGSF does not support applications that use multiple contexts
(e.g. through using cuCtxCreate) and each API server has
only one context for each device. All of the applications and
libraries in our workloads follow this requirement without
modifications.

Device management functions. Because GPU access is
transparent to the function, it must not see the entire hardware
of the GPU server. When a function starts execution, it is
assigned to an API server and the API server to a GPU.
TensorFlow for example, first asks how many GPUs there
are, gets their properties and makes the best fitting one active.
The API server always responds there’s one GPU (index 0),
notwithstanding the fact that the GPU server probably has
more. For GPU property queries, the information returned
is from the currently active GPU. The application trying to
utilize any GPU other than the GPU at index O is invalid
and will cause an error. DGSF does not support applications
that utilize multiple CUDA contexts. None of our workloads
make use of multiple contexts and we believe such applications
are not common. Our prototype of DGSF does not support
applications that use multiple GPUs because we do not know
of multi-GPU applications that are a good fit for serverless.
Such applications, like ML training, are usually long running
and would benefit from dedicated GPUs. However, there is no
fundamental issue preventing DGSF from being extended for
multiple GPUs. Such extensions would be straight forward.

C. API Remoting Optimizations for Serverless

Startup optimizations. Each GPU node maintains a pool
of GPU API servers with their GPU runtime initialized. The
GPU API server initializes the CUDA runtime because it
takes the application-independent initialization cost off the
execution path for the serverless function. In our experiments
(§VIII-E) the CUDA runtime initialization takes on average 3.2
seconds. This number can vary, according to our observations,
from 2.8 to 3.6, depending on the GPU model, driver version
and other hardware parameters. The CUDA initialization time
is consistent within a machine, varying by less then 200
milliseconds. A CUDA runtime context occupies ~303 MB
of device memory.

Each API server pre-creates a set of cuDNN and cuBLAS
handles, which are be returned directly to serve the corre-
sponding API calls (e.g. cudnnCreate). A cuDNN handle
takes on average 1.2 seconds to be created on the machines
used in our evaluation, and occupies around 386 MB of
device memory. A cuBLAS handles takes ~0.2 seconds to be
initialized and occupies around 70 MB. In total, an idle DGSF
API worker with its precreated CUDA runtime, cuDNN and
cuBLAS handle occupies 755 MB of device memory on its
assigned GPU.

These optimizations significantly improve the time of initial-
izing machine learning models. The impact of such optimiza-
tions are presented in §VIII-C. Native GPU applications cannot

pre-initialize their own runtime. GPU applications initialize the
GPU and the GPU runtime when they start, and initialization
maps data structures such as command rings into the process’s
address space. As a consequence, pre-initialization of the
runtime is an optimization that works only if there is a separate
server process to perform that initialization.

Guest library. DGSF precreates cuDNN-specific descriptors
(e.g. cudnnConvolutionDescriptor_t) on the guest
library side. APIs that create these descriptors are called
often and simply allocate memory on the host side to hold
the opaque structure. By pooling descriptors on the guest
side, the remoting of corresponding APIs can be avoided,
speeding up most serverless functions that use cuDNN. APIs
that only change host state, such as cudaMallocHost are
fully emulated on the client side and are not remoted to the
API server.

Optimizing GPU API remoting. GPU APIs are de-
signed for local use, not for use over a network, so many
programming idioms make frequent calls to GPU func-
tions. DGSF optimizes frequently called GPU APIs in a
few ways. First, DGSF’s runtime directly emulates some
GPU APIs (e.g., __cudaPushCallConfiguration and
cudaPointerGetAttributes) without remoting them to
the GPU API server. The semantics of such API functions
are preserved through other mechanisms. The attributes of a
pointer, for example, can be retrieved by the guest library
without remoting because the guest library tracks the ad-
dresses returned by device memory allocation functions. Other
functions such as pushing kernel launch configurations are
not necessary since these configurations are piggybacked onto
kernel launching APIs. APIs that don’t cause an immediate
change to GPU state are accumulated locally and sent in
batches to the API server.

DGSF is able to reduce the number of forwarded CUDA
APIs when doing inference by up to 48% for ONNX runtime
and up to 96% for TensorFlow. DGSF’s GPU API servers
maintain pools of frequently created CUDA descriptors such
as cuDNN descriptors, thus remoting APIs for creating them
will be much faster since the API server just returns one from
the pool. Figure 4 shows that these optimizations can reduce
inference time by up to 59%. Our optimizations could be
applied to most API remoting systems, which include non-
disaggregated ones. Importantly, they would not work for
applications that use GPUs natively.

