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ABSTRACT

Consider an actor making selection decisions (e.g., hiring) using a

series of classifiers, which we term a sequential screening process.
The early stages (e.g. resume screen, coding screen, phone inter-

view) filter out some of the applicants, and in the final stage an

expensive but accurate test (e.g. a full interview) is applied to those

individuals that make it to the final stage. Since the final stage is

expensive, if there are multiple groups with different fractions of

positives in them at the penultimate stage (even if a slight gap), then

the firm may naturally only choose to apply the final (interview)

stage solely to the highest precision group which would be clearly

unfair to the other groups. Even if the firm is required to interview

all those who pass to the final round, the tests themselves could

have the property that qualified individuals from some groups pass

more easily than qualified individuals from others.

Accordingly, we consider requiring Equality of Opportunity

(qualified members of each group have the same chance of reaching

the final stage and being interviewed). We then examine the goal of

maximizing quantities of interest to the decision maker subject to

this constraint, via modification of the probabilities of promotion

through the screening process at each stage based on performance

at the previous stage.

We exhibit algorithms for satisfying Equal Opportunity over the

selection process and maximizing precision (the fraction of inter-

views that yield qualified candidates) as well as linear combinations

of precision and recall (recall determines the number of applicants

needed per hire) at the end of the final stage. We also present exam-

ples showing that the solution space is non-convex, which motivate

our combinatorial exact and (FPTAS) approximation algorithms for

maximizing the linear combination of precision and recall. Finally,

we discuss the ‘price of’ adding additional restrictions, such as

not allowing the decision-maker to use group membership in its

decision process.
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1 INTRODUCTION

Consider what we will term sequential screening processes. In this

setting a decision maker (e.g. a company seeking to hire applicants)

makes a decision, like hiring, by using a sequence of intermediate

decision-making steps that each filter out some candidates, in order

to ideally produce a pool of mostly qualified candidates at the final

step.

We assume some people are truly qualified for the position being

filled, and we call them positive examples, and others are truly

unqualified and we call them negative examples. And then the

various intermediate steps have different probabilities of quali-

fied/unqualified applicants passing each step, which could be dif-

ferent for different demographic groups. We also assume that the

final (interview) stage of the process is particularly expensive for

the decision-maker, and reveals the true label of the applicant.

To illustrate a concern that could arise in this setting, suppose

there are two demographic groups A and B, and just one test t in
the screening process prior to the final stage. Suppose that test t
and the underlying base rates of the two groups have the property

that Pr[y = 1|t(x) = 1,x ∈ A] ≥ Pr[y = 1|t(x) = 1,x ∈ B] + ϵ
for some ϵ > 0. That is, the pool of group-A applicants who pass

the test has a higher fraction of positive examples than the pool of

group-B applicants who pass the test. Since the cost of final inter-

views is assumed to be high, in this case a rational decision maker

would be sensitive to even a small ϵ gap, in order to minimize the

expected number of interviews made per hire. In particular, small

gaps between these groups in the population would be amplified in

that the rational decision-maker would then choose not to promote

any individuals from group B to the final interview round, which

clearly violates common sense fairness norms. There is empirical

evidence that similar phenomenon occurs in real world settings,

when employers have limited information [3].

A second concern is that even if the decision-maker interviews

all individuals who make it to the final round (and more generally,

at each level promotes all individuals who pass the test to the next

round), the tests themselves could have the property that qualified

individuals from some groups pass them more easily than qualified

individuals from others. So, in the end, a qualified individual from

one group might have a much lower chance of making it to the

final interview round than a qualified individual from another.

Because of fairness violations of this kind, we consider a regu-

lator that requires the screening process to satisfy Equal Opportu-

nity [9], that is, qualified individuals of each group have the same
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chance of receiving an interview. This requirement motivates the

problem of how to satisfy such a condition in the most efficient

way, minimizing the number of interviews needed per successful

hire as well as the number of overall applicants needed to enter the

screening process per hire. This is the question we address in our

paper.

We assume that the tests themselves and their order in the pro-

cess are fixed beforehand and the action space of the firm (of our

algorithm) is solely modifying how individuals move through the

pipeline in response to their test outcomes (the promotion policy).

More specifically, for each test, we need to decide the probability

that an individual from a given group who passes or fails the test

should continue on to the next stage. One can satisfy the fairness

requirement with simple promotion policies (such as promoting all

individuals regardless of whether they pass or fail each test), but

the tension is how to do so in a way that results in a useful process.

This captures the scenario of performing modifications to pre-

existing screening systems (the test themselves are fixed) in order

to respond to fairness issues. We assume we are given, for each

test, its statistical properties for each group (the probability that a

random qualified or unqualified individual will pass the test).
1

1.1 Our Results

We study how to implement the fairness requirement of Equal Op-

portunity in this sequential screening setting and what method of

implementing it would achieve a high efficiency. One core result in

our paper is that there is a solution that maximizes precision (mini-

mizes the number of interviews needed per successful hire) subject

to maintaining Equal Opportunity, that is given by promoting indi-

viduals from each group according to what we call the opportunity
ratio. Moreover, it is possible to maximize overall precision subject

to satisfying Equal Opportunity by a policy in which each level in

the process satisfies Equal Opportunity individually (this property

will not hold for the more general objective below).

Then we consider the more general case of satisfying Equal

Opportunity while maximizing a linear combination of precision

and recall (1/precision is the expected number of interviews needed

per successful hire, and 1/recall is proportional to the number of

overall applicants needed to enter the screening process per hire).

This problem is challenging because, as we show, the space of Equal-

Opportunity solutions is non-convex. Moreover, the optimal way

to use one test to optimize a linear combination of precision and

recall may depend on all other available tests.

Nonetheless, we are able to achieve an FPTAS for maximizing

any linear combination of precision and recall, as well as an exact al-

gorithm with running time that is ‘only’ exponential in the number

of levels k and the number of the groups. This latter result relies on

certain structural properties of optimal solutions that we develop

in our analysis. Finally, we discuss extensions to our model such as

requiring the screening process to be group-blind, and considering

the requirement of satisfying Equalized Odds. Unfortunately, the

1
If we were to design a socio-technical system from first principles using the insights

of machine learning research, we might seek to design tests that are ideally more

robust to group difference and still predictive, however such a re-design process could

be costly and slow. In a world of limited resources, re-purposing pre-existing tests

to be more fairness aware in a timely manner and still maintaining effectiveness is

necessary.

optimal fair group-blind policy may be much worse than the op-

timal fair group-aware policy. For example, in some cases it may

require a policy that completely bypasses all the tests.

1.2 Related Work

Fairness in pipelines was initiated by Bower et al. [4] and follow up

work by Dwork and Ilvento [7], Dwork et al. [8]. This paper differs

from [8] in several keys ways. We both use the word ‘pipelines’ but

our work is more focused on the specific case of hiring pipelines in

which we are looking at the fairness of the final outcome for a given

individual, drawn from the population, rather than considering the

individual fairness [6] of the cohort context to which one is assigned.

We do not consider cohort based scoring rules.

The structure of our model is very close to that of Kannan et al.

[11], but the objective in that work is jointly designing college

admission and grading schemes that satisfy Equal Opportunity

over the admissions/college process and in particular incentivize
a rational employer to use a group blind hiring policy. In contrast,

our work considers maximizing precision or a linear combination

of recall and precision while satisfying Equal Opportunity.

Another related work by Arunachaleswaran et al. [2] is the idea

of pipeline interventions. In that paper there is a wide pipeline with

a finite number of states at time t and the goal of the algorithm

designer is to modify the transition probabilities from state to state

in order to maximize a reward at the final step. This corresponds to

efficiently allocating a government subsidy to aid dis-advantaged

individuals, from the perspective of maximizing social welfare.

Intriguingly, the paper by [12] argues that Equal Opportunity

is misaligned with fairness in screening allocation problems with

a finite number of available items (think hiring a small number of

engineers at a start-up vs accepting applicants for a credit card). In

our work, we do not focus on modeling a finite number of available

positions (e.g., we are in the case with a larger number of available

items).

Most closely related to our work is Cohen et al. [5], in which

there is noisy Bernoulli feedback in a hiring setting with sequential

tests. In contrast to our scenario, they assume both underlying

candidate skill levels and test results are sampled independently

from Bernoulli distributions. Furthermore, they allow hiring an

applicant before the end of the pipeline (e.g., if you pass the first

three of five tests and those tests have high signal, you may skip

the next two tests). In our model, we assume each stage of the

process is memoryless (the probability of making it to stage 3 from

stage 2 depends only on the result of the stage-2 test and group

membership, and not the result of the stage-1 test) and we allow

tests to be asymmetric (e.g., it could be that positive examples from

a given group pass with probability 0.75 and negative examples

pass with probability 0.5). In our motivation, we model the initial

tests as cheap while the ultimate interview is expensive and ac-

curate, while in Cohen et al. [5], each test is equally accurate and

costly and additionally they want to minimize the expected number

of tests to hire a candidate. Consistent with our perspective, the

authors exhibit an impossibility result arguing that satisfying Equal

Opportunity requires group dependent thresholds if the tests have

different noise rates.
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Additionally, there are connections between our work and clas-

sical economic discussions of statistical discrimination [1, 13] in

that both perspectives model disparities in outcomes that derive

from strategic actors making decisions to allocate goods differ-

ently based on perceived differences in predicted outcomes (termed

statistical discrimination). Our models do not capture taste based

discrimination.

1.3 Roadmap

In Section 2 we formally describe our model and present some

examples that show key phenomena. In Section 3 we prove and

discuss our first main theorem, about how to maximize precision

(at the end of the screening process) subject to Equal Opportunity.

Then we consider the more general case of satisfying Equal

Opportunity while maximizing a linear combination of precision

and recall. This problem is challenging because, as we show in

Section 2.2, the space of Equal-Opportunity solutions is non-convex.

Moreover, how to effectively utilize a test may depend on all other

available tests (Section 4.1.2). On the other hand, as we show in

Section 4.2, the solution space does satisfy certain useful structural

properties. We then use these structural results to to achieve an

exact optimal algorithm, and in Section 4.3 to achieve an FPTAS for

maximizing linear combination of precision and recall, as well as

other functions of precision and recall.

Finally, in Section 5 we discuss extensions to our model such as

requiring the screening process to be group-blind, and considering

the requirement of satisfying Equalized Odds.

2 PRELIMINARIES

Now we formally define our model and introduce some informative

examples. As mentioned above, the scenario to keep in mind is a

stylized hiring process, consisting of a sequence of tests or inter-

views. Each candidate takes a test, and depending on their outcome

on that test at that stage, is possibly promoted to the next stage

of the screening process. We focus on modifying this promotion

policy in response to satisfying the fairness constraints and achiev-

ing a high objective value or a low cost value. This is a constrained

optimization problem, with structure.

2.1 Definitions

We use X to denote the set of demographic groups, and X ∈ X to

denote a specific group. We assume group membership is known to

the algorithm, groups are disjoint, and an individual from group X
is promoted based on both their test performance and a promotion

policy (defined below) for that corresponding group. We assume

individuals are either truly qualified or truly unqualified, and use

label y = 1 to denote a truly-qualified individual and label y = 0

to denote a truly-unqualified individual. For each group X , let qX
denote the base rate for that group, namely Pr[y = 1|x ∈ X ].

Definition 2.1 (Test Statistics). For each test t and each group
X ∈ X, we define τX 1 := Pr[t(x ,y) = 1|y = 1,x ∈ X ] to be the
probability a qualified candidate from group X passes the test, and
τX 0 := Pr[t(x ,y) = 1|y = 0,x ∈ X ] to be the probability an unquali-
fied candidate from group X passes the test. We assume all tests are
minimally effective for all groups in that positive examples are more

likely to pass than negative examples. More precisely,

τX 1 > τX 0 ≥ 0 ∀X ∈ X (Minimal Effectiveness Property) (1)

Note that we assume that the probability of an individual passing a
given test depends only on their true qualification y and their group
membership X . We also assume test statistics are given and known to
our algorithm.

We use τ
j
X 1

, τ
j
X 0

to denote the test statistics at stage j of the

interview process. For convenience, we define T
j
X = (τ

j
X 1
,τ

j
X 0

) as

useful shorthand to capture the test statistics at stage j for group X .

Note that the same test may have different effectiveness per group.

Definition 2.2 (Post-Processing Modification). We would
like to modify the outcomes of the tests in the screening process so
that some fairness goal (to be specified later) is achieved at the end of
the screening (i.e., in the final interview stage). Further, we assume
as part of the problem setting that the only ‘allowed’ correction is to
modify how candidates are promoted to the next stage. The promotion
probability of each candidate only depends on their group membership
and performance at the current test (whether they passed or failed the
test). Formally, for each group X ∈ X, let π jX 1

denote the probability
a candidate x ∈ X who passes the test at stage j is promoted to stage
j + 1, and π jX 0

the probability that a candidate who fails the test at
stage j is promoted to stage j + 1.2 We describe a policy for a given
stage j as {(π jX 1

,π
j
X 0

)}X ∈X .

