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ABSTRACT

Consider an actor making selection decisions (e.g., hiring) using a
series of classifiers, which we term a sequential screening process.
The early stages (e.g. resume screen, coding screen, phone inter-
view) filter out some of the applicants, and in the final stage an
expensive but accurate test (e.g. a full interview) is applied to those
individuals that make it to the final stage. Since the final stage is
expensive, if there are multiple groups with different fractions of
positives in them at the penultimate stage (even if a slight gap), then
the firm may naturally only choose to apply the final (interview)
stage solely to the highest precision group which would be clearly
unfair to the other groups. Even if the firm is required to interview
all those who pass to the final round, the tests themselves could
have the property that qualified individuals from some groups pass
more easily than qualified individuals from others.

Accordingly, we consider requiring Equality of Opportunity
(qualified members of each group have the same chance of reaching
the final stage and being interviewed). We then examine the goal of
maximizing quantities of interest to the decision maker subject to
this constraint, via modification of the probabilities of promotion
through the screening process at each stage based on performance
at the previous stage.

We exhibit algorithms for satisfying Equal Opportunity over the
selection process and maximizing precision (the fraction of inter-
views that yield qualified candidates) as well as linear combinations
of precision and recall (recall determines the number of applicants
needed per hire) at the end of the final stage. We also present exam-
ples showing that the solution space is non-convex, which motivate
our combinatorial exact and (FPTAS) approximation algorithms for
maximizing the linear combination of precision and recall. Finally,
we discuss the ‘price of” adding additional restrictions, such as
not allowing the decision-maker to use group membership in its
decision process.
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1 INTRODUCTION

Consider what we will term sequential screening processes. In this
setting a decision maker (e.g. a company seeking to hire applicants)
makes a decision, like hiring, by using a sequence of intermediate
decision-making steps that each filter out some candidates, in order
to ideally produce a pool of mostly qualified candidates at the final
step.

We assume some people are truly qualified for the position being
filled, and we call them positive examples, and others are truly
unqualified and we call them negative examples. And then the
various intermediate steps have different probabilities of quali-
fied/unqualified applicants passing each step, which could be dif-
ferent for different demographic groups. We also assume that the
final (interview) stage of the process is particularly expensive for
the decision-maker, and reveals the true label of the applicant.

To illustrate a concern that could arise in this setting, suppose
there are two demographic groups A and B, and just one test ¢ in
the screening process prior to the final stage. Suppose that test ¢
and the underlying base rates of the two groups have the property
that Prly = 1|t(x) = 1,x € A] > Prly = 1|t(x) = 1,x € Bl + ¢
for some € > 0. That is, the pool of group-A applicants who pass
the test has a higher fraction of positive examples than the pool of
group-B applicants who pass the test. Since the cost of final inter-
views is assumed to be high, in this case a rational decision maker
would be sensitive to even a small € gap, in order to minimize the
expected number of interviews made per hire. In particular, small
gaps between these groups in the population would be amplified in
that the rational decision-maker would then choose not to promote
any individuals from group B to the final interview round, which
clearly violates common sense fairness norms. There is empirical
evidence that similar phenomenon occurs in real world settings,
when employers have limited information [3].

A second concern is that even if the decision-maker interviews
all individuals who make it to the final round (and more generally,
at each level promotes all individuals who pass the test to the next
round), the tests themselves could have the property that qualified
individuals from some groups pass them more easily than qualified
individuals from others. So, in the end, a qualified individual from
one group might have a much lower chance of making it to the
final interview round than a qualified individual from another.

Because of fairness violations of this kind, we consider a regu-
lator that requires the screening process to satisfy Equal Opportu-
nity [9], that is, qualified individuals of each group have the same
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chance of receiving an interview. This requirement motivates the
problem of how to satisfy such a condition in the most efficient
way, minimizing the number of interviews needed per successful
hire as well as the number of overall applicants needed to enter the
screening process per hire. This is the question we address in our
paper.

We assume that the tests themselves and their order in the pro-
cess are fixed beforehand and the action space of the firm (of our
algorithm) is solely modifying how individuals move through the
pipeline in response to their test outcomes (the promotion policy).
More specifically, for each test, we need to decide the probability
that an individual from a given group who passes or fails the test
should continue on to the next stage. One can satisfy the fairness
requirement with simple promotion policies (such as promoting all
individuals regardless of whether they pass or fail each test), but
the tension is how to do so in a way that results in a useful process.

This captures the scenario of performing modifications to pre-
existing screening systems (the test themselves are fixed) in order
to respond to fairness issues. We assume we are given, for each
test, its statistical properties for each group (the probability that a
random qualified or unqualified individual will pass the test).!

1.1 Our Results

We study how to implement the fairness requirement of Equal Op-
portunity in this sequential screening setting and what method of
implementing it would achieve a high efficiency. One core result in
our paper is that there is a solution that maximizes precision (mini-
mizes the number of interviews needed per successful hire) subject
to maintaining Equal Opportunity, that is given by promoting indi-
viduals from each group according to what we call the opportunity
ratio. Moreover, it is possible to maximize overall precision subject
to satisfying Equal Opportunity by a policy in which each level in
the process satisfies Equal Opportunity individually (this property
will not hold for the more general objective below).

Then we consider the more general case of satisfying Equal
Opportunity while maximizing a linear combination of precision
and recall (1/precision is the expected number of interviews needed
per successful hire, and 1/recall is proportional to the number of
overall applicants needed to enter the screening process per hire).
This problem is challenging because, as we show, the space of Equal-
Opportunity solutions is non-convex. Moreover, the optimal way
to use one test to optimize a linear combination of precision and
recall may depend on all other available tests.

Nonetheless, we are able to achieve an FPTAS for maximizing
any linear combination of precision and recall, as well as an exact al-
gorithm with running time that is ‘only” exponential in the number
of levels k and the number of the groups. This latter result relies on
certain structural properties of optimal solutions that we develop
in our analysis. Finally, we discuss extensions to our model such as
requiring the screening process to be group-blind, and considering
the requirement of satisfying Equalized Odds. Unfortunately, the

f we were to design a socio-technical system from first principles using the insights
of machine learning research, we might seek to design tests that are ideally more
robust to group difference and still predictive, however such a re-design process could
be costly and slow. In a world of limited resources, re-purposing pre-existing tests
to be more fairness aware in a timely manner and still maintaining effectiveness is
necessary.
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optimal fair group-blind policy may be much worse than the op-
timal fair group-aware policy. For example, in some cases it may
require a policy that completely bypasses all the tests.

1.2 Related Work

Fairness in pipelines was initiated by Bower et al. [4] and follow up
work by Dwork and Ilvento [7], Dwork et al. [8]. This paper differs
from [8] in several keys ways. We both use the word ‘pipelines’ but
our work is more focused on the specific case of hiring pipelines in
which we are looking at the fairness of the final outcome for a given
individual, drawn from the population, rather than considering the
individual fairness [6] of the cohort context to which one is assigned.
We do not consider cohort based scoring rules.

The structure of our model is very close to that of Kannan et al.
[11], but the objective in that work is jointly designing college
admission and grading schemes that satisfy Equal Opportunity
over the admissions/college process and in particular incentivize
a rational employer to use a group blind hiring policy. In contrast,
our work considers maximizing precision or a linear combination
of recall and precision while satisfying Equal Opportunity.

Another related work by Arunachaleswaran et al. [2] is the idea
of pipeline interventions. In that paper there is a wide pipeline with
a finite number of states at time ¢ and the goal of the algorithm
designer is to modify the transition probabilities from state to state
in order to maximize a reward at the final step. This corresponds to
efficiently allocating a government subsidy to aid dis-advantaged
individuals, from the perspective of maximizing social welfare.

Intriguingly, the paper by [12] argues that Equal Opportunity
is misaligned with fairness in screening allocation problems with
a finite number of available items (think hiring a small number of
engineers at a start-up vs accepting applicants for a credit card). In
our work, we do not focus on modeling a finite number of available
positions (e.g., we are in the case with a larger number of available
items).

Most closely related to our work is Cohen et al. [5], in which
there is noisy Bernoulli feedback in a hiring setting with sequential
tests. In contrast to our scenario, they assume both underlying
candidate skill levels and test results are sampled independently
from Bernoulli distributions. Furthermore, they allow hiring an
applicant before the end of the pipeline (e.g., if you pass the first
three of five tests and those tests have high signal, you may skip
the next two tests). In our model, we assume each stage of the
process is memoryless (the probability of making it to stage 3 from
stage 2 depends only on the result of the stage-2 test and group
membership, and not the result of the stage-1 test) and we allow
tests to be asymmetric (e.g., it could be that positive examples from
a given group pass with probability 0.75 and negative examples
pass with probability 0.5). In our motivation, we model the initial
tests as cheap while the ultimate interview is expensive and ac-
curate, while in Cohen et al. [5], each test is equally accurate and
costly and additionally they want to minimize the expected number
of tests to hire a candidate. Consistent with our perspective, the
authors exhibit an impossibility result arguing that satisfying Equal
Opportunity requires group dependent thresholds if the tests have
different noise rates.
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Additionally, there are connections between our work and clas-
sical economic discussions of statistical discrimination [1, 13] in
that both perspectives model disparities in outcomes that derive
from strategic actors making decisions to allocate goods differ-
ently based on perceived differences in predicted outcomes (termed
statistical discrimination). Our models do not capture taste based
discrimination.

1.3 Roadmap

In Section 2 we formally describe our model and present some
examples that show key phenomena. In Section 3 we prove and
discuss our first main theorem, about how to maximize precision
(at the end of the screening process) subject to Equal Opportunity.

Then we consider the more general case of satisfying Equal
Opportunity while maximizing a linear combination of precision
and recall. This problem is challenging because, as we show in
Section 2.2, the space of Equal-Opportunity solutions is non-convex.
Moreover, how to effectively utilize a test may depend on all other
available tests (Section 4.1.2). On the other hand, as we show in
Section 4.2, the solution space does satisfy certain useful structural
properties. We then use these structural results to to achieve an
exact optimal algorithm, and in Section 4.3 to achieve an FPTAS for
maximizing linear combination of precision and recall, as well as
other functions of precision and recall.

Finally, in Section 5 we discuss extensions to our model such as
requiring the screening process to be group-blind, and considering
the requirement of satisfying Equalized Odds.

2 PRELIMINARIES

Now we formally define our model and introduce some informative
examples. As mentioned above, the scenario to keep in mind is a
stylized hiring process, consisting of a sequence of tests or inter-
views. Each candidate takes a test, and depending on their outcome
on that test at that stage, is possibly promoted to the next stage
of the screening process. We focus on modifying this promotion
policy in response to satisfying the fairness constraints and achiev-
ing a high objective value or a low cost value. This is a constrained
optimization problem, with structure.

