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Abstract

The data-aware method of distributions (DAMD) is a low-dimension data as-
similation procedure to forecast the behavior of dynamical systems described
by differential equations. The core of DAMD is the minimization of a dis-
tance between an observation and a prediction in distributional terms, with
prior and posterior distributions constrained on a statistical manifold defined
by the method of distributions (MD). We leverage the information-geometric
properties of the statistical manifold to reduce predictive uncertainty via data
assimilation. Specifically, we exploit the information-geometric structures in-
duced by two discrepancy metrics, the Kullback-Leibler divergence and the
Wasserstein distance, which explicitly yield natural gradient descent. The
use of a deep neural network as a surrogate model for MD enables automatic
differentiation, further accelerating optimization. The manifold’s geometry
is quantified without sampling, yielding an accurate approximation of the
gradient descent direction. Our numerical experiments demonstrate that ac-
counting for the manifold’s geometry significantly reduces the computational
cost of data assimilation by both facilitating the calculation of gradients and
reducing the number of required iterations.
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1. Introduction

Mathematical models used to represent “reality” are invariably faulty
due to a number of mutually reinforcing reasons such as lack of detailed
knowledge of the relevant laws of nature, scarcity (in quality and/or quantity)
of observations, and inherent spatiotemporal variability of the coefficients
used in their parameterizations. Consequently, model predictions must be
accompanied by a quantifiable measure of predictive uncertainty (e.g., error
bars or confidence intervals); when available, observations should be used
to reduce this uncertainty. The probabilistic framework provides a natural
means to achieve both goals. For example, a random forcing in Langevin
(stochastic ordinary-differential) equations [1| or fluctuating Navier-Stokes
(stochastic partial-differential) equations [2| implicitly account for sub-scale
variability and processes that are otherwise absent in the underlying model.

Solutions of such stochastic models, and of models with random coeffi-
cients, are given in terms of the (joint) probability density function (PDF)
or cumulative distribution function (CDF) of the system state(s). They
can be computed, with various degrees of accuracy and ranges of appli-
cability, by employing, e.g., Monte Carlo simulations (MCS), polynomial
chaos expansions (PCE) and the method of distributions (MD) [3]. MCS
are robust, straightforward and trivially parallelizable; yet, they carry (of-
ten prohibitively) high computational cost. PCE rely on a finite-dimensional
expansion of the solution of a stochastic model; their accuracy and compu-
tational efficiency decrease as the correlation length of the random inputs
decreases (the so-called curse of dimensionality), making them ill-suited to
problems with white noise [4]. MD yields a (generally approximate) partial
differential equation (PDE) for the PDF or CDF of a system state (hence-
forth referred to as a PDF/CDF equation). MD can handle inputs with
both long and short correlations, although the correlation length might af-
fect the robustness of the underlying closure approximations when the latter
are needed. For Langevin systems driven by white noise, MD yields a Fokker-
Planck equation [1] for a system state’s PDF. For colored (correlated) noise,
PDF /CDF equations become approximate [5], although their computational
footprint typically does not change. If a Langevin system is characterized by
Ny system states, then PDF/CDF equations are defined in an augmented
Ng-dimensional space. Their MD-based derivation requires a closure approx-
imation [3] and references therein| such as the semi-local closure |6} [7} [8] used
in our analysis because of its accuracy and manageable computational cost.



The temporal evolution of the PDF of a system state predicted with,
e.g., MD provides a measure of the model’s predictive uncertainty in the ab-
sence of observations of the system state. In Bayesian statistics, this PDF
serves as a prior that can be improved (converted into the posterior PDF)
via Bayesian update as data become available. When used in combination
with ensemble methods like MCS, standard strategies for Bayesian data as-
similation, e.g., Markov chain Monte Carlo (MCMC) and its variants, are
often prohibitively expensive [9]. The computational expedience is the pri-
mary reason for the widespread use of various flavors of Kalman filter; they
perform well when the system state’s PDF is Gaussian and models are linear,
but require adjustments and uncontrollable approximations otherwise 10 [9].
Data-aware MD (DAMD) [11] alleviates this computational bottleneck, ren-
dering Bayesian update feasible even on a laptop. DAMD employs MD to
propagate the system state PDF (forecast step) and sequential Bayesian up-
date at measurement locations to assimilate data (analysis step). It offers
two major benefits. First, MD replaces repeated model runs, characteris-
tic of both MCMC and ensemble and particle filters, with the solution of a
single deterministic equation for the evolving PDF. Second, it dramatically
reduces the dimensionality of the PDFs involved in the Bayesian update at
each assimilation step because it relies on a single-point PDF rather than a
multi-point PDF whose dimensionality is determined by the discretized state
being updated. DAMD takes advantage of MD’s ability to handle nonlinear
models and non-Gaussian distributions [12}[13].

DAMD recasts data assimilation as a minimization problem, whose loss
function represents the discrepancy between observed and predicted posterior
distributions. The observed posterior PDF is obtained by direct application
of Bayes’ rule at the measurement point, combining the data model and a
prior PDF computed via MD. The predicted PDF is assumed to obey the
PDF equation, which acts as a PDE constraint for the loss function. The
parameters appearing in MD are the target of minimization and introduce
a suitable parameterization for the space of probabilities (a statistical man-
ifold) with quantifiable geometric properties. The computational effort of
DAMD is thus determined by the efficiency in the solution of a minimiza-
tion problem on a manifold. This aspect of DAMD is the central focus of
our analysis, in which we exploit information-geometric theory to reformu-
late the optimization problem by relying on the geometric properties of the
MD-defined manifold.

We utilize results from the optimal transport theory and machine learn-
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ing. Specifically, we employ both the Kullback-Leibler (KL) divergence and
the 2—Wasserstein distance to measure the discrepancy between predicted
and observed posterior distributions at each assimilation point. The former
underpins much of information theory [14] and variational inference [15
while the latter has its origins in optimal transport and is now increasingly
popular in the wider machine learning community [16]. We employ gradient
descent (GD) and natural gradient descent (NGD) for optimization |[17], with
preconditioning matrices expressing the geometry induced on the statistical
manifold by the choice of the discrepancy. These formulations are explicit
for univariate distributions; thus, they ideally suit our data assimilation pro-
cedure.

Finally, we construct a surrogate of the PDF/CDF equation to accelerate
sequential minimization of loss functions, taking advantage of the relatively
small dimensionality of the statistical manifold. We identify a special ar-
chitecture of a deep neural network (DNN) that enables the calculation of
the terms involved in NGD for both discrepancy choices; its connection with
the physical model, enabled by MD, classifies it as a physics-informed neural
network (PINN) surrogate. The use of DNNs obviates the need to resort
to sampling when assessing the manifold’s geometry, a strategy that had a
debatable success [18].

The paper is organized as follows. In section |2| we briefly overview the
tools and concepts from information geometry and optimal transport that
are directly relevant to the subsequent analysis. In section |3| we summarize
the DAMD approach (with details in and illustrate how the
information-geometric tools and MD can be naturally combined to reduce
predictive uncertainty. Section {| contains results of our numerical experi-
ments conducted on a Langevin equation with either white or colored noise.
Main conclusions drawn from this study are summarized in section

2. Preliminaries

Let ,P(R?%) denote the probability space of PDFs f on R? with finite
pth moments, where p > 1. Our key objective is to minimize loss functions

!Unlike traditional variational inference, our approach utilizes univariate (single-point)
distributions that are characterized by a specific, physics-driven parameterization enabled
by MD.



involving PDFs f belonging to ,P(R?). In this section, we summarize defini-
tions, tools and theoretical results that will be subsequently used in concert
with DAMD.

