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Abstract

Distance correlation has gained much recent attention in the data science community:
the sample statistic is straightforward to compute and asymptotically equals zero if and only
if independence, making it an ideal choice to discover any type of dependency structure
given sufficient sample size. One major bottleneck is the testing process: because the null
distribution of distance correlation depends on the underlying random variables and metric
choice, it typically requires a permutation test to estimate the null and compute the p-value,
which is very costly for large amount of data. To overcome the difficulty, in this paper we
propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-
parametric, extremely fast, and applicable to bias-corrected distance correlation using any
strong negative type metric or characteristic kernel. The test exhibits a similar testing power
as the standard permutation test, and can be utilized for K-sample and partial testing.
Theory-wise, we show that the underlying chi-square distribution well approximates and
dominates the limiting null distribution in upper tail, prove the chi-square test can be valid
and universally consistent for testing independence, and establish a testing power inequality
with respect to the permutation test.
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1 Introduction

Given pairs of observations (xi, yi) ∈ Rp × Rq for i = 1, . . . , n, assume they are independently

identically distributed as FXY . Two random variables are independent if and only if the joint

distribution equals the product of the marginal distributions. The statistical hypothesis for testing

independence is

H0 : FXY = FXFY ,

HA : FXY 6= FXFY .

Detecting the potential relationships underlying the sample data has long been a fundamental

question in theoretical and applied research. The traditional Pearson correlation (Pearson, 1895)

has been a valuable tool in quantifying the linear association and applied in many branches of

statistics and machine learning. To detect all types of dependence structures, a number of uni-

versally consistent methods have been proposed recently, such as the distance correlation (Szekely

et al., 2007; Szekely and Rizzo, 2009), the Hilbert-Schmidt independence criterion (Gretton et al.,

2005; Gretton and Gyorfi, 2010), the Heller-Heller-Gorfine statistics (Heller et al., 2013, 2016), the

multiscale graph correlation (Vogelstein et al., 2019; Shen et al., 2020), among many others. The

Hilbert-Schmidt independence criterion (HSIC) can be thought of as a kernel version of distance

correlation and vice versa (Sejdinovic et al., 2013; Shen and Vogelstein, 2021), and the multiscale

graph correlation is an optimal local version of distance correlation. These universally consistent

dependence measures have been applied to two-sample testing (Rizzo and Szekely, 2016; Panda

et al., 2021), conditional and partial testing (Fukumizu et al., 2007; Szekely and Rizzo, 2014;

Wang et al., 2015), feature screening (Li et al., 2012; Balasubramanian et al., 2013; Zhong and

Zhu, 2015; Wang et al., 2019), clustering (Szekely and Rizzo, 2005; Rizzo and Szekely, 2010),

time-series (Zhou, 2012; Fokianos and Pitsillou, 2018; Mehta et al., 2019), graph testing (Shen

et al., 2020; Xiong et al., 2020), etc.

To populate these methods to big data analysis, a big hurdle is the time complexity. Computing

the distance correlation typically requires O(n2); and to compute its p-value for testing, the stan-

dard approach is to estimate the null distribution of distance correlation via permutation, which
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requires O(rn2) where r is the number of random permutations and typically at least 100 or more.

In comparison, for one-dimensional (p = q = 1) data the Pearson correlation can be computed

in O(n), and a Pearson correlation t-test is readily available to compute the p-value in constant

time complexity O(1). The computational advantage makes Pearson extremely fast and attractive

in practice. Recent works have successfully expedited the distance correlation computation into

O(n log(n)) under one-dimensional data and Euclidean distance (Huo and Szekely, 2016; Chaud-

huri and Hu, 2019). The testing part, however, remains difficult and less well-understood, because

the null distribution of distance correlation has no fixed nor known density in general. Some

notable works include the distance correlation t-test (Szekely and Rizzo, 2013), HSIC Gamma test

(Gretton and Gyorfi, 2010), and the subsampling approach (Zhang et al., 2018), which provided

special treatments and very valuable insights into the problem.

In this paper, we propose a chi-square test for the bias-corrected distance correlation. It is

simple and straightforward to use, has a constant time complexity without the need to permute

nor subsampling nor parameter estimation, and does not rely on any distributional assumption on

data. In particular, the bias-corrected distance correlation can be computed in O(n log n) under

one-dimensional data and Euclidean distance, which renders the method comparable in speed to

the Pearson correlation t-test and scalable to billions of observations. The test is applicable to any

multivariate data, any strong negative type metric or characteristic kernel, and can be utilized for

K-sample and partial testing.

Theory-wise, we prove the chi-square test is universally consistent and valid for sufficiently

large n and sufficiently small type 1 error level α (generally n ≥ 20 and α ≤ 0.05 suffice), has a

similar testing power as the permutation test, and is the most powerful among all valid tests of

distance correlation using known distributions (i.e., any test that is based on a fixed distribution,

such as using t-test or F-test). In particular, we prove that the underlying chi-square distribution

can well-approximate and dominate the limiting null distribution of the bias-corrected distance

correlation in upper tail, and establish a testing power inequality among the chi-square test, the

distance correlation t-test from Szekely and Rizzo (2013), and the standard permutation test.

The advantages of the chi-square test are supported by simulations and real data experiments.
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The code are openly available on Github and implemented in Matlab1 and Python2. The Appendix

includes detailed background information, all theorem proofs and intermediate results, and detailed

simulation functions.

2 Method

2.1 The Distance Correlation Chi-Square Test

The proposed chi-square test is stated in Algorithm 1: given paired sample data (X,Y) ∈

Rn×(p+q), first compute the bias-corrected sample distance correlation C = Dcorn(X,Y), then

take the p-value as p = Prob(nC < χ2
1 − 1). Then at any pre-specified type 1 error level α, the

independence hypothesis is rejected if and only if p < α. Unless mentioned otherwise, in this paper

distance correlation always means the bias-corrected sample distance correlation (see Appendix

for the algebraic expression).

As the chi-square distribution is standard in every software package, the p-value computation

takes O(1) regardless of sample size, which is much faster than the standard permutation approach

requiring O(rn2). The statistic computation and thus Algorithm 1 on its whole require O(n2) in

general.

