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Abstract

The present work addresses gradient-based and machine learning (ML)-
driven design optimization methods to enhance homogenized linear and
non-linear properties of cubic microstructures. The study computes the
homogenized properties as a function of underlying microstructures by
linking atomistic-scale and meso-scale models. Here, the microstructure
is represented by the Orientation Distribution Function (ODF) that deter-
mines the volume densities of crystallographic orientations. The homoge-
nized property matrix in meso-scale is computed using the single-crystal
property values that are obtained by Density Functional Theory (DFT)
calculations. The optimum microstructure designs are validated with the
available data in the literature. The single-crystal designs, as expected,
are found to provide the extreme values of the linear properties, while the
optimum values of the non-linear properties could be provided by single or
polycrystalline microstructures. However, polycrystalline designs are ad-
vantageous over single crystals in terms of better manufacturability. With
this in mind, an ML-based sampling algorithm is presented to identify top
optimum polycrystal solutions for both linear and non-linear properties
without compromising the optimum property values. Moreover, an inverse
optimization strategy is presented to design microstructures for prescribed
values of homogenized properties, such as the stiffness constant (C11) and
in-plane Young’s modulus (E11). The applications are presented for Alu-
minium (Al), Nickel (Ni), and Silicon (Si) microstructures.



Background & Summary
The field of multi-scale material design aims to identify the material features
that provide optimum properties for specific engineering applications, including
problems in aerospace, automotive, and navy [1, 2, 3]. The throughout effort of
the last decade to design theoretical tools for optimizing material microstruc-
tures is named as ‘microstructure-sensitive design for performance optimization’
(MSDPO) [4, 5]. The main advantage of this approach is its ability to create
a design space of all possible values of the desired parameters, which allows
the designer to select the optimum solution of the design parameter(s) for a
particular engineering problem [6, 7]. Additionally, this optimum property so-
lution can be mapped back to the corresponding microstructure space which
will help determine the optimum manufacturing route of the material [8]. The
microstructure that provides the maximum value of the desired parameter (e.g.
stiffness constant, C11) may not be an optimum solution for another parameter
(e.g. C12). However, this challenge also creates an opportunity for materials
design to achieve a prescribed material property for a particular application by
tailoring the microstructures [9, 10].

Different approaches have been taken by the researchers to obtain the op-
timum material properties with the microstructure-sensitive design. Acharjee
et al. [11] and Ganapathysubramanian et al. [12] applied proper orthogonal de-
composition (POD) and method of snapshots in Rodrigues space to develop the
reduced-order model representation of the microstructural orientations in a poly-
crystalline material. This strategy was able to save significant computational
time. The material design was performed for a compliant beam microstructure
by Adams et al. [13] through generating a spectral representation of the Ori-
entation Distribution Function (ODF), which defines the design variables for
the polycrystalline material [14, 15]. A similar approach was adopted by Ka-
lidindi et al. [16] for designing a thin plate with a circular hole in the center
to maximize the uniaxial load-carrying capacity of the plate without plastic
deformation. The microstructure-sensitive design method was applied to the
hexagonal closed packed (HCP) microstructures by Fast et al. [17] to obtain the
design space of elasto-plastic properties of a cantilever beam that is made of al-
pha Titanium. Other optimization studies on materials design include the finite
element analysis [18] and graph-based method [19] as reported in the literature
to improve mechanical properties of polycrystalline materials.

More recently, a linear programming algorithm was used to find out the
microstructural textures that lead to optimum volume-averaged properties using
the idea of building a reduced-order design space, called the property closure [20,
21, 22]. The optimization techniques can also be used within this reduced space
to calculate the desired properties by designing the microstructural texture.
The applications of this approach were performed by Acar et al. [21] including
the example of finding the best microstructure design of an airframe panel for
obtaining the maximum buckling temperature. This process was extended to
find the maximum yield strength of the Galfenol alloy while the constraints for
the vibration tuning were considered [22]. In both cases, the property closures



of several homogenized stiffness parameters were generated and utilized for the
solution.

Density Functional 
Theory (DFT)

Elastic Constants 
of Single Crystal

Material Property 
Matrix

Experimental 
Validation

Optimum Volume 
Averaged Property

Optimum 
Microstructure 

Design

Gradient Based 
Optimization (Single 

or Two Crystals 
Solution)

ML-Based Sampling 
Algorithm (Multiple 

Polycrystal Solutions)

Step I (Micro-scale)

Step II (Meso-scale)

Figure 1: Block diagram of this study. Step I is performed at micro-scale to get
the volume averaged optimized property at meso-scale level in Step II.

Density Functional Theory (DFT) has been proven as a powerful tool to
understand micro-scale material behavior [23, 24]. DFT uses the first princi-
ple calculation to determine the material properties at the atomic/electronic
level. Though it requires a significant amount of calculations, new-generation
computational resources may improve its computational time efficiency and re-
liability [25, 26]. On the other hand, machine learning (ML) has become a
popular and robust tool in science and engineering, including the problems for
material design and discovery [27, 28, 29, 30, 31].