Measures of discrepancy. Alongside classic measures of discrepancy between
generic integrable functions fi(X), fo(X) : R? — RT such as the L; and Ly
norms,

d(fis o) / A(X) = fo(X)[dX (1a)

and

)= [ 1900 - £00Rax) " (1b)

we utilize measures of discrepancy that are tailored to the underlying geom-
etry of the probabilistic space ,P(R?). The KL divergence,

f(X)
dKL f ,f I:/ f X)In dX, 2
(Rt = [ RO @)
expresses the discrepancy between the PDFs f; and f5 in terms of relative
entropy. Used to quantify how well f; : R — Rt approximates f; : R? —
R*, the KL divergence is not a distance since dg,(f1, f2) # dkr(f2, f1)-
Another discrepancy measure is the p-Wasserstein distance,

1/p
wyho = (e, [ X vIP@xay)) L ez @

Y€ (f1,f2)

where I is the set of joint probability measures v on R? x R? whose marginals
are probability measures corresponding to f; and f,. Originating in the field
of optimal transport, quantifies the optimal (infimum) cost of shifting
the mass distribution of f; to fs. Such minimum exists and is unique under
regularity conditions for the PDFs for p > 1, i.e., f must be absolutely
continuous with respect to the Lebesgue measure [19]. For d = 1, (3)) reduces
to

1 1/p
me,fz):HF11<Y>—F21<Y>Hp:( / \F11<Y>—F21<Y>\pdy) R
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where F;(X) = f_XOO fi(X)dX with i = 1,2 is the CDF corresponding to the
PDF f;(X); and F, *(Y) is the inverse of F; defined as F, '(Y) = inf{X :
Fy(X) > Y}, with Y € (0,1).

Since DAMD deals with univariate distributions, we are concerned with
d=1.

Approximation of distributions. Various fields of science and engineering—
e.g., machine learning [20][21], estimation theory 22|, and optimal transport
and control theory [19] 23] [24]—deal with a problem of approximating an
(empirical) target PDF f(X) with a PDF f(X;¢) : R — R* defined on
the parameterized probability space P,. The latter consists of PDF's that
are uniquely characterized by a set of N, parameters ¢ € ® C R with
Npar > 1. This functional approximation is recast as a problem of finding
a parameter set that minimizes a function C(¢) depending on a selected
measure of discrepancy D(p) between the target PDF f(X) and its approx-
imation f(X; ),

argmin C(D(y)), with D(¢) = D(f(X;¢), f(X)), ()
with f(X; ) belonging to P,,.

We assume P, to be a subset of 3P(R). The use of the KL and W,
metrics in place of D in introduces known geometries to the statisti-
cal manifold of parameterized PDF's, facilitating the deployment of efficient
optimization algorithms that exploit this geometric structure. Specifically,
one of the geometric properties of the KL divergence is its parameteriza-
tion invariance, i.e., the equivalency between computation of the discrepancy
C(p) = D(p) = dii(f(X; @), (X)) in the PDF space P, and in the parame-
ter space ®; this property facilitates minimization of the loss function via nat-
ural gradient descent [25] Sec. 2.1.3]. Moreover, a solution of the minimiza-
tion problem (5) with C(p) = dkw(f(X; ), f(X)) corresponds to the max-
imum likelihood estimate of the parameters ¢ [26]. This analogy elucidates
the connection between Bayesian inference and information geometry. When

N

f is obtained empirically (e.g., from sampling or repeated experiments), the
use of the Wasserstein distance, C(@) = D(p)/2 = W2(f(X; @), f(X))/2, is
more computationally expedient [19]/20} (21} 23], while possessing geometric
properties almost as rigorous as KL [17].

Statistical manifolds. Let the PDF f(X;¢) be smooth and have a sup-
port Q = {X € R|f(X) > 0}. We assume this support to be com-
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pact, © = [Xuin, Xmax] C R, and the dimensionality of the parameter
space ® C RM= to be finite, Nyor < +00. An Np,-dimensional mani-
fold is an Np,-dimensional topological space that behaves locally like the
Euclidean space R A smooth manifold is equipped with a metric ten-
sor G(¢)—which facilitates the calculation of distances on the local ap-
proximation of the manifold, i.e., the tangent plane—and an affine con-
nection V,—which enables differentiation. The second-order tensor G is
positive definite and varies smoothly with ¢. It defines a Riemannian met-
ric on the manifold, and the latter is said to be Riemannian. A statistical
manifold M is a manifold with coordinates ¢ = (¢!, ..., ") € RVvar
where each point represents a PDF with assigned support and defined fea-
tures. A divergence on the statistical manifold M is a non-negative function
D(f(X;¢), [(X;¢) : M x M — R, which is equal to zero if and only
if f(X;¢)= f(X;¢') and which can be approximated locally (i.e., when ¢
and ¢’ are close) via the components G;; of the second-order tensor G as
D(f(), f(¥") = Gij(0) Ap' Ap? 2+ O(|Ap]?), where Ap = p— ¢’ and the
Einstein summation is implied over the repeated indices 7,j =1, ..., Npar.

Information geometry of statistical manifolds. 1f the KL divergence is used
to quantify the discrepancy between two PDFs on the manifold M, then the
tensor metric G(¢) (a geometric structure) of the space P, of parameterized
PDFs f(X;¢) is called Fisher information matrix,

1 T .
Grlp) = / g (Ve (i) Vol (Xip)ax. (6)

which is emphasized by the subscript F. The resulting statistical manifold
M is invariant in the sense that, for ¢, € ® and f; = f(¢,;) with i = 1,2,
the divergence dkr(f1, f2) = dxn(f1(X;¢1), f2(X;,)) and the metric Gp
describe the same geometry when the random coordinate X is remapped
without losing information [27) Ch. 3.1]. This property underpins the Rie-
mannian natural gradient descent (NGD) method (a.k.a. Fisher-Rao gradi-
ent descent) for parameter identification [28] and references therein]. The
method uses the metric tensor G as a pre-conditioner for gradient descent

algorithms to solve with C = D = dk,,

e = Pr — 1GF (0p) Vodkn(f(X;0), )l (7)

where 7 is the descent step and G' is the inverse of Gy. The technique
presents strong theoretical analogies with classic filtering techniques (namely
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Kalman filter and extended Kalman filter) [29] [30]. In the absence of an
analytical expression for Gp, the matrix can be approximated empirically,
although with debatable accuracy [18].

Geometric structure, including the metric tensor Gy () , of the finite-
dimensional Wasserstein manifolds—hence, the subscript W— of Gaussian
PDFs was studied in [31}[32]. These results were subsequently generalized
to construct Gy (¢) for the manifolds M of generic discrete [28] and contin-
uous [17] distributions. Specifically, when d = 1, the Wasserstein manifold’s
metric tensor Gy, has an explicit form,

Gule) = [ 7 (VoF (i) T, F(Xig)ax. (®)

Under some mild regularity assumptions, the finite-dimensional Wasserstein
manifold M in the parameter space ® is Riemannian [I7]. It introduces an
NGD in the space ®,

_ ) 1
Cri1 = Pr — NG (@) VC(P)]p,, with C= §D2 and D =W,. (9)

Remark 2.1. Regardless of whether one chooses the KL divergence or the
Wy distance, NGD orients the optimization problem @ according to the
topology of the statistical manifold M as expressed by its metric tensor G;
(i = F or W), thus accelerating the solution. The computational cost of
both (7) and @ depends on the overall number of iterations and on the
calculation of G; (storage cost O(N7,,) per iteration) and its inverse G;!
(inversion cost O(NJ,) per iteration) [25]. Thus, the overall cost of opti-
mization is a trade-off between the number of iterations, arquably reduced on

information-geometric grounds, and the cost of inverting the metric tensor
G;.