For instance, a naive fairness respecting solution is to simply

ignore the tests and promote all examples to the end of the pipeline,

i.e., {(π
j
X 1
= 1,π

j
X 0
= 1)}X ∈X, j ∈[k] where k is the number of

tests in this screening process. However, this would result in a

useless process from the perspective of the decision maker. The

most straightforward use of tests is to promote all who pass and

none who fail, i.e., {(π
j
X 1
= 1,π

j
X 0
= 0)}X ∈X, j ∈[k ]. However, this

might not satisfy required fairness properties. We now formally

describe the fairness properties we consider.

Definition 2.3 (Equal Opportunity and Equalized

Odds [9]). Our paper primarily discusses two fairness notions,
specifically Equal Opportunity and Equalized Odds. The first notion,
Equal Opportunity requires that the classifier have equal True
Positive Rates for each group in the population. Equivalently, for
a classifier h and true labels y, Pr[h(x) = 1|y(x) = 1,x ∈ A] =
Pr[h(x) = 1|y(x) = 1,x ∈ B]. Equalized Odds is similar but it
also requires that the False Positive Rates are equal; formally,
Pr[h(x) = 1|y(x) = 0,x ∈ A] = Pr[h(x) = 1|y(x) = 0,x ∈ B].

In our problem, Equal Opportunity is motivated by a desire that

qualified individuals should have the same shot at an interview

regardless of their group membership. In our problem, there is

additionally a critical distinction between the fairness criteria (e.g.

Equal Opportunity or Equalized Odds) being satisfied at the end

pipeline and alternatively that requiring these criteria hold for every

transition between stages as individuals move through the pipeline,

a stronger notion.

Now that we have described the terms that characterize a prob-

lem instance and the action space of the algorithm, we describe

2
Note, in general randomized promotion policies will be necessary to satisfy the

fairness criteria.

1180



FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Avrim Blum, Kevin Stangl, and Ali Vakilian

the objective value that captures the usefulness of a screening pro-

cess. We term these multiple different objective functions ‘pipeline

efficiency’.

Definition 2.4 (Pipeline Efficiency). In our work we focus on
two core notions of efficacy from the perspective of the firm deploying
the screening process. Interview efficiency (equivalently, precision)
is the fraction of candidates in the last round who are qualified, i.e.,
the fraction of interviews that lead to hires (or at least to job offers).
Throughput efficiency (equivalently, recall) is fraction of qualified
candidates whomake it to the final round, and determines the expected
number of applicants needed to enter the pipeline to hire one candidate.
In this paper, we study cost functions that are functions of these two
quantities only.

We model the last available test as highly discriminative but

extremely expensive per each test utilization and this is what moti-

vates the interview efficiency. In particular, if we assume that the

k stages prior to the interview round have zero or negligible cost

per test, and there are many available candidates, then we presume

that the goal of the firm is to maximize the interview efficiency

(precision, at the final round).

2.2 Formal Problem Statement and Illustrative

Examples

Now, we combine the above into a formal statement. Given a

screening process/pipeline P with k stages, this pipeline consists

of a collection of disjoint groups X and tests statistics TX =

(T 1

X ,T
2

X , . . .T
k
X ) for every group X ∈ X.

The goal of the algorithm designer is to exhibit a method to

find promotion policies {(π
j
X 1
,π

j
X 0

)}X ∈X, j ∈[k] denoted as π such

that the overall policy satisfies the relevant fairness notion (either

at the end of the screening process or at the end of each stage)

and maximizes the given pipeline efficiency. Now we move into

illustrative examples.

An illustrative one-stage example: Consider a one-stage pipeline
with test parameters

((τA1,τA0), (τB1,τB0)) = ((1, 0.5), (0.8, 0.5)).

Observe that the policy of promoting individuals if and only

if they pass the test does not satisfy Equal Opportunity. In-

stead, two policies that satisfy Equal Opportunity are P =

((πA1,πA0), (πB1,πB0)) = ((0.8, 0), (1, 0)) and policy Q =

((1, 0), (1, 1)). In words, the policy P would promote all individ-

uals who passed the test from group B, but would only promote

80% of those from groupA. This down-weighting of groupAwould

suffice to satisfy Equal Opportunity. In contrast, policy Q promotes

all individuals from group A who pass the test and promotes every-

one from group B, regardless of their test score. In this example, P
is the optimal Equal Opportunity policy with respect to precision.

The set of policies satisfying Equal Opportunity is not convex:
Interestingly, for a two stage pipeline with two groups, the set of

policies satisfying Equal Opportunity is not convex. Consider a

pipeline with first level T 1

A = (3/4, 0) and T 1

B = (1/2, 1/2) and with

second level T 2

A = (1/2, 1/2). and T 2

B = (3/4, 0). Consider policy

P with (P1A = (1, 0), P1B = (1, 1)) and (P2A = (1, 1), P2B = (1, 0)).

This policy has recall 3/4 for each group and therefore satisfies

Equal Opportunity. Consider policyQ with parameters (Q1

A = (1, 0),

Q1

B = (1, 1/2)) and (Q2

A = (1, 1), Q2

B = (1, 1)). This policy also has

the recall of 3/4 for each group and therefore also satisfies Equal

Opportunity. However, the average of these two policies denoted as

π is (π 1

A = (1, 0), π 1

B = (1, 3/4)), while (π 2

A = (1, 1) , π 2

B = (1, 1/2)).

The recall for group A is still
3

4
, while the recall for group B is

( 1
2
+ 1

2
· 3
4
)( 3
4
+ 1

4
· 1
2
) = 49

64
, 3

4
.

Thus this convex combination of policies does not satisfy Equal

Opportunity and therefore the set of Equal Opportunity promotion

policies is not convex.

Requiring Equalized Odds at each level can significantly harm
performance: The above example also shows that requiring Equal-

ized Odds at each level can significantly harm performance. Notice

that policy P above satisfies Equalized Odds overall and has perfect

precision and fairly high recall. However, the only way to satisfy

Equalized Odds at each level is to completely bypass both tests,

which would be much worse for precision.

Interestingly, as we show below, requiring Equal Opportunity at

each level does not harm precision relative to requiring it for the

pipeline as a whole (though it can hurt recall).

3 MAXIMIZING PRECISION SUBJECT TO

EQUAL OPPORTUNITY

In this section, we exhibit a policy π that maximizes precision at the

end of the screening process while satisfying Equal Opportunity

over the entire process. To do this, we prove that the optimal method

for this objective is given by promoting individuals from each group

according to the Opportunity Ratio (which we will define shortly).

Definition 3.1. For a test τ and associated promotion policy
{(πX 1,πX 0)}X ∈X , defineMX ,τ ,π := (τX 1πX 1 + (1 − τX 1)πX 0) and
NX ,τ ,π := (τX 0πX 1 + (1− τX 0)πX 0). Note thatMX ,τ ,π and NX ,τ ,π
are the probabilities that a positive and respectively a negative ex-
ample from group X is promoted to the next level, and so will be
important quantities for our analysis.

Observation 3.1. For any single-stage policy {(πX 1,πX 0)}X ∈X

satisfying Equal Opportunity for a test {(τX 1,τX 0)}X ∈X , there exists
M such thatMX ,τ ,π = M for every X ∈ X.

Furthermore, for a k-stage screening process {τ i }i ∈[k ], a policy
{(πX 0,πX 1)}X ∈X is Equal Opportunity if there exists M such that
Πk
i=1MX ,τ i ,π i = M for every group X ∈ X.

Observation 3.2. Recall that qX denotes the base rate for group
X , and let uX = 1 − qX . For a single-stage pipeline with test τ and
promotion policy π , the interview efficiency (i.e., precision) is equal to

IE(q,u,τ ,π ) :=

∑
X ∈X qXMX ,τ ,π∑

X ∈X qXMX ,τ ,π + uXNX ,τ ,π
. (2)

Similarly, when we consider the extension to a k-stage pipeline, the
interview efficiency is equal to

IE(q,u,τ ,π ) :=

∑
X ∈X qX

∏k
i=1MX ,τ i ,π i∑

X ∈X qX
∏k

i=1MX ,τ i ,π i + uX
∏k

i=1 NX ,τ i ,π i
.

(3)
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Now, we formally define the policy given by the opportunity

ratio as follows.

Definition 3.2 (Opportunity Ratio Policy). Consider a
screening process with k stages.

For each X ∈ X, let ρX := Πj ∈[k ](τ
j
X ∗

1
/τ

j
X 1

), where X ∗ =

argminX ∈XΠj ∈[k]τ
j
X 1

. The Opportunity Ratio policy, at the first
stage for each X ∈ X, promotes ρX fraction of those who pass the
test and none of those who fail the test. For the remaining stages
(i = 2, 3, ...,k), the Opportunity Ratio policy fully trusts the result of
the tests; a candidate is promoted to the next stage iff they pass the test
at the current stage. Formally, for every X ∈ X,π 1

X 1
= ρX ,π

1

X 0
= 0

and π iX 1
= 1,π iX 0

= 0,∀i ≥ 2.

In the rest of this section, we study the task of maximizing inter-

view efficiency under different settings and fairness requirements.

3.1 Maximizing Interview Efficiency subject to

Equal Opportunity at the Final Stage

As a warm-up, we start with the simplest setting where the screen-

ing process has only one test before the interview stage.

Theorem 3.3 (Opportunity Ratio Policy Maximizes Preci-

sion for Single-Stage Process). Let t = ((τA1,τA0), (τB1,τB0)) be
a test satisfying the Minimal Effectiveness Property. The maximum
precision policy satisfying Equal Opportunity is the opportunity ratio
policy. Moreover, for any group X ∈ X, it is always sub-optimal to
promote any candidates who failed the test (i.e., in any optimal policy,
πX 0 = 0,∀X ∈ X).

Proof. First, for any policy π , we upper-bound the interview

efficiency (i.e., precision) for a screening process with parameters

q,u,τ . To bound the interview efficiency, for eachX ∈ X, we lower-

bound the False Positive Rate NX ,τ ,π in terms of the True Positive

RateMX ,τ ,π .

NX ,τ ,π = τX 0πX 1 + (1 − τX 0)πX 0

= τX 0(πX 1 − πX 0) + πX 0

≥
τX 0

τX 1

(
τX 1(πX 1 − πX 0) + πX 0

)
▷ by Eq. (1)

=
τX 0

τX 1

·MX ,τ ,π (4)

By Equal Opportunity of π and employing Eq. (4) in the formula

for the interview efficiency, Eq. (2),

IE(q,u,τ ,π ) =

∑
X ∈X qXMX ,τ ,π∑

X ∈X qXMX ,τ ,π + uXNX ,τ ,π

≤

∑
X ∈X qXMX ,τ ,π∑

X ∈X(qX + uX ·
τX 0

τX 1

)MX ,τ ,π
▷ by Eq. (4)

=

∑
X ∈X qX∑

X ∈X qX + uX ·
τX 0

τX 1

▷ ∀X ∈ X,MX ,τ ,π = M

(5)

Note that the inequalities are tight when πX 0 = 0 for all X ∈ X.

Next, we show that the opportunity ratio policy satisfies Equal

Opportunity and achieves the bound in Eq. (5). In the opportunity

ratio policy π∗
, only a (

τX ∗
1

τX 1

)-fraction of candidates in group X

who pass the test t (picked uniformly at random) are promoted

to the next stage. In other words, for any group X ∈ X, we set

π∗
X 1
=

τX ∗
1

τX 1

,π∗
X 0
= 0. Then,

IE(q,u,τ ,π∗) =

∑
X ∈X qXMX ,τ ,π ∗∑

X ∈X qXMX ,τ ,π ∗ + uXNX ,τ ,π ∗

=

∑
X ∈X qX τX 1(

τX ∗
1

τX 1

)∑
X ∈X qX τX 1(

τX ∗
1

τX 1

) + uX τX 0(
τX ∗

1

τX 1

)

=

∑
X ∈X qX∑

X ∈X(qX + uX ·
τX 0

τX 1

)

Hence, π∗
is an equal opportunity policy with the maximum

interview efficiency for any screening process with parameters

q,u,τ ,π . □

Remark 1. Note that any policy π where for each X ∈ X,
πX 1 = η · π∗

X 1
,πX 0 = 0 for a constant η < 1 also satisfies the

Equal Opportunity and maximizes the interview efficiency objective
(i.e., precision). However, π∗ has a strictly higher recall.

Next, we state our result for the general setting in which there

are multiple stages and multiple groups in the screening process.

The proof of the theorem is similar to the single test version and is

deferred to Appendix A.

Theorem 3.4 (Multi-Stage Screening Process). Consider a k-
stage screening process whose all tests are minimally effective. The
maximum interview efficiency policy satisfying Equal Opportunity
is the Opportunity Ratio policy and has interview efficiency equal to

∥q ∥1
∥q ∥1+

∑
X ∈X uXΠki=1(τ

i
X 0

/τ iX 1
)
.