The present work will mainly build upon the previous work for the mi-
crostructure design by extending the study to three cubical materials (Al, Ni,
and Si) from a total of 4721 materials in the JARVIS-DFT database [32, 33]. Our
goal is to optimize the meso-scale material properties by linking the atomistic
scale simulation (DFT) and the microstructure model. In particular, gradient-
based and ML-based optimization algorithms are applied to find the optimum
(maximum and minimum) stiffness constant (C11) and Young‘s modulus (E11)
values along with the corresponding microstructures defined in terms of the
ODFs. Moreover, the ML-based sampling algorithm is able to reduce the di-
mensions of the ODF space and generate numerous solutions (top optimum
designs) that are close to the optimum microstructure solution. Finally, the
results from these approaches will be compared and validated with the previous
works from the literature for both linear (C11) and non-linear (E11) properties.
Figure 1 summarizes this study in a block diagram which consists of two steps.
Step I comprises of determining the elastic tensor values of the cubic materi-
als by utilizing the DFT calculations. With these tensor values, the property



matrix of each material is generated and used in Step II. The homogenized
material properties (e.g. C11 and E11) are optimized in Step II using gradient-
based optimization and the ML-based sampling algorithms. As expected, the
homogenized linear property (C11) has a single-crystal optimum solution while
the non-linear property (E11) still has a sharp texture optimum solution but
it is a polycrystal with two non-zero independent ODFs. The presented ML
technique is shown to find both optimum designs that involve the single-crystal
solution of C11 and the sharp texture polycrystalline solution of E11, as well as
identifying other top optimum designs for both properties. The ML solution is
verified against the gradient-based optimization solution (Sequential Quadratic
Programming (SQP)) for different optimum microstructure designs and may be
extended to more challenging multi-scale design optimization problems (e.g. op-
timization of crystal plasticity properties) in the future by taking advantage of
its computational time efficiency. Moreover, the optimum texture is determined
using SQP for a given value of E11 (near to the maximum value) which corre-
sponds to a polycrystal solution. Additionally, the ML-based approach is also
used to generate multiple polycrystalline textures for E11. These findings are
significant as the polycrystalline microstructures are known to be advantageous
over single crystal designs in terms of cost, performance, ease of manufacturing,
homogeneity, and good control over composition [34], while the single crystals
have direct use areas where the anisotropic elastic properties are required [35].
The presented microstructure formulation can be applied to model the materi-
als that have different crystallographic structures (i.e., hexagonal close-packed,
face-centered cubic, body-centered cubic). Similarly, the optimization approach
will also be applicable to the design of different microstructures in the future
by extending the presented methodology. The arrangement of this article is
as follows: The modeling section comprises atomistic-scale modeling (DFT),
microstructure modeling (ODF), gradient-based optimization model, and the
ML-based optimization model. Next, the numerical results are presented and
discussed for both linear and non-linear properties of Al, Ni, and Si. Finally,
the summary of the study along with the future works to be accomplished are
narrated in the conclusion.

Background for Modeling
Four different models have been developed in this study. In the first step,
the single-crystal material property values are determined by DFT calculations.
The microstructures of the sample materials are modeled using the ODF ap-
proach. Later on, a multi-scale optimization model is developed and solved
using gradient-based optimization and ML to find the extreme C11 and E11

values and the corresponding microstructures. The details of these models are
discussed in the following sections.



Density Functional Theory
Density functional theory (DFT) calculations were carried out with Vienna Ab-
initio Simulation Package (VASP) and the projector-augmented wave (PAW)
method [36, 37]. Please note that commercial software is identified to spec-
ify procedures. Such identification does not imply a recommendation by the
National Institute of Standards and Technology. The structure relaxation with
OptB88vdW functional [38] was obtained with 10−8 eV energy tolerance and
0.001 eV/Å force-convergence criteria. The elastic tensor is determined by per-
forming six finite distortions of the lattice and deriving the elastic constants from
the strain-stress relationship. Further details about the DFT elastic-constant
database can be found in Ref [32].

Microstructure Modeling
A polycrystalline material consists of several crystals having different crystal-
lographic orientations that define the microstructural texture. The individual
orientations of the crystals are represented by the angle-axis parameterization
technique by Rodrigues. This method follows a different approach of repre-
senting crystal orientations in comparison to the Euler angles [39, 40]. The
interested readers are referred to the study by Kumar et al. [41] for detailed
information on Rodrigues parameterization of microstructural solution spaces.
In this work, the microstructure is described using the ODF, which defines
the volume density of each unique crystal orientation in the microstructure. A
local finite element discretization scheme is applied along with the Rodrigues
parametrization to compute the meso-scale features. The definition of the ODF,
in terms of the volume densities of the crystals, requires the implementation of
the normalization constraint that is expressed by the following equation:∫

R

A(r, t) dv = 1 (1)

Homogenization aims to compute the volume-averaged properties of the poly-
crystalline microstructures as a function of the single-crystal properties. For
example, using the Taylor estimation [42], the volume-averaged elastic proper-
ties Cavg of homogeneous polycrystalline materials can be obtained from the
following equation:

Cavg =< C > (2)

where, C is the stiffness tensor of each crystal and <.> is the symbol of averag-
ing. Similarly, if any property of a single crystal χ(r), which is dependent on the
crystal orientation, is known, then the homogenized polycrystal property < χ >
can be determined by performing the averaging over the ODF. Mathematically,
the expression is:

< χ >=

∫
R

χ(r)A(r, t) dv (3)

As mentioned earlier, the crystal orientation is represented by the Rodrigues
parameterization, which is obtained from the scaling of the axis of rotation, n,



Figure 2: Finite element discretization of the orientation space

that is expressed in terms of the orientation, r, and angle of rotation, θ, as:
n = r/tan(θ/2). In Eq. (3), χ(r) represents the single-crystal material proper-
ties that are obtained from the DFT simulations (stored in JARVIS). The com-
putation of the homogenized microstructure properties using the single-crystal
data is explained next.

Computation of Homogenized Properties using Single-Crystal Prop-
erty Data Obtained from DFT Simulations: The homogenized (volume-
averaged) properties of the microstructures are obtained using the given ex-
pression in Eq. (3). Here, the integration for the homogenized properties is
performed over the fundamental domain by considering the rotation of the crys-
tals, R. Given the Rodrigues orientation vector, r, the rotation, R can be
obtained with the following expression:

R =
1

1 + r · r
(I(1− r · r) + 2(r ⊗ r + I × r)) (4)

Any polycrystal property obtained using Eqs. (3) and (4) can be shown in
the linear form by this parameterization [20]. The finite element discretization
of the microstructural orientation space is exhibited in Fig. 2. Here, each
independent nodal point of the finite element mesh represents a unique ODF
value for the associated crystal. The matrix representation of Eq. (3) can be
written as follows:

< χ > =

∫
R

χ(r)A(r, t) dv

=

Nelem∑
n=1

Nint∑
n=1

χ(rm)A(rm)ωm|Jn|
1

(1 + rm.rm)2

(5)



where, Nelem is the number of elements of the finite element mesh with Nint

integration points in each element, and A(rm) is the ODF value at the mth
integration point with global coordinate rm of the nth element. |Jn| is the
Jacobian matrix of the nth element and ωm is the integration weight of the mth
integration point. The Rodrigues parameterization metric is given by:

1

(1 + rm.rm)2

The expression in Eq. (5) is given in terms of the nodal point values, while it
can also be derived in terms of the properties defined at the integration points:
< χ >= P intTAint, which is a linear form in terms of the ODF at integration
points:

P int = χ(ri)ωi|Ji|
1

(1 + ri.ri)2
and Aint = A(ri)

where, i=1,2,.......Nint ×Nelem.
When the symmetry arising from the cubic crystalline system is considered,

the number of independent nodal points decreases. Let A be the vector of ODF
values at the independent nodes that are obtained from the integration point
values, Aint, using the tetrahedral finite element definition. Next, the properties
can simply be represented as < χ >= PTA in terms of the independent nodal
point ODF values. The nodal point property matrix, PT , can also be computed
from P intT . Here, the meso-scale stiffness tensor can be computed using the
microstructure homogenization expression (for example, C11 = PT

11A, where
P11 is the property matrix of the single-crystal values for C11). The Young‘s
modulus (E11), on the other hand, is inversely related to the stiffness as it is
given by E11 = 1

S11
, where S11 = S(1, 1) while S is the compliance matrix

defined as S = C−1. Therefore, it is called a non-linear property. Similarly,
the normalization constraint of Eq. (1) can be written in the linear form as
qTA = 1. Finally, the ODF must satisfy the following non-negativity condition
(A ≥ 0).

Gradient-Based Optimization
Two separate optimization problems are defined for the multi-scale model. One
of them is to find the optimum microstructures that maximize and minimize
the C11 and E11 values. The second problem is to obtain the microstructure
design that provides a prescribed value of E11. In both cases, the Sequential
Quadratic Programming (SQP) algorithm is applied to solve the optimization
problem. Table 1 shows the mathematical definitions of these optimization
problems.

The ODF solutions of the optimization problem in Table 1 need to satisfy
two design constraints, i.e., the volume normalization constraint and the non-
negativity of the ODFs.



max and min C11 and E11 min (E11- design E11 value)
subject to: qTA = 1 subject to: qTA = 1

A ≥ 0 A ≥ 0
Table 1: Summary of the optimization problems to maximize and minimize C11

and E11 values and design microstructures for a prescribed E11 value.

ML-based Optimization Model
An ML-based optimization method is used to find multiple polycrystal solutions
in the microstructure space. The applied method is similar to the approach of
Paul et al. [27]. The framework of the ML-based optimization method is showed
in Figure 3. There are three main steps in this approach.

Figure 3: Framework of ML-based optimization method.