D. Migration

Choosing the best API server to handle a function is
difficult since the only information the scheduler knows about
a function is how much GPU memory it needs. Poor visibility
makes scheduling vulnerable to poor decisions, and such
decisions can affect the performance of the applications and/or
cause load imbalance in GPU utilization. Consider two GPUs
and two short and two long running applications. If the two
short applications are scheduled to the same GPU, the long
applications will share the other GPU until they finish. After
the short functions finish, there will be an idle GPU and one



being contended by two applications. This scenario is explored
in §VIII-E.

To avoid GPU load imbalance, DGSF monitors the API
server assigments and GPU utilization. When the monitor
notices imbalance, it may request an API server to move to
another GPU. On migration, the API server must stop all of
its threads that handle API calls and wait for completion of
all pending operations. Then each of the application’s memory
allocations must be copied to the target GPU.

In order for the application to run correctly on the new
assigned GPU, the virtual address space must remain the same.
Translating pointers passed as arguments to API calls is not
enough since indirect pointers, like device pointers stored in
an application’s data structure would not be translated. DGSF
manually maintains the application’s virtual address space by
using CUDA’s low-level memory management functions. For
example, cuMemCreate allocates unmapped device memory,
cuMemAddressReserve reserves virtual address ranges
and cuMemMap maps device memory to a reserved virtual
address. To move data to the destined GPU, DGSF creates
temporary virtual addresses to access current data, allocates
memory on the target GPU and maps it to the current virtual
address. Finally the data is copied between the two devices
and the previous device’s allocations can be cleaned up. After
all data is copied the API server can resume execution.

When migrating GPUs, the API server must switch CUDA
context since it changed GPUs. This requires all context-
dependent data to be moved and translated to the new context.
For example, if an application is using a CUDA stream
that was manually created, that stream’s handle will not be
valid after a migration. To work around this, the API server
preemptively creates streams on each context when one stream
is created and keeps a translation map of the stream handle
returned to the client to internal stream handles in other
contexts. This way, if the API server migrated, it can use this
map to fetch a valid stream that has the same properties as the
original one. This approach is also required for cuda events
and cuDNN and cuBLAS library handles.

VI. IMPLEMENTATION

The GPU server of DGSF consists of approximately 134
thousand lines of c++: 778 for the manager and monitor, 80
thousand for the API server and 78 thousand for the guest
library. Most of the code is automatically generated: we list
all APIs and generate code for both sides of the API remoting
system.

Although our current prototype provides applications with a
CUDA runtime version 10.1, the API server runs on NVIDIA
containers with CUDA 10.2 because the low level memory
management functions are only present on this version and
above. Supporting later versions of the CUDA runtime for
both the guest library and API server is left as future work. For
our workloads, the library versions used are ONNXRuntime
v1.8.0 [28], TensorFlow vl1.14.1, CuPy 9.2.0 and OpenCV
4.5.2. The CUDA libraries cuDNN and cuBLAS are versions
7.6.5 and 10.2, respectively.

DGSF is agnostic to the serverless platform, implementa-
tion and execution environment. DGSF only requires that its
shared interposition libraries are correctly loaded to replace
the original GPU libraries. Such can be accomplised with
LD_PRELOAD or library path manipulation. In a real deploy-
ment with multiple GPU servers, the function scheduler would
need to be augmented to choose a GPU server for functions
that require GPU (§IV). Our prototype uses OpenFaaS [29]
v0.21.1 as serverless platform. To demonstrate DGSF’s flex-
ibility, we also deployed our workloads and DGSF’s guest
library on AWS Lambda.

All of the data required by each function, such as models
and inputs are downloaded from AWS S3. This would be the
case in general, even without DGSF'. For all our measurements
we assume a warm start, where the cost of creating a container
is avoided, for all functions. This is done by setting the
minimum amount of replicas for each function.

VII. WORKLOADS

K-means. K-means is a commonly used clustering algorithm.
We use the CUDA K-means implementation in the Altis [30]
GPU benchmark suite. The CPU version is a hand-optimized
implementation in C using pthreads. We fix the input size to
one million points in a 16-dimensional space, and group into
16 clusters for 2000 rounds. The total input size is 235.3 MB.