Algorithm 1 The Distance Correlation Chi-Square Test for Independence

Input: Paired sample data (X,Y) = {(xi, yi) ∈ Rp+q for i ∈ [n]}.
Output: The bias-corrected distance correlation C and its p-value p.

function FastTest(X,Y)
C = Dcorn(X,Y); . the bias-corrected distance correlation
p = 1− Fχ2

1−1(n · C); . reject the null when p < α
end function

The chi-square test is well behaved from the following theorem (which follows directly from

Theorem 5 in Section 3):

1https://github.com/neurodata/mgc-matlab
2https://github.com/neurodata/mgc
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Theorem 1. The distance correlation chi-square test that rejects independence if and only if

nDcorn(X,Y) ≥ F−1
χ2
1−1

(1− α)

is a valid and universally consistent test for sufficiently large n and sufficiently small type 1 error

level α.

In practice, n ≥ 20 suffices, and the validity empirically holds for any α ≤ 0.05.

2.2 Fast Statistic Computation

In the special case of p = q = 1 and Euclidean distance, Algorithm 1 can run significantly

faster:

Theorem 2. Suppose p = q = 1 and we use the Euclidean distance for the bias-corrected distance

correlation. Then Algorithm 1 can be implemented with a computational complexity of O(n log n).

Essentially the bias-corrected sample distance correlation can be computed in O(n log n) based

on the results from Huo and Szekely (2016) and Chaudhuri and Hu (2019). This makes one-

dimensional testing comparable in speed to the Pearson correlation t-test. On a standard Win-

dows 10 machine using MATLAB, we are able to test independence between a million pairs of

observations (p = q = 1) within 10 seconds with space requirement of O(n). Previously, the

statistic computation and the permutation test need a space complexity of O(n2) and a time

complexity of O(rn2), which would have required external disk storage and days of computation

to finish testing the same amount of data. The implementation details can be found in Appendix

and Github Matlab code.

2.3 Chi-Square Test for K-Sample

The chi-square test is readily applicable to any inference task using distance correlation, or

any statistic involving a similar trace operation with bias-corrected matrix modification. Two

immediate extensions are the K-sample test and partial test. Previously, the permutation test has

been the standard approach for both of them.
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Given K sets of sample data Uk = [uk1|uk2| . . . |uknk
] ∈ Rp×nk for k = 1, . . . , K, denote

∑K
k=1 nk =

n. The K-sample testing problem assumes uki are independently and identically distributed as FUk

for each i and k, and aim to test

H0 : FU1 = FU2 = · · · = FUK ,

HA : there exists at least one FUk that is different from other distributions.

Algorithm 2 shows the K-sample variant of chi-square test.

Algorithm 2 The Distance Correlation Chi-Square Test for K-sample

Input: Sample data {Uk ∈ Rp×nk for k = 1, . . . , K}.
Output: The distance correlation C and its p-value p.

function FastKSample({Uk})
(1) Data Transformation:

X = [ U1 | U2 | · · · | UK ]; . concatenate Data
Y = zeros(K,N); . a zero matrix
for k = 1, . . . , K do

for i = 1, . . . , nk do
Y(k,

∑k−1
j=1 nj + i) = 1;

end for
end for

(2) Test:
C = Dcorn(X,Y);
p = 1− Fχ2

1−1(n · C); . reject the null when p < α
end function

It is shown in Panda et al. (2021) that by concatenating the sample data into X and forming

an indicator matrix Y via one-hot encoding, Dcorn(X,Y) → 0 if and only if the null hypothesis

is true. Then the next corollary follows from Theorem 1.

Corollary 1. For sufficiently large n and sufficiently small type 1 error level α and any K ≥ 2,

Algorithm 2 is valid and universally consistent for testing FU1 = FU2 = · · · = FUK .

2.4 Chi-Square Test for Partial

Another application is to test whether the partial distance correlation equals 0 or not. Given

three sample data X,Y,Z of same sample size n, the partial distance correlation PDcorn(X,Y; Z)
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and its population version PDcor(X, Y ;Z) are defined in Szekely and Rizzo (2014). Algorithm 3

shows the chi-square test for fast partial testing,

Algorithm 3 The Distance Correlation Chi-Square Test for Partial

Input: Paired sample data (X,Y,Z) = {(xi, yi, zi) ∈ Rp+q+s for i ∈ [n]}.
Output: The partial distance correlation C and its p-value p.

function FastPartial(X,Y,Z)
C = PDcorn(X,Y; Z); . implementation details in Szekely and Rizzo (2014) or Github

Matlab code
p = 1− Fχ2

1−1(n · C); . reject the null when p < α
end function

The partial statistic shares the same trace formulation as bias-corrected distance correlation

and operates on the same bias-corrected matrix modification, except using projected distance

matrices rather than Euclidean distance matrices. Therefore we have the following result:

Corollary 2. For sufficiently large n and sufficiently small type 1 error level α, Algorithm 3 is

valid and consistent for testing PDcor(X, Y ;Z) = 0.

3 Supporting Theory

In this section we show the theory behind the chi-square test. Note that the results hold for

any strong negative type metric or any characteristic kernel for X and Y , e.g., Euclidean distance,

Gaussian kernel, Laplacian kernel, etc., which means the chi-square test is also applicable to the

Hilbert-Schmidt Independence Criterion. Some results (like Theorem 3 and Theorem 5) are stated

in limit or for sufficiently large sample size, for which n ≥ 20 generally suffices for the limiting

null distribution to be almost the same as the actual null.

3.1 The Limiting Null Distribution and the Centered Chi-Square Dis-

tribution

Theorem 3. The limiting null distribution of the bias-corrected distance correlation satisfies

nDcorn(X,Y)
D→

∞∑
i,j=1

wij(N 2
ij − 1),
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where the weights satisfy wij ∈ [0, 1] and
∞∑

i,j=1

w2
ij = 1, and Nij are independent standard normal

distribution.

This theorem follows from Zhang et al. (2018). For different choice of metric and different

marginal distributions, the weights {wij} and the limiting null distribution are different, which is

the main obstacle to design a test using known distribution. Nevertheless, from Theorem 3 we

observe the mean and variance of nDcorn(X,Y) are always fixed and equal the mean and variance

of χ2
1 − 1, which we shall call the centered chi-square distribution and denote by U from now on.