3.2 Maximizing Interview Efficiency Subject to

Equal Opportunity at the End of Each Stage

Here, we consider the setting in which the goal is find a policy that

maximizes interview efficiency and satisfy Equal Opportunity at

the end of each stage—not only at the interview stage. Following
Theorem 3.4, the maximum interview efficiency in this setting is

at most ∥q∥1/(∥q∥1 +
∑
X ∈X uXΠk

i=1
τ iX 1

τ iX 0

). Next, we show that the

following slightly modified opportunity ratio policy π that satisfies

Equal Opportunity at the end of each stage maximizes the interview

efficiency. The policy π applies the opportunity ratio at each stage

of the pipeline.

π iX 0
= 0,π iX 1

=

τ iX ∗
i 1

τ iX 1

∀i ∈ [k],X ∈ X, where X ∗
i := argminX ∈Xτ

i
X 1

Again, it is straightforward to verify that π satisfies the Equality of

Opportunity. Moreover,

IE(q,u,τ ,π ) =

∑
X ∈X qXMX ,τ ,π∑

X ∈X qXMX ,τ ,π + uXNX ,τ ,π

=

∑
X ∈X qXΠi ∈[k ]τ

i
X ∗
i 1∑

X ∈X qXΠi ∈[k ]τ
i
X ∗
i 1
+
∑
X ∈X uX

τ i
X ∗
i 1
τ iX 0

τ iX 1

=
∥q∥1

∥q∥1 +
∑
X ∈X uXΠk

i=1
τ iX 0

τ iX 1
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The only difference compared to the policy of Theorem 3.4 is that

in the former policy the recall can be higher.

Remark 2. Adding the condition to satisfy the Equality of Oppor-
tunity at the end of each stage does not harm interview efficiency.
However, this condition may decrease the recall of the optimal policy.

4 PIPELINE EFFICIENCY: MAXIMIZING

LINEAR COMBINATIONS OF PRECISION

AND RECALL

Now we shift our focus to exhibiting a promotion policy that

satisfies Equal Opportunity and maximizes a linear combination

of precision and recall given by the positive weight α ∈ R≥0;
fα (π ) := (1 − α) · recall(π ) + α · precision(π ). As in Definition 2.4,

higher precision corresponds to higher interview efficiency, and

higher recall corresponds to higher throughput efficiency.

We start with a simple 2-approximation algorithm for maximiz-

ing any given linear of precision and recall.

Theorem 4.1 (ApproximationAlgorithm for Linear Combi-

nation of Precision and Recall). There exists a polynomial time
2-approximation algorithm for maximizing any linear combination
of precision and recall.

Proof. Note that the policy that bypasses all tests is an Equal

Opportunity policy and maximizes recall—it achieves recall equal to

one. Moreover, by Theorem 3.4, the Opportunity Ratio is an Equal

Opportunity policy maximizing precision. Hence, the better of the

“bypassing all tests” policy and the Opportunity Ratio policy is a

2-approximation of any given linear combination of precision and

recall. □

In order to obtain better performance for maximizing linear com-

binations of precision and recall, we develop structural properties

of optimal solutions, and then use them to get an exact algorithm

with running time that is exponential only in k and the number

of groups. Additionally, by a dynamic programming approach we

exhibit a fully polynomial time approximation scheme (FPTAS).
One challenge is that as shown in Section 2.2, the space of Equal

Opportunity solutions is non-convex. Another is that as shown in

Section 4.1.1 below, Opportunity Ratio is no longer optimal, and as

shown in Section 4.1.2 below, there exists no function ranking the

efficacy of tests solely based on their statistics.

We begin by presenting the examples mentioned above, and then

developing the structural properties we will use.

4.1 Illustrative Examples

4.1.1 Opportunity Ratio not Optimal for Linear Combination of
Precision and Recall. In the previous sections, our key algorithmic

strategy is to use the Opportunity Ratio to re-weight the promotion

policy. Since this policy satisfied Equal Opportunity and maximized

precision (among Equal Opportunity policies), if our objective is to

only maximize precision, then the Opportunity Ratio is sufficient.

Nowwe exhibit an example where the Opportunity Ratio solution is

not optimal when maximizing any linear combination of precision

and recall when there is any nonzero weight on recall. Specifically,

in this example there is an alternative policywith the same precision

as the Opportunity Ratio solution but strictly higher recall.

Consider a pipeline with T 1

A = (3/4, 0) and T 1

B = (1/2, 1/4). In

the second stage,T 2

A = (1/2, 1/4) andT 2

B = (3/4, 0). Consider policy

P : (P1A = (1, 0) and P1B = (1, 1), while P2A = (1, 1) and P2B = (1, 0).

This policy has recall 3/4 and precision 1 for each group and

therefore satisfies Equal Opportunity. Thus if our objective here

is maximize the average of precision and recall, this policy has

objective function value 7/8. In contrast, the Opportunity Ratio

policy as given in Definition 3.2 is P1A = (1, 0),P1B = (1, 0) and

P2A = (1, 0), P2B = (1, 0) which reduces our recall to
3

4
· 1
2
= 3

8
while

to precision is still 1, for score of
11

16
. Clearly this is a lower objective

function score than the first policy.

4.1.2 Optimal Policy Non-Locality for Linear Combination of Preci-
sion and Recall . Suppose we have one group in the population and

want to optimize a linear combination of recall and precision. A

baseline idea is whether we can solve this problem with a natural

greedy algorithm that makes local decisions in a single pass of the

test statistics
3
.

We answer this question in the negative in by exhibiting an

example pipeline with test statistics such that when two of three

tests are available, using only the first test is strictly optimal, while

when all three tests are available, the optimum is instead to use the

other two tests and not the first test. This shows that an algorithm

that maximizes a linear combination of precision and recall cannot

simply assign separate scores to each test and then use only the

highest-scoring tests. Our example is only for one group.

The counterexample is as follows. The base-rate in the population

is P(y = 1) = 1/2. Consider test t1 = (1/2, 0) and tests t2 = t3 =
(1 − δ , 1/2) where δ = 1

100
. The objective function is f (π ) = 1

3
·

recall(π ) + 2

3
· precision(π ). In the following, let f (t1) to denote

the score of the policy that only promotes those who pass t1 and
bypasses all other tests while f (t2t3) denotes bypassing t1 and

promoting individuals if and only if they pass tests t2 and t3. In the

Appendix E we show while f (t1) is larger than any policy using

t1 and t2 (possibly in fractions), f (t2t3) is strictly larger than any

policy using t1, t2 and t3 (again, possibly in fractions).

4.2 An Exact Algorithm

In this section, we give an exact algorithm for maximizing any given

linear combination of precision and recall subject to satisfying Equal

Opportunity by the end of the screening process.

First we show that for any k-stage screening process over a

population specified by a collection of groups X, there exists a set

of Equal Opportunity policies Pk,X that weakly Pareto dominate
(w.r.t. precision and recall) any policy satisfying Equal Opportunity.

In particular, we show that each policy π := (π 1, · · · ,πk ) ∈ Pk,X
has the following structure, (1 − π iX 1

)π iX 0
= 0,∀i ∈ [k],X ∈ X.

Definition 4.1 (Pareto Dominant Policy). For a given screen-
ing process, a policy π weakly Pareto dominates a policy π̃ w.r.t. pre-
cision and recall iff, recall(π ) ≥ recall(π̃ ) and precision(π ) ≥

precision(π̃ ). Moreover, π strictly Pareto dominates π̃ if at least one
of the above inequalities holds strictly.

3
In the related work by [5] the answer is in the affirmative, but their model is different

and has uniform noise across true positives and true negatives.

1183



Multi Stage Screening: Enforcing Fairness and Maximizing Efficiency in a Pre-Existing Pipeline FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

Furthermore, a set of policies P weakly Pareto dominates a policy
π̃ w.r.t. precision and recall iff there exists a policy π ∈ P that π
weakly Pareto dominates π̃ .

Lemma 4.2. For any k-stage screening policy that satisfies the
Minimal Effectiveness Property 1, the set of Equal Opportunity policies
in P := {π ∈ [0, 1]2 |X |k

: (1 − π iX 1
)π iX 0

= 0,∀X ∈ X, i ∈ [k]}
weakly Pareto dominates all equal opportunity policies w.r.t. precision
and recall.

In other words, any equal opportunity policy violating (1 −

π iX 1
)π iX 0

= 0 for a group X ∈ X and a stage i ∈ [k] is weakly
Pareto dominated by P.

Proof. First, we show that in any policy π which is not strictly

Pareto dominated (w.r.t. precision and recall), π iX 1
> 0 for every

X ∈ X, i ∈ [k]. Hence, we can only consider policies π where

πX 1 > 0 for all X ∈ X. The proof of the following claim is deferred

to Appendix B. □

Claim 4.3. Consider a k-stage screening process whose tests satisfy
the Minimal Effectiveness Property 1. In any optimal policy of this
screening process that satisfies Equal Opportunity, for all X ∈ X and
i ∈ [k], π iX 1

> 0.

Now, for the sake of contradiction, suppose that there exist a

level i ∈ [k] and a group X ∈ X such that π iX 0
> 0 and π iX 1

< 1.

Note that w.l.o.g., we can assume that τ iX 1
< 1; otherwise, by

setting πX 0 = 0, the recall of the policy does not decrease and the

precision strictly increases. Hence, there exist ϵ1, ϵ0 > 0 such that

τ iX 1
ϵ1 − (1 − τ iX 1

)ϵ0 = 0 where either (ϵ1 = 1 − πX 1, ϵ0 ≤ πX 0) or

(ϵ1 ≤ 1 − πX 1, ϵ0 = πX 0).

We define a new policy π̃ , which differs from π only in level i
of group X , as follows: π̃ iX 1

= π iX 1
+ ϵ1 and π̃

i
X 0
= π iX 0

− ϵ0. Next,
we show that NX ,τ i , π̃ i < NX ,τ i ,π i .

NX ,τ i , π̃ i = τ
i
X 0

π̃ iX 1
+ (1 − τ iX 0

)π̃ iX 0

= τ iX 0
(π iX 1

+ ϵ1) + (1 − τ iX 0
)(π iX 0

− ϵ0)

= τ iX 0
π iX 1
+ (1 − τ iX 0

)π iX 0
+ (τ iX 0

ϵ1 + τ
i
X 0

ϵ0 − ϵ0)

= τ iX 0
π iX 1
+ (1 − τ iX 0

)π iX 0

+ (τ iX 0
ϵ1 + τ

i
X 0

ϵ0 − τ iX 1
ϵ1 − τ iX 1

ϵ0) ▷ ϵ0 = τ
i
X 1

(ϵ0 + ϵ1)

< τ iX 0
π iX 1
+ (1 − τ iX 0

)π iX 0
▷ τ iX 0

< τ iX 1

= NX ,τ i ,π i

Further, since τ iX 1
ϵ1 − (1 − τ iX 1

)ϵ0 = 0, π̃ satisfies Equal Oppor-

tunity and has the same recall as π . Moreover, since NX ,τ i , π̃ i <

NX ,τ i ,π i and for all j ∈ [k] \ {i}, NX ,τ j ,π j ≥ 0, Πk
j=1NX ,τ j ,π j ≤

Πk
j=1NX ,τ j , π̃ j . Hence the precision of π̃ is not less than the one of

π . This contradicts the strict Pareto optimally of policy π . Thus the
statement holds and for any level i ∈ [k] and any group X ∈ X,

(1 − π iX 1
)π iX 0

= 0.

Next, we show additional structures of the set of Equal Opportu-

nity policies Pk,X that weakly Pareto dominates all Equal Oppor-
tunity policies.

Lemma 4.4. Consider ak-stage screening process whose tests satisfy
the Minimal Effectiveness Property 1. The set of Equal Opportunity
policies S ⊆ P = {π ∈ [0, 1]2 |X |k

: (1 − π iX 1
)π iX 0

= 0,∀X ∈

X, i ∈ [k]} where for each group X ∈ X, there exists at most one level
i ∈ [k] such that 0 < π iX 0

< 1, weakly Pareto dominates all Equal
Opportunity policies.

In other words, any Equal Opportunity policy π of the screening
process is weakly Pareto dominated by π̃ ∈ S (in every policy π̃ ∈ S,
for each group X ∈ X, there exists at most one level i such that
0 < π̃ iX 0

< 1).

Proof. Suppose for contradiction that there exist a groupX ∈ X

and levels i, j such that 0 < π iX 0
,π

j
X 0
< 1. Next, we show that we

can modify π in levels i and j and replace π iX 0
,π

j
X 0

with π̃ iX 0
, π̃

j
X 0

such that

MX ,τ i ,π iMX ,τ j ,π j = (τ iX 1
+ π iX 0

(1 − τ iX 1
))(τ

j
X 1
+ π

j
X 0

(1 − τ
j
X 1

))

= (τ iX 1
+ π̃ iX 0

(1 − τ iX 1
))(τ

j
X 1
+ π̃

j
X 0

(1 − τ
j
X 1

))

= MX ,τ i , π̃ iMX ,τ j , π̃ j , (6)

NX ,τ i ,π iNX ,τ j ,π j = (τ iX 0
+ π iX 0

(1 − τ iX 0
))(τ

j
X 0
+ π

j
X 0

(1 − τ
j
X 0

))

> (τ iX 0
+ π̃ iX 0

(1 − τ iX 0
))(τ

j
X 0
+ π̃

j
X 0

(1 − τ
j
X 0

))

= NX ,τ i , π̃ iNX ,τ j , π̃ j (7)

Note that Eq. (6) guarantees that the new policy π̃ satisfies Equal

Opportunity and has the same recall as the policy π . Moreover,

Eq. (7) shows that precision of the new policy is not less than than

the precision of π . Next, we show that in the new policy, either

π̃ iX 0
∈ {0, 1} or π̃

j
X 0

∈ {0, 1}.