Covid Detection using CT scans. CovidCTNet [31] is an
open-source application that uses deep learning to diagnose
and differentiate covid-19 infection to other lung diseases,
using CT scans as input. Because the original dataset is not
publically available, we use an open source dataset [32] that
has 305 labelled CT scans. The two models have a combined
size of 47.3 MB. At each run, we do inference on two
CT scans, which have an approximate total size of 155.5
MB. Although this application requires less memory than the
entirety of a GPU, on a function invocation we request the
memory of an entire GPU. This is because the application uses
two TensorFlow models, whose custom memory allocators, for
a brief moment during execution, allocates a large amount
of memory: 13538MB. If we didn’t oversize the function
requirements, this workload would fail due to an out of
memory error.

Face Detection. Face detection identifies candidates faces’
using the RetinaFace neural network [33]. We use RetinaFace
with ResNet50 backbone on top of ONNXRuntime. The input
images are from WIDER FACE validation data set [34]. At
each run, 256 images from the dataset are chosen, totalling
approximately 30 MB. Batch size used is 16. The model has
a total size of 104.4 MB.

Face Identification. Face identification uses ArcFace [35], a
face recognition deep neural network, to compare a candidate
face to the reference face. We use the LResNetlOOE-IR
variant of ArcFace model [36] on top of ONNXRuntime. The
input consists of 6000 face pairs from Labeled Faces in the
Wild [37]. The input to each run is randomly chosen 256 faces



TABLE II: DGSF workloads. Times are averaged over three runs after one warmup. Numbers in parentheses are speedup (slowdown, if negative) relative to
native.

. Face Face Question Image classification
K-means CovidCTNet Detection Identification  answering (NLP)  (ResNet)

Peak GPU Memory Usage 323 MB 7802 MB 13194 MB 3514 MB 4028 MB 7650 MB
Average Runtime (Native) 14.0s 25.1s 18.5s 13.4s 34.3s 26.7s
Average Runtime (DGSF) 9.9s (29%) 22.4s (10%) 16.4s (11%) 10.5s (22%) 32.4s (5%) 24.8s (7%)
Average Runtime (AWS Lambda) 9.9s (29%) 24.6s (2%) 17.9s (3%) 18.0s (-34%) 60.4s (-76%) 47.1s (-76%)
Average Runtime (CPU) 429.1s (-29.6x)  99.2s (-29x)  71.0s (-2.8x)  42.1s (-2.4x) 347.0s (-9.1x) 66.7s (-1.5%)
Aprox. Migration Time 12 ms 805 ms 1064 ms 711 ms 555 ms 798 ms

from the dataset, totalling around 17 MB. The batch size used
is 16. The model has a total size of 249 MB.

Question answering (NLP). We use the Bert model [38]
from MLPerf [39] to perform SQuAD [40] question answering
tasks using ONNXRuntime. At each run 512 inputs, which are
questions created by crowdworkers on Wikipedia articles, are
chosen from the dataset. The batch size used is 16. The inputs
are approximately 61.7 MB and the model is sized at 1.2GB.

Image Classification. Image classification takes in an input
image and selects a label that best describes it. We use ResNet-
50 v1.5 [41] model from MLPerf [39] on ONNXRuntime.
The input images come from ImageNet 2012 validation data
set [42]. At each run 2048 preprocessed images from the
dataset in NumPy format are chosen (approximately 1.2 GB)
and processed using a batch size of 16. The model has a total
size of 97.4 MB.

VIII. EVALUATION

DGSE’s evaluation aims to answer the following questions:

o What is the cost of API remoting and what is the impact
of DGSF’s optimizations?

o What is the utilization increase and performance gains
when functions are consolidated?

o What is the overhead of migration and how can it improve
GPUs for serverless functions.

A. Testbed

Experiments were performend on AWS EC2 using two
p3.8xlarge machines. We run the function server and the GPU
server on identical virtual hardware to avoid performance vari-
ability due to different machine specifications, such as CPU
and network and storage bandwidth. Ideally, function servers
would be deployed on compute optimized machines, which
would substantially reduce cost. However, using different ma-
chine types for experiments introduces methodological issues,
making measurements incomparable. We have run DGSF on
heterogeneous virtual hardware and bare-metal machines and
the benefits reported by this work remain essentially the same.