2.1 Definitions

We use X to denote the set of demographic groups, and X € X to
denote a specific group. We assume group membership is known to
the algorithm, groups are disjoint, and an individual from group X
is promoted based on both their test performance and a promotion
policy (defined below) for that corresponding group. We assume
individuals are either truly qualified or truly unqualified, and use
label y = 1 to denote a truly-qualified individual and label y = 0
to denote a truly-unqualified individual. For each group X, let gx
denote the base rate for that group, namely Pr[y = 1|x € X].

DEeFINITION 2.1 (Test Statistics). For each test t and each group
X € X, we define tx1 := Pr[t(x,y) = 1ly = 1,x € X] to be the
probability a qualified candidate from group X passes the test, and
tx0 = Pr[t(x,y) = 1ly = 0,x € X] to be the probability an unquali-
fied candidate from group X passes the test. We assume all tests are
minimally effective for all groups in that positive examples are more
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likely to pass than negative examples. More precisely,
x1 > Tx0 =20 VX € X (Minimal Effectiveness Property) (1)

Note that we assume that the probability of an individual passing a
given test depends only on their true qualification y and their group
membership X. We also assume test statistics are given and known to
our algorithm.

We use 7/ 7.3](0 to denote the test statistics at stage j of the

X1 | :
interview process. For convenience, we define T}]( = (rgﬂ, T)J«)) as
useful shorthand to capture the test statistics at stage j for group X.
Note that the same test may have different effectiveness per group.

DEFINITION 2.2 (Post-Processing Modification). We would
like to modify the outcomes of the tests in the screening process so
that some fairness goal (to be specified later) is achieved at the end of
the screening (i.e., in the final interview stage). Further, we assume
as part of the problem setting that the only ‘allowed’ correction is to
modify how candidates are promoted to the next stage. The promotion
probability of each candidate only depends on their group membership
and performance at the current test (whether they passed or failed the
test). Formally, for each group X € X, let ng(l denote the probability
a candidate x € X who passes the test at stage j is promoted to stage
j+1,and Jfﬁ(o the probability that a candidate who fails the test at
stage j is promoted to stage j + 1.2 We describe a policy for a given
Stagej as {(77.'))(1, ”;(0)})(6)('

For instance, a naive fairness respecting solution is to simply
ignore the tests and promote all examples to the end of the pipeline,
ie., {(7r§<1 = l,JT')/(O = D}xex,je[k] Where k is the number of
tests in this screening process. However, this would result in a
useless process from the perspective of the decision maker. The
most straightforward use of tests is to promote all who pass and
none who fail, i.e., {(ﬂg<1 = 1,71')1(0 = 0)}xex,je[k]- However, this
might not satisfy required fairness properties. We now formally
describe the fairness properties we consider.

DEeFINITION 2.3 (Equal Opportunity and Equalized
Odds [9]). Our paper primarily discusses two fairness notions,
specifically Equal Opportunity and Equalized Odds. The first notion,
Equal Opportunity requires that the classifier have equal True
Positive Rates for each group in the population. Equivalently, for
a classifier h and true labels y, Pr[h(x) = 1|ly(x) = 1,x € A] =
Pr[h(x) = 1|y(x) = 1,x € B]. Equalized Odds is similar but it
also requires that the False Positive Rates are equal; formally,
Pr[A(x) = 1]y(x) = 0,x € A] = Pr[h(x) = 1|y(x) = 0,x € B].

In our problem, Equal Opportunity is motivated by a desire that
qualified individuals should have the same shot at an interview
regardless of their group membership. In our problem, there is
additionally a critical distinction between the fairness criteria (e.g.
Equal Opportunity or Equalized Odds) being satisfied at the end
pipeline and alternatively that requiring these criteria hold for every
transition between stages as individuals move through the pipeline,
a stronger notion.

Now that we have described the terms that characterize a prob-
lem instance and the action space of the algorithm, we describe

2Note, in general randomized promotion policies will be necessary to satisfy the
fairness criteria.
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the objective value that captures the usefulness of a screening pro-
cess. We term these multiple different objective functions ‘pipeline
efficiency’.

DEFINITION 2.4 (Pipeline Efficiency). In our work we focus on
two core notions of efficacy from the perspective of the firm deploying
the screening process. Interview efficiency (equivalently, precision)
is the fraction of candidates in the last round who are qualified, i.e.,
the fraction of interviews that lead to hires (or at least to job offers).
Throughput efficiency (equivalently, recall) is fraction of qualified
candidates who make it to the final round, and determines the expected
number of applicants needed to enter the pipeline to hire one candidate.
In this paper, we study cost functions that are functions of these two
quantities only.

We model the last available test as highly discriminative but
extremely expensive per each test utilization and this is what moti-
vates the interview efficiency. In particular, if we assume that the
k stages prior to the interview round have zero or negligible cost
per test, and there are many available candidates, then we presume
that the goal of the firm is to maximize the interview efficiency
(precision, at the final round).

2.2 Formal Problem Statement and Illustrative
Examples

Now, we combine the above into a formal statement. Given a
screening process/pipeline P with k stages, this pipeline consists
of a collection of disjoint groups X and tests statistics Tx =
(TL, T)2<, .. T)Ig) for every group X € X.

The goal of the algorithm designer is to exhibit a method to
find promotion policies {(ngﬂ, ﬁ')lgo)}XeX,jE[k] denoted as 7 such
that the overall policy satisfies the relevant fairness notion (either
at the end of the screening process or at the end of each stage)
and maximizes the given pipeline efficiency. Now we move into
illustrative examples.

An illustrative one-stage example: Consider a one-stage pipeline
with test parameters

((za1,740). (71, 7B0)) = ((1,0.5),(0.8,0.5)).

Observe that the policy of promoting individuals if and only
if they pass the test does not satisfy Equal Opportunity. In-
stead, two policies that satisfy Equal Opportunity are P =
((ra1, ma0), (781, 7B0)) = ((0.8,0),(1,0)) and policy Q =
((1,0),(1, 1)). In words, the policy P would promote all individ-
uals who passed the test from group B, but would only promote
80% of those from group A. This down-weighting of group A would
suffice to satisfy Equal Opportunity. In contrast, policy Q promotes
all individuals from group A who pass the test and promotes every-
one from group B, regardless of their test score. In this example, P
is the optimal Equal Opportunity policy with respect to precision.

The set of policies satisfying Equal Opportunity is not convex:
Interestingly, for a two stage pipeline with two groups, the set of
policies satisfying Equal Opportunity is not convex. Consider a
pipeline with first level T}‘ =(3/4,0) and T}; =(1/2,1/2) and with
second level Tf‘ = (1/2,1/2). and leg = (3/4,0). Consider policy
P with (P} = (1,0), P, = (1,1)) and (P4 = (1,1), P = (1,0)).
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This policy has recall 3/4 for each group and therefore satisfies
Equal Opportunity. Consider policy Q with parameters (Q/l4 =(1,0),
Qll3 =(1,1/2)) and (Qi1 =(1,1), Q}Z; = (1,1)). This policy also has
the recall of 3/4 for each group and therefore also satisfies Equal
Opportunity. However, the average of these two policies denoted as
mis (r) = (1,0), 7f = (1,3/4)), while (74 = (1,1), 75 = (1,1/2)).
The recall for group A is still %, while the recall for group B is
G+ DG+1-D=52]

Thus this convex combination of policies does not satisfy Equal
Opportunity and therefore the set of Equal Opportunity promotion
policies is not convex.

Requiring Equalized Odds at each level can significantly harm
performance: The above example also shows that requiring Equal-
ized Odds at each level can significantly harm performance. Notice
that policy P above satisfies Equalized Odds overall and has perfect
precision and fairly high recall. However, the only way to satisfy
Equalized Odds at each level is to completely bypass both tests,
which would be much worse for precision.

Interestingly, as we show below, requiring Equal Opportunity at
each level does not harm precision relative to requiring it for the
pipeline as a whole (though it can hurt recall).

3 MAXIMIZING PRECISION SUBJECT TO
EQUAL OPPORTUNITY

In this section, we exhibit a policy 7 that maximizes precision at the
end of the screening process while satisfying Equal Opportunity
over the entire process. To do this, we prove that the optimal method
for this objective is given by promoting individuals from each group
according to the Opportunity Ratio (which we will define shortly).

DEFINITION 3.1. For a test T and associated promotion policy
{(mx1, mx0)}x e X, define Mx 7z = (tx170x1 + (1 — 7x1)7x0) and
Nx, 7,z = (txomx1 + (1 — 7x0)7x0). Note that Mx r » and Nx 7
are the probabilities that a positive and respectively a negative ex-
ample from group X is promoted to the next level, and so will be
important quantities for our analysis.

OBSERVATION 3.1. For any single-stage policy {(nx1, 7x0)}xex
satisfying Equal Opportunity for a test {(tx1, Tx0)}x e X, there exists
M such that Mx . . = M forevery X € X.

Furthermore, for a k-stage screening process {Ti}ie[k], a policy
{(mx0, x1)}x ex is Equal Opportunity if there exists M such that
H?leX’Ti’ni = M for every group X € X.

OBSERVATION 3.2. Recall that qx denotes the base rate for group
X, and letux = 1 — qx. For a single-stage pipeline with test T and
promotion policy 7, the interview efficiency (i.e., precision) is equal to

ZXEX qXMX,T,n'
Yxex 9XMx, r,x + uxNx, 7,z

IE(q,u, 7, 7) == (2)

Similarly, when we consider the extension to a k-stage pipeline, the
interview efficiency is equal to

k
Lxex ax iy Mx i n

k k '
Yxex qx [imy Mx 7 pi +ux [T Nx 71 i
3

IE(q,u,7,7) :=
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Now, we formally define the policy given by the opportunity
ratio as follows.

DEFINITION 3.2 (OPPORTUNITY RATIO PoLICY). Consider a
screening process with k stages.

For each X € X let px = je[k](rj *1/T§(1)’ where X* =
argminXEXHjE[k]rg(l. The Opportunity Ratio policy, at the first
stage for each X € X, promotes px fraction of those who pass the
test and none of those who fail the test. For the remaining stages
(i =2,3, ..., k), the Opportunity Ratio policy fully trusts the result of
the tests; a candidate is promoted to the next stage iff they pass the test
at the current stage. Formally, for every X € X, n)l(l = px, n)l(o =0
and n}’ﬂ = l,n)l(o =0,Vi> 2.

In the rest of this section, we study the task of maximizing inter-
view efficiency under different settings and fairness requirements.

3.1 Maximizing Interview Efficiency subject to
Equal Opportunity at the Final Stage

As a warm-up, we start with the simplest setting where the screen-
ing process has only one test before the interview stage.

THEOREM 3.3 (Opportunity Ratio Policy Maximizes Preci-
sion for Single-Stage Process). Lett = ((ta1,T40), (TB1, TB0)) be
a test satisfying the Minimal Effectiveness Property. The maximum
precision policy satisfying Equal Opportunity is the opportunity ratio
policy. Moreover, for any group X € X, it is always sub-optimal to
promote any candidates who failed the test (i.e., in any optimal policy,
mxo = 0,¥X € X).