Without loss of generality, we can assume that the feasible range

of values for π̃ iX 0
to satisfy Equal Opportunity is [π iX 0

−ϵi ,π iX 0
+δ i ]

which corresponds to [π
j
X 0

− δ j ,π
j
X 0
+ ϵ j ]. Both intervals are sub-

intervals of [0, 1] and since both π̃
j
X 0
, π̃ iX 0

belong to [0, 1], it is

straightforward to verify that

(π iX 0
− ϵi )(1 − (π

j
X 0
+ ϵ j )) = (1 − (π iX 0

+ δ i ))(π
j
X 0

− δ j ) = 0

Let L =
MX

τ iX 1
τ jX 1

where MX = MX ,τ i ,π iMX ,τ j ,π j =

MX ,τ i , π̃ iMX ,τ j , π̃ j . By the Minimal Effectiveness Property, 1 < L <
1

τ iX 1
τ jX 1

. Then, satisfying Equal Opportunity is equivalent to satisfy

the following constraint, (1 + π̃ iX 0
(
1−τ iX 1

τ iX 1

))(1 + π̃
j
X 0

(
1−τ jX 1

τ jX 1

)) = L.

Hence, it implies that

π̃
j
X 0
= (

L

1 + π̃ iX 0
(
1−τ iX 1

τ iX 1

)

− 1)/(
1 − τ

j
X 1

τ
j
X 1

)

= (
τ
j
X 1

1 − τ
j
X 1

)(

L − 1 − π̃ iX 0
(
1−τ iX 1

τ iX 1

)

1 + π̃ iX 0
(
1−τ iX 1

τ iX 1

)

)

Case 1: max(τ iX 1
,τ

j
X 1

) = 1. Without loss of generality, suppose

τ iX 1
= 1. Then, we can simply set π̃ iX 0

= 0 and the resulting policy

π̃ will maintain Equal Opportunity. Moreover, since 1 − τ iX 0
> 0,

NX ,τ i , π̃ i ≤ NX ,τ i ,π i . In the other case, we can similarly set π̃
j
X 0
=

0.
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Case 2: τ iX 1
,τ

j
X 1
< 1. The task of finding π̃ iX 0

is as follows:

π̃ iX 0
= argminy∈[π iX 0

−ϵ i ,π iX 0
+δ i ] f (y) which is equal to

(τ iX 0
+ y(1 − τ iX 0

))(τ
j
X 0
+ (

τ
j
X 1

1 − τ
j
X 1

)(

L − 1 − y(
1−τ iX 1

τ iX 1

)

1 + y(
1−τ iX 1

τ iX 1

)

)(1 − τ
j
X 0

)).

Next, we show that for any

y ∈ [0, 1], f ′′(y) = −

2L(τ
j
X 0

− 1)(
τ jX 1

1−τ jX 1

)(
1−τ iX 1

τ iX 1

)(
τ iX 0

τ iX 1

− 1)

(1 + (
1−τ iX 1

τ iX 1

)y)3
< 0

To prove it note that the minimal “effectiveness property” of the

tests {τ i }i ∈[k ] (i.e., τ
i
X 1
> τ iX 0

≥ 0,∀X ∈ X, i ∈ [k]) implies

that

τ iX 0

τ iX 1

− 1 < 0. Moreover since by our assumption τ
j
X 1
,τ iX 1

< 1,

f ′′(y) < 0 for all values ofy ∈ [0, 1]. Since f is a concave function in
[π iX 0

−ϵi ,π iX 0
+δ i ], theminimumvalue of f in this interval obtained

in one of its endpoints. In other words, the maximum precision

corresponds to the case either π̃ iX 0
∈ {0, 1} or π̃

j
X 0

∈ {0, 1}. □

Finally, we show that each group can only have at most one level

that partially uses its corresponding test.

Lemma 4.5. Consider ak-stage screening process whose tests satisfy
the “minimal effectiveness” property. The set of Equal Opportunity
policies Pk,X ⊂ P = {π ∈ [0, 1]2 |X |k

: (1 − π iX 1
)π iX 0

= 0,∀X ∈

X, i ∈ [k]} where for each group X ∈ X, there exists at most one level
i ∈ [k] such that π iX 1

< 1 or 0 < π iX 0
< 1, weakly Pareto dominates

all Equal Opportunity policies.

The proof is similar to the proof of Lemma 4.4 and we defer it to

Appendix B. The above lemma enforces a very restricted structure

on the set Pk,X of Equal Opportunity policies that weakly Pareto
dominate all Equal Opportunity policies. To summarize, in each

policy π ∈ Pk,X , for each group X ∈ X, the restriction of π on X
has the following properties

(1) There is at most one level i∗ ∈ [k] such that π partially uses
the test τ i

∗

; i.e., either 0 < π i
∗

X 1
< 1 and π i

∗

X 0
= 0, or π i

∗

X 1
= 1

and 0 < π i
∗

X 0
< 1.

(2) In any remaining level i , π i either bypasses τ i (i.e., π iX 1
π iX 0
=

1), or fully exploits τ i (i.e., π iX 1
= 1,π iX 0

= 0).

Theorem 4.6 (Exact Algorithms for Linear Combination

of Precision and Recall). Given any linear objective function of
form fα (π ) := α · precision(π ) + (1 − α) · recall(π ), There exists
an exact algorithm that runs in time O(k |X | · 2k |X |) and finds an
Equal Opportunity policy of the screening process with parameters
(q,u,τ ,X) that maximizes fα .

Proof. Using the aforementioned set Pk,X of weakly Pareto

optimal policies (w.r.t. precision and recall) that satisfy the Equality

of Opportunity, we enumerate over all policies in Pk,X as follows.

• For each groupX ∈ X, pick a level iX ∈ [k] (i.e., k |X | possible
configurations).

• Fix an “integral” policy π for the rest of levels in each group

X ∈ X,

– In each group X ∈ X, for each level i , iX , we decide

whether to fully use the test (π iA1 = 1,π iA0 = 0) or to

bypass the test (π iX 1
= π iX 0

= 1) (i.e., 2(k−1) |X | possible
configurations).

• For each X ∈ X, iX ∈ [k], we fix the policy π iX partially as

follows,

– (1 − π iXX 1
)π iXX 0

= 0,∀X ∈ X (i.e., 2 |X | possible configura-
tions).

In each of the policies π as constructed above, we set the remaining

π values (i.e., π iX ) so that Equality of Opportunity is satisfied and

the objective function fα is maximized. Finally, we maintain the

configuration π that maximizes fα . Note that the whole process

takes O(k |X | · 2k |X |) time. □

Similarly, we can show the following.

Theorem 4.7 (Exact Algorithms for Linear Combination of

reciprocal of Precision andRecall). Given any objective function
дα (π ) := α/precision(π ) + (1 − α)/recall(π ), There exists an exact
algorithm that runs in time O(k |X | · 2k |X |) and finds an Equal Op-
portunity policy of the screening process with parameters (q,u,τ ,X)

that minimizes дα .

Remark 3 (General Objective Functions). Our approach pro-
vides an exact algorithm for maximizing (resp., minimizing) a given
pipeline efficiency objective f (resp., pipeline complexity cost д)
over Equal Opportunity policies if f (resp., д) satisfies the follow-
ing natural condition: for any pair of policies π1,π2 where π1 weakly
Pareto dominates π2 w.r.t. precision and recall, f (π1) ≥ f (π2) (resp.,
д(π1) ≤ д(π2)).

4.3 An FPTAS Algorithm

In this section, we present FPTAS algorithms formaximizing a given

pipeline efficiency objective (resp., minimizing a given pipeline cost

function) while satisfying the Equal Opportunity requirement. We

consider two regimes. In this section, as in previous sections, we

consider the regime where we are allowed to treat individuals from

different groups differently; more precisely, we can set π
j
X i , π

j
Y i

for j ∈ [k], i ∈ {0, 1}. Next, in Section 5.1, we consider a new regime

where the goal is to achieve Equal Opportunity while treating

individuals from both groups similarly; ∀i ∈ [k],X , Y ∈ X,π iX 1
=

π iY 1,π
i
X 0
= π iY 0.

To exploit our algorithm in different settings, we describe it

for the most basic setting of the problem. Given a single group of

applicants with parameters q,u and a pipeline P = {τ i }i ∈[k ], the
goal is find a policy π that maximizes a given pipeline efficiency
objective f (recall(π ,P), precision(π ,q,u,P)). Our approach works

for a quite general set of objective functions; more notably, as

in the previous section, for two natural settings: maximizing a

linear combination of precision and recall and minimizing a linear
combination of reciprocals of precision and recall.

High-level Description of Algorithm. Now we write a dynamic

program (DP) to optimize a given pipeline efficiency objective f up

to a given accuracy parameter ϵ . We create a DP-tableM[i, tpr, fpr]
where i ∈ [k], tpr ∈ [0, ℓtpr := log

1−ϵ Ltpr] and fpr ∈ [0, ℓfpr :=

log
1−ϵ Lfpr] where Ltpr,Lfpr are lower bounds on True Positive Rate

and False Positive Rate respectively. For each set of parameters

1185



Multi Stage Screening: Enforcing Fairness and Maximizing Efficiency in a Pre-Existing Pipeline FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

(i, tpr, fpr),M[i, tpr, fpr]will be a Boolean value indicating whether

there exists a policy such that by the end of level i , the true positive
rate becomes at least (1 − ϵ)tpr and the False Positive Rate becomes

at most (1 − ϵ)fpr. Without loss of generality and for the simplicity

of the exposition, we assume Ltpr and Lfpr are powers of (1 − ϵ);
otherwise we can simply round the lower bounds to largest powers

of (1 − ϵ) smaller than actual bounds.

Solving the DP. We fill out the DP table starting from i = 1 as

follows. First, for any j0 ∈ [0, ℓfpr], j1 ∈ [0, ℓtpr],M[1, j1, j0] = true

iff the following system of linear inequalities has a feasible solution.

τ 1
0
x + (1 − τ 1

0
)y ≤ (1 − ϵ)j0 , τ 1

1
x + (1 − τ 1

1
)y ≥ (1 − ϵ)j1 . (8)

Next, we describe the update rule for i > 1. For any tpr ∈

[0, ℓtpr], fpr ∈ [0, ℓfpr], M[i + 1, tpr, fpr] =
∨

(j0, j1)∈Fi+1 M[i, tpr −
j1, fpr − j0], where Fi+1 is a set of (j0 ≤ fpr, j1 ≤ tpr) for which the

following linear program has a feasible solution,

τ i+1
0

x + (1 − τ i+1
0

)y ≤ (1 − ϵ)j0 ,τ i+1
1

x + (1 − τ i+1
1

)y ≥ (1 − ϵ)j1 .
(9)

Note that x ,y can be interpreted as π i+1
1
,π i+1

0
, respectively.

Moreover, the system of linear inequalities of the update rule in

level i + 1 (Eq. (9)) is similar to the rules for the base case (Eq. (8)).

Lemma 4.8. For any i ∈ [k], if there exists a policy π with True
Positive Rate ti ≥ Ltpr/(1 − ϵ)i−1 and False Positive Rate fi by the
end of level i , then for any j1 ∈ [0, ℓtpr], j0 ∈ [0, ℓfpr] with (1− ϵ)j1 ≥

ti · (1 − ϵ)i−1 and (1 − ϵ)j0 ≤ min{1,max{Lfpr, fi }/(1 − ϵ)i−1},
M[i, j1, j0] = true.

In other words, if the policy π exists then the DP approach finds a
policy with true positive rate at least (1 − ϵ)j1 and false positive rate
at most (1 − ϵ)j0 .

The proof is deferred to Section B.

Lemma 4.9 (DP Main Lemma). For any group X ∈ X, an accu-
racy parameter ϵ and lower bounds on the false positive rate, Lfpr,
and the true positive rate, Ltpr, if there exists a policy π∗ with true
positive rate t ≥ Ltpr/(1 − ϵ)k−1 and false positive rate f > 0, then

the DP algorithm runs in time O(
k log

2(1/Ltpr) log2(1/Lfpr)
ϵ 4 ) and finds a

policy π with true positive rate at least (1−ϵ)k−1 · t and false positive
rate at most min{1,max{Lfpr, f}/(1 − ϵ)k−1}.