Remark 2.2. The finite-dimensional Lo- Wasserstein manifold M is not ex-
actly geodesic (unless PDF's are Gaussian), and as such the geodesic distance
on the manifold is not identical to Wy [17]. As demonstrated by [17, Th.
1 and Prop. 6], the natural gradient trajectory approximates the geodesic
distance up to second order information.

Remark 2.3. A unifying framework connecting the KL and Wy metrics for
manifolds of discrete distributions is proposed in [33, and references therein/.



Remark 2.4. NGD provides an efficient alternative to stochastic gradient
descent methods whenever the dimensionality of the parameter space is suffi-
ciently small, thus permitting the calculation of the preconditioning matrices

G(ep) [34].
3. DAMD with PINN Surrogates

Consider a state variable z(t) : RT™ — R, whose dynamics is governed by
a stochastic/random ordinary differential equation (SDE)
dz(t)
dt

= s(z(t);w(t),0),  t>0; (10a)
subject to a (possibly uncertain, i.e., random) initial condition
z(t = 0) = xo, zy € R. (10b)

The system is driven by the stationary (statistically homogeneous) ran-
dom process w(t) characterized by a single-point PDF f,,(W;t) and a two-
point auto-correlation function p,(|t; — t2|); these functions involve meta-
parameters ¢, such as the mean, variance, and correlation length of w(t).
The deterministic function s(zx;-), parameterized by a set of Ny (possibly
uncertain, i.e., random) coefficients @ € R™¢_ is such that a solution to
is smooth almost surely in the probability space of both w(t) and, possi-
bly, @ and zy. If 8 and xy are random, then they are characterized by
PDFs fo(®) and fo(X), with meta-parameters ¢, and ¢, respectively.
In all, the statistics of z(t) depends on the set of NNy, meta-parameters
@ = (Puw, Po, Py) € P C RYex that define statistical properties of the uncer-
tain physical parameters and inputs.

In addition to being described by the model , the system state x(t) is
sampled at Nyeas times t1, ..., tn, ... For ease of notation, noisy observations
x ={&1,...,2N,..} are chronologically ordered although this is not required
by DAMD [11]. These measurements satisfy the data model

Zm=2(tm) +€my  m=1,..., Nucas. (11)

The mutually uncorrelated Gaussian measurement errors ¢, have zero mean
and variance o2.



Data assimilation (DA) improves model predictions by augmenting them
with observations. Some DA methods yield the “best” (i.e., unbiased) pre-
diction and quantify its predictive uncertainty in terms of, respectively, en-
semble mean, (x(t)), and standard deviation, o,(t), of the state variable
x(t). These statistics provide but limited information about z(t), unless it is
Gaussian or a known map thereof. Bayesian update and particle filters are
examples of DA strategies that overcome this limitation by seeking a solu-
tion of in terms of the PDF f(X;t) of (t)—or the corresponding CDF
F(X;t) = Plz(t) < X]—updated with the data X in . Computing such
distributions with ensemble methods requires a large number of repeated
solves of (10]), which can be prohibitively expensive when each forward solve
carries significant cost.

Data assimilation via DAMD [11] removes the need for linearity and Gaus-
sianity approximations, which underpin Kalman filtering, while significantly
accelerating the computation. Like many DA strategies, DAMD comprises
forecast and analysis. The first of these steps relies on the model and
predicts the system state at time ¢ in terms of f(X;¢) or F'(X;t). Rather than
using, e.g., Monte Carlo simulations, MD [3] implements this step by deriving
a deterministic equation for f(X;t) or F/(X;t). Thus, the single-point CDF
F(X;t) of the state variable x(t) in satisfies (sometime approximately)

a parabolic PDE (Appendix Al

oF oF 0 oF
— X tp)—=—= | DX, t;p) == t X € Q = [Xuin, Xmax)s
(12a)
subject to initial and boundary conditions
F(X;0) = Fy(X), F(Xumin, t) =0, F(Xmax, t) = 1. (12b)

The drift velocity, U(X,t; ) : @ x RT — R, and the diffusion coefficient,
D(X;t,p) : 2 x Rt — R, are smooth functions of their arguments, which
involve a set of the meta-parameters ¢. The functional forms U4 and D
depend on that of s(x;-), on the statistical characterization of the random
parameters epitomized by the statistical parameters ¢ of their distributions,
and on the degree of approximation introduced by the closure strategy. If

2For spatially-dependent physical models, space would appear as a coordinate in a CDF
or PDF equation |11]. For systems, MD would yield a PDF equation for the joint PDF of
the interacting system states |35/ |36].
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the initial state of the system, xzy, is known with certainty, then its CDF
Fy(X) is the Heaviside step function, Fy(X) = H(X — z¢). For Ito SDEs
with an additive white Gaussian forcing (a.k.a. standard Langevin equation),
is derived exactly; it corresponds to the integral of the Fokker-Planck
equation [37) Ch. 4]. This setting is explored in|Appendix A.1} Solving
is usually cheaper than obtaining, with comparable accuracy, an empirical

CDF from Monte Carlo realizations of 138].

Remark 3.1. The CDF equation maps the meta-parameters ¢ onto
F(X;t, o), the CDF of the system state x(t). In other words, a point ¢ €
® C RYvr can be thought of as a coordinate on the statistical manifold M of
the CDF F(X;t, ) at time t. At any time t', a solution to provides an
estimate of the CDF F(X;t', ) dependent on the current characterization
of the random inputs expressed by @. Equivalently, points ¢ = {t, @} define
a dynamic statistical manifold M, of the CDF F(X; ).

The second step of DAMD, analysis via Bayesian update, is performed
sequentially for each of the Nye.s measurements z,, in . At mth assimila-
tion step, the inference problem is formulated as the minimization of the
discrepancy D between the CDF F(X;t,,, @) predicted by the model
and the observational CDF obtained with Bayes’ rule,

F(X;ty) = /X f(X;t,)dX (13a)

with

o f@mla(tn) = X) (X b, D)
TG ) = T Gltltn) = X) £ b o0 D)X

Here the likelihood function fr(Z,,|z(t,,) = X) specifies the choice of a data
model; and the PDF f(X;t,,, o™ V), computed by solving the CDF equa-
tion with the parameter set o™~ from the previous assimilation step,
serves as a prior. Minimization of yields the updated meta-parameters
@™ which are subsequently used in the forecast step in combination with
the CDF equation. The calculation of the prior at the first assimilation step
(m = 1) relies on the initialization of the meta-parameters ¢(*); the subse-
quent updates rely on the assumption that observation errors are mutually

(13b)
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uncorrelated,

F(Xit) H fr(@ilo(t) = X) fr(@mlo(tm) = X) F(X; 0 Vit

o f1 (| X) (X by 0™ ).

The formulation of data assimilation in the form of the optimization
problem underpins Variational Inference (VI) and provides access to the
theoretical results summarized in section While generally faster than
MCMC—their performance depends on the properties of the parameter-
ized distributions—and compatible with off-the-self optimization algorithms,
e.g., [15], the VI methods do not enjoy asymptotic guarantees of convergence
available for MCMC [39).