In the first step, agnostic sampling methods are used to randomly generate
microstructure property pairs: the most desirable set of ODFs and the most
undesirable set of ODFs. Compared to Paul et al.’s problem [27], our problem
has no additional constraints, so four sampling algorithms, Random Intervals,
Random k Intervals, Random Every k, and Best-First Assignment [43] are used
here. In the experiments, each of the four algorithms generate around 1 million
valid ODFs, thereby a total of 4 million ODFs.

The second step is the identification of candidate ODF dimensions using
ML-based methods. The purpose here is to evaluate ODF dimensions which
are more important for generating optimum solutions. The top 10% and bot-
tom 10% data of ODFs in terms of the desired design objective are selected,
and labeled as "High" and "Low". Then, random forest-based [44] models are
constructed to predict the output using the ODF dimensions as features. The
feature importance from these models can thus help to rank the ODF dimensions
in the order of their importance.

The third step is targeted sampling. In this step, we proceed to the sec-
ond iteration of sampling only on a subset of ODF dimensions that are more
important in providing near-optimum solutions, instead of sampling across all
dimensions. Firstly, onlym dimensions that are advantageous in providing near-
optimum solutions are selected. Further, k dimensions from the m dimensions



are randomly selected for sampling. After that, we iterate k from {3, 4, 5, 6, 7}
when m is equal to 10, and from {6, 7, 8, 9, 10} when m is equal to 20. For each
k and m parameters pairs, N iterations of sampling are performed to generate
optimum solutions. Finally, all solutions obtained from different parameters are
aggregated. It was observed in our experiments that as we increase the value
of the parameter N , it increases the time of sampling, which in turn leads to
better results. The value of N is 1 million for the experiments in this study.

Results and Discussions
The optimization of the meso-scale stiffness constant, C11, and the in-plane
Young’s modulus, E11, is performed for the three cubic materials by gradient-
based and ML-based algorithms. In both cases, the material property matrix is
computed using the DFT data in JARVIS. The optimum results obtained from
two optimization methods are compared to the literature data for the same
parameters. The gradient-based SQP algorithm can identify the local optimum
solution for the microstructure design. However, the ML technique can produce
multiple optimum solutions that will be discussed in this section.

Optimization of a Linear Property (C11)
The single-crystal microstructure, which is intrinsically anisotropic, provides
the maximum and minimum values of C11 in the <111> and <100> directions,
respectively [45, 46]. The gradient-based algorithm of this study is also able
to find the single-crystal ODFs for the maximum and minimum C11. However,
the ML-based optimization obtains top optimum solutions corresponding to
polycrystalline microstructures. To the best of the authors’ knowledge, there is
no experimental study that is performed for finding the meso-scale maximum or
minimum C11 value. It is also difficult to manufacture single-crystal materials.
Therefore, we have chosen the experimental values of C11 from the literature
without labeling them maximum or minimum to validate the numerical results.
Table 2 shows the optimum values for C11 using gradient-based optimization
and ML methods, and their comparison with the available experimental data
from the previous studies [47, 48] for the three example materials.

Material Gradient-based Optimization Machine Learning
C11 from the literature [47, 48]

Cmax
11 Cmin

11 Cmax
11 Cmin

11

Al 122.8104 107.202 122.8102 107.2456 112
Ni 346.2944 268.0388 346.293 268.2173 268
Si 184.9062 156.5225 184.906 156.5787 168

Table 2: Comparison of maximum and minimum of the stiffness constant (C11)
values obtained from gradient-based optimization and ML along with the vali-
dation with the literature data (unit of C11 is GPa)

Table 2 shows that both optimization algorithms are providing almost equal
Cmax

11 and Cmin
11 values and the experimental C11 value lies between them for



all the three example materials. However, the significance of the ML-based
technique is that it can generate multiple polycrystalline textures with C11

values that are close to the optimum value of C11. This is advantageous for
manufacturing purposes. Figure 4 depicts the optimum microstructures that
provide Cmax

11 for Al, Ni, and Si generated by both optimization techniques.

(a) (b)

(d)(c)

Figure 4: Optimum microstructures (ODFs) in the orientation space for (a)
Cmax

11 of Al by gradient-based optimization and Cmax
11 of (b) Al (c) Ni and (d)

Si by ML approach.

Optimization of a Non-Linear Property (E11)
The selected non-linear property is the in-plane Young‘s modulus value (E11).
Accordingly, Emax

11 and Emin
11 are calculated for Al, Ni, and Si by gradient-

based optimization and ML methods. In this case, unlike the homogenized
linear properties, there is no guarantee that the single-crystal microstructure
will yield extreme values of the non-linear parameter [6]. This is also verified
through our observation in the present study as a sharp polycrystalline texture
with two non-zero ODF values is found to be the optimum solution by both
design methods. The optimized Emax

11 value is used for comparison with the
literature [49, 50] as the maximization of the in-plane Young‘s modulus (E11)
is naturally a more important design problem for improved elasticity. Table 3
reports the optimum values of E11 from both approaches and their validation
with the available data from the previous studies for the three example materials.