Proor. First, for any policy 7, we upper-bound the interview
efficiency (i.e., precision) for a screening process with parameters
q,u, 7. To bound the interview efficiency, for each X € X, we lower-
bound the False Positive Rate N, 7,  in terms of the True Positive
Rate Mx ¢ 5.

Nx,r,z = 7x07x1 + (1 = Tx0)7x0
= 7x0(7x1 — 7x0) + 7TX0

X0
> . (zx1(mx1 — mx0) + 7x0) > by Eq. (1)

X0
= 'MX, T, (4)
X1
By Equal Opportunity of 7 and employing Eq. (4) in the formula
for the interview efficiency, Eq. (2),
2xeX IXMx, 7, n
2XeX qxMx, ¢, x + uxNx, ¢,
2xeX IXMx, v, n
T Xxex(@x +ux - BMx ¢ x
_ 2XeX 9X
- . Ixo
XxeXx x tux - o

IE(q,u,7, ) =

> by Eq. (4)

>VX €X,Mx.r0 =M

®)

Note that the inequalities are tight when zxo = 0 for all X € X.
Next, we show that the opportunity ratio policy satisfies Equal
Opportunity and achieves the bound in Eq. (5). In the opportunity
ratio policy 7*, only a (%)—fraction of candidates in group X
who pass the test ¢ (picked uniformly at random) are promoted
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to the next stage. In other words, for any group X € X, we set

* _ Ix* *
Tx1 = 5 Txo = 0. Then,

Yxex IxMx,r,x
2XeX qxMx 7,7+ + uxNx ¢ 7+

Ty*
Zxex aXTx1(5

IE(q,u,7,7") =

= Tx* Txe*
Yxex qxtx1(F) + uxtxo(F7)
_ 2XeX 9X
- T,
Yxexlgx +ux - 20

Hence, 7* is an equal opportunity policy with the maximum
interview efficiency for any screening process with parameters
q, U, T, . O

REMARK 1. Note that any policy m where for each X € X,
X1 = 1 Ty, mxo = 0 for a constant n < 1 also satisfies the
Equal Opportunity and maximizes the interview efficiency objective
(i.e., precision). However, n* has a strictly higher recall.

Next, we state our result for the general setting in which there
are multiple stages and multiple groups in the screening process.
The proof of the theorem is similar to the single test version and is
deferred to Appendix A.

THEOREM 3.4 (Multi-Stage Screening Process). Consider a k-
stage screening process whose all tests are minimally effective. The
maximum interview efficiency policy satisfying Equal Opportunity

is the Opportunity Ratio policy and has interview efficiency equal to
llgll
llgllhi+Xxex MXH{F:l(T;i(O/T)i“)'

3.2 Maximizing Interview Efficiency Subject to
Equal Opportunity at the End of Each Stage

Here, we consider the setting in which the goal is find a policy that
maximizes interview efficiency and satisfy Equal Opportunity at
the end of each stage—not only at the interview stage. Following
Theorem 3.4, the maximum interview efficiency in this setting is

Tl
at most ||qll1/(llgll1 + Xxex uXH{.‘:1 %) Next, we show that the

following slightly modified opportunity ratio policy r that satisfies
Equal Opportunity at the end of each stage maximizes the interview
efficiency. The policy 7 applies the opportunity ratio at each stage
of the pipeline.
i
. . X1 # . i
Tyo = 0,3y = —— Vi€ [k],X € X, where X} := argminy e x 7y,
Tx1
Again, it is straightforward to verify that  satisfies the Equality of

Opportunity. Moreover,

2XeX IXMx, 1, n

IE(q,u,7,7) =
1 2xXeX IXMx, 7z, + uxNx, 7,7

YXeX QXHiE[k]T)i(;l

i i
Tx*17x0

2xex IxIlie[k) Ty + LxeX UX ’T;-(
i 1

llgllx

i
Txo0
7

llglls + Xxex MXH§:1
Tx1
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The only difference compared to the policy of Theorem 3.4 is that
in the former policy the recall can be higher.

REMARK 2. Adding the condition to satisfy the Equality of Oppor-
tunity at the end of each stage does not harm interview efficiency.
However, this condition may decrease the recall of the optimal policy.

4 PIPELINE EFFICIENCY: MAXIMIZING
LINEAR COMBINATIONS OF PRECISION
AND RECALL

Now we shift our focus to exhibiting a promotion policy that
satisfies Equal Opportunity and maximizes a linear combination
of precision and recall given by the positive weight & € Rxq;
fa(m) := (1 — @) - recall(x) + « - precision(r). As in Definition 2.4,
higher precision corresponds to higher interview efficiency, and
higher recall corresponds to higher throughput efficiency.

We start with a simple 2-approximation algorithm for maximiz-
ing any given linear of precision and recall.

THEOREM 4.1 (Approximation Algorithm for Linear Combi-
nation of Precision and Recall). There exists a polynomial time
2-approximation algorithm for maximizing any linear combination
of precision and recall.

Proor. Note that the policy that bypasses all tests is an Equal
Opportunity policy and maximizes recall—it achieves recall equal to
one. Moreover, by Theorem 3.4, the Opportunity Ratio is an Equal
Opportunity policy maximizing precision. Hence, the better of the
“bypassing all tests” policy and the Opportunity Ratio policy is a
2-approximation of any given linear combination of precision and
recall. ]

In order to obtain better performance for maximizing linear com-
binations of precision and recall, we develop structural properties
of optimal solutions, and then use them to get an exact algorithm
with running time that is exponential only in k and the number
of groups. Additionally, by a dynamic programming approach we
exhibit a fully polynomial time approximation scheme (FPTAS).

One challenge is that as shown in Section 2.2, the space of Equal
Opportunity solutions is non-convex. Another is that as shown in
Section 4.1.1 below, Opportunity Ratio is no longer optimal, and as
shown in Section 4.1.2 below, there exists no function ranking the
efficacy of tests solely based on their statistics.

We begin by presenting the examples mentioned above, and then
developing the structural properties we will use.

4.1 Illustrative Examples

4.1.1 Opportunity Ratio not Optimal for Linear Combination of
Precision and Recall. In the previous sections, our key algorithmic
strategy is to use the Opportunity Ratio to re-weight the promotion
policy. Since this policy satisfied Equal Opportunity and maximized
precision (among Equal Opportunity policies), if our objective is to
only maximize precision, then the Opportunity Ratio is sufficient.
Now we exhibit an example where the Opportunity Ratio solution is
not optimal when maximizing any linear combination of precision
and recall when there is any nonzero weight on recall. Specifically,
in this example there is an alternative policy with the same precision
as the Opportunity Ratio solution but strictly higher recall.
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Consider a pipeline with Tj\ = (3/4,0) and TII; =(1/2,1/4). In
the second stage, Tf‘ =(1/2,1/4) and leg = (3/4,0). Consider policy
P: (P} = (1,0) and P} = (1,1), while P4 = (1,1) and P = (1,0).

This policy has recall 3/4 and precision 1 for each group and
therefore satisfies Equal Opportunity. Thus if our objective here
is maximize the average of precision and recall, this policy has
objective function value 7/8. In contrast, the Opportunity Ratio
policy as given in Definition 3.2 is P}‘ = (1,0),P2Ej = (1,0) and
Pi =(1,0), Pé = (1, 0) which reduces our recall to % . % = % while
to precision is still 1, for score of %, Clearly this is a lower objective
function score than the first policy.

4.1.2  Optimal Policy Non-Locality for Linear Combination of Preci-
sion and Recall . Suppose we have one group in the population and
want to optimize a linear combination of recall and precision. A
baseline idea is whether we can solve this problem with a natural
greedy algorithm that makes local decisions in a single pass of the
test statistics 3.

We answer this question in the negative in by exhibiting an
example pipeline with test statistics such that when two of three
tests are available, using only the first test is strictly optimal, while
when all three tests are available, the optimum is instead to use the
other two tests and not the first test. This shows that an algorithm
that maximizes a linear combination of precision and recall cannot
simply assign separate scores to each test and then use only the
highest-scoring tests. Our example is only for one group.

The counterexample is as follows. The base-rate in the population
is P(y = 1) = 1/2. Consider test t; = (1/2,0) and tests tp = t3 =
(1-68,1/2) where § = 1};. The objective function is f(r) = % -
recall(r) + % - precision(r). In the following, let f(t1) to denote
the score of the policy that only promotes those who pass t; and
bypasses all other tests while f(t2t3) denotes bypassing #; and
promoting individuals if and only if they pass tests t2 and #3. In the
Appendix E we show while f(1) is larger than any policy using
t; and t; (possibly in fractions), f(t2#3) is strictly larger than any
policy using t1, tz and t3 (again, possibly in fractions).

4.2 An Exact Algorithm

In this section, we give an exact algorithm for maximizing any given
linear combination of precision and recall subject to satisfying Equal
Opportunity by the end of the screening process.

First we show that for any k-stage screening process over a
population specified by a collection of groups X, there exists a set
of Equal Opportunity policies Py x that weakly Pareto dominate
(w.r.t. precision and recall) any policy satisfying Equal Opportunity.
In particular, we show that each policy 7 := (x,- - k) e Pk, x
has the following structure, (1 — n)i(l)n)i<0 =0,Vie[k],X € X.

DEFINITION 4.1 (Pareto Dominant Policy). For a given screen-
ing process, a policy m weakly Pareto dominates a policy & w.r.t. pre-
cision and recall iff, recall(x) > recall(7) and precision(r) >
precision(7). Moreover, 7 strictly Pareto dominates 7 if at least one
of the above inequalities holds strictly.

3In the related work by [5] the answer is in the affirmative, but their model is different
and has uniform noise across true positives and true negatives.
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Furthermore, a set of policies P weakly Pareto dominates a policy
7 w.r.t. precision and recall iff there exists a policy m € P that w
weakly Pareto dominates 7.

LEMMA 4.2. For any k-stage screening policy that satisfies the
Minimal Effectiveness Property 1, the set of Equal Opportunity policies
in® = {x e [0,12XIk . (1 -7l ywl = 0,VX € X,i € [k]}
weakly Pareto dominates all equal opportunity policies w.r.t. precision
and recall.

In other words, any equal opportunity policy violating (1 —
ﬂ)i(l)ﬂ')i(o = 0 for a group X € X and a stage i € [k] is weakly
Pareto dominated by P.

Proor. First, we show that in any policy 7 which is not strictly
Pareto dominated (w.r.t. precision and recall), 7% | > 0 for every
X e X,i € [k]. Hence, we can only consider policies 7 where
nx1 > 0 for all X € X. The proof of the following claim is deferred
to Appendix B. O

Cramv 4.3. Consider a k-stage screening process whose tests satisfy
the Minimal Effectiveness Property 1. In any optimal policy of this
screening process that satisfies Equal Opportunity, for all X € X and
i €[k], my, > 0.