Each p3.8xlarge machine has 4 NVIDIA V100 GPUs, each
with 16GB of memory, 32 vCPUs of an Intel Xeon E5-2686,
244 GB of memory and a network interface of up to 10Gbps.
The OS is Ubuntu 18.04, kernel version 5.4.0. The NVIDIA
driver version is 495.29.

B. API Remoting

We measure our workloads when executed natively (the
baseline) and under DGSF’s API remoting mechanism (Ta-
ble II). Comparison between GPU and CPU execution is
presented to show scale and to demonstrate that DGSF pre-
serves GPU acceleration benefits. For CPU measurements each
application uses 6 threads (6 vCPUS is the maximum cores per
function in AWS Lambda). Workloads can be faster when run-
ning over DGSF’s API-remoting than when executed natively
because our optimizations aggressively hide runtime latencies
(e.g. CUDA initialization) that cannot be hidden in the native
environment. To characterize DGSF’s API remoting perfor-
mance, we break down the execution time of the workloads
into phases: CUDA context initialization, input and model
download time, model loading and processing time. Results
are shown in Figure 3. For a simple workload like K-means,
which uses few CUDA APIs and no cuDNN or cuBLAS, the
benefit comes entirely from pre-creating the CUDA context.
Other workloads also benefit from the optimizations described
in §V-C. Face detection workload, for example, takes 11.7
seconds of processing running in DGSF, and 9.1 seconds when
running natively, an increase of 28%, due to the overhead
of remoting APIs over the network. However, communication
overheads are compensated by other optimizations, including
model loading and runtime pre-initialization. Model loading
comprises a large number of calls to cuDNN APIs which are
amenable to handle pre-creation and batching (see §VIII-C).
Consequently, DGSF loads the model in 1.1 seconds and
removes CUDA runtime initialization from the critical path,
while natively the model loads in 1.7 seconds and requires 3.2
seconds for CUDA runtime initialization. All of our workloads
follow this pattern.

When our workloads are executed on AWS Lambda using
DGSEFE’s API remoting, in workloads that require more network
transfers, such as NLP and image classification, there is a spike
in total execution time. This is because of lower bandwidth
and larger variance in the network. Other workloads behave
similar to our deployment of OpenFaaS.

C. Ablation Study

To understand the benefits of each optimization, we per-
form an ablation study, breaking down execution time as we
incrementally add the optimizations described in Section V-C,
comparing against native execution. We remove from the
comparison the times taken to download input and model files
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Fig. 4: Ablation study of DGSF’s optimizations compared to running
natively.

from remote storage (S3) into local storage, since these are not
optimized by DGSF hence, are the same for all comparison
points. Results are shown in Figure 4. Benefits are most
pronounced for the face identification and image classifica-
tion workloads. For face identification, total processing time
(runtime initialization, model loading and inference) is 14.5
seconds with DGSF using no optimizations. Handle pooling
reduces total processing time to 9.6 seconds, removing 4.9
seconds, which is approximately the time required to initialize
the CUDA, cuDNN and cuBLAS libraries (3.2, 1.2 and 0.2
seconds respectively). The optimization that avoids remoting
cuDNN descriptor APIs reduces inference time from 7.2 to
5.7 seconds. Adding the last layer of optimizations, batching
APIs and avoiding other unnecessary APIs, further reduces
inference time to 2.3 seconds. In total, DGSF’s optimizations
reduce inference time of the face identification workload
by 67%: from 14.5 to 4.7 seconds. Benefits are workloads
dependent. K-means does not use any of the optimized APIs,
and only benefits from CUDA runtime pre-creation. Face de-
tection and NLP have a borderline improvement with DGSE'’s
optimizations because fewer optimized APIs are called.

D. Mixed workloads

For all experiments in this section, we mix all six workloads,
varying function invocation intervals. Scheduling at the GPU
server enforces a first-come first-serve policy per serverless
function. This means that a serverless function requiring a
large portion of the GPU (e.g. face detection), can force other

serverless functions to wait in queue. We leave exploration
of policies like shortest-function-first, which could improve
throughput at some loss of fairness, for future work.

First, we use a poisson distribution to emulate a real
sequence of function invocations. We launch ten instances of
each workload in a random (but consistent) order. On average
our workloads utilize 12 seconds of GPU. Launching functions
with an interval of 3 seconds on a GPU server with four GPUs
fully utilizes the server with minimal queueing.