3.2 Upper Tail Dominance and Distribution Bounds

We aim to show that U ∼ χ2
1 − 1 dominates the limiting null distribution at some upper tail

probability α. We denote FV (x) as the cumulative distribution function of random variable V at

argument x, F−1V (1− α) as the inverse cumulative distribution function of random variable V at

probability 1− α, and formally define upper tail stochastic dominance as follows:

Definition 1. Given two random variables U and V , we say U dominates V in upper tail at

probability level α if and only if

FV (x) ≥ FU(x)

for all x ≥ F−1U (1− α). This is denoted by

V �α U.

The next theorem plays a key role in proving the remaining theorems:

Theorem 4. Assume U,U1, U2, . . . , Um are independently and identically distributed as χ2
1 − 1,

and the weights {wi ∈ [0, 1], i = 1, . . . ,m} are decreasingly ordered and satisfies
m∑
i=1

w2
i = 1. The

summation density satisfies

f m∑
i=1

wiUi

(x) = O(e−xc/2)
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where the constant c = 1
w1
∈ [1,

√
m].

Namely, the summation density is determined by the largest weight, which equals U if and only

if w1 = 1. We can then bound the upper tail distribution of bias-corrected distance correlation as

follows:

Theorem 5. For sufficiently large n, there exists α > 0 such that

N (0, 2) �α nDcorn(X,Y) �α U

regardless of the metric choice or marginal distributions.

Therefore, despite the null distribution is subject to change without a fixed nor known density

form, the centered chi-square distribution is always a valid approximation choice. Theorem 1 in

Section 2 (the validity and consistency of the chi-square test) follows trivially from Theorem 5.

3.3 Validity Level and Testing Power

The limiting null distribution have closed-form densities in some special cases, for which the

largest validity level α (i.e., the largest type 1 error level so the chi-square test is still valid) can

be exactly determined, e.g., 0.05 in Theorem 6 and at most 0.0875 in Theorem 8.

Theorem 6. Given m ≥ 1, assume the weights in Theorem 3 satisfy wi = 1√
m

for all i = 1, . . . ,m

and zero otherwise. It follows that

nDcorn(X,Y)
D→ χ2

m −m√
m

�0.05 U,

where χ2
m is the chi-square distribution of degree m.

Corollary 3. Under the same assumption of Theorem 4. Let m1 = b1/w2
1c and m2 = d1/w2

1e, it

always holds that

χ2
m2
−m2√
m2

�α
m∑
i=1

wiUi �α
χ2
m1
−m1√
m1

�α U.
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Next, we offer two random variable examples that achieve the known densities. Theorem 7

shows that the limiting null distribution can equal the centered chi-square distribution. Theorem 8

establishes the normal distribution (which is also used in the t-test in Szekely and Rizzo (2013))

with a simplified condition and a simplified proof, i.e., only one random variable is required to

have infinite dimension.

Theorem 7. When X and Y are two independent binary random variables, nDcorn(X,Y)
D→ U .

Theorem 8. Assume X is independent of Y , X is continuous, and each dimension of X is

exchangeable with positive finite variance. As n, p→∞, it holds that

nDcorn(X,Y)
D→ N (0, 2) �0.0875 U.

As the distance correlation t-test essentially uses a t-transformation of N (0, 2), we can view

the t-test and the chi-square test as two-sides of the permutation test. In particular, the distance

correlation t-test is an invalid test that slightly inflates the type 1 error level, while the chi-square

test is valid but always conservative in power:

Corollary 4. At any type 1 error level α ≤ 0.05, denote the testing power of distance correlation

chi-square test, distance correlation t-test, and the permutation test as βχα , β
t
α, βα respectively. At

any n and α such that Theorem 5 holds, there exists α1 ∈ (0, α] and α2 ∈ (α, 0.0875] such that

βχα = βα1 ≤ βα < βα2 = βtα.

The actual α1 and α2 depend on the metric choice and marginal distributions.

Finally, there is no other valid test of distance correlation that is as fast and as powerful as

the chi-square test:

Corollary 5. At any n and α such that Theorem 5 holds, the chi-square test is the most powerful

test among all valid tests of distance correlation using known distributions. Namely, for any valid

test z of distance correlation using a fixed distribution, it always holds that βχα ≥ βzα.
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4 Numerical Experiments

This section evaluates the numerical advantages of the chi-square test. First, we show that the

centered chi-square distribution approximates the true null distribution of bias-corrected distance

correlation in simulation. Second, the chi-square test is compared to existing tests on 1D data.

Then the comparison is carried out on multivariate and high-dimensional data. And finally, we

use a real data application to demonstrate the practical usage and superior performance of the

chi-square test. Simulation function details are in Appendix.

4.1 Null Distribution Approximation

The top row of Figure 1 visualizes the centered chi-square distribution U and the normal

distribution N(0, 2) (divide each by n), and compare them with the actual null distribution of

Dcorn(X,Y) in varying dimensions. The centered chi-square distribution and the normal distri-

bution are plotted by a solid line and an dashed line, respectively. We set sample size at n = 100,

generate independent X and Y for r = 10,000 replicates and different p, q, and plot the null

distribution in dotted line. The left panel shows the null distributions at p = q = 1, the center

panel is for p = q = 10, and the right panel is for p = q = 100. As expected from the theorems,

the upper tail of the null distribution for α ≤ 0.05 (equivalently y-axis greater than 0.95) always

lies between and gradually shifts from U to N(0, 2) as dimension increases.

The bottom row of Figure 1 shows the weights used in the corresponding limiting null distri-

bution, associated with the ordered eigenvalue list {λi, i = 1, . . . , 10} normalized by −(
n∑
i=1

λ2i )
0.5

(see proof of Theorem 3). When p = 1, the leading weight plays a dominating role such that

nDcorn(X,Y)
D
≈ U . As p, q increase, all weights becoming similar such that nDcorn(X,Y)

D→

N(0, 2). Therefore, the most conservative the chi-square test can be is to approximate a normal

distribution by a chi-square distribution of same mean and variance.