Now, for the sake of contradiction, suppose that there exist a
level i € [k] and a group X € X such that JT}i(O > 0 and JT)i(l <1
Note that w.l.o.g., we can assume that 7 Xl < 1; otherwise, by
setting 7x = 0, the recall of the policy does not decrease and the
precision strictly increases. Hence, there exist €1, €9 > 0 such that

Le—(1- T)i(l)E() = 0 where either (¢ = 1 — nx1, €0 < 7mx() Or
(€1 £ 1= 7x1, €0 = 7X0)-

We define a new pohcy T, whlch differs from = only in level i

of group X, as follows: 74, = + €1 and 75, — €p. Next,

Xl X
we show that Ny ;i zi < Ny i gi.

XO

NX,Ti,,’i.i = ‘L')i(oft)i(l +(1- T)i(o)ft)i(o
Txo(T3q + €1) + (1 = T3 ) (T3 — €0)

Txo)Txo + (Txo€l + Txo€0 — €0)

R R _
= Ty Ty T (1

i i
TxoTx1 T (1-

+ (T30€1 + Txp€0 —

i\ i
Tx0)x0

Ty €1 = Tx1€0) B €0 = Ty (€0 + €1)

< Txomx1 + (1= Tx) g B Txp < Ty
= Nx ;i gi

Further, since ’['Xl -1 T)i(l)E() = 0, 7 satisfies Equal Oppor-
tunity and has the same recall as 7. Moreover, since Nx ;i 7 <
Ny, i i and for all j € [K]\ {i}, Nx, i,z = 0, T Ny s i <
I Nx, j, 7 - Hence the precision of 7 is not less than the one of
7. This contradicts the strict Pareto optimally of policy 7. Thus the
statement holds and for any level i € [k] and any group X € X,
(1 =75 )y = 0.

Next, we show additional structures of the set of Equal Opportu-
nity policies P x that weakly Pareto dominates all Equal Oppor-
tunity policies.

LEmMA 4.4. Consider a k-stage screening process whose tests satisfy
the Minimal Effectiveness Property 1. The set of Equal Opportunity
policies S € P = {m € [0,1]2IXIF . (1 -zl )zl = 0.VX €
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X, i € [k]} where for each group X € X, there exists at most one level
i € [k] such that 0 < ”Xo < 1, weakly Pareto dominates all Equal
Opportunity policies.

In other words, any Equal Opportunity policy & of the screening
process is weakly Pareto dominated by 1 € S (in every policy 7 € S,
for each group X € X, there exists at most one level i such that
0 < 7ty < 1).

PRrROOF. Suppose for contradiction that there exist a group X € X

and levels i, j such that 0 < 7 77.J < 1. Next, we show that we

X()’ X )
can modify 7 in levels i and j and replace o’ 77."),(0 with 7 IZ'XO, ”§<0
such that

My o1, qiMx o, i = (T3 + Txo(1 = TX1))( 0(1 1)
= (riy + (1= T )Ny + (1= %))
=My ;i 7iMx i 7 (6)

Nx, i, 2iNx, oi, 0 = (T + Txo(1 = T3 (Thg + T (1= Tq))
> (zxq + fixo(1 = T3 (Tho + o (1 = Txp))
= NX,Ti,ﬁiNX,Tj,ﬁj (7)

Note that Eq. (6) guarantees that the new policy 7 satisfies Equal
Opportunity and has the same recall as the policy xz. Moreover,
Eq. (7) shows that precision of the new policy is not less than than
the precision of 7. Next, we show that in the new policy, either
Tho € {0, 1} or 73 € {0,1}.

Without loss of generality, we can assume that the feasible range
of values for 77, to satisfy Equal Opportumty is [} 77,')i<o +61]

ot el ] Both 1ntervals are sub-
o belong to [0,1], it is

which corresponds to [7r] -8,

intervals of [0, 1] and since both 77.3](0,
straightforward to verify that
— 5j ) =0

(kg = €)1 = (g + &) = (1 = (g + 6N

Let L = lMXJ
X171 o .
Mx ;i #iMx, rj_#i-By the Minimal Effectiveness Property, 1 < L <

where MX = MX’Ti’”iMX’Tj,”j =

. Then, satisfying Equal Opportunity is equivalent to satisfy

i
X1 Xl

R+ () = 1

the following constraint, (1 + fr)im(
X1

Hence, it implies that

. L l—rj
S0 = (—— - /( Tﬁ“)
1+ 7k ( TXI) X1
) L-1-7y
Sy P T

1_7;(1 1+ 75,

Case 1: max(r)i(l, T)j(l) =1. Without loss of generality, suppose

i

Ty, = 1. Then, we can simply set 7}, = 0 and the resulting policy
7 will maintain Equal Opportunlty Moreover since 1 — 75 > 0,

Nx ;i 7i < Nx ;i pi.Inthe other case, we can similarly set ”im =
0.
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Case 2: r)"ﬂ, 1';(1 < 1. The task of finding 7%;(0 is as follows:

fr)im = argminyE[ﬂxo_ei’ﬂéom,—]f(y) which is equal to
_ S o L—l—y(l;?“) _
(T + Y1 = T Tk + (22 F)(1 = ).
- ’['Xl 1+ y( Xl)

Next, we show that for any

2L(zy 0—1)( Xl )( Xl)( }’:—1)

<0

efo.1]. f"(y) = -

¢! +( s )y)3

To prove it note that the minimal “effectlveness property” of the
tests {Tl}iE[k (e, 75, > 73 2 0,VX € X,i € [k]) implies

that X2 — 1 < 0. Moreover since by our assumption ol < 1,

X1’ "X1
X

f"(y) <0 for all values of y € [0, 1]. Since f is a concave function in

[} o —€l, 71' +5 i1, the minimum value of f in this interval obtained

in one of 1ts endpomts In other words, the maximum precision

,€{0.1}or i, e{0,1}. O

corresponds to the case either 7

Finally, we show that each group can only have at most one level
that partially uses its corresponding test.

LEMMA 4.5. Consider a k-stage screening process whose tests satisfy
the “minimal effectiveness” property. The set of Equal Opportunity
policies Py x C P = {r € [0, 1]2|X|k (1 - ﬂ)i(l)ﬂ)i(o =0,VX €
X, i € [k]} where for each group X € X, there exists at most one level
i € [k] such that ml, < 10r0 <zl <1, weakly Pareto dominates

X1 X0
all Equal Opportunity policies.

The proof is similar to the proof of Lemma 4.4 and we defer it to
Appendix B. The above lemma enforces a very restricted structure
on the set Py x of Equal Opportunity policies that weakly Pareto
dominate all Equal Opportunity policies. To summarize, in each
policy 7 € Py x, for each group X € X, the restriction of 7 on X
has the following properties

(1) There is at most one level i*

the test 7%’
and 0 < ﬂXO
(2) Inany remaining level i, 70 elther bypasses ' (i.e.,

X1 = l,JTXO =0).

€ [k] such that 7 partially uses

'ie.,either0<7ri* <1and7t 0=0 OT7T =1

X1
< 1.

Tx17x0 =
1), or fully exploits ' (i.e., 7

THEOREM 4.6 (Exact Algorithms for Linear Combination
of Precision and Recall). Given any linear objective function of
form fo () := a - precision(rr) + (1 — «) - recall(xr), There exists
an exact algorithm that runs in time O(k|X| . 2K1X1y and finds an
Equal Opportunity policy of the screening process with parameters
(g, u, 7, X) that maximizes fg.

ProoF. Using the aforementioned set Py y of weakly Pareto
optimal policies (w.r.t. precision and recall) that satisfy the Equality
of Opportunity, we enumerate over all policies in Py x as follows.

e For each group X € X, pickalevelix € [k] (i.e., kI XI possible
configurations).

e Fix an “integral” policy n for the rest of levels in each group
XelX,
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— In each group X € X, for each l_evel i # iX, we decide
whether to fully use the test (mhy; = Lmy, = 0)orto

bypass the test (n)i( 7r = 1) (ie, 2k DIXI possible

configurations).
e For each X € X, ix € [k], we fix the policy 7*X partially as
follows,
-(1- ”Xl) =0,VX € X (ie, 21Xl possible configura-
tions).

In each of the policies 7 as constructed above, we set the remaining
7 values (i.e., 7X) so that Equality of Opportunity is satisfied and
the objective function f;, is maximized. Finally, we maintain the
configuration & that maximizes f,. Note that the whole process
takes O(k!X1 - 2K141) time. o

Similarly, we can show the following.

THEOREM 4.7 (Exact Algorithms for Linear Combination of
reciprocal of Precision and Recall). Given any objective function
go () := a/precision(r) + (1 — a)/recall(n), There exists an exact
algorithm that runs in time O(k!X| . 2K1X1y and finds an Equal Op-
portunity policy of the screening process with parameters (q, u, 7, X)
that minimizes g .

REMARK 3 (General Objective Functions). Our approach pro-
vides an exact algorithm for maximizing (resp., minimizing) a given
pipeline efficiency objective f (resp., pipeline complexity cost g)
over Equal Opportunity policies if f (resp., g) satisfies the follow-
ing natural condition: for any pair of policies 1, 7ty where 1 weakly
Pareto dominates my w.r.t. precision and recall, f(mr1) > f(r2) (resp.,

g(m1) < g(m2)).

4.3 An FPTAS Algorithm

In this section, we present FPTAS algorithms for maximizing a given
pipeline efficiency objective (resp., minimizing a given pipeline cost
function) while satisfying the Equal Opportunity requirement. We
consider two regimes. In this section, as in previous sections, we
consider the regime where we are allowed to treat individuals from
different groups differently; more precisely, we can set ﬂ’;ﬁ # n{,i
forj € [k],i € {0,1}. Next, in Section 5.1, we consider a new regime
where the goal is to achieve Equal Opportunity while treating
individuals from both groups similarly; Vi € [k], X # Y € X, n}iﬂ =
Y1 T = Tyo:

To exploit our algorithm in different settings, we describe it
for the most basic setting of the problem. Given a single group of
applicants with parameters g, u and a pipeline P = {r'} i[k]> the
goal is find a policy 7 that maximizes a given pipeline efficiency
objective f(recall(r, P), precision(r, g, u, P)). Our approach works
for a quite general set of objective functions; more notably, as
in the previous section, for two natural settings: maximizing a
linear combination of precision and recall and minimizing a linear
combination of reciprocals of precision and recall.

High-level Description of Algorithm. Now we write a dynamic
program (DP) to optimize a given pipeline efficiency objective f up
to a given accuracy parameter €. We create a DP-table M[i, tpr, fpr]
where i € [k], tpr € [0, ftpr := log;_. Ltpr] and fpr € [0, Cipr =
log;_ Lfy,] where Lipr, Lty are lower bounds on True Positive Rate
and False Positive Rate respectively. For each set of parameters
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(i, tpr, fpr), M[i, tpr, fpr] will be a Boolean value indicating whether
there exists a policy such that by the end of level i, the true positive
rate becomes at least (1 — €)'P" and the False Positive Rate becomes
at most (1 — €)P". Without loss of generality and for the simplicity
of the exposition, we assume Lipr and L¢,, are powers of (1 — €);
otherwise we can simply round the lower bounds to largest powers
of (1 — €) smaller than actual bounds.