To emulate a GPU server under heavy load we launch
functions at intervals drawn from an exponential distribution
with rate equal to 2. This models a scenario where a function
is launched on average every two seconds (A = 0.5). We
report the end-to-end time as seen from the provider side, the
average, standard deviation and the sum of all the functions’
queuing and execution delay, which includes waiting when
GPU requests cannot be satisfied due to all API servers being
busy.

CovidCTNet

K-means Face Det. Face Id. NLP ResNet

1 API Server/GPU (AW)

B 1 API Server/GPU (SW)
B4 Avg. Queue Time

Bl 2 API Server/GPU (AW)
Bl 2 API Server/GPU (SW)

Fig. 5: Per workload queueing and execution delay when the GPU server is
under a high load, running two different subset of workloads: all workloads
(AW) and the four workloads with smaller memory footprints (SW). Time
between function launches is from an exponential distribution with rate
equal to 2.

If there is no queueing on the GPU server, the end-to-end
time for each workloads will not have a large variance and will
be close to the uncontended runtime (see Table II). Serverless
functions with latency longer than the uncontended case reflect
queuing latency at the GPU server, clearly observable in
Table III. Table III shows the end-to-end time in seconds
as seen from the provider (the time to handle all functions)
and the sum of all function’s end-to-end time (E2E, time
from launch to completion) of a series of requests of all of
our workloads and for only the four workloads with smaller
memory requirements. The time between function launches is
from an exponential distribution with rate equal to 2. Without
sharing, the GPU server has a much larger function queue,
which is also observed in the total function execution time
sum: sharing can reduce it by 20%.

Sharing reduces the average queue time of each function
invocation and, consequently, the average time from launch to
finish, as seen in Figure 5. The image classification finishes, on
average, 20% faster when sharing is enabled and all workloads
are used, due to a reduction of the queue time by half.



TABLE III: Time in seconds of the provider’s end-to-end time and sum of
all function’s end-to-end time when the system is under a low load.

TABLE IV: Time in seconds of the provider’s end-to-end time and sum of
all function’s end-to-end time when the system is under a high load.

All Workloads Smaller Workloads 4 GPUs 3 GPUs
End to end Function E2E Sum End to end Function E2E Sum End to end Function E2E Sum End to end Function E2E Sum
No sharing 223.6s 2789.3s 127.3s 1178.5s No sharing 242.6s 1512.2s 282.5s 2506.13s
;‘;:‘:i;ﬁ (TWO) 20675 (-7%)  2304.85 (-17%) 121.0s (-5%) 105635 (-10%) ;‘;‘:’;ﬁ (TWO) 24035 (-1%)  1473.85 (-2%) 253.7s (-10%)  1832.7s (-27%)
Sharing (TWo) 506 56 (Lg5)  2235.65 (-20%) 121.4s (5%)  1058.5s (-10%) Sharing (Two) 4 65 ((1%)  1446.55 (-4%) 253.85 (-10%)  1810.9s (-28%)
Worst Fit Worst Fit

By increasing the rate of our exponential distribution to 3
(function launch every three seconds, on average) we emulate
a GPU server under light load, where there should be less
queueing and GPUs can possibly be idle between function
requests. The end-to-end time as seen from the provider
with four GPUs, with and without sharing is the same since
there is no queueing, thus sharing doesn’t have any benefit.
Spreading the functions across the GPUs is the best choice for
performance, although with only a marginal difference. This is
observed for no sharing and sharing using a worst fit scheduler
in Table IV, which shows the end-to-end time as seen from
the provider and the sum of all function’s end-to-end time of
a series of requests of all of our workloads using three and
four GPUs.

Time (s)

K-means

CovidCTNet

Face Id. NLP

BN 2 API Servers/GPU (4 GPUs)
I 2 API Servers/GPU (3 GPUs)

Face Det. ResNet

B 1 API Server/GPU (4 GPUs)
B 1 API Server/GPU (3 GPUs)
K= Avg. Queue Time

Fig. 6: Per workload queueing and execution delay when the GPU server is
under a low load. Time between function launches is an exponential
distribution with rate equal to 3.

In a low load case the provider could reduce the number of
GPUs available to the GPU server and either leave it idle or
use it for a different service. By using three instead of four
GPUs under a low load with sharing, the time taken by the
provider to handle all function requests increases by 5.5%.