The use of the Ly norm in formulation of the discrepancy D incurs signif-
icant computational cost of solving the minimization problem 11]. A key
innovation of this study is to exploit the geometric structure of the statistical
manifolds in the parameter space ® by using either the KL divergence or
the Wasserstein distance (4). Operationally, this means employing either
or , rather than D in (5)), at every assimilation step. This enables us to
solve via NGD, which we henceforth refer to as NGD-KL and NGD-W,
depending on which metric is used. The update of the meta-parameters ¢
is done using NGD-KL or NGD-W, @), taking advantage of the explicit
formulations for the manifold’s metric tensors Gg in @ and Gy in , as
detailed in section[2]

Remark 3.2. The analysis step of DAMD 1is performed on univariate (one-
point) distributions (d = 1) regardless of the size of the physical parameter
and meta-parameter sets, No and Nypq. That drastically reduces (to one) the
dimensionality of the update effort in classical Bayesian DA. Estimation of
the state distributions at different locations is made possible by the physics-
based nature of the parameterization: forecast distributions F(X;t, ) obey
PDEs that depend on the meta-parameters ¢. Updated meta-parameters are
used in the CDF' equation to forecast at different locations. Availability of a
CDF/PDF equation removes the need for Gaussianity and linearity assump-
tions on the physical model and its random parameters. The CDF/PDF
equation is assumed to be valid throughout the assimilation process.

Remark 3.3. Parameter update via discrepancy minimization places DAMD
in the company of many machine-learning and optimal-transport techniques
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(see the references above). Unlike these methods, DAMD uses CDF or PDF
equations and their parameters to define the parameter space for a statistical
manifold , such that the discrepancy minimization is constrained by these
PDFEs. Learning occurs on the statistical manifold defined by @ and proceeds
by sequential updates of these meta-parameters.

Remark 3.4. If observational or simulated data abound, a similar approach
can be used to discover the coefficients of the CDF equation and/or its dif-
ferential form. This research direction is explored in [13, [{0)].

Loss function minimization. The PDE-constrained minimization problem
can be solved with different techniques [41]. We use a surrogate model to ac-
celerate the calculation of the discrepancies dgr, (f(X: ), f) or Wa(f(X; @), f),
their respective gradients V,dxki, or VW, and the preconditioning tensor
metrics G or Gy,. The workflow of DAMD with a surrogate is detailed
in Algorithm |1} We employ a fully-connected deep neural network (DNN)
to approximate the solution of the CDF equation given the set of inputs
X = {X,t,}. The number of outputs in this DNN equals the number
of inputs, Y ={Y; : j = 1,..., Npar + 2} = {Y = F(X;t,9),t, ¢}, such
that dim(X) = dim(Y) = Npar + 2. Furthermore, we require the resulting
vector function Y = F(X) to be continuously differentiable and invertible,
i.e., require the determinant of its Jacobian to be non-zero [42] The chosen
vector function satisfies these requirements by the very nature of distribu-
tions, which are assumed here to have a compact support, hence it fulfills
the hypotheses of the Inverse Function theorem [46] for vector functions.

Under these conditions, the inverse of the vector function Y = F(X)
is differentiable, and the derivative of the inverse is equal to the inverse
of the derivative [46]. Automatic differentiation is employed both to verify
the inversion theorem hypotheses and to calculate the terms appearing in the
minimization algorithms. This is especially useful, since NGD-KL utilizes the
derivatives of the forward pass, whereas NGD-Wj requires the derivatives of
the inverse function. A differentiable DNN allows accurate calculation of the
metric tensors for both geometries, eliminating potential problems related to
their empirical approximation.

3The choice of a DNN to approximate the input-output relation Y = F(X) is done
solely for the sake of concreteness. One can replace it with another approximation tech-
nique, such as polynomial representation and symbolic regression [43] [44] [45].

13



Algorithm 1 DAMD with PINN surrogate workflow.

e e e e e e
SUEEC A S v =

Identify (or develop) CDF equation (12)) and meta—parameters 72
Train PINN to obtain surrogate model for F(X;t, )
Select dlscrepancy metric in (5, e.g., as a function of (1] . . .
if C = dKL then
Select NGD (7) optimization strategy to minimize (5)
else if C = 1/2W;(5) then
Select NGD @) optimization strategy to minimize
else
Select off-the-shelf optimization strategy to minimize (5|
end if

. Initialize ¢ to ¢(©
: for Every observation m do

Calculate observational PDF f(X:t,,) (13)
Minimize with the selected optimization strategy
Update ¢ to @™

- end for

The DNN training is accomplished by solving an optimization prob-
lem [47],

argmin(MSE + MSER + MSE,.x + SC),
w,b

(14a)

with respect to the weights and biases of the DNN, w and b, respectively.
Here,

7L+2 Nts

MSE = 3 \jn Z!Y Xi) = Vid2 Ay = (maxY;)
j=1

Nr

1 P2
MSER = 5~ ; |R(X})
Naux
MSEaux = Z ‘Y(X;ux) }/:':lU.X’2
aux Z=1
oy —1 Nsc oY ‘
SC = (max 8_X(XSC) ) Zmax <07 —a—X(X§C)> )

(14b)

(14c)

(14d)

(14e)



and Y (X") represents the N, + 2 outputs of the DNN with inputs X".
The DNN is trained on a data set consisting of Ny, pairs (Xi,Y?), for
1 = 1,..., Ny in terms of Mean Square Error, MSE. The training set is
generated by solving the CDF equation for Nis combinations of meta-
parameters ¢, i.e., at points ¢, € ® with ¢ = 1,... ,Ntsﬁ Moreover, the
mean square errors MSEr and MSE,,, enforce the fulfillment of the CDF
equation and its initial/boundary conditions at collocation points {X& V&
and {X7 }News respectively Our DNN is physics-informed, as the CDF
equation is rigorously derived from the physical model, albeit with closure
approximations. Consequently, we hereafter refer to it as PINN. The residual
is defined as
, Y (X , oD, ., .\ oY . L OY
Ry = 2 (ki) - G200 ) S (K) - DX g (Xh)
(15)
and Y}, represent the auxiliary conditions for the CDF equation at points
X! ., which represents initial or boundary conditions . The term SC
is a Soft Constraint [48] that regularizes the DNN by enforcing monotonic-
ity of the output Y = F(Xt, o) along the X direction at points { Xk} 5¢ =
(X XL, { X b=}, The physics-aware component of (14), MSEg+
MSE,.x, makes training less data-intensive and increases confidence in the
PINN predictions outside the training range (but within the residual points

range).

4. Numerical Experiments

In this section, we apply the information-theoretic DA strategy intro-
duced above to two problems described by (10). Section (Example 1)
deals with a Langevin equation with white noise w(t), a problem for which
the CDF equation is exact. In other words, the forecast component
of DAMD is exact, whereas the analysis step introduces an approximation.
This setting allows us to ascertain the impact of the PINN surrogate of the

4For each i, the data pairs (XI,, Yi,) are extracted from these solutions at regularly-
spaced time intervals and at spatial locations (in the X direction) refined with a cosine
mapping around a solution of with mean parameters.