Solving the DP. We fill out the DP table starting from i = 1 as
follows. First, for any jo € [0, {fpr], j1 € [0, Cepr], M[1, j1, jo] = true
iff the following system of linear inequalities has a feasible solution.

gx+(1-1)y< (-, rlx+(1-ty=1-e. (8

Next, we describe the update rule for i > 1. For any tpr €
[0, &epr ], fpr € [0, &y ], M[i + 1, tpr. fpr] = Vi e, Ml tpr —
Jj1,fpr — jol, where Fiy1 is a set of (jo < fpr,j1 < tpr) for which the
following linear program has a feasible solution,

tx+ -y <1 -e, f M x+ (11— My 2 (1- ey
©)

Note that x,y can be interpreted as ﬁf“,ﬂé“, respectively.

Moreover, the system of linear inequalities of the update rule in
level i + 1 (Eq. (9)) is similar to the rules for the base case (Eq. (8)).

LEmMA 4.8. For any i € [k], if there exists a policy & with True
Positive Rate t; > Lyp /(1 — €)'~1 and False Positive Rate f; by the
end of level i, then for any j1 € [0, €ipr], jo € [0, Crp] with (1 - ey >
ti- (1 - €)' and (1 - ey < min{1, max{Lg,.f;}/(1 — €)'},
Mli, j1,jo] = true.

In other words, if the policy 7 exists then the DP approach finds a
policy with true positive rate at least (1 — €)' and false positive rate
at most (1 — €)fo.

The proof is deferred to Section B.

LEMMA 4.9 (DP Main Lemma). For any group X € X, an accu-
racy parameter € and lower bounds on the false positive rate, Lp,,
and the true positive rate, Lypy, if there exists a policy m* with true
positive rate t > Lip, /(1 - e)k=1 and false positive rate f > 0, then
klog?(1/ Ly ) log?(1/ Ly

og™(1/ lplog(/ fp))andﬁndsa

€
policy 7 with true positive rate at least (1— €)1 -t and false positive
rate at most min{1, max{Lgp, f}/(1 - e)k1y.

the DP algorithm runs in time O(

Proor. The size of table is O(k{tpr(f,) and updating each entry

in the table takes O(€tpr(f,y). Hence, the total runtime to compute all
ies i - 2 2 klog?(1/Lipr) log®(1/Lgpr)

entries in the DP table is O(kftprt’fpr) =0( = ).

Now we apply the DP approach and by Lemma 4.8, the solution

returned by the algorithm has the true positive rate and the false

positive rate satisfying the guarantee of the statement. O

Implications of DP. Here we present FPTAS algorithms using the
described DP approach in different settings. We state the results
formally and their proofs are deferred to Appendix B.

THEOREM 4.10 (FPTAS for Linear Combination of Precision
and Recall). Consider a k-stage screening process with parameters
(u,q,7,X) and for any policy r, let fo(7) = (1 — @) - recall(r) +
a - precision(rr) where & > 0. Given an accuracy parameter €, there

5 4
exists an FPTAS that runs in time O(W) and finds an
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Equal Opportunity policy m such that fo(n) > (1 — €) fo (n*) where
* maximizes f, over Equal Opportunity policies.

THEOREM 4.11 (FPTAS for Linear Combination of Recip-
rocals Precision and Recall). Consider a k-stage screening pro-
cess with parameters (u, q,,X) and for any policy ., let go(7) =
(1-a)/recall(r)+a/precision(r) wherea > 0. Given an accuracy pa-

, XK (log? L +k?
rameter €, there exists an FPTAS that runs in time O(%)

and finds an Equal Opportunity policy n such that go(r) < (1 +
€)go(n*) where T* minimizes g, over Equal Opportunity policies.

REMARK 4 (General Objective Functions). In Theorem 4.10
and 4.11 we presented FPTAS for finding Equal Opportunity policies
optimizing two standard pipeline efficiency objective functions. Here,
we generalize the above theorems when the pipeline efficiency objective
function f : [0,1]? — R which maps precision and recall to efficiency
scores have certain properties. Also, we define g : [0,1]> — R such
that for any t,f € [0,1]%, g(t,f) := f(recall(t), precision(t, f)). We
describe the properties when the goal is to maximize f—the required
conditions for the minimization version is similar.

e f is non-decreasing w.r.t. both precision and recall—
equivalently, g is non-decreasing in t and non-increasing
inf.

o There exist Lipr, Lipy > O such that there exists a (1 — a)-
approximate solution of f witht € (Lpr, 1], f € (Lgpy, 1.

o The function f is B-Lipschitz on {(x,y)lx € (Ltpr,1l,y €
(prrv 1}

In particular, the above properties are sufficient to show that the DP
approach finds a (1 — €)-approximation of f in time
poly(k, |X|, ™", log(1/Lepr), log(1/Lepr)).

REMARK 5 (Selecting from Available Tests). Suppose that in
contrast to our previous approaches, we do allow for the design of
the pipeline in that we allow the firm to select some tests to create a
pipeline. For instance, imagine that there is a budget and the firm is
allocating this budget to buy tests. The goal of the firm is the same, e.g.
to exhibit a pipeline satisfying a fairness requirement. Our algorithms
can be modified to handle to this case by adding a term in the DP
table corresponding to the budget remaining, with a decision point of
choosing to use a given test or not. Note that the ordering of tests in
the pipeline does not matter for the objectives considered.

5 ALTERNATE MODELS

In this section we describe some alternate settings, such as using a
single promotion policy for both demographic groups (which might
be required by regulation), or requiring Equalized Odds.

5.1 Screening Processes with Same Policy for
All Groups

One alternate fairness model is to additionally require the same
policy be used for all groups. While utilizing demographic features
can aid in achieving fairness goals (e.g. [6, 9]), in some regulatory
regimes, this fairness-through-awareness may be illegal or prob-
lematic, even when intended to ensure equitable treatment.

In our setting, if we are constrained to follow group-blindness,
there be would only one set of tests and one ordering of the tests
that all applicants are tested on. Analogously to the previous setting,
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the action space of the algorithm remains modifying the promotion
probabilities, but we now only have one set of policies to modify.
We also exhibit a DP algorithm for this setting, which we defer to
Section D. However, a simple example shows the inefficiencies in
this regime. Suppose we have a single test with T4 = (1,0) and
Tp = (1/2,0). Observe that since we are constrained to use group
blindness and satisfy Equal Opportunity, there is no way to use the
test without violating Equal Opportunity. Thus, the only way to
satisfy Equal Opportunity is to completely bypass the test.

5.2 Equalized Odds

Next, recall that the requirement of Equalized Odds mandates equal
True Positive and False Positive rates for all groups. In the appen-
dix, we show structural properties of an optimal promotion policy
that satisfies Equalized Odds. However, we also note the interview
efficiency cost (precision) of requiring Equalized Odds. In particular,
the gap between the interview efficiency of 7goqq and 7gopp can
be as large as é — € for any arbitrary € > 0. See Theorem C.3 for
details.

5.3 Discussion Comparing Equalized Odds and
Equal Opportunity

From the perspective of a decision maker in the wild, how to inter-
pret and operationalize these results? A robust take-away is that
requiring Equalized Odds and Equal Opportunity have substan-
tially different efficiency consequences. Based on our examples,
it seems unlikely that Equalized Odds is effective in this model,
especially when requiring Equalized Odds at each stage. In contrast,
the fact that requiring Equal Opportunity at each stage is equiv-
alent to requiring Equal Opportunity of the overall process with
respect to interview efficiency may have benefits in ensuring public
confidence in the model.

5.4 Intersectionality

A natural question is how to think when the demographic groups
may have an arbitrarily overlapping structure. This suggests several
open questions in our model, e.g. if a person is in groups A and B,
then which test parameter 74 or g corresponds to that person?
Perhaps a direction is to assign to that person an interpolation
between these values. A naive approach is when there are k groups,
to create 2% new groups and 2K test parameters corresponding
to every possible group intersection. If k is small, this may be
computationally feasible, but is not responsive when the relevant
sub-groups/intersections may not be known apriori. Perhaps our
model could be merged with multi-calibration notions [10].

6 CONCLUSIONS

In contrast to some fairness in machine learning work, we focus on
post-processing fairness modifications, rather than thinking about
the fairness problem in screening processes where tests can be de-
signed from scratch. While we believe that the more a priori design
approach will have substantial benefits in practice, our approach
of modifying pre-existing tests, combined with a concrete (and
simple to evaluate) fairness notion, Equal Opportunity, is closely
aligned with real world circumstances and models, especially in
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short term and iterative improvements to models. In some settings,
the firm making hiring decisions will outsource some aspects of
its pipeline to third party companies and the tests will be a black
box, but possibly that come with statistics that can be used in our
algorithms. This decoupling allows the effective implementation of
fairness aware promotion policies in the short term.
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Proor oF THEOREM 3.4. First, we show that for any M € (0, 1],
any Equal Opportunity policy mp; with recall M has interview
efficiency at most

2xeX XM,z
2xeX IXMx, o, myy + UXNX, 7, 70
llgllx

IE(q, u, 7, M)

Nx,z,
llgll + Zxex ux —32

llgllx . (10)
T
llglls + X xex uxTi=1 5°
Tx1

IA
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where the last inequality follows from the minimal effectiveness
of tests in the screening process and an argument identical to
Eq. (4). Note that the inequality holds no matter what the value
of M is. Next, we show that opportunity ratio policy achieves the
maximum possible interview efficiency as shown in Eq. (10). Let
X* = argminy ¢ x 11 jE[k]T)](l' Recall that the opportunity ratio pol-
icy 7 is defined as follow.

VX eX
VX eX,i>2

1 . . .
Txo = 0 and myy = Wiy (x1/7x1)
i _ i
7xo = 0and 75 =1
It is straightforward to check that s is an Equal Opportunity policy
with recall IT;¢[x] 5., Moreover, the interview efficiency of 7 is

2xex XMx 7. n
YxeXx qxXMx,z,x + uXNgf;r

[E(q u,7,7) =

X OxTie[k] T

- : -
Zxex IxMie[k)Txq + Zxex uxie[k) XT),-(

llgllx

llglli + Xxex uXHi-c:l F

Hence, 7 is the Equal Opportunity policy maximizing the interview
efficiency. O

B PROOFS FROM SECTION 4

ProoOF OF CLAIM 4.3. Suppose for contradiction that there exists
agroup X € X and alevel i € [k] such that ﬂ)i(1 = 0. First note
that (1 - T)i(i)”)i(o > 0; otherwise, the policy is useless because it
prevents candidates of group X, in particular the qualified ones,
from reaching the interview stage. Hence, by the Equal Opportunity
requirement, no qualified candidate will reach the interview stage.