The average end-to-end time of each of our workloads does
not suffer significant changes with and without sharing with
four GPUs (Figure 6). When this number is reduced to three,
we see the benefit of sharing: in a contended environment,
sharing reduces queueing latency of all functions and can
reduce the time taken to handle a function by up to 25%.

We experiment with a bursty sequence of functions, where
we launch all six workloads at once (a burst) ten times, with an
interval of two seconds between each burst. Without sharing,
the time taken to complete all function requests is 220 seconds.
With two API servers per GPU and a best-fit policy, the end-to-
end time is on average 200 seconds, a reduction of 9%. Adding

more workers to GPUs yields no significant improvement
because each workload uses most of the GPU’s memory.

We measure the average utilization of the 4 GPUs during a
burst. Figure 7 shows the results. Utilization data is acquired
from NVIDIA’s NVML every 200 milliseconds and is defined
as the percentage of time over the past sample period that
one or more kernels were being executed. For GPUs used
in our evaluation, the sample time is 167 milliseconds. The
figure shows a moving average window of size 5. With sharing
enabled, we see a slightly higher utilization of the GPUs
since they are idle less often. The average utilization for no-
sharing during a burst is 31.8%, while with sharing we see
an average of 37.1%, an increase of 16%. Utilization is not
close to 100% for either approach because of how NVML
measures utilization, as explained above. The workloads have
substantial state that must be transferred or recreated on
migration: loading models and recreating them on the GPU
through cuDNN calls.
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Fig. 7: Moving average of window size 5 of GPU utilization during a burst
of GPU functions for a baseline with no sharing and DGSF using best-fit
policy with two API servers per GPU.

E. Migration

The primary benefit of workload migration across GPUs is
to recover from scheduling decisions that (unpredictably) harm
performance by creating contention or load imbalance. A best-
fit scheduling policy tries to condense as many functions as it
can into GPUs, while worst-fit tries to spread the load across
GPUs, possibly causing fragmentation and higher queueing
latency. If a provider wants to reduce cost through maximizing
function packing, such as using a best-fit policy, scheduling
decisions can leave some GPUs idle while others are over-
subscribed. Migration helps mitigating possible performance
issues by moving API servers between GPUs. We study this
case below.
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Fig. 8: Memory and GPU utilization for a simple microbenchmark where two NLP applications are launched and, after three seconds, two image
classification are launched using two GPUs and different scheduling and migration policies.

We study a scenario where migration is used using the
NLP and image classification workloads. Using only two
GPUs over DGSF remoting, each with 15GB of free memory
(~1GB is used by the API servers’ contexts), we launch
two NLP workloads and two image classification workloads.
Because the image classification workloads require more data
to be downloaded, the NLP workloads start using the GPUs
first. The baseline comparison is API remoting without GPU
sharing: an NLP workload is assigned to each GPU. Then,
when the image classification functions want to use GPUs,
they must wait in queue until a GPU is available. This scenario
takes 43.6 seconds to finish.

With GPU sharing enabled, more scheduling options be-
come available. The best scenario is using a worst-fit sched-
uler, where one image classification and one NLP workload
share a GPU. This takes 38.9 seconds, an improvement of
about 11% over the baseline. With best-fit scheduling, we see
the worst scenario: the two NLP workloads share a GPU; the
total experiment takes 50.6 seconds to complete. Because they
are computation-heavy, they don’t share the GPU well. The
two image classification workloads run serially on the other
GPU and finish before the NLP ones, causing one of the GPUs
to be idle while the other is contended. This behavior can be
seen in Figure 8b, where the utilization for GPU 2 falls to
zero while GPU 1 stays at 100% for over 24 seconds.

It is clear from Figure 8b that we could improve utiliza-
tion and, consequently the runtime, by migrating one of the
applications running on GPU 1 to GPU 2. The utilization for
best fit policy with migration enabled is shown in Figure 8c.
As soon as the second image classification workload finishes,
the monitor notices an imbalance and moves one of the NLP
workloads. This mechanism improves the end-to-end runtime
to 42.6 seconds, a 16% improvement over best fit with no
migration.