4.2 One-Dimensional Random Variables

Here we evaluate distance correlation chi-square test, permutation test, distance correlation

t-test, HSIC Gamma test (only applicable to biased HSIC), and the subsampling method for four
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Figure 1: The top row compares the centered chi-square distribution, the normal distribution, and the
actual null distribution of distance correlation in case of varying dimensions. The bottom row shows the
weights used in the limiting null distribution in each case.
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different 1D simulations: linear, quadratic, spiral, and independent. We extensively evaluated the

tests on many different dependency types and decided to illustrate four representative simulations

only, as the phenomenon is qualitatively similar throughout. All simulations are one-dimensional

in this section, that is, p = q = 1. In each simulation, we sample n = 20, 40, . . . , 200 points,

generate sample data 1,000 times, run each test and reject at α = 0.05 level, and compute how

often the test is correctly rejected (the testing power), which is then plotted against the sample

size.

The top row of Figure 2 shows the power of distance correlation under Euclidean distance, the

middle row shows the power of Hilbert-Schmidt independence criterion (equivalently the distance

correlation using Gaussian kernel), and the bottom row shows the running time for the top row

in log scale. The performance is the same throughout all dependency types and sample size and

metric choice: the permutation test is the benchmark for testing power, but significantly slower

than the fast alternatives; the distance correlation chi-square test has almost the same testing

power as the benchmark permutation test, and the fastest method; the distance correlation t-

test is equally fast, but consistently inflates the power in most cases, e.g., it has a power of 0.07

for independence vs about 0.05 of the permutation test; the subsampling method always yields

degraded power.

Note that the HSIC Gamma test requires some parameter estimation using mean, variance,

and kernel bandwidth, thus only applicable to the middle row for the biased HSIC. Its testing

power is almost the same as the chi-square and permutation tests. This does not mean the chi-

square test approximates the Gamma test in distribution. Rather, it implies that the Gamma

test approximates the null distribution of biased HSIC well; the chi-square test approximates the

bias-corrected null distribution well; then the permutation test has almost the same testing power

with or without bias-correction.

4.3 Increasing-Dimensional Random Variables

We consider four multivariate settings: equal variance (each dimension is exchangeable with

same variance), minimal variance (first few dimensions has same variance while remaining dimen-

sions have very small variance), dependent coordinates (consecutive dimensions are dependent),
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Figure 2: Evaluate distance correlation using different tests for linear, quadratic, spiral, and independent
simulations. The top row shows the power using the Euclidean distance, the center row shows the power
using the Gaussian kernel, and the bottom row shows the running time (in log scale) for each method in
the top row.
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Figure 3: Evaluate distance correlation using different tests for four increasing-dimensional simulations
using Euclidean distance. The first row shows the testing power in each simulation, and the second row
shows the running time in log scale for each method in the respective first row.

and varying marginals (the marginal distribution of each dimension is different). We fix the sam-

ple size and q = 1, increase p accordingly in each simulation, and compute the testing power at

α = 0.05 based on 1000 Monte-Carlo replicates.

The testing power and the running time are plotted against dimension in Figure 3, offering

almost the same interpretation as Figure 2. In particular, the equal variance simulation is the only

setting here satisfying the assumption of Theorem 8, in which case the t-test only minimally inflate

the testing power and the chi-square test exhibits a slightly more conservative testing power vs

the permutation test. In the other three high-dimensional settings, the dimensions are no longer

exchangeable, and the chi-square test has almost the same power as the permutation test. In

terms of running time, the chi-square test and the t-test are the best, which do not increase much

as dimension increases.

Finally, we evaluate the testing power for the multivariate simulation in Figure 1, and present

the results in Figure 4. Regardless of p, q, n, the chi-square test is always similar in power as the

permutation test and slightly conservative.

15



10 20 30 40 50
Dimension

0

0.2

0.4

0.6

0.8

1

Te
st

in
g 

Po
w

er

Chi-Square
Permutation
T Test
Subsampling

100 200 300 400 500
Sample Size

0

0.2

0.4

0.6

0.8

1

Te
st

in
g 

Po
w

er

Chi-Square
Permutation
T Test
Subsampling

Figure 4: The Testing Power for the simulation in Figure 1. The left panel fix n = 200, and let p, q
increases; the right panel set p = q = 50, and let n increases.

4.4 Real Data Application

Here we apply the tests to do feature selection on a proteomics data (Vogelstein et al., 2019;

Wang et al., 2011). The data consist of 318 proteolytic peptides measurements, derived from the

blood samples of 98 individuals harboring pancreatic (n = 10), ovarian (n = 24), colorectal cancer

(n = 28), and healthy controls (n = 33). We would like to identify potential biomarkers for the

pancreatic cancer, because it is lethal and no clinically useful biomarkers are currently available

(Bhat et al., 2012).

For each biomarker, we first apply the distance correlation permutation test (using 500 repli-

cates) between the blood measurement of each peptide and the class label (1 for pancreatic cancer,

0 otherwise). This yields 318 p-values, and we take all peptides with p-value less than 0.05 as the

positive ones (in total 19 of them), and the remaining 299 peptides as the negative ones. Then we

apply the chi-square test to each peptide vs the class label, and compute the true positive (i.e.,

when a peptide has p-value < 0.05 from the chi-square test, whether the peptide also has p-value

< 0.05 from the permutation test) and true negative. Repeat for the t-test and subsampling

method.

The result is summarized in Table 1. The chi-square test is fast and almost perfect for both true

positive and true negative. The t-test is as fast, but inflates one of two errors. The subsampling

is actually non-performing (all peptides have p-value > 0.1 so every peptide is a negative) — this
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is because due to the imbalanced label vector, most subsampled labels are a constant 0, so the

subsampled statistics end up being 0 most of the time.

Table 1: Report the running time (in seconds), true positive and true negative for each method. Per-
mutation test is the benchmark for determining the positive and negative peptides. Among all the
approaches, the chi-square test is the fastest with almost perfect result.

Method Running Time True Positive True Negative

Permutation Test 149.8 100% 100%

Chi-Square Test 0.32 92% 98%
T Test 0.34 92% 68%
Subsampling 0.48 NaN 94%

5 Discussion

This paper proposes a new chi-square test for testing independence. It is very computationally

efficient and scalable to big data, valid and universally consistent, applicable to general metric and

kernel choices and other tasks like K-sample and partial, achieves similar power as the permutation

test, and compares very favorably against all existing tests in simulations and real data. We

expect the chi-square test to be widely used in practice due to its computational and performance

advantages, and we plan to further investigate the stochastic dominance in theory and its potential

applications in other inference tasks.