Proof. The size of table isO(kℓtprℓfpr) and updating each entry

in the table takesO(ℓtprℓfpr). Hence, the total runtime to compute all

entries in the DP table is O(kℓ2tprℓ
2

fpr) = O(
k log

2(1/Ltpr) log2(1/Lfpr)
ϵ 4 ).

Now we apply the DP approach and by Lemma 4.8, the solution

returned by the algorithm has the true positive rate and the false

positive rate satisfying the guarantee of the statement. □

Implications of DP. Here we present FPTAS algorithms using the

described DP approach in different settings. We state the results

formally and their proofs are deferred to Appendix B.

Theorem 4.10 (FPTAS for Linear Combination of Precision

and Recall). Consider a k-stage screening process with parameters
(u,q,τ ,X) and for any policy π , let fα (π ) = (1 − α) · recall(π ) +
α · precision(π ) where α > 0. Given an accuracy parameter ϵ , there

exists an FPTAS that runs in time O( |X |k5
log

4(1/ϵ )
ϵ 4 ) and finds an

Equal Opportunity policy π such that fα (π ) ≥ (1 − ϵ)fα (π
∗) where

π∗ maximizes fα over Equal Opportunity policies.

Theorem 4.11 (FPTAS for Linear Combination of Recip-

rocals Precision and Recall). Consider a k-stage screening pro-
cess with parameters (u,q,τ ,X) and for any policy π , let дα (π ) =
(1−α)/recall(π )+α/precision(π )whereα > 0. Given an accuracy pa-

rameter ϵ , there exists an FPTAS that runs in timeO(
|X |k7(log2 1

ϵ +k
2)

ϵ 4 )

and finds an Equal Opportunity policy π such that дα (π ) ≤ (1 +

ϵ)дα (π
∗) where π∗ minimizes дα over Equal Opportunity policies.

Remark 4 (General Objective Functions). In Theorem 4.10
and 4.11 we presented FPTAS for finding Equal Opportunity policies
optimizing two standard pipeline efficiency objective functions. Here,
we generalize the above theorems when the pipeline efficiency objective
function f : [0, 1]2 → R which maps precision and recall to efficiency
scores have certain properties. Also, we define д : [0, 1]2 → R such
that for any t, f ∈ [0, 1]2, д(t, f) := f (recall(t), precision(t, f)). We
describe the properties when the goal is to maximize f —the required
conditions for the minimization version is similar.

• f is non-decreasing w.r.t. both precision and recall—
equivalently, д is non-decreasing in t and non-increasing

in f.
• There exist Ltpr,Lfpr > 0 such that there exists a (1 − α)-
approximate solution of f with t ∈ (Ltpr, 1], f ∈ (Lfpr, 1].

• The function f is β-Lipschitz on {(x ,y)|x ∈ (Ltpr, 1],y ∈

(Lfpr, 1]}.
In particular, the above properties are sufficient to show that the DP
approach finds a (1 − ϵ)-approximation of f in time

poly(k, |X|, ϵ−1, log(1/Ltpr), log(1/Lfpr)).

Remark 5 (Selecting from Available Tests). Suppose that in
contrast to our previous approaches, we do allow for the design of
the pipeline in that we allow the firm to select some tests to create a
pipeline. For instance, imagine that there is a budget and the firm is
allocating this budget to buy tests. The goal of the firm is the same, e.g.
to exhibit a pipeline satisfying a fairness requirement. Our algorithms
can be modified to handle to this case by adding a term in the DP
table corresponding to the budget remaining, with a decision point of
choosing to use a given test or not. Note that the ordering of tests in
the pipeline does not matter for the objectives considered.

5 ALTERNATE MODELS

In this section we describe some alternate settings, such as using a

single promotion policy for both demographic groups (which might

be required by regulation), or requiring Equalized Odds.

5.1 Screening Processes with Same Policy for

All Groups

One alternate fairness model is to additionally require the same

policy be used for all groups. While utilizing demographic features

can aid in achieving fairness goals (e.g. [6, 9]), in some regulatory

regimes, this fairness-through-awareness may be illegal or prob-

lematic, even when intended to ensure equitable treatment.

In our setting, if we are constrained to follow group-blindness,
there be would only one set of tests and one ordering of the tests

that all applicants are tested on. Analogously to the previous setting,
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the action space of the algorithm remains modifying the promotion

probabilities, but we now only have one set of policies to modify.

We also exhibit a DP algorithm for this setting, which we defer to

Section D. However, a simple example shows the inefficiencies in

this regime. Suppose we have a single test with TA = (1, 0) and

TB = (1/2, 0). Observe that since we are constrained to use group

blindness and satisfy Equal Opportunity, there is no way to use the

test without violating Equal Opportunity. Thus, the only way to

satisfy Equal Opportunity is to completely bypass the test.

5.2 Equalized Odds

Next, recall that the requirement of Equalized Odds mandates equal

True Positive and False Positive rates for all groups. In the appen-

dix, we show structural properties of an optimal promotion policy

that satisfies Equalized Odds. However, we also note the interview

efficiency cost (precision) of requiring Equalized Odds. In particular,

the gap between the interview efficiency of π
EOdd

and πEOpp can

be as large as
1

q − ϵ for any arbitrary ϵ > 0. See Theorem C.3 for

details.

5.3 Discussion Comparing Equalized Odds and

Equal Opportunity

From the perspective of a decision maker in the wild, how to inter-

pret and operationalize these results? A robust take-away is that

requiring Equalized Odds and Equal Opportunity have substan-

tially different efficiency consequences. Based on our examples,

it seems unlikely that Equalized Odds is effective in this model,

especially when requiring Equalized Odds at each stage. In contrast,

the fact that requiring Equal Opportunity at each stage is equiv-

alent to requiring Equal Opportunity of the overall process with

respect to interview efficiency may have benefits in ensuring public

confidence in the model.

5.4 Intersectionality

A natural question is how to think when the demographic groups

may have an arbitrarily overlapping structure. This suggests several

open questions in our model, e.g. if a person is in groups A and B,
then which test parameter τA or τB corresponds to that person?

Perhaps a direction is to assign to that person an interpolation

between these values. A naive approach is when there are k groups,

to create 2
k
new groups and 2

k
test parameters corresponding

to every possible group intersection. If k is small, this may be

computationally feasible, but is not responsive when the relevant

sub-groups/intersections may not be known apriori. Perhaps our

model could be merged with multi-calibration notions [10].

6 CONCLUSIONS

In contrast to some fairness in machine learning work, we focus on

post-processing fairness modifications, rather than thinking about

the fairness problem in screening processes where tests can be de-

signed from scratch. While we believe that the more a priori design

approach will have substantial benefits in practice, our approach

of modifying pre-existing tests, combined with a concrete (and

simple to evaluate) fairness notion, Equal Opportunity, is closely

aligned with real world circumstances and models, especially in

short term and iterative improvements to models. In some settings,

the firm making hiring decisions will outsource some aspects of

its pipeline to third party companies and the tests will be a black

box, but possibly that come with statistics that can be used in our

algorithms. This decoupling allows the effective implementation of

fairness aware promotion policies in the short term.
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A PROOFS FROM SECTION 3

Proof of Theorem 3.4. First, we show that for anyM ∈ (0, 1],

any Equal Opportunity policy πM with recall M has interview

efficiency at most

IE(q,u,τ ,πM ) =

∑
X ∈X qXMX ,τ ,πM∑

X ∈X qXMX ,τ ,πM + uXNX ,τ ,πM

=
∥q∥1

∥q∥1 +
∑
X ∈X uX

NX ,τ ,πM
M

≤
∥q∥1

∥q∥1 +
∑
X ∈X uXΠi=1

τ iX 0

τ iX 1

, (10)
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where the last inequality follows from the minimal effectiveness

of tests in the screening process and an argument identical to

Eq. (4). Note that the inequality holds no matter what the value

ofM is. Next, we show that opportunity ratio policy achieves the

maximum possible interview efficiency as shown in Eq. (10). Let

X ∗ = argminX ∈XΠj ∈[k ]τ
j
X 1

. Recall that the opportunity ratio pol-

icy π is defined as follow.

π 1

X 0
= 0 and π 1

X 1
= Πi ∈[k](τ

i
X ∗

1
/τ iX 1

) ∀X ∈ X

π iX 0
= 0 and π iX 1

= 1 ∀X ∈ X, i ≥ 2

It is straightforward to check that π is an Equal Opportunity policy

with recall Πi ∈[k ]τ
i
X ∗

1
. Moreover, the interview efficiency of π is

IE(q,u,τ ,π ) =

∑
X ∈X qXMX ,τ ,π∑

X ∈X qXMX ,τ ,π + uXN
X
τ ,π

=

∑
x ∈X qXΠi ∈[k ]τ

i
X ∗

1∑
x ∈X qXΠi ∈[k ]τ

i
X ∗

1
+
∑
X ∈X uXΠi ∈[k ]

τ iX ∗
1

τ iX 0

τ iX 1

=
∥q∥1

∥q∥1 +
∑
X ∈X uXΠk

i=1
τ iX 0

τ iX 1

Hence, π is the Equal Opportunity policy maximizing the interview

efficiency. □

B PROOFS FROM SECTION 4

Proof of Claim 4.3. Suppose for contradiction that there exists

a group X ∈ X and a level i ∈ [k] such that π iX 1
= 0. First note

that (1 − τ iX 1
)π iX 0

> 0; otherwise, the policy is useless because it

prevents candidates of group X , in particular the qualified ones,

from reaching the interview stage. Hence, by the Equal Opportunity

requirement, no qualified candidate will reach the interview stage.

Next, we show that there exists a policy π̃ (which only differs

from π in level i of group X ) that satisfies Equal Opportunity for

the given screening process and strictly Pareto dominates π ; π̃ iX 1
=

(
1−τ iX 1

τ iX 1

)π iX 0
and π̃ iX 0

= 0.

Since MX ,τ i , π̃ i = τ iX 1
π̃ iX 1
+ (1 − τ iX 1

)π̃ iX 0
= τ iX 1

π̃ iX 1
= (1 −

τ iX 1
)π iX 0

= τ iX 1
π iX 1
+ (1 − τ iX 1

)π iX 0
= MX ,τ i ,π i and π satisfies the

Equal Opportunity, π̃ also satisfies Equal Opportunity and has the

same recall as π . Moreover, since

NX ,τ i , π̃ i = π̃ iX 1
τ iX 0
= (

1 − τ iX 1

τ iX 1

)π iX 0
τ iX 0
< (1−τ iX 0

)π iX 0
= NX ,τ i ,π i ,

precision(π̃ ) > precision(π ). Note that
1−τ iX 1

τ iX 1

<
1−τ iX 0

τ iX 0

holds by the

minimal effectiveness property of tests. □

Lemma B.1. Consider a k-stage screening process whose tests sat-
isfy the Minimal Effectiveness Property. The set of Equal Opportunity
policies S ⊆ P = {π ∈ [0, 1]2 |X |k |(1 − π iX 1

)π iX 0
= 0,∀X ∈ X, i ∈

[k]}, where for each groupX ∈ X, there exists at most one level i ∈ [k]
such that π iX 1

< 1, weakly Pareto dominates all Equal Opportunity
policies.

Proof. Suppose for contradiction that there are two levels i, j

such that π iX 1
,π

j
X 1
< 1. First note that by Claim 4.3, π iX 1

,π
j
X 1
> 0.

Moreover, by Lemma 4.2, since π iX 1
,π

j
X 1
< 1, π iX 0

= π
j
X 0
= 0.

Next, we show that we can modify π in levels i and j and

replace π iX 0
,π

j
X 0

with π̃ iX 0
, π̃

j
X 0

as follows: π̃ iX 1
= π iX 1

π
j
X 1

and

π̃
j
X 1
= 1. Then, MX ,τ i , π̃ iMX ,τ j , π̃ j = (π̃ iX 1

τ iX 1
)(π̃

j
X 1

τ
j
X 1

) =

(π iX 1
τ iX 1

)(π
j
X 1

τ
j
X 1

) = MX ,τ i ,π iMX ,τ j ,π j . In other words, the pol-

icy π̃ satisfies Equal Opportunity and has the same recall as π .
Similarly, this modification does not decrease precision. Formally,

NX ,τ i , π̃ iNX ,τ j , π̃ j = (π̃ iX 1
τ iX 0

)(π̃
j
X 1

τ
j
X 0

) = (π iX 1
τ iX 0

)(π
j
X 1

τ
j
X 0

) =

NX ,τ i ,π iNX ,τ j ,π j . Hence, for each policy π , there exists another

policy with at most one level i ∈ [k] such that π iX 0
< 1 and weakly

Pareto dominates π . □

Proof of Lemma 4.5. We follow a similar arguments as in the

proof of Lemma 4.4. Note that by Lemma 4.4 and Lemma B.1 there

is at most one level i1 ∈ [k] such that 0 < π i1X 1
< 1 and π i1X 0

= 0,

and there is at most one level i0 ∈ [k] such that π i0X 1
= 1 and

0 < π i0X 0
< 1. Next, we show that we can modify the policy π in

levels i0 and i1 and replace π i0X 0
,π i1X 1

with π̃ i0X 0
, π̃ i1X 1

such that

MX ,τ i0,π i0MX ,τ i1,π i1 = (τ i0X 1
+ π i0X 0

(1 − τ i0X 1
))(π i1X 1

τ i1X 1
)

= (τ i0X 1
+ π̃ i0X 0

(1 − τ i0X 1
))(π̃ i1X 1

τ i1X 1
)

= MX ,τ i0, π̃ i0MX ,τ i1, π̃ i1 ,

NX ,τ i0,π i0NX ,τ i1,π i1 = (τ i0X 0
+ π i0X 0

(1 − τ i0X 0
))(π i1X 1

τ i1X 0
)

< (τ i0X 0
+ π̃ i0X 0

(1 − τ i0X 0
))(π̃ i1X 1

τ i1X 0
)

= NX ,τ i0, π̃ i0NX ,τ i1, π̃ i1

Now, we show that in the new solution, either π̃ i0X 0
∈ {0, 1} or

π̃ i1X 1
= 1.