Next, we show that there exists a policy 7 (which only differs
from 7 in level i of group X) that satisfies Equal Opportunity for
the given screening process and strictly Pareto dominates 7; ﬁ)iﬂ =

=Ty i =i
(—=*)my, and 75, = 0.
X1

Since MX ol ,r, = 1-

i |20 V-2 ZY S-) _

Txyxy + (1= T3 )y = 73y Ty, = (1
Xl) Ty Ty (1 Xl) = Mx ;i pi and r satisfies the

Equal Opportunity, 7 also satisﬁes Equal Opportunity and has the
same recall as 7. Moreover, since

i

1\ i i i i _ .
x0Txo < (1=Txo)Tx = Nx 11 zi»

R N
Nx, i i = Ty Txg = (

X1
precision(77) > precision(r). Note that ﬂ < :XO holds by the
Xl X0
minimal effectiveness property of tests. O

LemMA B.1. Consider a k-stage screening process whose tests sat-
isfy the Minimal Effectiveness Property. The set of Equal Opportunity
policies S € P = {m € [0,121XIK|(1 = 7l )l =0,vX e X,ie
[k]}, where for each group X € X, there exists at most one leveli € [k]
such that n)i(l < 1, weakly Pareto dominates all Equal Opportunity
policies.

PROOF. Suppose for contradiction that there are two levels i, j
such that Jer, 71'] < 1. First note that by Claim 4.3, 7er, 77.'] > 0.

Moreover, by Lemma 4.2, since Jer, 71';(1 <1, 7TXO = ITXO 0.
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Next, we show that we can modify 7 in levels i and j and
Jj

replace =« XO’ XO with T[XO,JT;(O as follows: ”Xl Xl”Xl and
;T;(i = L Then, My ;i 7iMx ¢ 7i (Xl Xl)(ﬂ”),(l Xl)

(n)i(lrj(l)(n;(lrgﬂ) = Mx_ ;i ziMx ;i pi- In other words, the pol-
icy 7 satisfies Equal Opportunity and has the same recall as 7.
Similarly, this modification does not decrease precision. Formally,
Nx,oh it Nx, o = Gy Theo (1 7o) = (T, 7o 0k Txg) =

Nx ;i ziNx ;i pi. Hence, for each policy 7, there exists another
policy with at most one level i € [k] such that n}im < 1 and weakly

Pareto dominates 7. ]

Proor oF LEMMA 4.5. We follow a similar arguments as in the
proof of Lemma 4.4. Note that by Lemma 4.4 and Lemma B.1 there
is at most one level iy € [k] such that 0 < 7l < 1and ﬂ)léo =0,

X1 !
and there is at most one level iy € [k] such that ﬂ)lgl = 1 and

10
0< Tyo

levels iy and iy and replace &

< 1. Next, we show that we can modify the policy 7 in

with 7 ”X such that

XO’ Xl 0’ Xl

l() l()
My i gioMx rin pin = (1)) + (1 -

= (TXI + ftgo(1— x1))( X1 Xl)
= MX’TiO’f’[ioMX i, i

)y X1 )

0+ 7[’00(1

Ny rio_pio Ny oin ot = (13, 100))( X1 XO)

< (r3gy + Fypg (1 = T8 N T3k0)

= NXJ.IO’ﬁ.LO NX’Tll’ﬁll
Now, we show that in the new solution, either ir)igo € {0,1} or
it
Ty, = 1.
Without loss of generality, we can assume that the feasible range

of values for 7 71' o to satisfy Equal Opportumty is [anO —¢lo o 4

5] which corresponds to [ - & ot €'1]. Both 1nte§/(iils
are sub-intervals of [0, 1] and 1t is str_aightforward to verify that
(ﬂ)'g — €)1 = (my ! ot ey =(1- (77,';0 +61) =0.
LetL = Mx/( (99 Xl) where
Mx = MX,riO,nioMX,ril,nil = MX,riO,ﬁioMx,ril,iril
. By the Minimal Effectiveness Property, 0 < L < 3. Then, satisfying

~ 1
X0

Equal Opportunity is equivalent to satisfy (1+ 7

—L/(1+ 70 (1 i )) The task ofﬁndmg

which implies that 7

~i .
Ty 1s as follows:

~i ; . )

Tyxo = argmlnye[njgo—eio,n;?0+5i°lf(y)

L

= (1 + 91 = g )ryy - —— ).
1+ y( Xl
Xl
Next, we show that for any y € [0,1],
Lol () (oo o= )+r;;°0—1)
f(y) = 2 <0
(1+7 y)3
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To prove it note that the Minimal Effectiveness Property of the

tests {ri}iE (e, 75, > 7y 2 0,YX € X,i € [k]) implies that

—1 < 0. Since f is a concave function in [irX0
Xl

the minimum value of f in this interval obtained in one of its
endpoints. In other words, the maximum precision corresponds to
the case either fr;(oo € {0,1} or iz;él =1 O

Proor or LEMMA 4.8. The proof is by induction. For the base
case (i = 1), let t; and f; denote the true positive rate and the false
positive rate of 7 by the end of level 1. The existence of 7 guarantees
that the system of inequalities Eq. (8) with (o = [log;_. fil.j1 =
[log,_. t1] < £tpr) has a feasible solution. More precisely, by setting
(x = m,y = mo),

x+(1-1)y=f<(1- ¢)llogic fil
=(1 —e)j", r1x+(1 —Tl)y
=t > (]. - e)rlogl’e ti] = (1 = e)jl

Next, we consider i > 1 and we assume that the claim holds for all
values i’ < i.Let M; := 7/ t(1- 11)7[ anle =1, +(1 T’);r
Note that t; = tj_1 - M; and fi =fi—1-

By the induction hypothesis and considering the first i — 1 levels
in the pipeline, since t;—1 > t; > Lipr/(1 - e)i 1> Lipr /(1= €)i=2
and f;—; > fj, there exist j{ € [0, Ltpr] and j§ € [0, Lgp ] U {00}
such that M[i — 1, i, jg] = true and (1 - eVt > tig-(1—€) 2 and
(1- e}i6 < min{1, max{Lgp, fi-1}/(1 - €)'72}. More precisely, the
algorithm finds a policy 7 with true positive rate at least (1 — €)1
and false positive rate at most (l - 6)10

Next, by setting (7r = ”1’ = O) and (j := argmin;{(1— ey <

ti(7)}, jo := argmax;{(1 - e)-’ > fi(7)}),
(1-¢/'>1-e) ti(7)
=(1-e€)-ti-1(7) - M;
>(1-€)-(1-eYi - M;
>t (1-e) 71 M;
=t;-(1-¢)L.

> by definition of j;
> by ti-1(7) 2 (1~ ¢)
> by induction hypothesis

Similarly,

(1-€eY° < min{1, l(”)

= min{1, N; - fi- l(ﬁ)

} © by definition of jy

< min{1, (1 - e)fo 7 _’e} b fi1(7) < (1—e)o

maX{prrvfi—l} N;
(1-e)i2 1-¢
maX{prrvfi}
(1-¢)it

which completes the proof. O

< min{1, } > induction hypoth.

< min{1,

Proor oF THEOREM 4.10. First, as we are aiming for a (1 — €)-
approximation, we only need to consider a € (e, 1 — €). Otherwise,

either the policy maximizing recall (i.e. bypassing all tests) or the

policy maximizing precision (Opportunity Ratio policy) is a (1 — €)-

approximation for f5,.
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Next we show in order to guarantee (1 — €)-approximations of
recall and precision of the policy maximizing f,, it suffices to run
the described DP and consider estimates of t (true positive rate)
and f (false positive rate) of form (1 — €)’ for i € N in intervals
[Ltpr, 1] and [Lgpy, 1] respectively, where € < €/(2k). We provide
tight bounds for Ltpr and Lgy,. Note that since for any policy 7,
the true positive rate (t;) and the false positive rate (f;) are non-
decreasing in i, it suffices to provide “large enough” lowerbounds
Lipr and Ly, for t and f in the final stage respectively.

Bounding Ltpr. Consider the policy 7pypass, which bypasses all
the tests in both groups, i.e., n)i(o = ﬂ)i(l =1forallie€ [k],X € X.
Since 7yypass is an Equal Opportunity policy for the pipeline and
fa(mbypass) = (1 — @) + allqll1, any optimal Equal Opportunity
policy 7* for fy has recall at least (1 — 2a + «||qll1)/(1 — ). Thus,
since @ € (€,1—¢€),t > (1 -2+ ||q|l1)/(1 — @) > €/(1 — €) which
implies that in our DP with accuracy parameter € it suffices to set
Lipr = (15) - (1= 951 2 (57 - exp(~e).

Bounding L. For each X € X, let fx denote the false positive
rate of the optimal Equal Opportunity policy for group X. Similarly,
let tx denote the positive rate of (i.e., recall) the optimal policy
7* for group X € X. By Equality of Opportunity property of 7*,
tx =t for each X € X. Next, we consider the following cases.

For any sufficiently small € > 0, we need to set Lf,, so that by
running the DP with accuracy parameter €, we can approximate
both true positive rate and false positive rate of the optimal Equal
Opportunity policy within (1 — €)-factor of their values. More pre-
cisely, we set L, so that if for each group X € X and any pair
(tx,fx) with tx > Lipr /(1 — €/2), there exists a pair (tx, fx) such
thatty > (1—€/2)ty, fx < min(1, max(Lfpy, fx)/(1-€/2)). Finally,
once the above property holds for all groups X € X, then for the
corresponding policy 7, precision(rr) > (1 — €) - precision(z™).

Let X1 := {X € X|fx/(1- %) > prr} and Xy := {X € X|fx/(1—
$) < Lgpr}. Then,

( gl £ )
llglh t+Exex ux fx

e " Tt

precision(r”) ( IICI||1-t+”£)H(Ex ux- fx)

(—— llgll: -t —)

gl t+ X xex, ux fx+Xxex, ux-fx

precision(r)

( llglls - )
llgllt+2xex, ux-fx
llgll:-(1—e/2)t
7
llgllt+Z xex, %*’E)(exz ux Lipr

( lqlht )
TaTh T S xen, Ux Tx
llglls ¢

Next, we set Ly, so that [|gll - t + Xxex, uxLfpr < - - Since
2
; llql
t> E/(l - 6), it suffices to set prr = m = Q(Ez).

Hence,

llgll:-(1- )t

Hq||1't+ZXeX1 1 eX +XxeX, Ux ‘Lipr

€\2
>2(1-=-)">1-¢).
( IR ) 2=5) > -9
llgllt+Xxex, ux-fx
Finally, for each X € X, we run the DP algorithm for each group
with accuracy parameter €. By Lemma 4.8, the DP algorithm finds a
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set {tx = (1 - &)X, fy = (1 — é/X}xcx (and a policy 7 achieving
these rates) where for each X € X, tx € [Ltpr, 1].fx € [Lgpr. 1]
such that
maX{prrs fx (%)}
1—€/2

and for each X € X, Mx|k,tx,fx] = true. Thus, by the bounds
we just showed for the precision of such a policy, precision(rz) >
(1 —€) - precision(*). Thus, fp (1) = (1 —€) - fo(x™).