In particular, by Corollary 4 the chi-square test is always more conservative than the permu-

tation test. But the power loss is negligible in 1D data and minimal in high-dimensional data as

shown in Figure 2 and Figure 3. In comparison, the t-test always inflates the testing power. As

shown in Figure 1, at the type 1 error level 0.05 the t-test inflates the error to (0.05, 0.07], while

the chi-square test has a conservative error within [0.02, 0.05]. Viewed in another way, the t-test

at α = 0.05 is equivalent in power to a permutation test at α ∈ (0.05, 0.07], while the chi-square

test at α = 0.05 is equivalent in power to a permutation test at α ∈ [0.02, 0.05]. Inflating the

type 1 error slightly may not be a big issue in a single test, but can cause larger deviation in

multiple comparison, as evidenced tin the real data application; whereas the chi-square test is not

susceptible to this issue.
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APPENDIX

A Background

This section contains necessary background for the proofs.

A.1 Biased and Bias-corrected Sample Distance Correlation

Let the paired sample data, which is assumed independently and identically distributed as

FXY , be denoted by

(X,Y) = {(xi, yi) ∈ Rp+q, i = 1, . . . , n}.

Given a distance metric d(·, ·) such as the Euclidean metric, let DX denote the n × n distance

matrix of X with DX
ij = d(xi, xj), DY denote the distance matrix of Y, and H = I − 1

n
J denote

the n × n centering matrix where I is the identity matrix and J is the matrix of ones. The

biased sample distance correlation was proposed in Szekely et al. (2007) with an elegant matrix

formulation:

Dcovbn(X,Y) =
1

n2
trace

(
HDXHHDYH

)
,

Dcorbn(X,Y) =
Dcovbn(X,Y)√

Dcovbn(X,X)Dcovbn(Y,Y)
∈ [0, 1],

where Dcovbn denotes the biased sample distance covariance and Dcorbn denotes the biased sam-

ple distance correlation. The bias-corrected version was later introduced via the following bias

correction (Szekely and Rizzo, 2014): compute a modified matrix CX as

CX
ij =


DX
ij − 1

n−2

n∑
t=1

DX
it − 1

n−2

n∑
s=1

DX
sj + 1

(n−1)(n−2)

n∑
s,t=1

DX
st, i 6= j

0, otherwise,
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and similarly compute CY from DY. The bias-corrected sample distance covariance and correla-

tion are

Dcovn(X,Y) =
1

n(n− 3)
trace

(
CXCY

)
,

Dcorn(X,Y) =
Dcovn(X,Y)√

Dcovn(X,X)Dcovn(Y,Y)
∈ [−1, 1].

Namely, CX always sets the diagonals to 0 and slightly modifies the off-diagonal entries from

HDXH. If n < 4 or the denominator term is not a positive real number, the bias-corrected

sample distance correlation is set to 0.

As long as the metric d(·, ·) is of strong negative type such as the Euclidean metric (Lyons,

2013), distance correlation satisfies the following:

Dcorn(X,Y)
n→∞→ 0 if and only if independence,

which guarantees a universally consistent statistic for testing independence. Moreover, it is unbi-

ased in the following sense:

E(Dcorn(X,Y)) = 0 when X is independent of Y ,

which is not satisfied by the biased version.

Instead of using a strong negative type distance metric, one may use a characteristic kernel for

d(·, ·), i.e., DX and DY become two kernel matrices, and all above formulation still hold. When

one uses the Gaussian kernel with median distance as the bandwidth, the resulting correlation

becomes the Hilbert-Schmidt independence criterion. As the theorems hold for any strong negative

type metric or any characteristic kernel, we shall consistently use the distance correlation naming

regardless of whether a metric or kernel is used for d(·, ·).

A.2 Null Distribution of Distance Correlation

The goal for fast testing is to approximate the null distribution of distance correlation via

a known distribution. Then given any sample test statistic, one can immediately compute the
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p-value, and reject the independence hypothesis when it is smaller than a pre-specified critical

level α.

From Zhang et al. (2018), the limiting null distribution of unbiased distance covariance satisfies

nDcovn(X,Y)
D→

∞∑
i,j=1

λiµj(N 2
ij − 1), (1)

where {λi} are the limiting eigenvalues of HDXH/n, {µj} are the limiting eigenvalues of

HDY H/n, Nij are identically and independently distributed standard normal random variables,

and the summation index sums over i = 1, . . . ,∞ and j = 1, . . . ,∞. The limiting null distribution

using sample eigenvalues is shown to almost equal the finite-sample null distribution for n ≥ 20

(see Lyons (2013) and Zhang et al. (2018) for more details), so it suffices to use the limiting null.

The eigenvalues {λi} and {µj} can vary significantly for different metric or kernel choices d(·, ·)

and different marginal distributions FX and FY . Therefore, no fixed distribution can perfectly

approximate the null all the time.

In a brute-force manner, the sample eigenvalues can be estimated via eigen-decomposition of

the sample matrices, then the null distribution can be simulated by generating n2 independent

normal distributions. This method has the best testing power (i.e., almost the same as permutation

test for n ≥ 20) but requires O(n3) time complexity thus too costly. Alternatively, one may

compute subsampled correlations and take average, which follows a normal distribution via the

central limit theorem. However, it is well-known and provable that a subsampled statistic yields

an inferior testing power, because the estimated null distribution is a very conservative one with

enlarged variance. These two approaches are summarized in Zhang et al. (2018).

The standard permutation test works as follows: for each replicate, permute the observations

in Y (row indices of the matrix) by a random permutation π, denote the permuted sample data as

Yπ, and compute the permuted statistic Dcor(X,Yπ). Repeat for r such random permutations,

and compute a set of permuted statistics {Dcor(X,Yπ)}. Then the p-value is the fraction of times

the observed test statistic is more extreme than the permuted test statistics. This is summarized

in Algorithm A1. The random permutation effectively breaks dependencies within the sample data

and well-approximates the actual null distribution. The permutation test is the default approach
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in almost every independence testing methodology, and provably a valid and consistent test with

any consistent dependence measure (Shen et al., 2020), not just distance correlation. Also note

that distance correlation and distance covariance share the same p-value under permutation test,

because the covariance to correlation transformation is invariant to permutation.