Without loss of generality, we can assume that the feasible range

of values for π̃ i0X 0
to satisfy Equal Opportunity is [π i0X 0

− ϵi0 ,π i0X 0
+

δ i0 ] which corresponds to [π i1X 0
− δ i1 ,π i1X 0

+ ϵi1 ]. Both intervals

are sub-intervals of [0, 1] and it is straightforward to verify that

(π i0X 0
− ϵi0 )(1 − (π i1X 0

+ ϵi1 )) = (1 − (π i1X 0
+ δ i1 )) = 0.

Let L = MX /(τ
i0
X 1

τ i1X 1
) where

MX = MX ,τ i0,π i0MX ,τ i1,π i1 = MX ,τ i0, π̃ i0MX ,τ i1, π̃ i1

. By the Minimal Effectiveness Property, 0 < L < 3. Then, satisfying

Equal Opportunity is equivalent to satisfy (1+π̃ i0X 0
(
1−τ i0X 1

τ i0X 1

))π̃ i1X 1
= L,

which implies that π̃ i1X 1
= L/(1 + π̃ i0X 0

(
1−τ i0X 1

τ i0X 1

)). The task of finding

π̃ iX 0
is as follows:

π̃ iX 0
= argminy∈[π i0X 0

−ϵ i0,π i0X 0
+δ i0 ] f (y)

:= (τ i0X 0
+ y(1 − τ i0X 0

))(τ i1X 0
·

L

1 + y(
1−τ i0X 1

τ i0X 1

)

).

Next, we show that for any y ∈ [0, 1],

f ′′(y) =

2Lτ i1X 0
(
1−τ i0X 1

τ i0X 1

)(τ i0X 0
(
1−τ i0X 1

τ i0X 1

) + τ i0X 0
− 1)

(1 + τ i0X 0
y)3

< 0
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To prove it note that the Minimal Effectiveness Property of the

tests {τ i }i ∈[k] (i.e., τ
i
X 1
> τ iX 0

≥ 0,∀X ∈ X, i ∈ [k]) implies that

τ i0X 0

τ i0X 1

− 1 < 0. Since f is a concave function in [π i0X 0
− ϵi0 ,π i0X 0

+ δ i0 ],

the minimum value of f in this interval obtained in one of its

endpoints. In other words, the maximum precision corresponds to

the case either π̃ i0X 0
∈ {0, 1} or π̃ i1X 1

= 1. □

Proof of Lemma 4.8. The proof is by induction. For the base

case (i = 1), let t1 and f1 denote the true positive rate and the false

positive rate of π by the end of level 1. The existence of π guarantees

that the system of inequalities Eq. (8) with (j0 = ⌊log
1−ϵ f1⌋, j1 =

⌈log
1−ϵ t1⌉ ≤ ℓtpr) has a feasible solution. More precisely, by setting

(x = π1,y = π0),

τ 1
0
x + (1 − τ 1

0
)y = f1 ≤ (1 − ϵ) ⌊log1−ϵ f1 ⌋

= (1 − ϵ)j0 , τ 1
1
x + (1 − τ 1

1
)y

= t1 ≥ (1 − ϵ) ⌈log1−ϵ t1 ⌉ = (1 − ϵ)j1

Next, we consider i > 1 and we assume that the claim holds for all

values i ′ < i . LetMi := τ
i
1
π i
1
+(1−τ i

1
)π i

0
and Ni := τ

i
0
π i
1
+(1−τ i

0
)π i

0
.

Note that ti = ti−1 ·Mi and fi = fi−1 · Ni .

By the induction hypothesis and considering the first i − 1 levels

in the pipeline, since ti−1 ≥ ti ≥ Ltpr/(1 − ϵ)i−1 > Ltpr/(1 − ϵ)i−2

and fi−1 ≥ fi , there exist j ′
1
∈ [0,Ltpr] and j ′

0
∈ [0,Lfpr] ∪ {∞}

such thatM[i − 1, j ′
1
, j ′
0
] = true and (1 − ϵ)j

′
1 ≥ ti−1 · (1 − ϵ)i−2 and

(1 − ϵ)j
′
0 ≤ min{1,max{Lfpr, fi−1}/(1 − ϵ)i−2}. More precisely, the

algorithm finds a policy π̄ with true positive rate at least (1 − ϵ)j
′
1

and false positive rate at most (1 − ϵ)j
′
0 .

Next, by setting (π̄ i
1
= π i

1
, π̄ i

0
= π i

0
) and (j1 := argminj {(1−ϵ)

j ≤

ti (π̄ )}, j0 := argmaxj {(1 − ϵ)j ≥ fi (π̄ )}),

(1 − ϵ)j1 > (1 − ϵ) · ti (π̄ )

= (1 − ϵ) · ti−1(π̄ ) ·Mi ▷ by definition of j1

≥ (1 − ϵ) · (1 − ϵ)j
′
1 ·Mi ▷ by ti−1(π̄ ) ≥ (1 − ϵ)j

′
1

≥ ti−1 · (1 − ϵ)i−1 ·Mi ▷ by induction hypothesis

= ti · (1 − ϵ)i−1.

Similarly,

(1 − ϵ)j0 < min{1,
fi (π̄ )
1 − ϵ

}

= min{1,Ni ·
fi−1(π̄ )
1 − ϵ

} ▷ by definition of j0

≤ min{1, (1 − ϵ)j
′
0 ·

Ni
1 − ϵ

} ▷ fi−1(π̄ ) ≤ (1 − ϵ)j
′
0

≤ min{1,
max{Lfpr, fi−1}

(1 − ϵ)i−2
·

Ni
1 − ϵ

} ▷ induction hypoth.

≤ min{1,
max{Lfpr, fi }

(1 − ϵ)i−1
}

which completes the proof. □

Proof of Theorem 4.10. First, as we are aiming for a (1 − ϵ)-
approximation, we only need to consider α ∈ (ϵ, 1 − ϵ). Otherwise,
either the policy maximizing recall (i.e. bypassing all tests) or the

policy maximizing precision (Opportunity Ratio policy) is a (1 − ϵ)-
approximation for fα .

Next we show in order to guarantee (1 − ϵ)-approximations of

recall and precision of the policy maximizing fα , it suffices to run

the described DP and consider estimates of t (true positive rate)
and f (false positive rate) of form (1 − ϵ̄)i for i ∈ N in intervals

[Ltpr, 1] and [Lfpr, 1] respectively, where ϵ̄ ≤ ϵ/(2k). We provide

tight bounds for Ltpr and Lfpr. Note that since for any policy π ,
the true positive rate (ti ) and the false positive rate (fi ) are non-
decreasing in i , it suffices to provide “large enough” lowerbounds

Ltpr and Lfpr for t and f in the final stage respectively.

Bounding Ltpr. Consider the policy πbypass, which bypasses all

the tests in both groups, i.e., π iX 0
= π iX 1

= 1 for all i ∈ [k],X ∈ X.

Since πbypass is an Equal Opportunity policy for the pipeline and

fα (πbypass) = (1 − α) + α ∥q∥1, any optimal Equal Opportunity

policy π∗
for fα has recall at least (1 − 2α + α ∥q∥1)/(1 − α). Thus,

since α ∈ (ϵ, 1− ϵ), t ≥ (1− 2α + α ∥q∥1)/(1− α) ≥ ϵ/(1− ϵ) which
implies that in our DP with accuracy parameter ϵ̄ it suffices to set

Ltpr = ( ϵ
1−ϵ ) · (1 − ϵ̄)k−1 ≥ ( ϵ

1−ϵ ) · exp(−ϵ).

Bounding Lfpr. For each X ∈ X, let fX denote the false positive

rate of the optimal Equal Opportunity policy for group X . Similarly,

let tX denote the positive rate of (i.e., recall) the optimal policy

π∗
for group X ∈ X. By Equality of Opportunity property of π∗

,

tX = t for each X ∈ X. Next, we consider the following cases.

For any sufficiently small ϵ > 0, we need to set Lfpr so that by

running the DP with accuracy parameter ϵ̄ , we can approximate

both true positive rate and false positive rate of the optimal Equal

Opportunity policy within (1 − ϵ)-factor of their values. More pre-

cisely, we set Lfpr so that if for each group X ∈ X and any pair

(tX , fX ) with tX ≥ Ltpr/(1 − ϵ/2), there exists a pair (t̄X , ¯fX ) such
that t̄X ≥ (1−ϵ/2)tX ,

¯fX ≤ min(1,max(Lfpr, fX )/(1−ϵ/2)). Finally,
once the above property holds for all groups X ∈ X, then for the

corresponding policy π , precision(π ) > (1 − ϵ) · precision(π∗).

LetX1 := {X ∈ X|fX /(1− ϵ
2
) ≥ Lfpr} andX2 := {X ∈ X|fX /(1−

ϵ
2
) < Lfpr}. Then,

precision(π )

precision(π∗)
=

( ∥q ∥1 ·t̄
∥q ∥1 ·t̄+

∑
X ∈X uX ·¯fX

)( ∥q ∥1 ·t
∥q ∥1 ·t+

∑
X ∈X uX ·fX

)
≥

( ∥q ∥1 ·t̄
∥q ∥1 ·t̄+

∑
X ∈X

1
uX ·¯fX+

∑
X ∈X

2
uX ·¯fX

)
( ∥q ∥1 ·t
∥q ∥1 ·t+

∑
X ∈X

1
uX ·fX

)
≥

( ∥q ∥1 ·(1−ϵ/2)t

∥q ∥1 ·t+
∑
X ∈X

1

uX ·fX
1−ϵ/2 +

∑
X ∈X

2
uX ·Lfpr

)
( ∥q ∥1 ·t
∥q ∥1 ·t+

∑
X ∈X

1
uX ·fX

)
Next, we set Lfpr so that ∥q∥1 · t +

∑
X ∈X2

uX Lfpr ≤
∥q ∥1 ·t
1− ϵ

2

. Since

t ≥ ϵ/(1 − ϵ), it suffices to set Lfpr =
ϵ 2 ∥q ∥1

(2−ϵ )(1−ϵ )(1−∥q ∥1)
= Ω(ϵ2).

Hence,( ∥q ∥1 ·(1− ϵ
2
)t

∥q ∥1 ·t+
∑
X ∈X

1

uX ·fX
1− ϵ

2

+
∑
X ∈X

2
uX ·Lfpr

)
( ∥q ∥1 ·t
∥q ∥1 ·t+

∑
X ∈X

1
uX ·fX

) ≥ (1 −
ϵ

2

)2 > (1 − ϵ).

Finally, for each X ∈ X, we run the DP algorithm for each group

with accuracy parameter ϵ̄ . By Lemma 4.8, the DP algorithm finds a
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set {tX = (1 − ϵ̄)iX , fx = (1 − ϵ̄)jX }X ∈X (and a policy π achieving

these rates) where for each X ∈ X, tX ∈ [Ltpr, 1], fX ∈ [Lfpr, 1]
such that

tX = t ≥ (1 −
ϵ

2

) · t(π∗), fX ≤ min{1,
max{Lfpr, fX (π∗)}

1 − ϵ/2
} ∀X ∈ X,

and for each X ∈ X, MX [k, tX , fX ] = true. Thus, by the bounds

we just showed for the precision of such a policy, precision(π ) ≥
(1 − ϵ) · precision(π∗). Thus, fα (π ) ≥ (1 − ϵ) · fα (π

∗).

As we need to run the DP algorithm for any of the |X| groups

separately with the specified parameters Ltpr,Lfpr and ϵ̄ = O(ϵ/k),
by Lemma 4.9, the total time of the DP approach is

O(
|X|k log2 1

Ltpr log
2 1

Lfpr

ϵ̄4
) = O(

|X|k5(ϵ2 + log2 1

ϵ ) log
2 1

ϵ
ϵ4

)

= O(
|X|k5 log4 1

ϵ
ϵ4

)

□

Proof of Theorem 4.11. First we show that in our setting, in

order to guarantee (1 + ϵ)-approximations of recall and precision,

it suffices to run the described DP and consider estimates of t (true
positive rate) and f (false positive rate) of form (1 − ϵ̄)i for i ∈ N in

intervals [Ltpr, 1] and [Lfpr, 1] respectively, where ϵ̄ ≤ ϵ/(2k). We

provide tight bounds for Ltpr and Lfpr.
Note that since for any policy π , tpri,π , fpri,π are non-decreasing

in i , it suffices to provide “large enough” lowerbounds Ltpr and
Lfpr for true positive rate and false positive rate in the final stage

respectively (i.e., for t and f).