It is evident from Table 3 that the Emax
11 values obtained from the gradient-

based optimization algorithm and ML are almost identical, where the maximum
difference for all cases is below 1 GPa. The Emax

11 values for Al and Si are used
from Cantwell et al. [49] where the authors estimated the in-plane Young’s
modulus as a function of crystallographic directions for microelectromechanical
systems (MEMS). On the other hand, the Ni data was used from the study by
Ju et al. [50] which modeled the nanoindentation of a Ni surface at different



Material Gradient-based Optimization Machine Learning
Emax

11 from the literature [49, 50] Error (%)
Emax

11 Emin
11 Emax

11 Emin
11

Al 77.7468 48.2523 77.7462 48.5039 72.3 7.3
Ni 277.5323 140.2831 277.5119 141.2446 288 3.9
Si 170.0734 127.84 170.0647 128.0674 172 0.5

Table 3: Comparison of maximum and minimum in-plane Young’s modulus
values (E11) obtained from gradient-based optimization and ML along with the
validation with the literature data (unit of E11 is GPa)

crystal orientations using molecular dynamic (MD) simulations to approximate
the maximum E11. The outcomes of the presented optimization approach also
provide similar Emax

11 for these materials. The percentage of errors for Al, Ni,
and Si are 7.3%, 3.9%, and 0.5%, respectively. We anticipate that these errors
arise from the microstructural uncertainties and the differences in modeling as-
sumptions. For example, the two-crystal optimum solution of the present work
is a sharp texture design that is substantially difficult to process. Therefore,
there could be differences between the mathematical optimum solutions and
processed textures. Another possible error source can be the epistemic un-
certainties related to the computational methods (e.g. modeling assumptions,
convergence, errors).

The next objective objective of this study is to design the microstructure
for a prescribed value of E11 using gradient-based optimization (see Table 1).
Therefore, we have considered three different values of E11 (close to the Emax

11

value) for the example materials. For instance, the E11 values of Al are deter-
mined as 75 GPa, 76.5 GPa, and 77 GPa where the Emax

11 of Al is 77.75 GPa.
Similarly, the chosen values for Ni are 270 GPa, 273 GPa, and 275 GPa while
its maximum value for E11 is 277.5 GPa. These values for Si are 165 GPa, 167.5

(a)

(c)

(b)

(d)

Figure 5: Optimized microstructures (ODFs) in the orientation space with (a)
E11=75 GPa (b) E11=76.5 GPa (c) E11=77 GPa and (d) Emax

11 =77.5 GPa of
Al.



(a)

(c)

(b)

(d)

Figure 6: Optimized microstructures (ODFs) in the orientation space with (a)
E11=270 GPa (b) E11=273 GPa (c) E11=275 GPa and (d) Emax

11 =277.53 GPa
of Ni.

GPa, and 169 GPa where Emax
11 is 170.06 GPa. For all three microstructures,

the results exhibit that the ODFs converge to the optimum sharp texture design
(two-crystal solution) as E11 approaches its maximum value.

(a)

(c)

(b)

(d)

Figure 7: Optimized microstructures (ODFs) in the orientation space with (a)
E11=165 GPa (b) E11=167.5 GPa (c) E11=169 GPa and (d) Emax

11 =170.06 GPa
of Si.

This outcome is also visible from Figs. 5-7. For example, in Fig. 5, the
microstructures (ODFs) of Al are plotted in the Rodrigues orientation space
for the three prescribed E11 values and the maximum E11 value. Figure 5(a)
represents the microstructure with E11 value of 75 GPa, which demonstrates a
smooth polycrystalline texture. The texture becomes sharper as the E11 value
increases, e.g. E11 of 76.5 GPa (Fig. 5(b)) and E11 of 77 GPa (Fig. 5(c)).



Finally, the optimum two-crystal texture providing the Emax
11 ) value of 77.75

GPa is depicted in Fig. 5(d) which is obtained from both optimization tech-
niques. The optimum microstructure designs for Ni and Si, in Fig. 6 and Fig.
7, respectively, follow the same trend. This result underlines the two unique
orientations for cubic microstructures that lead to maximum in-plane Young’s
modulus. The presented technique for inverse design can be applied to all poly-
crystalline microstructures to achieve the prescribed values of the homogenized
material properties. For manufacturing purposes, the ML approach can be in-
tegrated into the design framework to identify the top optimum polycrystalline
microstructure designs.

Optimization Results for ML
The optimum values of C11 and E11 obtained by gradient-based optimization
and ML are compared in Tables 2 and 3, respectively as the results of the pro-
posed ML method are comparable to the conventional optimization results. The
optimum designs of the gradient-based method are a single-crystal for C11 and
a two-crystal texture for E11. On the contrary, the ML method provides mul-
tiple solutions with more than two strictly non-zero ODF dimensions owing to
its parameter setting to improve the manufacturability of the microstructures.
The number of the top optimum designs (top 0.01%, 0.1%, 0.5%, and 1% de-
signs) identified by the ML model are shown in Table 4 and 5 for C11 and E11,
respectively.