Algorithm A1 Permutation Test for Independence

Input: Paired sample data (X,Y) = {(xi, yi) ∈ Rp+q for i ∈ [n]}, and the number of random
permutation r.

Output: The test statistic C and the p-value p.
function PermutationTest(X,Y, r)

C = Stat(X,Y); . can be any dependency measure not just distance correlation
for s = 1, . . . , r do

π = randperm(n); . generate a random permute index
cp(s) = Stat(X(π),Y); . cp stores the permuted statistics

end for
p =

∑r
s=1 I(cp(s) > C)/r . the percentage the permuted statistics is larger

end function

A popular test using a known distribution is the distance correlation t-test (Szekely and Rizzo,

2013), which approximates the null distribution by a normal distribution of mean 0 and variance

2. When X and Y are independent, assume each dimension of X and Y are independently and

independently distributed (or exchangeable) with positive finite variance, it was proved that

√
n2 − 3n− 2 · Dcorn(X,Y)

D→ N (0, 2) (2)

as n, p, q → ∞. The t-distribution transformation and the corresponding t-test follow from the

normal distribution. Therefore, the distance correlation t-test has a constant time complexity and

enjoys a similar testing power as the permutation test under required condition. However, there

has been no investigation on its testing performance out of the high-dimension assumption.
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B Proofs

B.1 Proof of Theorem 1

Proof. From Theorem 5, U dominates nDcor(X,Y) in upper tail which the actual null converges

to. Therefore, there exists n′ and α
′

such that the test correctly controls the type 1 error level

for any α ≤ α′ and sample size n ≥ n′. For example, when α
′

= 0.05 from Theorem 6, the test is

expected to be valid at any type 1 error level no more than 0.05 at sufficiently large n.

For consistency: at any α < 2Φ(1) − 1, F−1U (1 − α) is a positive and fixed constant.

When X is dependent of Y , Dcorn(X,Y) converges to a non-zero positive constant, such that

nDcorn(X,Y)→ +∞ > F−1U (1− α) and the test is always correctly rejected asymptotically.

Therefore, the distance correlation chi-square test is valid and universally consistent for testing

independence.

B.2 Proof of Theorem 2

As the p-value computation in Algorithm 1 takes O(1), it suffices to show the bias-corrected

distance correlation can be computed in O(n log n) for one-dimensional data using Euclidean

distance. Denote the distances and centered distances as

Aij = ‖xi − xj‖2, Bij = ‖yi − yj‖2

Ai· =
n∑
j=1

Aij, Bi· =
n∑
j=1

Bij

A·· =
n∑
i=1

Ai·, B·· =
n∑
i=1

Bi·.

and define

T1 =
n∑

i,j=1

AijBij, T2 =
n∑
i=1

Ai·Bi·, T3 = A··B··.
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It was shown in Chaudhuri and Hu (2019) that T1, T2, T3 can be computed in O(n log n) for

one-dimensional data using Euclidean metric. Therefore, it suffices to prove the following lemma:

Lemma 1. The unbiased distance covariance can be expressed into

Dcovn(X,Y) =
T1

n(n− 3)
− 2T2
n(n− 2)(n− 3)

+
T3

n(n− 1)(n− 2)(n− 3)
.

Then unbiased distance covariance and correlation can be computed in O(n log n) for one-

dimensional data using Euclidean distance.

Proof. The unbiased distance covariance can be decomposed into

Dcovn(X,Y) =
1

n(n− 3)

n∑
i6=j

(Aij −
1

n− 2
Ai· −

1

n− 2
Aj· +

1

(n− 1)(n− 2)
A··)

· (Bij −
1

n− 2
Bi· −

1

n− 2
Bj· +

1

(n− 1)(n− 2)
B··)

=
T1

n(n− 3)
− 2T2
n(n− 2)(n− 3)

+
T3

n(n− 1)(n− 2)(n− 3)

− T2
n(n− 2)(n− 3)

+
(n− 1)T2

n(n− 2)2(n− 3)
+

T3 − T2 − T3
n(n− 2)2(n− 3)

− T2
n(n− 2)(n− 3)

+
(n− 1)T2

n(n− 2)2(n− 3)
+

T3 − T2 − T3
n(n− 2)2(n− 3)

+
T3

n(n− 1)(n− 2)(n− 3)
− 2T3
n(n− 2)2(n− 3)

+
T3

(n− 1)(n− 2)2(n− 3)

=
T1

n(n− 3)
− 2T2
n(n− 2)(n− 3)

+
T3

n(n− 1)(n− 2)(n− 3)
.

To compute the bias-corrected distance correlation, one needs to compute Dcovn(X,Y),

Dcovn(X,X), and Dcovn(Y,Y), all of which now take O(n log n). Therefore, the bias-corrected

distance correlation can be computed in O(n log n).

B.3 Proof of Corollary 1 and Corollary 2

Proof. From Panda et al. (2021), a valid and consistent independence test is also valid and con-

sistent for K-sample testing. Thus Corollary 1 follows immediately from Theorem 1.

From Szekely and Rizzo (2014), the partial distance correlation is also trace of the product of
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two modified distance matrix. Therefore PDcor(X, Y ;Z) has the same limiting null distribution

as in Equation 1. Thus Corollary 2 also follows from Theorem 1.

B.4 Proof of Theorem 3

Proof. Recall from Equation 1 that the limiting null distribution of distance covariance satisfies

nDcovn(X,Y)
D→

∞∑
i,j=1

λiµj(N 2
ij − 1),

where {λi} are the limiting eigenvalues of HDXH/n and {µj} are the limiting eigenvalues of

HDYH/n. Then the distance variance always satisfies

lim
n→∞

(Dcovn(X,X)−
n∑
i=1

λ2i )

= lim
n→∞

(Dcovn(X,X)− Dcovbn(X,X))

→ 0,

where the third line follows from the fact that both unbiased and biased statistics converge to a

same constant, and the second line follows from

Dcovbn(X,X) =
1

n2
trace

(
HDXHHDXH

)
=

n∑
i=1

λ2i .