Bounding Ltpr. Consider the policy πbypass, which bypasses all

the tests in both groups, i.e., π iX 0
= π iX 1

= 1 for all i ∈ [k],X ∈ X.

Let τmin = minX ∈X, j ∈[k ] τ
j
X 1

. Then, by Theorem 3.4, Opportunity

Ratio maximizes the precision and has recall at least (τmin)
k
, in

the optimal policy t ≥ (τmin)
k
which implies that in our DP with

accuracy parameter ϵ̄ it suffices to set Ltpr = (τmin)
k · (1 − ϵ̄)k−1 ≥

exp(−ϵ − k ln(1/τmin)).

Bounding Lfpr. For each X ∈ X, let fX denote the false positive

rate of the optimal Equal Opportunity policy for group X . Similarly,

let tX denote the positive rate of (i.e., recall) the optimal policy

π∗
for group X ∈ X. By Equality of Opportunity property of π∗

,

tX = t for each X ∈ X. Next, we consider the following cases.

For any sufficiently small ϵ > 0, we need to set Lfpr so that

by running the DP with accuracy parameter ϵ̄ , we can approxi-

mate both true positive rate and false positive rate of the optimal

Equal Opportunity policy within (1−ϵ)-factor of their values. More

precisely, we set Lfpr so that if for each group X ∈ X and any

pair (tX , fX ) with tX ≥ Ltpr, there exists a pair (t̄X , ¯fX ) such that

t̄X ≥ (1 − ϵ/2)tX , ¯fX ≤ min(1,max(Lfpr, fX )/(1 − ϵ/2)). Finally,
once the above property holds for all groups X ∈ X, then for the

corresponding policy π , precision(π ) > (1 − ϵ) · precision(π∗).

Let X1 := {X ∈ X|fX /(1 − ϵ/2) ≥ Lfpr} and let X2 := {X ∈

X|fX /(1 − ϵ/2) < Lfpr}. Note that X = X1
Û∪X2. Then,

precision(π )

precision(π∗)
=
( ∥q∥1 · t̄

∥q∥1 · t̄ +
∑
X ∈X uX · ¯fX

)
/
( ∥q∥1 · t
∥q∥1 · t +

∑
X ∈X uX · fX

)
≥

( ∥q∥1 · t̄

∥q∥1 · t̄ +
∑
X ∈X1

uX · ¯fX +
∑
X ∈X2

uX · ¯fX

)
/
( ∥q∥1 · t
∥q∥1 · t +

∑
X ∈X1

uX · fX

)
≥

( ∥q∥1 · (1 − ϵ/2)t

∥q∥1 · t +
∑
X ∈X1

uX ·fX
1−ϵ/2 +

∑
X ∈X2

uX · Lfpr

)
/
( ∥q∥1 · t
∥q∥1 · t +

∑
X ∈X1

uX · fX

)
Next, we set Lfpr so that ∥q∥1 · t +

∑
X ∈X2

uX Lfpr ≤
∥q ∥1 ·t
1− ϵ

2

. Since

t ≥ (τmin)
k
, it suffices to set Lfpr =

ϵ ∥q ∥1 ·(τmin)
k

(2−ϵ )(1−∥q ∥1)
= Ω(ϵ · (τmin)

k ).

Hence,( ∥q∥1 · (1 − ϵ/2)t

∥q∥1t +
∑
X ∈X1

uX fX
1−ϵ/2 +

∑
X ∈X2

uX Lfpr

)
/
( ∥q∥1t
∥q∥1t +

∑
X ∈X1

uX fX

)
≥ (1 −

ϵ

2

)2 > (1 − ϵ).

Finally, for each X ∈ X, we run the DP algorithm for each

group with accuracy parameter ϵ̄ . By Lemma 4.8, the DP algorithm

finds a set {tX = (1 − ϵ̄)iX , fX = (1 − ϵ̄)jX }X ∈X (and a policy

π corresponding to these values) where for each X ∈ X, tX ∈

[Ltpr, 1], fX ∈ [Lfpr, 1] such that ∀X ∈ X

tX = t ≥ (1 − ϵ/2) · t(π∗) fX ≤ min(1,
max(Lfpr, fX (π∗))

1 − ϵ/2
)

and for each X ∈ X, MX [k, tX , fX ] = true. Thus, by the bounds

we just showed for the precision of such a policy, 1/precision(π ) ≤
(1 + ϵ)/precision(π∗). Thus, дα (π ) ≤ (1 + ϵ) · дα (π

∗).

As we need to run the DP algorithm for any of the |X| groups

separately with the specified parameters Ltpr,Lfpr and ϵ̄ = O(ϵ/k),

by Lemma 4.9, the total runtime is O(
|X |k log

2(1/Ltpr) log2(1/Lfpr)
ϵ̄ 4 ) =

O(
|X |k7(log2(1/ϵ )+k2)

ϵ 4 ). □

C MISSING PROOFS OF SECTION 5.2

Similarly to Observation 3.1, we can show the following observation

for the policies that satisfies the Equalized Odds requirement.

Observation C.1. For any policy π that satisfies the Equalized
Odds for a k-stage screening process with parameters

({τ i }i ∈[k ], {qX ,uX }X ∈X), there existsM andN such that for each
X ∈ X,

M := Πk
i=1τ

i
X 1

π iX 1
+ (1 − τ iX 1

)π iX 0
, N := Πk

i=1τ
i
X 0

π iX 1
+ (1 − τ iX 0

)π iX 0
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Note that as computed in Observation 3.2, for policy any satisfy-

ing the Equalized Odds, the interview efficiency of a policy π for a

k-stage process with parameters (q,u, {τ i }i ∈[k ]) is
∥q ∥1M

∥q ∥1M+∥u ∥1N
.

In the rest of the section and for the simplicity of the exposition,

we assume there are exactly two groups in the population; X =

{A,B}. The result for the general setting can be derived similarly.

Theorem C.2. The interview efficiency of any policy satisfying
Equalized Odds for a single-stage screening process with parameters
(q,u,τ ) is at most 1

1+
uA+uB
qA+qB

·max(
τA0

τA1

,
τB0
τB1

)
.

Proof. Maximizing the interview efficiency, is equivalent to

minimizing Nτ ,π /Mτ ,π ; a minimizer of the inverse ratio is a max-

imizer of the interview efficiency and vice versa. Moreover, note

that by the Minimal Effectiveness Property of the given test (i.e.,

Eq. (1)), Nτ ,π < Mτ ,π .

Nτ ,π

Mτ ,π
=

τA0(πA1 − πA0) + πA0
τA1(πA1 − πA0) + πA0

≥
τA0(πA1 − πA0)

τA1(πA1 − πA0)
=

τA0
τA1

and

Nτ ,π

Mτ ,π
=

τB0(πB1 − πB0) + πB0
τB1(πB1 − πB0) + πB0

≥
τB0(πB1 − πB0)

τB1(πB1 − πB0)
=

τB0
τB1
.

In other words, Nτ ,π ≥ max(
τA0

τA1

, τB0τB1 ) ·Mτ ,π . Hence,

(qA + qB )Mτ ,π

(qA + qB )Mτ ,π + (uA + uB )Nτ ,π
≤

1

1 +
uA+uB
qA+qB ·max(

τA0

τA1

, τB0τB1 )

□

Remark 6. Note that we can generalize the result of Lemma C.2 to
a k-stage screening process with multiple groups X. For any j ∈ [k],

let ρ := maxX ∈X Πj ∈[k ]
τ jX 0

τ jX 1

. Any policy that satisfies Equalized Odds

requirement at the end of the process (i.e., before the interview stage)
has interview efficiency at most ∥q ∥1

∥q ∥1+
∑
X ∈X ρuX

. To see this, note that
similarly to the proof of Theorem C.2 we can show that for every
group X ∈ X, NX ≥ ρ ·MX .

Theorem C.3. Consider a k-stage screening process (q,u,τ )
with multiple groups X whose tests are minimally effective. Let
π
EOdd
,πEOpp denote the interview efficiency maximizing policy that

satisfies Equalized Odds and Equal Opportunity at the end of the

process respectively. If maxX ∈X Πi ∈[k ]
τ iX 0

τ iX 1

> minX ∈X Πi ∈[k ]
τ iX 0

τ iX 1

,

then IE(q,u,τ ,π
EOdd

) < IE(q,u,τ ,πEOpp).
In particular, the gap between the interview efficiency of π

EOdd

and πEOpp can be as large as 1

∥q ∥1
− ϵ for any arbitrary ϵ > 0.4

Proof. The proof of the first part directly follows from the inter-

view efficiency of opportunity ratio policy (Theorem 3.4) and the

upper bound for the interview efficiency of Equalized Odds policies

(Theorem C.2)

For the second part, consider a pipeline in which there exists

a X ∗ ∈ X such that for every X ∈ X \ X ∗
, Πi ∈[k ]

τ iX 0

τ iX 1

= 0

and Πi ∈[k ]
τ iX ∗

0

τ iX ∗
1

= (1 − δ )k . Further, for every X ∈ X \ X ∗
,

let qX =
γ
k ,uX =

1−γ−µ
k−1 and qX ∗ =

γ
k ,uX ∗ = µ. Then, it

4
Note that the interview efficiency is always at most 1 and the trivial Equalized Odds

policy that bypasses all tests has interview efficiency q .

is straightforward to check that IE(πEOpp) =
γ

γ+µ ·(1−δ )k
and

IE(π
EOdd

) =
γ

γ+(1−γ )·(1−δ )k
. As we set δ , µ to sufficiently small

values, IE(πEOpp)/IE(πEOpp) = 1/γ − ϵ = 1/∥q∥1 − ϵ . □

Next, we show the following structure on a non-trivial optimal

solution (i.e., one maximizing the interview efficiency). Note that

π = 1 or π = 0 are the two trivial solutions satisfying the Equalized
Odds for any given test.

Observation C.4. For any pipeline (τ ,q,u), in any non-trivial

optimal policy π ,min(πA1,πA0,πB1,πB0) = 0. Moreover, there exists
an optimal policy such that max(πA1,πA0,πB1,πB0) = 1.

Proof. First, note that by the Minimal Effectiveness Property

of the given test (i.e., Eq. (1)), Nτ ,π < Mτ ,π .

Suppose that min(πA1,πA0,πB1,πB0) = ϵ . This implies that

Mτ ,π > Nτ ,π ≥ ϵ Then, by subtracting ϵ from all π values, the

new policy still satisfies the Equalized Odds and it only increases

the interview efficiency. Formally, for ϵ > 0

∥q∥1 ·Mτ ,π

∥q∥1 ·Mτ ,π + ∥u∥1 · Nτ ,π
<

∥q∥1 · (Mτ ,π − ϵ)

∥q∥1 · (Mτ ,π − ϵ) + ∥u∥1 · (Nτ ,π − ϵ)

The above inequality holds since

Nτ ,π < Mτ ,π

⇒ −∥u∥1ϵNτ ,π > −∥u∥1ϵMτ ,π

⇒ (∥q∥1M
2

τ ,π − ∥q∥1ϵMτ ,π + ∥u∥1Mτ ,πNτ ,π ) − ∥u∥1ϵNτ ,π

> (∥q∥1M
2

τ ,π − ∥q∥1ϵMτ ,π + ∥u∥1Mτ ,πNτ ,π ) − ∥u∥1ϵMτ ,π

⇒ Mτ ,π (∥q∥1Mτ ,π + ∥u∥1Nτ ,π ) − ϵ(∥q∥1Mτ ,π + ∥u∥1Nτ ,π )

> Mτ ,π (∥q∥1(Mτ ,π − ϵ) + ∥u∥1(Nτ ,π − ϵ))

⇒
Mτ ,π − ϵ

∥q∥1(Mτ ,π − ϵ) + ∥u∥1(Nτ ,π − ϵ)

>
Mτ ,π

∥q∥1Mτ ,π + ∥u∥1Nτ ,π
▷ ∥q∥1(Mτ ,π − ϵ) + ∥u∥1(Nτ ,π − ϵ) > 0

In particular, this implies that in any optimal policy,

min(πA1,πA0,πB1,πB0) = 0.

The second part of the statement follows simply from the fact

that if we multiply all π values by a constant c > 1 so that they

remain feasible (i.e., none of π values goes above one), the interview

efficiency of the policy cπ and the policy π are the same. □

Note that though it seems counter-intuitive, it might be the case

πA0 = argmax(πA1,πA0,πB1,πB0)

and/or

πA1 = argmin(πA1,πA0,πB1,πB0).