5We select a regularly spaced set of points for the enforcement of in all but the
X direction, wherein points are refined around the solution of with mean parameters;
N,ux points are regularly spaced in all directions.
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CDF solution on the accuracy of DAMD. In section (Example 2), we
consider a Langevin equation with colored noise w(t) that is modeled as an
Ornstein-Uhlenbeck process [1, Ch. 3.2]; the derivation of the CDF equa-
tion requires a closure approximation. In this case, the performance of
DAMD depends also on the accuracy and robustness of the CDF equation
as forecasting tool.

In both cases, one realization 8* of the relevant unknown parameters 6
represents ground truth. Statistical models for these parameters are chosen
such that the state variable x(t) has a compact support 2 C R | or can
be approximated as such with probability guarantees. This ensures that the
information geometry induced by the Wy divergence is rigorously defined.
The Npeas Observations x are taken at regular time intervals, with the time
step At = tn,.../(Nmeas + 1). They are generated by adding zero-mean
Gaussian noise with standard deviation o, to the solution of with 6%
(i.e., the synthetic truth). This procedure results in the Gaussian likelihood
function f7,, although other choices are possible ﬁ

We use the JITCSDE Python module [49] to solve the stochastic differential
equation with @ = 6*. The module implements the adaptive integra-
tion method [50] for both Ito (considered here) and Stratonovich SDEs. The
CDF equations are solved with a finite volumes (FV) scheme, imple-
mented using the Fipy library [51], to provide a training set for the surro-
gate model. PINN is trained by employing Tensorflow; optimization in
is performed using L-BFGS-B method [52], with a random initialization of
w and b. Automatic differentiation is used to compute both the deriva-
tives in the residual R in (15) and the PDF from CDF. The CDF equation
for the problem in section has an analytical solution (Appendix A.1),
which is used to evaluate the impact of the PINN approximation on the
assimilation procedure. Minimization of the KL and W, discrepancies is
performed via both standard GD and NGD. In the case of NGD, conver-
gence is accelerated by the use of the pre-conditioners Gr and Gy in (7)
and @ For each direction established by the gradient of the loss func-
tion (adjusted by the pre-conditioners when NGD is used) we employ the
Scipy library’s implementation of step calculation [53 Sec. 5.2]. A conver-

6While not investigated here, data models constructed from repeated observations of
the same phenomenon may be more suitable for processes that are inherently random,
like those described by Langevin equations. Crucially, DAMD can seamlessly incorporate
nonlinear one-to-one observation maps, emerging when z(t) cannot be observed directly.
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gence criterion for NGD in and @ is defined by |V,D| < e. Because
of the different order of magnitude of the KL. and W, discrepancies D, the
convergence threshold e is discrepancy-specific; we select a KL-based min-
imization threshold, ek, and assign the threshold for Wy, ew,, such that

ew,/C(Wa(f(X;t1, 0 9); f(X;tl))) = exr,/C(diL(f(X; t1, 00); f(X;11))).

4.1. Example 1: Langevin equation with white noise
The dynamics of state variable x(t) is described by a Langevin equation,

d
— = —alt)(t),  a(0) =, (16)
where the statistically homogeneous (stationary) random process a(t) =
fa + 0ow(t) has mean p,€ RT and standard deviation o,€ R, and w(¢)
is standard Gaussian white noise. The initial state z§ € R* is determin-
istic; to be specific, we set z§ = 1. We impose 20, < p,, such that
Pla(t) > 0] > 0.97 at each time step, and the support of x(t) is approxi-
mately compact, 2 = [0, z§] C RT.
The single-point CDF F(X;t) of z(t) in satisfies exactly a CDF
equation (Appendix Al
oF OF 10 OF
xS 2% (p2x2
ot~ Mtax T 20X <‘7“ ax)’
subject to initial and boundary conditions

Flz;0) = H(X —28),  F(Xpmit) =0,  F(Xpat) =1 (17b)

(17a)

In this example, CDF F' is parameterized by ¢ = {4, 04}, which we make
explicit by writing F(X;t,¢). The values of ¢ are refined by assimilating
observations X.

A PINN serves as a surrogate model that approximates the solution of
the CDF equation . The training set consists of the finite-volumes solu-
tions [51] of at selected points (X, t), computed for a number of different
combinations of meta-parameters ¢. The details of this and other compu-
tations are provided in the opening of section |4l In this experiment, PINN
function approximation is considered satisfactory upon reaching a value of
the loss function of 4-10~%. This high accuracy enables the deployment of the
PINN surrogate for both the analysis and forecast steps, further accelerating
the information-geometric optimization of with the Scipy conjugate gra-

dient routine. We derive an analytical solution for in [Appendix B| and

then use it to quantify the impact of the PINN approximation on DAMD.

17



Remark 4.1. A surrogate model is introduced to accelerate loss function
minimization i cases where an analytical solution is not available. For com-
plex problems, it might be advantageous to use the surrogate model only for
the approzimation of the gradients, while retaining the finite-volume solution
of the CDF equation for prediction. Alternatively, it might be necessary to
construct a surrogate model for the local CDF' at each assimilation time t,,,
hence reducing the dimensionality of the surrogate model.

For this problem, the parameters ¢ = {14, 0,} can be estimated via the
linear Kalman filter (LKF) [54] . LKF forecast is performed
analytically, whereas LKF analysis relies on the (approximate) linearization
of the observation map [10]. We use LKF to evaluate the accuracy of DAMD
in the identification of the meta-parameters ¢ via GD in with C = dkg, or
W3/2, NGD-KL , and NGD-W, @, performed using either the analytical
CDF F or its DNN approximation. Unlike LKF, DAMD requires neither a
linearizing approximation nor the Gaussianity assumption. The availability
of analytical formulations for F(X;t) and f(X;t) (either the exact solution
or its DNN approximation) facilitates the calculation of the forecast PDF's
at each measurement time , as well as the (semi-)analytical computation
of both the metric tensors G in @ and Gy in , and the gradient of the
discrepancy, V., D, for the KL and W, measuresm The integrals in the metric
tensors, the discrepancy gradient, and the normalization constant in , are
computed via numerical quadrature from the Fortran library QUADPACK.

Figure |1 shows the updated ¢(™ as function of the assimilation step
m for both the KL and W, metrics of discrepancy, either taking (NGD)
or not taking (GD) advantage of the information-geometric structure of the
statistical manifold of F. Also shown in this figure are estimates of the
meta-parameters (™ obtained with both LKF and GD for the L, norm
of discrepancy, D(p) = do(f(X:t, ), f(X;t)) in . To facilitate compar-
ison between the various discrepancy metrics, we assign the minimization
convergence threshold for ds, €4,, such that

€d, €KL

~ — ~ .

C{da(f(X;t1, ), f(X;5t1))}  Cldxr(f(X;t1,00); f(X510)))

All assimilation algorithms improve estimates of both the exact mean g,
and standard deviation o,, but DAMD with the surrogate yields a more

"The code is available at https://github.com/DDMS-ERE-Stanford/DAMD-NGD
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Figure 1: Example 1: Estimation of the meta-parameters ¢ = {y,,0,} for the Langevin
equation with white noise via DAMD using either the analytical CDF solution (left col-
umn) or its DNN surrogate (right column). The parameters (™) are plotted as function
of the assimilation step m for the four information-geometric optimization strategies: GD
and NGD, for the KL and W5 discrepancies. Also shown are the corresponding estimates
obtained with LKF and GD for the L, measure of discrepancy. The starred values cor-
respond to the statistical parameters used to generate the observations. The simulation
parameter values are set to 2 = 1, * = {0.44,0.088}, (9 = {1.25,0.2}, 9§°) = M((lo)/a,(lo),
0 =logol” | 0. = 0.1, Nueas = 10, ty.._ =2, exr, = 1072, Ny = 18850, N = 5632,
N; = 1280, and Np = 47872.
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erratic estimate of o,. After Nyeas are assimilated, LKF’s estimates of p,
and o, have errors equal to 32% and 64% of their respective initial errors.
The DAMD errors (averaged over the alternative optimization strategies)
for u, and o, are respectively 11% and 26% of their initial values when the
analytical CDF solution is used; and 22% and 44% when the DNN surrogate
is deployed. Thus, DAMD yields appreciably more accurate results than LKF
does, regardless of whether the exact CDF solution or its DNN approximation
is used. As expected, the reliance on the DNN surrogate of the CDF solution
affects the DAMD accuracy; however, its performance is advantageous when
only an approximate CDF equation is available, the setting explored in the
next section.