Material within 0.01% within 0.1% within 0.5% within 1%

Al Cmin
11 0 8 130 232

Cmax
11 103 210 409 584

Ni Cmin
11 0 7 90 151

Cmax
11 72 210 405 429

Si Cmin
11 0 12 125 230

Cmax
11 102 222 405 485

Table 4: Number of polycrystal solutions for C11 obtained by ML-based method
within 0.01%, 0.1%, 0.5%, 1% of the optimum solutions.

Material within 0.01% within 0.1% within 0.5% within 1%

Al Emin
11 0 0 0 2

Emax
11 3 48 701 2431

Ni Emin
11 0 0 0 1

Emax
11 1 50 549 1936

Si Emin
11 0 0 5 12

Emax
11 8 130 1943 2676

Table 5: Number of polycrystal solutions for E11 obtained by ML-based method
within 0.01%, 0.1%, 0.5%, 1% of the optimum solutions.

As represented by Tables 4 and 5, the method successfully finds multiple
near-optimum polycrystal solutions for all three materials. The near-optimum



solutions correspond to different microstructure designs having the same or sim-
ilar values for the stiffness constant and Young’s modulus. In the case of Cmax

11

optimization, 103, 72, and 102 solutions can be discovered for Al, Ni, and Si
respectively within a neighborhood of 10−4 from the optimum solution. Further-
more, 584, 429 and 485 solutions within a neighborhood of 10−2 are discovered
respectively for Cmax

11 problem. Similarly, for Cmin
11 calculation, 232, 151, and

230 solutions in a neighborhood of 10−2, for Al, Ni, and Si respectively, are
identified.

On the other hand, 3, 1, and 8 solutions can be discovered for Al, Ni, and
Si respectively for Emax

11 determination within a neighborhood of 10−4 from
the optimum solution. Furthermore, 2431, 1936 and 2676 solutions within a
neighborhood of 10−2 are suggested respectively for Emax

11 of those materials.
Next, for Emin

11 problem, 2, 1, and 12 solutions in a neighborhood of 10−2, for
Al, Ni, and Si respectively, are identified.

It is critical to obtain multiple near-optimum solutions because traditional
low-cost manufacturing processes can only generate a limited set of microstruc-
tures. Multiple near-optimum solutions can accelerate materials development
efforts by increasing the variability of optimum designs and, thus, improve the
efficiency of manufacturing immensely. Therefore, given the ability of the ML-
based sampling algorithm to identify promising microstructure design spaces
which can then be rigorously searched to discover multiple polycrystal solu-
tions, it can be applied as a useful tool for the challenging multi-scale design
optimization problem (e.g. optimization of crystal plasticity properties).

Conclusions
Two optimization algorithms are developed in this study to determine the opti-
mum values of linear (C11) and non-linear (E11) properties and corresponding
microstructures for three cubic materials: Al, Ni, and Si. First, the homoge-
nized material properties of the microstructures are computed by linking the
DFT calculations with the ODF-based microstructure model. The first design
approach utilizes the gradient-based optimization that provides single-crystal
optimum microstructures for the extreme values of C11 and two-crystal designs
for E11. The second design approach is based on ML-based optimization that is
able to produce numerous polycrystalline microstructures without compromis-
ing the optimum values of the homogenized properties. For example, 2431, 1936,
and 2676 optimum microstructure solutions are suggested within 1% of Emax

11

value of Al, Ni, and Si, respectively. This outcome is significant to accelerate
the manufacturing of materials by increasing the variability of optimum design
solutions. The numerical results for the optimum microstructures are validated
for different materials using the available data in the literature. In the future,
this approach can be extended to other crystalline structures, such as hexago-
nal, monoclinic, trigonal, and tetragonal microstructures, and to more complex
multi-scale design problems, such as the design of microstructures under large
deformations using crystal plasticity simulations.



Acknowledgements
The authors would like to acknowledge the financial support provided by the
Mechanical Engineering Department at Virginia Polytechnic Institute and State
University. YM, AC, and AA acknowledge support from NIST award 70NANB19H005
(CHiMaD).

Author contributions
MH and PA conducted the research on microstructure modeling with ODF. KC
and FT conducted the research on DFT. YM, AC, and AA conducted the ma-
chine learning research. All authors contributed to the manuscript preparation.

Competing interests
The authors declare no conflict of interest.

References
[1] Yu Liu, M Steven Greene, Wei Chen, Dmitriy A Dikin, and Wing Kam

Liu. Computational microstructure characterization and reconstruction for
stochastic multiscale material design. Computer-Aided Design, 45(1):65–76,
2013.

[2] Bassam Mohammed, Taejoon Park, Farhang Pourboghrat, Jun Hu, Rasoul
Esmaeilpour, and Fadi Abu-Farha. Multiscale crystal plasticity modeling
of multiphase advanced high strength steel. International Journal of Solids
and Structures, 151:57–75, 2018.

[3] Mark F Horstemeyer. Integrated Computational Materials Engineering
(ICME) for metals: using multiscale modeling to invigorate engineering
design with science. John Wiley & Sons, 2012.