D AN FPTAS ALGORITHM FOR SCREENING

PROCESSES WITH SAME POLICY FOR ALL

GROUPS

Here, we devise a slightly different DP algorithm. Instead of running

the DP algorithm for each group separately (as in Section 4.3), we

run a single DP algorithm for all groups simultaneously. Hence, all

policies {πX }X ∈X are the same. In our DP approach, we use the

same discretization technique and only consider powers of (1 − ϵ).
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Solving the DP. Consider the first level, i = 1. For any given

parameters {jX ,0, jX ,1}X ∈X , where for each group X ∈ X, jX ,0 ∈

[0,Lfpr] and jX ,1 ∈ [0,Ltpr], M[1, {jX 0, jX 1}X ∈X] = true iff the

following has a feasible solution.

τ 1X 0
x + (1 − τ 1X 0

)y ≤ (1 − ϵ)jX 0
and,

τ 1X 1
x + (1 − τ 1X 1

)y ≥ (1 − ϵ)jX 1 ∀X ∈ X (11)

Next, we describe the update rule for i > 1. For any X ∈ X,

fprX ∈ [0, ℓfpr] and tprX ∈ [0, ℓtpr],

M[i + 1, {tprX , fprX }X ∈X]

=
∨

{jX 1, jX 0 }X ∈X ∈Fi+1

M[i, {tprX − jX 1, fprX − jX 0}X ∈X]

where Fi+1 is the set of {jX 1 ≤ tprX , jX 0 ≤ fprX }X ∈X for which

the following system of linear inequalities has a feasible solution

∀X ∈ X

τ i+1X 1
x + (1 − τ i+1X 1

)y ≥ (1 − ϵ)jX 1 ,τ i+1X 0
x + (1 − τ i+1X 0

)y ≤ (1 − ϵ)jX 0

(12)

Lemma D.1. For any i ∈ [k], if there exists an Equal Opportu-
nity policy π treating all groups similarly, with true positive rate
tX ,i ≥ Ltpr/(1 − ϵ)i−1, false positive rate fX ,i for X ∈ X, then there
exist {jX 1, jX 0}X ∈X such that M[i, {jX 1, jX 0}X ∈X] = true, where
for each X ∈ X, (1 − ϵ)jX 1 ≥ tX ,i · (1 − ϵ)i−1 and (1 − ϵ)jX 0 ≤

min{1,max{Lfpr, fX ,i }/(1 − ϵ)i−1}.
In other words, if the policy π exists then the DP approach finds

a policy with true positive rate at least (1 − ϵ)jX 1 and false positive
rate at most (1 − ϵ)jX 0 for each X ∈ X.

Proof. The proof is by induction. For the base case (i = 1), let

tX ,1 and fX ,1 denote the true positive rate and the false positive

rate of π by the end of level 1 for each group X ∈ X. The existence

of π guarantees that the system of inequalities Eq. (11) with (jX 0 =

⌊log
1−ϵ fX ,1⌋, jX 1 = ⌈log

1−ϵ tX ,1⌉ ≤ ℓtpr) has a feasible solution.

More precisely, by setting (xX = πX 1,yX = πX 0), ∀X ∈ X,

τ 1X 0
xX + (1 − τ 1X 0

)yX = fX 1 ≤ (1 − ϵ) ⌊log1−ϵ fX 1 ⌋ = (1 − ϵ)jX 0

τ 1X 1
xX + (1 − τ 1X 1

)yX = tX 1 ≥ (1 − ϵ) ⌈log1−ϵ tX 1 ⌉ = (1 − ϵ)jX 1

Next, we consider i > 1 and we assume that the claim holds for all

values i ′ < i . For each X ∈ X, letMX ,i := τ
i
X 1

π iX 1
+ (1 − τ iX 1

)π iX 0

and NX ,i := τ iX 0
π iX 1
+ (1 − τ iX 0

)π iX 0
. Note that for each X ∈ X,

tX ,i = tX ,i−1 ·MX ,i and fX ,i = fX ,i−1 · NX ,i .

By the induction hypothesis and considering the first i−1 levels in
the pipeline, since tX ,i−1 ≥ tX ,i ≥ Ltpr/(1−ϵ)

i−1 > Ltpr/(1−ϵ)
i−2

and fX ,i−1 ≥ fX ,i , there exist j ′X 1
∈ [0,Ltpr] and j ′X 0

∈ [0,Lfpr]

such thatM[i − 1, {j ′X 1
, j ′X 0

}X ∈X] = true and (1 − ϵ)j
′
X 1 ≥ tX ,i−1 ·

(1 − ϵ)i−2 and (1 − ϵ)j
′
X 0 ≤ min{1,max{Lfpr, fX ,i−1}/(1 − ϵ)i−2}.

More precisely, the algorithm finds a policy π̄ with true positive

rate at least (1 − ϵ)j
′
X 1 and false positive rate at most (1 − ϵ)j

′
X 0 for

each X ∈ X.

Next, for each X ∈ X, by setting (π̄ iX 1
= π iX 1

, π̄ iX 0
= π iX 0

) and

(jX 1 := argminj {(1 − ϵ)j ≤ tX ,i (π̄ )}, jX 0 := argmaxj {(1 − ϵ)j ≥

fX ,i (π̄ )}),

(1 − ϵ)jX 1 > (1 − ϵ) · tX ,i (π̄ )

= (1 − ϵ) · tX ,i−1(π̄ ) ·MX ,i ▷ by definition of jX 1

≥ (1 − ϵ) · (1 − ϵ)j
′
X 1 ·MX ,i ▷ tX ,i−1(π̄ ) ≥ (1 − ϵ)j

′
X 1

≥ tX ,i−1 · (1 − ϵ)X ,i−1 ·MX ,i ▷ induction hypothesis

= tX ,i · (1 − ϵ)i−1.

Similarly,

(1 − ϵ)jX 0 < min{1,
fX ,i (π̄ )

1 − ϵ
}

= min{1,NX ,i ·
fX ,i−1(π̄ )

1 − ϵ
} ▷ by definition of jX 0

≤ min{1, (1 − ϵ)j
′
X 0 ·

NX ,i

1 − ϵ
} ▷ fX ,i−1(π̄ ) ≤ (1 − ϵ)j

′
X 0

≤ min{1,
max{Lfpr, fX ,i−1}

(1 − ϵ)i−2
·
NX ,i

1 − ϵ
} ▷ induction hyp.

≤ min{1,
max{Lfpr, fX ,i }

(1 − ϵ)i−1
}

which completes the proof. □

Lemma D.2. For an accuracy parameter ϵ and lowerbounds on the
false positive rate, Lfpr, and the true positive rate, Ltpr, the (single

policy) DP algorithm runs in timeO(
k log

2|X|(1/Ltpr) log2|X|(1/Lfpr)
ϵ 4|X| ) and

finds a policy π with true positive rate at least (1 − ϵ)k−1 · tX and
false positive rate at mostmin{1,max{Lfpr, fX }/(1−ϵ)k−1} for each
X ∈ X.

Proof. The size of table isO(kℓ
|X |
tpr ℓ

|X |

fpr ) and updating each entry

in the table takesO(ℓ
|X |
tpr ℓ

|X |

fpr ). Hence, the total runtime to compute

all entries in the DP table is

O(kℓ
2 |X |
tpr ℓ

2 |X |

fpr ) = O(
k log2 |X |(1/Ltpr) log

2 |X |(1/Lfpr)

ϵ4 |X |
).

Now we apply the DP approach and by Lemma D.1, the solution

returned by the algorithm has the true positive rate and the false

positive rate satisfying the guarantee of the statement. □

Implications of DP. Here, similarly to Section 4.3, we present FP-

TAS algorithms for the single policy setting with various pipeline ef-

ficiency objective using the modified DP approach described above

when the number of different protected groups in the population is

a fixed constant; |X| = O(1).

Theorem D.3. Consider a k-stage screening process with param-
eters (u,q,τ ,X) where |X| = O(1). For any policy π , let fα (π ) =
recall(π )+α · precision(π ) where α > 0. Given an accuracy parame-

ter ϵ , there exists an FPTAS that runs in time O(k
4|X|

log
2|X|(1/ϵ )

ϵ 4|X| ) and
finds an Equal Opportunity policy π treating all groups similarly
such that fα (π ) ≥ (1 − ϵ)fα (π

∗) where π∗ maximizes fα over Equal
Opportunity policies treating all groups similarly.
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Theorem D.4. Consider a k-stage screening process with param-
eters (u,q,τ ,X) where |X| = O(1). For any policy π , let дα (π ) =
1/recall(π ) + α/precision(π ) where α > 0. Given an accuracy pa-

rameter ϵ , there exists an FPTAS that runs in timeO(k
4|X|

log
2|X|(1/ϵ )

ϵ 4|X| )

and finds an Equal Opportunity policy π treating all groups similarly
such that дα (π ) ≤ (1 + ϵ)дα (π

∗) where π∗ minimizes дα over Equal
Opportunity policies treating all groups similarly.

The proof of above theorems are identical to Theorem 4.10 and

Theorem 4.11.

E ADDITIONAL DETAILS IN LINEAR

COMBINATION COUNTER EXAMPLES

In this section, we show that one cannot “locally score” tests when

determining the optimum policy (the policy that maximizes a linear

combination of precision and recall). Specifically, we give a setting

with three levels of tests t1, t2, t3 such that if only the first two levels
t1 and t2 are available, then the optimal solution is to use t1 and
bypass t2, but if t3 is also available then the optimal solution is to

bypass t1 and use t2 and t3. Therefore, the question of how to best

use two tests may depend on what tests are available at other levels.

Note that in this example there is only one group and we do not

have fairness constraints.

First, we show the following useful property of optimal policies

for a pipeline where the first level has test statistics (1/2, 0) and all

other levels have test statistics (1 − δ , 1/2).

Lemma E.1. In any k-stage pipeline where the first stage has test
statistics (1/2, 0) and the rest of the stages have tests with statistics
(1 − δ , 1/2), the optimal policy is of the form (1,π 1

0
), · · · , (1,πk

0
).

Proof. By Lemma 4.2, if the False Positive rate is non-zero, in

the optimal policy, for every i ∈ [k], (1 − π i
1
)π i

0
= 0. Next, we show

that in this setting with only one group, for every i ∈ [k], π i
1
= 1.

Suppose that there exists a level i ∈ [k] such that π i
0
= 0. Then,

if π i
1
< 1, by increasing π i

1
to 1, the True Positive rate and False

Positive rate increase by the same factor. Therefore, the precision

remains unchanged and the recall increases; hence, the pipeline

efficiency strictly increases.

Next, we consider the case where the optimal policy has precision

one (i.e., its False Positive is zero). In any such policy, π 1

0
= 0. Note

that once the precision is 1, the optimal policy maximizes recall.

Hence, the optimal policy is to fully use t1 (π
1

1
= 1,π 1

0
= 0) and

bypass the rest of tests (for every 1 < i ≤ k , π i
1
= π i

0
= 1). □

Theorem E.2. When the objective is to maximize a linear com-
bination of precision and recall in a multi-stage screening process,
there exist test parameters T and base rate p such that the maximal
score policy switches when more tests become available. Specifically,
when only tests t1 and t2 are available, the optimal policy is to use t1
and bypass t2 ((1, 0), (1, 1)), but if test t3 is also available, the optimal
policy is to bypass t1 and use t2 and t3 ((1, 1), (1, 0), (1, 0)).

Proof. Consider base rate p = P(x = 1) = 1/2 and test t1 =
(τ1,τ0) = (1/2, 0) and test t2 = t3 = (1 − δ , 1/2). Let δ = 1

100
. The

linear objective function is f (π ) = recall(π )+2 ·precision(π ). Next,
we consider two cases: (1) k = 2 and (2) k = 3.

Case 1: Two test (k = 2). By Lemma E.1, the optimal policy

is of form ((1,π 1

0
), (1,π 2

0
)). By numerical analysis

5
, the local opti-

mum policies (w.r.t. f ) are ((1, 0), (1, 1)) and ((1, 1), (1, 0)). Next, we
compute the score of these two policies: f ((1, 0), (1, 1)) = 2.5 and

f ((1, 1), (1, 0)) < 2.32. Hence, in this case, the optimal policy is to

fully use t1 and bypass t2, i.e., ((1, 0), (1, 1)).

Case 2: Three tests (k = 3). Similarly to the previous case, the

optimal policy for the given pipeline efficiency objective is of form

((1,π 1

0
), (1,π 2

0
), (1,π 3

0
)). By numerical analysis, the local optimum

policies (w.r.t. f ) are ((1, 0), (1, 1), (1, 1)) and ((1, 1), (1, 0), (1, 0)).

Next, we compute the score of these two policies:

f ((1, 0), (1, 1), (1, 1)) = 2.5 and ((1, 1), (1, 0), (1, 0)) > 2.57.

This time, the optimal policy is to bypass t1 and fully use t2, t3, i.e.
((1, 1), (1, 0), (1, 0)).

Therefore, while in the first setting (only t1 and t2 are available)
the optimal policy is to fully use t1 and bypass t2, once t3 becomes

available, the optimal policy changes to bypass t1 and fully use t2
and t3. □

5
Using WolframAlpha.
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