Therefore,

Dcovn(X,X)→
∞∑
i=1

λ2i ,

Dcovn(Y,Y)→
∞∑
j=1

µ2
j ,

nDcorn(X,Y)
D→

∞∑
i,j=1

wij(N 2
ij − 1).
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where wij =
λiµj√

∞∑
i=1

λ2i

∞∑
j=1

µ2j

.

A strong negative type metric is always of negative type, and a characteristic kernel is always a

positive definite kernel. When the distance metric is of negative type, the two matrices are negative

definite and all eigenvalues are all non-positive. When positive definite kernels are used, then these

eigenvalues are all non-negative. In either case, the product {λiµj} is always non-negative such

that wij ∈ [0, 1]. Moreover, for any n ≥ 1 it always holds that

n∑
i,j=1

w2
ij =

n∑
i,j=1

λ2iµ
2
j

n∑
i=1

λ2i
n∑
j=1

µ2
j

= 1.

Note that in the special case that either X or Y is constant, all eigenvalues are 0 so the

correlation equals 0 instead. This corresponds to a trivial independence case, and all dominance

/ validity / consistency results hold trivially.

B.5 Proof of Theorem 4

Proof. We prove this theorem by induction. Lemma 2 proves the initial step at m = 2 by analyzing

the smaller weight w2 ∈ (0, 1√
2
], and Lemma 3 proves the induction step by considering the smallest

weight wm ∈ (0, 1√
m

]. As the weights are square summed to 1, the smallest positive weight must

satisfy wm ∈ (0, 1√
m

], and the largest weight must satisfy w1 ∈ [ 1√
m
, 1] . It suffices to consider

all positive weights, because it reduces to the m − 1 case when wm = 0. Moreover, if m = 1,

the summation density equals U which satisfies fU(x) = O(e−x/2); and if wi = 1√
m

for all i, it

corresponds to Theorem 6.

Lemma 2. Suppose both U and V are independently and identically distributed as the centered

chi-square distribution, and w ∈ (0, 1/
√

2]. The density of
√

1− w2U + wV decays exponentially

at the rate O(e−x/(2
√
1−w2)).
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Proof. The summation density equals

fwU+
√
1−w2V (x) =

∫ +∞

−w
f√1−w2V (x− z)fwU(z)dz

=
b2

w
√

1− w2

∫ x+
√
1−w2

−w
((

x− z√
1− w2

+ 1)(
z

w
+ 1))−0.5e

−( x−z√
1−w2

+ z
w
+2)/2

dz

=e
− x

2
√

1−w2 · b2e−0.5√
1− w2

·
∫ x+

√
1−w2

w

−1
((
x− wz√
1− w2

+ 1)(z + 1))−0.5e
−((1− w√

1−w2
)z+1)/2

dz

=e
− x

2
√

1−w2 · g(x),

where the second to last equality involves a change of variable from z to z
w

, and the last equality

combines every other term into g(x).

The leading exponential term dominates the decay rate of the density, while g(x) is at most

O(x): the term b2e−0.5
√
1−w2 ≤

√
2b < 1 is a fixed constant; the upper bound of the integral increases

at O(x); the polynomial term of the integral is O(1); and the remaining exponential term in the

integral satisfies

e
−((1− w√

1−w2
)z+1)/2 ≤ 1

for any fixed w ∈ (0, 1√
2
]. Therefore, the density of wU +

√
1− w2V decays at the rate O(e−xc/2),

for which c = (1 − w2)−0.5 ∈ (1,
√

2]. When we consider m = 2 and let w2 = w be the smaller

weight, w1 =
√

1− w2 becomes the larger weight so c = 1/w1.

Lemma 3. Suppose U is the centered chi-square distribution, and V is an m−1 weighted summa-

tion of Ui using the weights {wi(1− w2
m)−0.5, i = 1, . . . ,m− 1} for any m > 2 and wm ∈ (0, 1√

m
].

Assume the density of V satisfies

fV (x) = O(e−xcm−1/2)

where cm−1 =
√

1− w2
m/w1 ∈ [1,

√
m− 1]. Then the density f

wmU+
√

1−w2
mV

(x) satisfies

f
wmU+

√
1−w2

mV
(x) = O(e−xcm/2)

9



where cm = 1/w1 ∈ [1,
√
m].

Proof. The initial case corresponds to Lemma 2 with c1 = 1/w1 ∈ (1,
√

2]. Moreover, {wi(1 −

w2
m)−0.5, i = 1, . . . ,m− 1} is always a valid weighting scheme for m− 1 summation because

m−1∑
i=1

w2
i /(1− w2

m) = 1.

The density of V must be of the form

fV (x) = e−xcm−1/2g(x),

where g(x) is a function that grows at most o(excm−1/2).

In the following, we let w = wm to simplify the expression. Then the summation density is

fwU+
√
1−w2V (x)

=

∫ +∞

−w
f√1−w2V (x− z)fwU(z)dz

=
b√

1− w2

∫ x+
√

m(1−w2)
w

−1
(z + 1)−0.5e

−( cm−1(x−wz)√
1−w2

+z+1)/2
g(

x− wz√
1− w2

)dz

=e
− xcm−1

2
√

1−w2 · b√
1− w2

·
∫ x+

√
m(1−w2)
w

−1
(z + 1)−0.5e

−((1− wcm−1√
1−w2

)z+1)/2
g(

x− wz√
1− w2

)dz.

The only exponential term within the integral satisfies

e
−((1− wcm−1√

1−w2
)z+1)/2 ≤ 1.

This is because

wcm−1√
1− w2

≤ cm−1√
m− 1

≤
√
m

m− 1
< 1

for any m > 2, so that (1 − wcm−1√
1−w2 )z + 1 ≥ 0 when z > −1. Analyzing every other term in the

same manner as the base case in the proof of Lemma 2, we conclude that the density is dominated
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by the leading exponential term. Therefore, the density decays at O(e−xcm/2), where

cm =
cm−1√
1− w2

= 1/w1 ∈ (1,
√
m].

B.6 Proof of Theorem 5

Proof. From Theorem 4, the decay rate of the summation density is O(e−xc/2) with c ≥ 1. It

always decays faster than U such that for sufficiently large x,

f m∑
i=1

wiUi

(x) ≤ fU(x)

with equality if and only if m = 1, leading to upper tail dominance for sufficiently small

α. Moreover, N (0, 2) has the same mean and variance as them, with a density decay rate

of O(e−x
2/8) that is always faster than O(e−xc/2). Therefore, there exists α > 0 such that

N (0, 2) �α nDcor(X,Y) �α U .