Remark 4.2. The performance of LKF depends on the initialization of the
covariance matriz. The results reported above are for LKF, whose augmented
state’s covariance is initialized as

diagl0, (|ul¥ /o — 1t o] /2)%, (| log o) — log o] /2)?].

Remark 4.3. Given the small dimensionality of the augmented state (one
state variable and two parameters), each LKE assimilation step is computa-
tionally inexpensive. Each DAMD iterative step involves the calculation of
one-dimensional numerical integrals to evaluate the loss function and com-
pute the G components; once the DNN surrogate is trained, there is no sig-
nificant difference in the computational effort required using the analytical F
or its DNN surrogate.

The number of iterations over the assimilation time window is smaller for
NGD than for GD for both choices of the loss function (fig. . The difference
is apparent when the CDF solution is analytical, and less pronounced when
its DNN approximation is used. In the absence of error in the approximation
of the distributions, the updated estimate of the meta-parameters obtained
with D = dj is as good as those for D = dk1, and D = W, (fig. , although
with a higher number of iterations per assimilation step (fig. .

The physics-driven parameterization of the statistical manifold yields an
isotropic geometry of the loss function in the search area, which reduces the
benefits of preconditioning. This is shown in fig.|3| where the KL and W,
loss functions are plotted, at the first and last assimilation steps, as function
of the meta-parameters ¢, also highlighting the true solution and the prior
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Figure 2: Example 1: Number of iterations per assimilation step m for the four
information-geometric optimization strategies: GD and NGD, for the KL and W5 dis-
crepancies. DAMD employs either the analytical CDF solution (left) or its DNN surro-
gate (right). The GD with D = dy for the analytical distributions is also included. The
simulation parameter values are the same as in fig.

location The loss functions depicted in fig. [3| are obtained for the exact
CDF solution; a similar behavior is exhibited by the corresponding functions
computed using the DNN surrogate (not shown here). Although superfi-
cially similar throughout the assimilation process, the minor differences in
the topology of the KL and W, loss functions are enough to prevent conver-
gence for the KL loss function for a slightly worst choice of the prior (Py in
the Figure), which results in diverging iterates of the DAMD procedure for
both GD and NGD. This is because the KL divergence is more sensitive to
numerical errors in the calculation of the integrals, especially for sharp or
non-overlapping distributions, which mislead the direction of the search.
The computational cost of the different optimization strategies within
the DAMD framework depends on the number of iterations (fig. ; on the
computational cost per iteration; and, in case of information-geometric op-
timization, on the cost of computing the tensor metrics. Since the function-
and gradient-evaluations for this example are not expensive, the computa-

8The loss functions at assimilation step m = 1 are obtained using the initial ¢(©) for
the calculation of the observational PDF/CDF, whereas the loss functions at assimilation
step Nmeas = 10 are computed using ¢Vmeas—1) for the prior obtained using either NGD-
KL or NKD-Wy. The initial guess of the prior ¢(© is the same for both KL and W,
metrics (P71 in the Figure), and yields similar outcomes in terms of identification of the
meta-parameters, as illustrated above.
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Figure 3: Example 1: The KL (left column) and Wa (right column) loss functions at
the first (m = 1, top row) and last (m = Npeas, bottom row) steps of DAMD. All
calculations are performed using the analytical CDF solution. The star indicates the true
values of the meta-parameters (used to generate the synthetic reality). The points P;
and P, indicates the priors ¢(©) = (gogo), gogo)) for which the optimization of the KL loss
function converges and fails to converge, respectively. The larger (empty) circles indicate
the posterior parameters at the mth assimilation step, @™, and the smaller (full)
circles in the bottom row indicate p(Nmeas=1)  The blank region reflects the assumption
204 < phg- The simulation parameter values are the same as in fig.
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tional gain of having a smaller number of evaluations is not significant, and
it is compensated by the additional cost of the calculation of the precondi-
tioning matrices.

The posterior NGD parameters ¢Vmeas) are used to compute the posterior
CDF and PDF of z(t) in fig. NGD yields accurate posteriors, with the
Wy optimization @ performing better than the KL optimization when
the approximate CDF solution is used. In order to highlight the accuracy of
the DNN surrogate model, we show the finite-volume solution of the CDF
equation with ¢ = pMmeas) and its corresponding PDF computed via
numerical differentiation, and their DNN-based counterparts. We conclude
that the W5 optimization is more robust to inaccuracies of the CDF solution,
thus yielding better overall predictions. Moreover, in agreement within |17,
we found the W5 minimization to be more robust to the choice of the prior.

Remark 4.4. An additional advantage of the Wy loss function stems from
its reliance on a CDF rather than a PDF that enters the KL loss function.
CDFs are smoother and easier to compute as a solution of the CDF' equation
than PDFs, which are obtained by solving the PDF' equation. This facilitates
the generation of a training set and the training of a surrogate model. On the
other hand, approximation of the solution to a CDF equation with a DNN
surrogate possesses a potential challenge for the Wy optimization, since
calls for invertible surrogate models. We overcome this difficulty by selecting a
special structure for the DNN that guarantees automatic inversion, as detailed
in section[3

4.2. FExample 2: Langevin equation with colored noise

The dynamics of state variable x(t) is described by with s = —a(t)z(t).
Here, a(t) = pq + w(t) with p, € R*, and w(t) is the derivative of an Orn-
stein—Uhlenbeck process characterized by the exponential auto-covariance
function C,(t,7) = 02/(20,)[exp(—04|t — 7|) + exp(—0,(t + 7))] with param-
eters o, and 6, € RT. By construction, the latter is also the auto-covariance
function of a(t), Cy(t,7) = Cu(t, 7). Taking the initial state zo to be de-
terministic, the stochastic solution of this problem depends on three meta-
parameters ¢ = {4, 0q,0,}. We impose p, — 24/02/60, > 0, such that the
support of z(t) is approximately compact, 2 C R*. One realization of this
solution, drawn from the distribution with the “true” meta-parameters *,
serves as ground truth for which observations x are constructed in accordance

with .
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Figure 4: Example 1: Prior and posterior PDFs (top row) and corresponding CDFs
(bottom row) at time ty,_ .. obtained via NGD minimization for the KL and W; loss
functions, with either the analytical solution of the CDF equation (left column) or
its NN surrogate (right column). The FV CDF solution used to train the DNN is also
shown in the right column. Black stars and circles mark the exact value z(ty,...) and
its noisy observation xy,, .., respectively. The black solid line represents the analytical

CDF solution at ty, ... with ¢ = {u*, 0%}, describing the synthetic truth. The simulation
parameter values are the same as in fig.