We create a synthetic workload that allocates a fixed size,
single array of GPU memory, zeroes the array using cudaMem-
set and launches two kernels that perform simple arithmetic
operations on the array elements. This is the worst case for
migration since there is a single large array, which means
memory copying can not be parallelized. The memory amount
chosen for comparison are from three of our workloads’
memory requirements. To measure the overhead of migrating,
which requires stopping the API server from handling API
requests and copying memory from one GPU to another, we

forcefully migrate this application right before the second
kernel is called. Results are presented in Table V. When
running natively the dominant factor is initializing the CUDA
runtime, which takes approximately 3 seconds, 95% of the
end-to-end time for the largest array we measured with. The
elimination of the CUDA runtime initialization latency is
only possible with API remoting. The API servers are pre-
created and pooled, so their initialization still occurs but, in
contrast to running natively, the initialization is not on the
critical path. With a migration between the two kernels we
observe an increase in end-to-end time, due to the API server
having to synchronize and wait for the first kernel to be done
and copy the entire array between devices before resuming
normal operation. The migration process cost increases as
more memory needs to be moved and is around 78% of the
end-to-end time for the largest memory allocation evaluated.

TABLE V: Average times in seconds of three runs of an application that
allocates an array and launches 2 kernels that touch all elements.

Native DGSF DGSF +migration
End-to-end  End-to-end End-to-end  Migration
323 MB 3.04 0.04 0.25 0.50
3514 MB 3.06 0.06 0.70 0.53
7802 MB 3.10 0.10 1.38 1.19
13194 MB 3.11 0.12 2.34 2.12

IX. RELATED WORK

GPU virtualization. Cloud providers expose GPUs to vir-
tual machines using PCle passthrough which dedicates the
hardware interface directly to the guest, prohibiting sharing
and causing underutilization [43]. Full-virtualization [44],
[45], mediated pass-through (MPT) [45], [46], [47], para-
virtualization [48] and SR-IOV [49], [50], [51] techniques have
limitations that have hampered adoption in production cloud
environments [52].

Accelerator virtualization specialized for serverless func-
tions is a relatively new research space. Existing literature
CUDA-enabled containers [4] and API-remoting [5] simply
expose GPUs to serverless functions; unlike DGSF, they do not
optimize API-remoting specfically for the serverless setting
or support migration. Other accelerator types such as FPGAs
through OpenCL can also be used by serverless functions [53].

API remoting [54], [21], [22], [11] is a virtualization
technique that interposes a user-mode API, forwarding calls



to a user-level framework [55] on an appliance VM [56], or
remote server [20]. API remoting is attractive for serverless
because it decouples accelerator resource management from
other resources’. Scheduling in such scenarios is easier and
allows for several optimizations for heterogeneous workloads
[71, [6], [571, [58].

GPU consolidation. Although plenty of literature exists,
sharing GPUs is difficult and is not a solved problem [14],
[15], [59], [18]. NVIDIA introduced Hyper-Q and MPS to
increase utilization and improve sharing. While Hyper-Q is
general and used by DGSF, MPS is aimed towards cooperative
workloads and is not applicable for serverless. Since GPUs are
ubiquitous in machine learning many papers have focused on
sharing for ML workloads [60]. For example, PipeSwitch [61]
manually switches context of applications in GPU to ensure
high utilization, while Gandiva [24] implements time-slicing.

GPU migration. Execution migration across GPUs is another
heavily studied area of research [24], [62], [23] and is tightly
coupled with consolidation. NVIDIA’s GRID supports live mi-
gration of VMs, which is not the case when API remoting is in
place. DCUDA [23] uses peer-to-peer GPU memory accesses
to migrate kernel executions without manually moving data.
We tried this approach for DGSF but found that it can incur
large overheads depending on the kernel launching pattern,
likely from the CUDA runtime ensuring safety and memory
consistency. Gandiva [24] uses a checkpoint-restore approach,
relying on library support, e.g. TensorFlow train. Saver.

X. CONCLUSION

DGSF is a platform that enables serverless functions to use
GPUs through API remoting. DGSF disaggregates GPU re-
sources from CPU resources, simplifiying scaling and resource
management. DGSF enables GPU sharing, to increase GPU
utilization, serving many functions with few GPUs. DGSF han-
dles GPU utilization imbalance by migrating execution across
GPUs transparently. DGSF provides performance comparable
to, and often better than native by offsetting disaggregation
overheads with optimizations specialized for the serverless
environment.
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