As we need to run the DP algorithm for any of the |X| groups
separately with the specified parameters Lipr, L,y and € = O(e/k),
by Lemma 4.9, the total time of the DP approach is

€
tx =t>(1- 5) -t(r*), fx < min{1,

2 1 2
Xk log® 7~ log” |X|K5(e? + log? 1)log? 1
o( ~ ) =0( 2 )
€ €
X[k log* 1
:O(I |k> log )

et
m]

Proor oF THEOREM 4.11. First we show that in our setting, in
order to guarantee (1 + €)-approximations of recall and precision,
it suffices to run the described DP and consider estimates of t (true
positive rate) and f (false positive rate) of form (1 — €)’ for i € N in
intervals [Ltpr, 1] and [Lg,, 1] respectively, where € < €/(2k). We
provide tight bounds for Ltpr and Lep,.

Note that since for any policy 7, tpr; .,
in i, it suffices to provide “large enough” lowerbounds Ltp, and
Lfpy for true positive rate and false positive rate in the final stage
respectively (i.e., for t and f).

fpr;, , are non-decreasing

Bounding Ltpr. Consider the policy 7y pass, which bypasses all
whey =1y, = 1foralli € [k],X € X.
Let Tmin = minyex je[k] ‘[g(l. Then, by Theorem 3.4, Opportunity

the tests in both groups, i.e.,

Ratio maximizes the precision and has recall at least (Tmin)k, in
the optimal policy t > (Tmin)k which implies that in our DP with
accuracy parameter € it suffices to set Lypr = (Tmin) - (1 — &)k >
exp(—€ — k In(1/7min))-

Bounding L. For each X € X, let fx denote the false positive
rate of the optimal Equal Opportunity policy for group X. Similarly,
let ty denote the positive rate of (i.e., recall) the optimal policy
n* for group X € X. By Equality of Opportunity property of 7*,
tx =t for each X € X. Next, we consider the following cases.

For any sufficiently small € > 0, we need to set Ly, so that
by running the DP with accuracy parameter é, we can approxi-
mate both true positive rate and false positive rate of the optimal
Equal Opportunity policy within (1 — €)-factor of their values. More
precisely, we set Ly, so that if for each group X € X and any
pair (tx, fx) with tx > Lipy, there exists a pair (tx, fx) such that
tx > (1-¢/2tx, fx < min(1, max(Lf,, fx)/(1 — €/2)). Finally,
once the above property holds for all groups X € X, then for the
corresponding policy 7, precision(rr) > (1 — €) - precision(r*).
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Let X; i= {X € Xl|fx/(1 - €/2) > Liy} and let X, i= {X ¢
X|fx /(1 ~€/2) < Lgpc}. Note that X = X1UX,. Then,

precision(r) ( llglls - t
precision(7*)  “|Iqlli - T+ Yxex ux - fx
p lglh -t )
llgll -t + Zxex ux - fx
§ Il - &
llglls -t + Zxex, ux - fx + Zxex, ux - fx
/( llglly - t |
llglls -t + Xxex, ux - fx
S llglls - (1 —e/2)t
gl t+ Dxex, % + XxeX, UX * Lepr
/( llglly - t |

llglls -t + Xxex, ux - fx

llgll -t

Next, we set L, so that [|qll1 - t + Xxex, uxLepr < 1_15 . Since

PRy
t > (tmin)¥, it suffices to set Lpr = —é!‘il)lzl(_rﬁ‘;“)h) = Q(e - (tmin)).

Hence,

llgll - (1 —e/2)t llqllt |

f
lgllit + Txex, 12555 + Sxex, uxlipr  Nlit+ Zxex, uxtx

2(1—§)2>(1—e).

Finally, for each X € X, we run the DP algorithm for each
group with accuracy parameter é. By Lemma 4.8, the DP algorithm
finds a set {txy = (1 - &)X,fx = (1 — é/X}xcx (and a policy
7 corresponding to these values) where for each X € X, tx €
[Ltpr, 1], fx € [Lgpr, 1] such that VX € X
maX(prrv fx ("))

1—€/2 )
and for each X € X, Mx/[k,tx,fx] = true. Thus, by the bounds
we just showed for the precision of such a policy, 1/precision(r) <
(1 + €)/precision(n*). Thus, gg (1) < (1 +€) - go(n*).

As we need to run the DP algorithm for any of the |X| groups
separately with the specified parameters Lipr, Lfp, and € = O(e/k),

|X |k log®(1/Lipr) log”(1/Lepr) |
L ) =

ty =t>(1-¢€/2)-t(r*) fx < min(1,

by Lemma 4.9, the total runtime is O(
7 2 2
O(\X\k (log4(1/e)+k )) O
€

C MISSING PROOFS OF SECTION 5.2

Similarly to Observation 3.1, we can show the following observation
for the policies that satisfies the Equalized Odds requirement.

OBSERVATION C.1. For any policy & that satisfies the Equalized
Odds for a k-stage screening process with parameters

({r'}iek)s {ax, ux}txex), there exists M and N such that for each
XelX,

ok i i i ok i i N
M= 5y ey + (1=t Dy N =TIty g + (1= 73) 7k
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Note that as computed in Observation 3.2, for policy any satisfy-

ing the Equalized Odds, the interview efficiency of a policy x for a
ligllM
)8 oM TuliN
In the rest of the section and for the simplicity of the exp0s1t10n
we assume there are exactly two groups in the population; X =

{A, B}. The result for the general setting can be derived similarly.

k-stage process with parameters (g, u, {Ti}ie[k

THEOREM C.2. The interview efficiency of any policy satisfying
Equalized Odds for a single- stage screening process with parameters
(q,u, 7) is at most

uA+uB
9dA+9B

max(h )

PrRoOOF. Maximizing the interview efficiency, is equivalent to
minimizing N7 r /M;, »; a minimizer of the inverse ratio is a max-
imizer of the interview efficiency and vice versa. Moreover, note
that by the Minimal Effectiveness Property of the given test (i.e.,

Eq. (1)), Nr,x < My 5.
New _ tao(mar = 7a0) + a0 | 7A0(TAL = Ta0) _ Tao 4
M n tar(mar — wao) + a0 Ta1(mar — wao)  Tal
Nr.z _ Bo(7B1 — 7Bo) + 7Bo _ TBo(7B1 — 7TBo) _ TBo
Mz, x  t1(mB1 — 7Bo) + TRy

781(7B1 — 7Bo) B TB1

T, T
In other words, N, > max(ﬁ, ;ﬁf;’) - M, . Hence,

(qa +qB)Mz. 1

<
- up+up TA0 TBo
(qA+qB)MT,7Z +(“A+uB)NT,7Z 1+ m max(a,r—m

O

REMARK 6. Note that we can generalize the result of Lemma C.2 to
a k-stage screening process with multiple groups X. For any j € [k],

letp := maxyex H]E[k] X8 Any policy that satisfies Equalized Odds

X
requirement at the end of the process (i.e., before the interview stage)

a7 cee this, note that
llglh+Xxex pux

similarly to the proof of Theorem C.2 we can show that for every
groupX € X, Nx > p- Mx.

has interview efficiency at most

THEOREM C.3. Consider a k-stage screening process (q,u,T)
with multiple groups X whose tests are minimally effective. Let
TEOdds TEOpp denote the interview efficiency maximizing policy that
satisfies Equalized Odds and Equal Opportunity at the end of the

process respectively. If maxyex e[k ]% > minyeyx Hle[k] =
1

thenIE(q, u, 7, mg0dd) < IE(q, 4, 7, TEOpp)-
In particular, the gap between the interview efficiency of mgodd
and mgopp can be as large as m — € for any arbitrary e > 0.4

Proor. The proof of the first part directly follows from the inter-
view efficiency of opportunity ratio policy (Theorem 3.4) and the
upper bound for the interview efficiency of Equalized Odds policies
(Theorem C.2)

For the second part, consider a pipeline in which there exists

a X* € X such that for every X € X \ X", Hie[k]% =0

and Hze[k] = (1 — &). Further, for every X € X \ X%,

let gx = %,ux = 17():” and gx+ = %,ux* = p. Then, it

“4Note that the interview efficiency is always at most 1 and the trivial Equalized Odds
policy that bypasses all tests has interview efficiency q.
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is straightforward to check that IE(zEopp)

IE(7godd) = m As we set J, i to sufficiently small

values, IE(Eopp)/IE(mE0pp) = 1/y —€ = 1/llqll — €. o
Next, we show the following structure on a non-trivial optimal
solution (i.e., one maximizing the interview efficiency). Note that

7 =1orx = 0 are the two trivial solutions satisfying the Equalized
Odds for any given test.

OBSERVATION C.4. For any pipeline (1, q, u), in any non-trivial
optimal policy m, min(7 a1, A0, TB1, TBo) = 0. Moreover, there exists
an optimal policy such that max(za1, TAo, TB1, TBo) = 1.

Proor. First, note that by the Minimal Effectiveness Property
of the given test (i.e., Eq. (1)), Nr,z < Mz, x

Suppose that min(zag, 740, TB1, 7B9) = €. This implies that
M,z > Ni,r > € Then, by subtracting € from all 7 values, the
new policy still satisfies the Equalized Odds and it only increases
the interview efficiency. Formally, for € > 0

llglls - Mz, 7 llglls - (M7, 7 —€)
llglls - Mz, z + |lulls - N llglls - (Mz,x —€) + llull1 - (Nz,z — €)
The above inequality holds since
Niw <Mz
= _”unleNr,n > _||u||16Mr,7t
= (||q||lM12',7r —llqllieMz, z + |lulliMr, 2 Nz, ) = llull1€Nz, 2
> (llgli M2, = llgllieMe, x + llulliMz, z Nz, ) — llull1 €Mz,
= Mr, 2 (IqlliMe, z + lulliNr, z) — €(llglliMz, z + lulli Nz, )
> Mz, z(llqlli(Mz, z — €) + |lulli(Nz,  — €))
Mze z—€
=
llglli(Mz, » - €)+ ||”||1(Nr,lr -€)

M‘L’ﬂ
> llqlls (Mg, —
7 lglhiMrr + [ulliNg - " e

In particular, this implies that in any optimal policy,

min(741, A0, 7B1, TBo) = 0.

The second part of the statement follows simply from the fact
that if we multiply all & values by a constant ¢ > 1 so that they
remain feasible (i.e., none of 7 values goes above one), the interview
efficiency of the policy ¢z and the policy 7 are the same. O

Note that though it seems counter-intuitive, it might be the case

a0 = argmax(7ma1, Ao, TB1, TBO)
and/or
A1 = argmin(7A1, A0, TB1, 7TBO)-

D AN FPTAS ALGORITHM FOR SCREENING
PROCESSES WITH SAME POLICY FOR ALL
GROUPS

Here, we devise a slightly different DP algorithm. Instead of running
the DP algorithm for each group separately (as in Section 4.3), we
run a single DP algorithm for all groups simultaneously. Hence, all
policies {7x } xex are the same. In our DP approach, we use the
same discretization technique and only consider powers of (1 — €).