24



We show in [Appendix A.2[that the CDF F(X;t) of z(t) satisfies the
CDF equation with

" t
UX t;p) = —uaX+X/Cw(t,T)dT and  D(X,1; ) :XQ/C”@’T)dT'
0 0
(18)

In the absence of an analytical solution of the CDF equation in this case,
we rely on a surrogate model to accelerate optimization. The FV solution
of l) with and its DNN surrogate are used to assimilate observations
x via our information-geometric DAMD framework. Similar to the case of
white noise (section, we found the KL-based implementation of DAMD
to be less robust to the choice of the prior. Hence, only the Ws-based results
are displayed below.

Figure |5 exhibits the identification of the meta-parameters ¢ as function
of the data assimilation step m. Since the W; loss function is relatively
insensitive to the third meta-parameter 6,, we present the convergence results
for 6 = /02/(20,) instead|’| Both GD-W, and NGD-W, converge after
assimilation of about 20 observations, which are generated every At = 0.055.
NGD converges, for the given combination of observations and the prior, in
fewer iterations over the assimilation window than GD (fig. [5{l) .

In fig. @ we present the posterior PDF and CDF of the state z(t) at the
final assimilation time ¢y, .. The CDF is computed as a F'V solution of the
CDF equation with meta-parameters ¢o(™me=s) and the PDF as its derivative.
Observations x are assimilated, alternatively, via the GD-W, and NGD-W,
optimization strategies. Both approaches yield posterior distributions that
are close to the true state, with negligible differences between NGD-W, and
GD-W,. The use of the F'V solution of the CDF equation leads to a slightly
wider posterior than the reliance on its DNN surrogate does, possibly because
of numerical diffusion.

Although not shown here, we found the KL- and Ws-based loss functions
at the first and later assimilation steps to be smooth and not significantly
different from each other. Yet, similar to the example in section the dif-
ferences are sufficient to prevent convergence in the KL case for poor choices
of the prior.

9This lack of sensitivity reflects the challenge of inferring the correlation length, 1/6,,
from observations over a time window spanning only two true correlation lengths, 1/6%.

25



(¥ Lo
n, - GDW; ~ - GD-W;
1l NGD-Wy 5@ NGD-W;
08 4
—~ =
g, 12 L] g
=3 y =
;e =
% 14 i 3 onq
k]
E [F | ]
s - 3 .
g s | g ud~||l I-‘.
= IR S va— M A e o 5 A A
Z il G Rl T2 L2 2 2 ] T — ° L] \ |
H - e a g 021 Y (| y
]
g =
024 73 v & H PR > o S¥e,
= [ —r - Tee
00 - - 0 4y v r ~+ N r r - v
3 10 15 20 ] 30 35 40 [ 5 o 15 20 25 30 i 40
Data assimilation step, m Data assimilation step, m
030 38
—- GDW; . = GO .
s | B i i
il NG £ NGDWs i
= g II]
£ 2 254 I’ !
1S 020 4 5 !\ il
] a P it
E g o : fitis 'R
450,154 ® S H | it
o l3 \ =1 b o . 1k s 11
& IR 515 il N L) 4
g : ? : 2 i B JI 8 l! i i
{ '} Vi % i |
Eonq b i ! W\ 5 ALY A Wl
- I i 1 IR I 1 |
SR, 55 e : b, TR VATAVEE RN
4 - E i .- y et s | i '] ll| il - 14
005 4% 4 a e s N i
3 e Pae, sl 2 AL S ba b\ kg™
Titrsetes) ¢ be | iy Tesenid_ i ) : .
000 - - - . e - - -
1) i n 15 an a5 30 a5 40 n ] 1] 15 il 2 30 3 4

Data assimilation step, m

Data assimilation step, m

Figure 5: Example 2: Estimation of meta-parameters ¢ = {p4,04,0 = 1/02/(20,)},
as function of the assimilation step m, with GD and NGD for the W5 loss functions.

The bottom right panel shows the number of iterations per assimilation step for GD
and NGD. The simulation parameter values are set to xf = 1, ¢* = {0.5,0.1,0.05},

e® = {1.5,0.4,0.14}, 0. = 0.05, Npeas = 41, tn,... = 2.2, exr, = 1072, Ny = 13550,

Np = 29282, N; = 6655, Ng = 248897.
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NN approximation are shown. Black stars and circles mark the exact value z(ty, and

n)eas)
its noisy observation x respectively. The simulation parameter values are the same
as in fig.

meas ’

5. Discussion and Conclusion

We presented an information-geometric implementation of DAMD, which
yields computationally efficient data assimilation and parameter estimation
for nonlinear problems with non-Gaussian system states. The forecast step
is performed by employing MD, an uncertainty propagation technique that
yields a deterministic evolution equation for the CDF (or, equivalently, the
PDF) of the state. This equation maps a set of meta-parameters (statistical
properties of the random inputs) onto the system-state’s distribution, and
defines a parameter space for a dynamic manifold of distributions. Such
probabilistic forecasts are physics-based but generally not exact, as they often
require closure approximations; their accuracy can and should be ascertained
a priori or drawn from the MD literature [55] 3, [12} (56 [13].

The analysis step is performed on this statistical manifold; it is formu-
lated as sequential minimization of the discrepancy between an observational
distribution and a predictive posterior distribution obeying the CDF equa-
tion with unknown (posterior) parameters. The observational PDF is the
Bayesian posterior obtained as the product of the data model (i.e., the like-
lihood function), and the prior PDF obeys the CDF equation with the pa-
rameters from the previous assimilation step. DAMD can be classified as
a Variational Inference method. Unlike classical VI methods, DAMD mini-
mizes the discrepancy between univariate distributions, as observations are
collected locally and the CDF equation acts as a physics-informed generative
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model that allows one to compute univariate distributions of the state at an
observation location. Like many VI methods, DAMD is typically faster than
MCMC but does not enjoy asymptotic guarantees of convergence available
for the latter.

Reliance on statistical discrepancy measures—the Kullback-Leibler diver-
gence and the L, Wasserstein distance—confers exploitable geometric prop-
erties to the manifold of distributions. Specifically, it enables the use of NGD,
an efficient optimization technique. Our numerical experiments revealed the
Ws-based DAMD to be more robust to the choice of a prior than its KL-based
counterpart.

For one-dimensional (univariate) distributions, W is defined in terms of
system-state CDFs, and KL in terms of corresponding PDFs. This argues in
favor of the Ws-based DAMD, since CDFs are smoother and numerical solu-
tion of CDF equations is easier. This facilitates the use of invertible DNNs
as a surrogate model in the probabilistic space to facilitate and accelerate
optimization and calculation of the geometric metric tensors. In our numer-
ical experiments, the W5 optimization with the DNN surrogate yields more
accurate results than the KL optimization.

Future work will focus on the identification of ambiguity sets and their
dynamics on statistical manifolds [24], their evolution and their update with
observations. We also plan to explore the use of different data models, the
impact of alternative parameterizations of a statistical manifold on DAMD
performance, and the latter’s implications for sensitivity analysis.

Appendix A. CDF equation for the stochastic ODE

We summarize MD for the two test problems from section[d] The original
derivations can be found in [37] and [7], respectively. The first result is exact,
whereas the second is approximate and has been verified against Monte Carlo
simulations in [6} |7].