B.7 Proof of Theorem 6

Proof. First, the density of U is

fU(x) = b(x+ 1)−0.5e−(x+1)/2

where b = 2−0.5Γ(0.5)−1 ≈ 0.4 is the constant from standard chi-square distribution of degree 1.

The domain of U is (−1,+∞), and the density equals 0 otherwise.

When wi = 1√
m

,

W =
m∑
i=1

wiUi =
m∑
i=1

Ui/
√
m ∼ χ2

m −m√
m

,
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whose density equals

√
m

2
m
2 Γ(m/2)

(
√
mx+m)

m
2
−1e−

√
mx+m

2 .

At fixed m, the density of W decays exponentially at the rate O(e−
√
mx/2). This matches Theo-

rem 4, and there must exist x such that fU(x′) ≥ fW (x′) for all x′ ≥ x.

As the distribution is known, we can exactly compute the argument x such that FW (x) ≥

FU(x), which is monotonically decreasing as m increases. In particular, x = 2.7 < F−1U (0.95)

when m = 2; x = 2.5 when m = 3; x = 2.3 when m = 10; and x = 2 when m = 1000. Therefore α

is at least 0.05 regardless of m, and W �0.05 U always holds in the equal weight case. As m→∞,

the validity level converges to α = 0.0875 from the proof of Theorem 8.

B.8 Proof of Theorem 7

Proof. This theorem follows from Lemma 4: when X and Y are binary random variables, the

centered sample matrix HDXH only has 1 nonzero eigenvalue, so is HDYH. As a result, the

eigenvalue products in Equation 1 satisfy λ1µ1 > 0 and λiµj = 0 otherwise.

Once the eigenvalue products are normalized into wij (see proof of Theorem 3), it follows that

w11 = 1 and wij = 0 otherwise, and nDcorn(X,Y)
D→ U .

Lemma 4. Suppose the sample data X has at most m distinct values. Then the sample matrix

HDXH has at most m− 1 non-zero eigenvalues regardless of n.

This lemma can be argued via the sample matrix as follows: First, as H is the centering matrix,

the eigenvalues of HDXH always equal the eigenvalues of DXH. Next, observe that det(H) = 0

and thus det(DXH) = 0, so there exists at least one zero eigenvalue and at most n − 1 non-zero

eigenvalues. The geometric multiplicity of the zero eigenvalue equals n−rank(DXH), so the total

number of non-zero eigenvalues is rank(DXH) = rank(DX)− 1. When X has m distinct values,

the distance matrix only has m distinct rows and rank(DX) = m. Therefore the centered matrix

has m− 1 non-zero eigenvalues.
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B.9 Proof of Theorem 8

Proof. As p→∞ and X is continuous, the Euclidean distance matrix DX converges to a(J − I),

so the centered matrix converges to a(−I) + aJ/n, where a is a constant depending on the metric

choice and marginal distribution FX . Using Lemma 4, HDXH/n has 1 zero eigenvalue and n− 1

non-zero eigenvalues that are asymptotically the same. Similarly for HDYH/n when q →∞ and

Y is continuous.

This is essentially the asymptotic case of Theorem 6 as m → ∞. By Lyapunov central limit

theorem:

m∑
i=1

wiUi
m→∞→ N (0, 2).

Evaluating the cumulative distribution of standard normal, it follows that N (0, 2) �α U at α =

0.0875. Therefore, when either p or q increases to infinity and n also increases to infinity, the

limiting null distribution becomes a normal distribution and satisfies N (0, 2) �0.0875 U .

B.10 Proof of Corollary 5

Proof. Given a test z with a fixed distribution Z, it being always valid for testing independence

at level α requires

U �α Z

because U is the limiting null distribution of distance correlation between binary random variables

by Theorem 7. Thus,

nDcorn(X,Y) �α U �α Z

when testing independence between arbitrary random variables, and

βzα < βχα ≤ βα
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always holds. Therefore, the chi-square test is the most powerful test among all valid tests of

distance correlation using known distributions.

C Simulation Details

The simulations in Figure 1 and Figure 4 are generated via the exponential relationship:

X[d] ∼ Uniform(−3, 1) for each d = 1, . . . , p

Y = exp(X) + 0.2 ∗ ε,

where q = p and ε is an independent standard Cauchy random variable.

The 1-dimensional sample data in Figure 2 are generated via the following:

• Linear (X, Y ):

X ∼ Uniform(−1, 1),

Y = X + ε.

• Quadratic (X, Y ):

X ∼ Uniform(−1, 1),

Y = X2 + 0.5ε.

• Spiral (X, Y ): let Z ∼ N (0, 5), ε ∼ N (0, 1),

X = Z cos(πZ),

Y = Z sin(πZ) + 0.4ε.

• Independent (X, Y ): let Z ∼ N (0, 1), W ∼ N (0, 1), Z ′ ∼ Bernoulli(0.5), W ′ ∼
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Bernoulli(0.5),

X = Z/3 + 2Z ′ − 1,

Y = W/3 + 2W ′ − 1.

In all four simulations we have p = q = 1, and ε is an independent standard normal random

variable.

The increasing-dimensional simulations in Figure 3 are generated via

• Equal variance:

X[d] ∼ Uniform(−1, 1) for each d = 1, . . . , p

Y = X[1];

• Minimal variance:

X[d] ∼ Uniform(−1, 1), for d = 1, . . . , 20,

X[d] ∼ 1

p
· Uniform(−1, 1), for d = 21, . . . , p,

Y = X[1];

• Dependent coordinate:

X[1] ∼ Uniform(−1, 1),

X[d] = 0.5X[d− 1] + Uniform(−0.5, 0.5), for d = 2, . . . , p,

Y =

p∑
d=1

X2[d];
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• Varying marginal:

X[d] ∼ N (d, d), for d = 1, . . . , p,

Y = X[1].

In all four simulations we have q = 1, sample size n set to 20, 100, 50, 100 respectively, and p

increases from 100 to 1000 in the first two simulations and 2 to 20 in the latter two simulations.
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