€) + [[ulli(Nz,z —€) >0
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Solving the DP. Consider the first level, i = 1. For any given
parameters {jx,0,/x,1}xex, Where for each group X € X, jx o €
[0’ prr] and jX,l € [0’ Ltpr]’ M[l’ {on,jXI}XeX] = true iff the
following has a feasible solution.

T}l(ox +(1- T)I(O)y < (1 - €)X and,
X+ (1-15)y > (1-efX1 VX eX (11)

Next, we describe the update rule for i > 1. For any X € X,
fprx € [0, {fpe] and tpry € [0, Liprl,

M[i+ 1, {tprx. fpryx }xex]

-y

{ix1,dx0 ) xex €Fi+1

M[i, {tprx — jx1.fprx —jxo}xex]

where ¥4 is the set of {jx; < tpry,jxo < fpry }xex for which
the following system of linear inequalities has a feasible solution
VX eX
T)i;ilx +(1- r?ll)y > (1-eyx, T;(_le +(1- r)%l)y < (1-e)xo
(12)

LemMA D.1. For any i € [k], if there exists an Equal Opportu-
nity policy r treating all groups similarly, with true positive rate
tx,i = Lpr/(1— €)1, false positive rate fx,i for X € X, then there
exist {jx1,Jx0}xex such that M[i, {jx1,jx0}xex] = true, where
foreach X € X, (1 —e)x1 > tx,i - (1 - €)1l and (1 — eyx0 <
min{1, max{prr, fx,i}/(1 - e)i_l}.

In other words, if the policy n exists then the DP approach finds
a policy with true positive rate at least (1 — €)/X1 and false positive
rate at most (1 — €)/X0 for each X € X.

Proor. The proof is by induction. For the base case (i = 1), let
tx,1 and fx 1 denote the true positive rate and the false positive
rate of 7 by the end of level 1 for each group X € X. The existence
of 7 guarantees that the system of inequalities Eq. (11) with (jxo =
Llog;_¢ fx,11,Jx1 = [log;_ tx,1] < Ctpr) has a feasible solution.
More precisely, by setting (xx = 7x1,yx = 7x0), VX € X,

ThoXx + (1= ko yx = fx1 < (1 - e)lB-e Xl = (1 — exe
T1xx (1= T ux = txn 2 (1-@)lBe i = (1 - e

Next, we consider i > 1 and we assume that the claim holds for all
values i’ < i. FQr ea}chX € X, 1et MX’i = Ty Ty + (L= 75 )7
and Nx,; = 73,75 + (1 = 73,)7}, Note that for each X € X,
tx,i = tx,i-1-Mx,iand fx ; = fx i-1 - Nx,i.

By the induction hypothesis and considering the first i—1 levels in
the pipeline, since tx ;1 > tx,; > Lipr/(1 —e)i 1> Lepr/(1— €)i=2
and fx ;-1 > fx,;, there exist ji,, € [0, Ltpr] and ji, € [0, Lgp]
such thgt M[i-1, {f;(l_:jggo}XeX] = true and (1 — e}/x1 > tx,%-,l .
(1-e)"2and (1 - efxo0 < min{1, max{Lgy, fx,i-1}/(1 - €)%}
More precisely, the algorithm finds a policy 7 with true positive
rate at least (1 — €)/x1 and false positive rate at most (1 — €)/xo for
each X € X.

Next, for each X € X,. by setting (7'51(1 = 77.';(1, ﬁ}l(o = ﬂ)la)) gnd
(x1 = argmin;{(1 - e < tx;(D)}, jxo = argmax;{(1 - &)/ >
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fx,i(7)}),

(1-e)X > (1-e) tx,i(7)
=(1-¢€)tx,i-1(%) Mx,;
> (1-€)-(1-efx- My
> tx o1 (1- ey My ;

=tx,;-(1-€)'L

> by definition of jx1

> tx,i-1(7) > (1- ey

> induction hypothesis

Similarly,
. fx,i(7
(1 - €eyY*° < min{1, X )}
—€
fx i—1(7
=min{1,Nx ; - Xll—l()} > by definition of jxg
—€
. v Nx,i _ i
< min{1, (1 — e)/xo - N } > fxi-1(7) < (1 - epxo
—€
max{L¢y,fx i—1} Nx ;
< min{1, pr X171 X } > induction hyp.
(1-¢)i-2 1-¢
. max{prr, fX,i}
< min{l, ———————
(1-¢)i-1
which completes the proof. O

LemMmA D.2. For an accuracy parameter € and lowerbounds on the
false positive rate, prr, and the true positive rate, Lipr, the (single

2|1X| 2|X|
policy) DP algorithm runs in time O(klog (1/L2,;|)X1|og (I/prr)) and

finds a policy  with true positive rate at least (1 — € k-1, tx and
policy p
alse positive rate at most min{1, max{L¢,,fx}/(1—¢€ k=13 for each
p p
X e X.

Proor. The size of table is O(k¢, XX |) and updating each entry

tpr “fpr
. [ X1 X|
in the table takes O(t’tpr ffpr

all entries in the DP table is

k1og? X1 (1/Lipr) 1og?! X (1 /Lgyr)
e4lX|

Now we apply the DP approach and by Lemma D.1, the solution

returned by the algorithm has the true positive rate and the false
positive rate satisfying the guarantee of the statement. O

). Hence, the total runtime to compute

ok X1 21X

tpr fpr ) = O(

Implications of DP. Here, similarly to Section 4.3, we present FP-
TAS algorithms for the single policy setting with various pipeline ef-
ficiency objective using the modified DP approach described above
when the number of different protected groups in the population is
a fixed constant; |X| = O(1).

THEOREM D.3. Consider a k-stage screening process with param-
eters (u,q,7,X) where |X| = O(1). For any policy n, let f,(7) =
recall(rr) + « - precision(rr) where & > 0. Given an accuracy parame-

4] 70 521X
ter €, there exists an FPTAS that runs in time O(%) and

finds an Equal Opportunity policy n treating all groups similarly
such that fo () > (1 —€) fo (n*) where m* maximizes f, over Equal
Opportunity policies treating all groups similarly.
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THEOREM D.4. Consider a k-stage screening process with param-
eters (u,q,7,X) where |X| = O(1). For any policy n, let go(7) =
1/recall(xr) + a/precision(rr) where & > 0. Given an accuracy pa-

41X 10 520X
rameter €, there exists an FPTAS that runs in time O(%)

and finds an Equal Opportunity policy r treating all groups similarly
such that go (1) < (1 + €)gq(n*) where * minimizes g, over Equal
Opportunity policies treating all groups similarly.

The proof of above theorems are identical to Theorem 4.10 and
Theorem 4.11.

E ADDITIONAL DETAILS IN LINEAR
COMBINATION COUNTER EXAMPLES

In this section, we show that one cannot “locally score” tests when
determining the optimum policy (the policy that maximizes a linear
combination of precision and recall). Specifically, we give a setting
with three levels of tests t1, tp, t3 such that if only the first two levels
t; and ty are available, then the optimal solution is to use t; and
bypass to, but if #3 is also available then the optimal solution is to
bypass t; and use t; and t3. Therefore, the question of how to best
use two tests may depend on what tests are available at other levels.
Note that in this example there is only one group and we do not
have fairness constraints.

First, we show the following useful property of optimal policies
for a pipeline where the first level has test statistics (1/2,0) and all
other levels have test statistics (1 — §,1/2).

LEmMA E.1. In any k-stage pipeline where the first stage has test
statistics (1/2,0) and the rest of the stages have tests with statistics
(1-6,1/2), the optimal policy is of the form (1, n&), - (1, n(]f).

Proor. By Lemma 4.2, if the False Positive rate is non-zero, in
the optimal policy, for every i € [k], (1 — ﬂli)ﬂé = 0. Next, we show
that in this setting with only one group, for every i € [k], nli =1
Suppose that there exists a level i € [k] such that J'[é = 0. Then,
if n'li < 1, by increasing 7T1i to 1, the True Positive rate and False
Positive rate increase by the same factor. Therefore, the precision
remains unchanged and the recall increases; hence, the pipeline
efficiency strictly increases.
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Next, we consider the case where the optimal policy has precision
one (i.e., its False Positive is zero). In any such policy, 7{& = 0. Note
that once the precision is 1, the optimal policy maximizes recall.
Hence, the optimal policy is to fully use #; (71'1l =1, 71’3 = 0) and
bypass the rest of tests (for every 1 < i < k, nf = né =1). O

TueoreM E.2. When the objective is to maximize a linear com-
bination of precision and recall in a multi-stage screening process,
there exist test parameters T and base rate p such that the maximal
score policy switches when more tests become available. Specifically,
when only tests t; and ty are available, the optimal policy is to use t1
and bypass t2 ((1,0), (1, 1)), but if test t3 is also available, the optimal
policy is to bypass t1 and use t2 and t3 ((1, 1), (1,0),(1,0)).

Proor. Consider base rate p = P(x = 1) = 1/2 and test t; =
(t1,70) = (1/2,0) and test t; = t3 = (1 —5,1/2). Let § = ﬁ. The
linear objective function is f(ir) = recall(sr) + 2 - precision(s). Next,

we consider two cases: (1) k = 2 and (2) k = 3.

Case 1: Two test (k = 2). By Lemma E.1, the optimal policy
is of form ((1, 7[& ), (1, 72)). By numerical analysis®, the local opti-
mum policies (w.r.t. f) are ((1,0),(1,1)) and ((1, 1), (1,0)). Next, we
compute the score of these two policies: f((1,0),(1,1)) = 2.5 and
f((1,1),(1,0)) < 2.32. Hence, in this case, the optimal policy is to
fully use #; and bypass ta, i.e., ((1,0),(1,1)).

Case 2: Three tests (k = 3). Similarly to the previous case, the
optimal policy for the given pipeline efficiency objective is of form
((1, 71'3 ), (1, ﬂg), 1, 71'3)). By numerical analysis, the local optimum
policies (w.r.t. f) are ((1,0),(1,1),(1,1)) and ((1,1),(1,0),(1,0)).
Next, we compute the score of these two policies:

f((1,0),(1,1),(1,1)) = 2.5 and ((1,1),(1,0),(1,0)) > 2.57.
This time, the optimal policy is to bypass t; and fully use t3, t3, i.e.

((1,1),(1,0),(1,0)).

Therefore, while in the first setting (only t; and tz are available)
the optimal policy is to fully use t; and bypass t2, once t3 becomes
available, the optimal policy changes to bypass ¢; and fully use t;
and t3. ]

SUsing WolframAlpha.
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