Appendixz A.1. MD for the Langevin equation with white noise

Consider a Langevin equation, with s(z;w) = sq(z,t) + su(x, t)w(t)
where w(t) is a white standard Gaussian process (with zero mean and unit
variance). The deterministic functions s; and s, are such that s(x;w) is
integrable with respect to t in the mean square sense [37] Sec. 4.1]. The
derivation of a PDF equation for x(t) is relatively straightforward, and leads

28



to the Fokker-Planck equation (a.k.a. Kolmogorov’s forward equation) [37]
Sec. 4.9]
of  Osa(X.t)f 19°so(X,t)f

o " ax 2 oxz (&.1)

It is formally valid if f(X;t) is well-behaved at infinity, and is subject to
initial and boundary conditions condition f(X;0) = fo(z) and f(Eoo;t) =
0. An equivalent CDF version of the Fokker-Planck equation can be
obtained via integration of over X € 2

OF OF 198 [, F
5 sa(X, t)a_X =~ 33x% <Sw(X7 t)a_X) , (A.2)

subject to F(x;0) = Fo(X), F(Xmin,t) =0, and F(Xyax, t) = 1.

In (16), s(x;w) = —a(t)z(t) where the random process a(t) has the con-
stant mean p, and standard deviation o,. This translates into s4(z,t) =
—pex and s, = —o,x, so that the coefficients 4 and D in 1i become
U= —pu,X and D = (02/2)X?, with ¢ = {14, 04}

Appendiz A.2. MD for the Langevin equation with colored noise

Consider with s(x;w) = —a(t)x(t), where a(t) = p, +w(t) and w(t)
is a correlated stationary Gaussian process (colored noise) [37} sec. 4.8]. MD
for stochastic/random (Langevin) ODEs with temporally correlated forcings
requires closure approximations. These include the semi-local approxima-
tion [6) 7], which compares favorably with Monte Carlo simulations and a
local closure approximation in terms of both accuracy and computational
efficiency. For the sake of completeness, we summarize the derivation of the
PDF equation and its semi-local closure approximation for the specific form
of the Langevin equation described above. We start by deriving an equation
for the raw PDF 7(X,t) = §(X — z(t)), whose ensemble mean is the PDF,
f(X;t) = (7). Multiplying our ODE by —07/0X and using the properties
of the Dirac delta function 4(+), we obtain

or or

5 + a(t)a—X = 0. s(X,t) = (s(X, 1)) + s'( X, t;w);  (s) = —pe X, s = —w(t)X

(A.3)

We use the Reynolds decomposition A = (A) + A’ to represent relevant
random processes A as the sums of their ensemble means (A) and zero-mean
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fluctuations, A’. Since m = f+7’, taking the ensemble mean of this equation
yields an unclosed equation for the PDF f(X;1),
0f | Of | Blwr(X.0)
ot T Tox 0X
A closure approximation is needed to render the cross-correlation term (w’' ()7’ (X, t))

computable. Subtracting (A.4) from (A , we obtain an equation for random
fluctuations 7'( X, t),

on' or’  O((s'(X,t)7'(X, 1)) — s'm)

=0, subject to  f(X;0) = fo. (A.4)

. p N
o +p Hagy = X , subject to 7'(X,t=0)=0.
(A.5)
The deterministic Green’s function for , G(X,t;Z,7), is a solution of
oG oG
a9 +u "= =—0(X —=E)§(t—1) (A.6)

with homogeneous initial (at 7 = t) and boundary conditions at infinity.
Its analytical solution, obtained, e.g., via the method of characteristics, is
G(X,t;2,7) = H(t — 7)0(X — ZEexp(—pa(t — 7))). Hence, the path-wise

solution of (A.5) is

(9
(X, t) / / GX,t, =1 8H (W'(Z, 7)) (2, 7)) —w'(E, 7)m(E, 7)] dTdE.
(A.7)
A closure approximation for (w’(t)7’(X,t)) is constructed by multiplying (A.7)

with w'(t), taking the ensemble mean, and neglecting the third-order corre-
lation term,

1]

(W (X, ) // G(X aa (Co(X,£: 5, 7)f(Z, 7)) d=dr,
(A.8)

where Cy, (X, 62, 7) = (w'(X,t)w'(Z,7)) is the auto-covariance of the ran-
dom noise w(t). Substituting this expression into (A.4) yields a nonlocal

(integro-differential) PDF equation. Accounting for the analytical expres-
sion for G, (A.8) is approximated semi-locally as

/(X )7 (X, ) = —X F(X, 1) /0 cw(t,f)df—ﬁ% /0 it 7)dr.

(A.9)
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This yields the closed CDF equation with . If w(t) were white noise,
ie., if Cy(t,7) = 0(t — 7), then the resulting PDF equation would reduce to
the Fokker-Planck equation.

Appendix B. Linear Kalman filter for Langevin equation with white
noise

The nonlinear assimilation problem for the scenario explored in section
with o = 1 is transformed into a linear problem with nonlinear observational
map by introducing the parameters ¢, = p,/0, and 63 = In o, and the trans-
formed variable £(t) = —e~%2 In 2(t) obeying

dg .
i —0; + w(t), subject to &(t=0)=¢& =0. (B.1)
The remapping of the physical parameters yields a linear parameter esti-
mation problem, and enforces the positivity of ,. Observations of z(t) are
mapped onto £(t) via a nonlinear observation map &, = h(£(ty)) + em =
exp(—e?2¢(tm)) + €m, which replaces (11). An exact equation for the PDF

fe(Z;t) of £(t) is obtained following the steps outlined in a):

Ofc  Ofe _ 10

o 9= 202

The analytical solution of is easily obtained, and mapped onto the
PDF of x(t), f(X;t, lta, 04). This is exploited in

Linear Kalman filter (LKF) [54] is applied to the transformed linear

problem. Our focus is on forecast and analysis of the augmented state

€4 = [€, 61,05 obeying

&y
dt

subject to  fe(E;t =0) = (2 — &). (B.2)

. 010
_Ag,wﬂlA_(mO. (B.3)

LKF relies on the Gaussianity of the involved distributions, such that it
is sufficient to propagate (forecast) and update (analysis) only the mean
(¢,) and covariance Py = (€, — (£4)) (€4 — (€4)") of the distribution
describing the augmented state. Propagation of (£,) and P4 on the time
interval [t,,_1,%,] between the previous and the current assimilation times,
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tm—1 and t,,, respectively, is given by

d .
A, subject t0 (€4 (tn-1)) = (€a) -t
dpP
—th =AP,+PA"T +Q, subject to Pa(tm-1) =Pam 1jm_1. (B.4)

Here, the initial conditions are the mean and the covariance of the previous
assimilation step, respectively, and Q = diag[1, 0, 0] is the covariance of the
model error. The mean and covariance at m = 1 are initialized as (& 4)o0 =
(6,67, 6"] and P 400 = diag]0, (aé?))z, (aég)f], respectively. A solution of
at t = t,, (analytical in this case) yields (§4(tm)) = (€4)mim—1 and
P4(tm) = Pamjm-1, i.e., the forecast mean and covariance conditional on
the observations up to t,,_;. The mean and covariance are then updated at
the assimilation time ¢,, according to

<€A>m|m = <€A>m|m—1 +K (im - h(<£A>m\m—1>) ) PA,m|m = (I - KH) PA,m|m—17
(B.5)

where the Kalman gain matrix is defined as K = PA7m|m_1HT (HPA7m|m_1HT+
R)™!, T is the identity matrix, H = %(51“ = (€ 4)m|m—1) is the linearized

observation map, and R = [0?] is the variance of the observations. Kalman
filtering for this problem introduces a linearization approximation due to the

nonlinearity of the observation map.
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