[4] Brent L Adams, Surya Kalidindi, and David T Fullwood. Microstructure
sensitive design for performance optimization. Butterworth-Heinemann,
2012.

[5] Oliver K Johnson and Christian Kurniawan. An efficient algorithm for
generating diverse microstructure sets and delineating properties closures.
Acta Materialia, 147:313–321, 2018.

[6] Pinar Acar. A new sampling approach for the multi-scale design of metallic
materials. Journal of Mechanical Design, 142(8), 2020.



[7] Surya R Kalidindi, Massimiliano Binci, David Fullwood, and Brent L
Adams. Elastic properties closures using second-order homogenization the-
ories: case studies in composites of two isotropic constituents. Acta Mate-
rialia, 54(11):3117–3126, 2006.

[8] David T Fullwood, Stephen R Niezgoda, Brent L Adams, and Surya R
Kalidindi. Microstructure sensitive design for performance optimization.
Progress in Materials Science, 55(6):477–562, 2010.

[9] Ole Sigmund. Tailoring materials with prescribed elastic properties. Me-
chanics of Materials, 20(4):351–368, 1995.

[10] Hongyi Xu, Yang Li, Catherine Brinson, and Wei Chen. A descriptor-based
design methodology for developing heterogeneous microstructural materials
system. Journal of Mechanical Design, 136(5), 2014.

[11] Swagato Acharjee and Nicholas Zabaras. A proper orthogonal decomposi-
tion approach to microstructure model reduction in rodrigues space with
applications to optimal control of microstructure-sensitive properties. Acta
Materialia, 51(18):5627–5646, 2003.

[12] Shankar Ganapathysubramanian and Nicholas Zabaras. Design across
length scales: a reduced-order model of polycrystal plasticity for the con-
trol of microstructure-sensitive material properties. Computer Methods in
Applied Mechanics and Engineering, 193(45-47):5017–5034, 2004.

[13] Brent L Adams, A Henrie, B Henrie, M Lyon, SR Kalidindi, and H Garmes-
tani. Microstructure-sensitive design of a compliant beam. Journal of the
Mechanics and Physics of Solids, 49(8):1639–1663, 2001.

[14] Olaf Engler and Valerie Randle. Introduction to texture analysis: macro-
texture, microtexture, and orientation mapping. CRC press, 2009.

[15] U Fred Kocks, Carlos Norberto Tomé, and H-R Wenk. Texture and
anisotropy: preferred orientations in polycrystals and their effect on mate-
rials properties. Cambridge university press, 1998.

[16] Surya R Kalidindi, Joshua R Houskamp, Mark Lyons, and Brent L Adams.
Microstructure sensitive design of an orthotropic plate subjected to tensile
load. International Journal of Plasticity, 20(8-9):1561–1575, 2004.

[17] Tony Fast, Marko Knezevic, and Surya R Kalidindi. Application
of microstructure sensitive design to structural components produced
from hexagonal polycrystalline metals. Computational Materials Science,
43(2):374–383, 2008.

[18] Xiu-Juan Zhang, Ke-Zhang Chen, and Xin-An Feng. Optimization of ma-
terial properties needed for material design of components made of multi-
heterogeneous materials. Materials & design, 25(5):369–378, 2004.



[19] Pengfei Du, Adrian Zebrowski, Jaroslaw Zola, Baskar Ganapathysubrama-
nian, and Olga Wodo. Microstructure design using graphs. npj Computa-
tional Materials, 4(1):1–7, 2018.

[20] Veera Sundararaghavan and Nicholas Zabaras. Linear analysis of texture–
property relationships using process-based representations of rodrigues
space. Acta materialia, 55(5):1573–1587, 2007.

[21] Pinar Acar and Veera Sundararaghavan. Utilization of a linear solver for
multiscale design and optimization of microstructures. AIAA Journal,
pages 1751–1759, 2016.

[22] Pinar Acar and Veera Sundararaghavan. Linear solution scheme for mi-
crostructure design with process constraints. AIAA Journal, pages 4022–
4031, 2016.

[23] Peter Rogl, Raimund Podloucky, and Walter Wolf. Dft calculations: a
powerful tool for materials design, 2014.

[24] Jürgen Hafner, Christopher Wolverton, and Gerbrand Ceder. Toward com-
putational materials design: the impact of density functional theory on
materials research. MRS bulletin, 31(9):659–668, 2006.

[25] Jörg Neugebauer and Tilmann Hickel. Density functional theory in ma-
terials science. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 3(5):438–448, 2013.

[26] Gabriel R Schleder, Antonio CM Padilha, Carlos Mera Acosta, Marcio
Costa, and Adalberto Fazzio. From dft to machine learning: recent ap-
proaches to materials science–a review. Journal of Physics: Materials,
2(3):032001, 2019.

[27] Arindam Paul, Pinar Acar, Wei-keng Liao, Alok Choudhary, Veera Sun-
dararaghavan, and Ankit Agrawal. Microstructure optimization with con-
strained design objectives using machine learning-based feedback-aware
data-generation. Computational Materials Science, 160:334–351, 2019.

[28] Jaimyun Jung, Jae Ik Yoon, Hyung Keun Park, Jin You Kim, and Hy-
oung Seop Kim. An efficient machine learning approach to establish
structure-property linkages. Computational Materials Science, 156:17–25,
2019.

[29] Dipendra Jha, Logan Ward, Arindam Paul, Wei-keng Liao, Alok Choud-
hary, Chris Wolverton, and Ankit Agrawal. Elemnet: Deep learning the
chemistry of materials from only elemental composition. Scientific reports,
8(1):1–13, 2018.

[30] Rampi Ramprasad, Rohit Batra, Ghanshyam Pilania, Arun Mannodi-
Kanakkithodi, and Chiho Kim. Machine learning in materials informatics:
recent applications and prospects. npj Computational Materials, 3(1):1–13,
2017.



[31] Pei Liu, Haiyou Huang, Stoichko Antonov, Cheng Wen, Dezhen Xue,
Houwen Chen, Longfei Li, Qiang Feng, Toshihiro Omori, and Yanjing
Su. Machine learning assisted design of γ’-strengthened co-base super-
alloys with multi-performance optimization. npj Computational Materials,
6(1):1–9, 2020.

[32] Kamal Choudhary, Gowoon Cheon, Evan Reed, and Francesca Tavazza.
Elastic properties of bulk and low-dimensional materials using van der waals
density functional. Physical Review B, 98(1):014107, 2018.

[33] Kamal Choudhary, Kevin F Garrity, Andrew CE Reid, Brian DeCost,
Adam J Biacchi, Angela R Hight Walker, Zachary Trautt, Jason Hattrick-
Simpers, A Gilad Kusne, Andrea Centrone, et al. The joint automated
repository for various integrated simulations (jarvis) for data-driven mate-
rials design. npj Computational Materials, 6(1):1–13, 2020.

[34] Laurent Mezeix and David J Green. Comparison of the mechanical prop-
erties of single crystal and polycrystalline yttrium aluminum garnet. In-
ternational journal of applied ceramic technology, 3(2):166–176, 2006.

[35] Xinpeng Du and Ji-Cheng Zhao. Facile measurement of single-crystal elas-
tic constants from polycrystalline samples. npj Computational Materials,
3(1):1–8, 2017.

[36] Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab
initio total-energy calculations using a plane-wave basis set. Physical review
B, 54(16):11169, 1996.

[37] Georg Kresse and Jürgen Furthmüller. Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plane-wave basis set.
Computational materials science, 6(1):15–50, 1996.

[38] Jiří Klimeš, David R Bowler, and Angelos Michaelides. Chemical accuracy
for the van der waals density functional. Journal of Physics: Condensed
Matter, 22(2):022201, 2009.

[39] H-J Bunge. Texture analysis in materials science: mathematical methods.
Elsevier, 2013.

[40] Hans Rudolf Wenk. Preferred orientation in deformed metal and rocks: an
introduction to modern texture analysis. Elsevier, 2016.

[41] A Kumar and PR Dawson. Computational modeling of fcc deformation
textures over rodrigues’ space. Acta Materialia, 48(10):2719–2736, 2000.

[42] Geoffrey Ingram Taylor. Plastic strain in metals. J. Inst. Metals, 62:307–
324, 1938.



[43] Ruoqian Liu, Abhishek Kumar, Zhengzhang Chen, Ankit Agrawal, Veera
Sundararaghavan, and Alok Choudhary. A predictive machine learning
approach for microstructure optimization and materials design. Scientific
reports, 5(1):1–12, 2015.

[44] Andy Liaw, Matthew Wiener, et al. Classification and regression by ran-
domforest. R news, 2(3):18–22, 2002.

[45] Klosek, Vincent. Crystallographic textures. EPJ Web Conf., 155:00005,
2017.

[46] Karsten Kunze, Thomas Etter, Jürgen Grässlin, and Valery Shklover. Tex-
ture, anisotropy in microstructure and mechanical properties of in738lc
alloy processed by selective laser melting (slm). Materials Science and En-
gineering: A, 620:213–222, 2015.

[47] RFS Hearmon. The elastic constants of anisotropic materials—ii. Advances
in Physics, 5(19):323–382, 1956.

[48] P Haldipur, FJ Margetan, and RB Thompson. Estimation of single-crystal
elastic constants from ultrasonic measurements on polycrystalline speci-
mens. In AIP Conference Proceedings, volume 700, pages 1061–1068. Amer-
ican Institute of Physics, 2004.

[49] Patrick R Cantwell, Hojin Kim, Matthew M Schneider, Hao-Han Hsu, Dim-
itrios Peroulis, Eric A Stach, and Alejandro Strachan. Estimating the
in-plane young’s modulus of polycrystalline films in mems. Journal of mi-
croelectromechanical systems, 21(4):840–849, 2012.

[50] S-P Ju, C-T Wang, C-H Chien, JC Huang, and S-R Jian. The nanoin-
dentation responses of nickel surfaces with different crystal orientations.
Molecular Simulation, 33(11):905–917, 2007.


