
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, ACCEPTED, 2021 1

A Simple Spectral Failure Mode
for Graph Convolutional Networks
Carey E. Priebe, Cencheng Shen, Ningyuan (Teresa) Huang, Tianyi Chen

Abstract—Neural networks have achieved remarkable successes in machine learning tasks. This has recently been extended to graph
learning using neural networks. However, there is limited theoretical work in understanding how and when they perform well, especially
relative to established statistical learning techniques such as spectral embedding. In this short paper, we present a simple generative
model where unsupervised graph convolutional network fails, while the adjacency spectral embedding succeeds. Specifically,
unsupervised graph convolutional network is unable to look beyond the first eigenvector in certain approximately regular graphs, thus
missing inference signals in non-leading eigenvectors. The phenomenon is demonstrated by visual illustrations and comprehensive
simulations.

Index Terms—Graph Embedding, Spectral Embedding, Node Classification, Convolutional Neural Network

F

1 INTRODUCTION

G RAPH embedding aims to learn a low-dimensional rep-
resentation for each node in a given graph, on which

subsequent inferences can be directly performed. Recently,
graph neural networks have emerged an attractive graph
embedding solution due to the representation power: they
can learn nonlinear mappings from the graph space to the
embedding space, while traditional methods such as matrix
factorization are restricted to linear mappings [1]. On the
other hand, powerful graph neural networks can fail if their
architectures do not align with the downstream tasks [2].

The natural question is how well graph neural networks
perform: Are they always the preferred graph embedding
solution? And if not, can we characterize when and how
they are sub-optimal? To answer the question, we present
a simple and intuitive random graph generative model,
where unsupervised graph convolutional network (GCN)
fails while adjacency spectral embedding (ASE) – a matrix
factorization method – succeeds.

Specifically, we propose a latent position graph model
where the classification information lies on the second
eigenvector and perpendicular to the first eigenvector. The
graph is approximately regular, and unsupervised GCN
embedding mainly recovers the leading eigenvector of the
graph adjacency matrix. Namely, unsupervised GCN can be

• Carey E.Priebe is with the Department of Applied Mathematics and Statis-
tics (AMS), the Center for Imaging Science (CIS), and the Mathematical
Institute for Data Science (MINDS), Johns Hopkins University. E-mail:
cep@jhu.edu

• Cencheng Shen is with the Department of Applied Economics and Statis-
tics, University of Delaware. E-mail: shenc@udel.edu

• Ningyuan (Teresa) Huang and Tianyi Chen are with the Department of
Applied Mathematics and Statistics, Johns Hopkins University. E-mail:
nhuang19@jhu.edu, tchen94@jhu.edu

This work was supported in part by the Defense Advanced Research Projects
Agency under the D3M program administered through contract FA8750-
17-2-0112, the National Science Foundation HDR TRIPODS 1934979, the
National Science Foundation DMS-2113099, the University of Delaware
Data Science Institute Seed Funding Grant, and by funding from Microsoft
Research. The authors thank Wade Shen for providing the motivation for this
investigation, and also thank the editor and reviewers for valuable comments
and suggestions that significantly improved the exposition of the paper.

sub-optimal for an approximately regular graph where the
signal of the downstream task lies on non-leading eigenvec-
tors, while ASE can succeed under proper dimension choice.

To our best knowledge, our results provide the first
geometry characterization of GCN limitation under random
graph models, which is an important aspect of unsupervised
graph convolutional network that requires further investiga-
tion and improvement. In the following, we first introduce
the necessary background, followed by the failure geometry,
and extensive simulations to demonstrate the failure mode.

2 BACKGROUND

2.1 Classification with Empirical Risk Minimization

The classical statistical formulation of the classification
problem consists of

(X,Y), (X1, Y1), · · · , (Xm, Ym)
iid∼ FXY

where {(Xi, Yi)}i∈{1,··· ,m} is the training data, and (X,Y)
represents the to-be-classified test observation X with true-
but-unobserved class label Y . We consider the simple set-
ting in which X is a feature vector in finite-dimensional
Euclidean space and Y is a binary class label in {0, 1}. We
assume that X has a density, and denote its marginal and
class-conditional densities by fX and fX|y . We denote the
Bayes optimal classifier g∗(·) and its associated Bayes opti-
mal probability of misclassification by L∗ = P [g∗(X) 6= Y].

The goal is to learn a classification rule gm(·) from
the training data, which maps feature vectors to class la-
bels such that the probability of misclassification L(gm) =
P (gm(X) 6= Y) is small (see [3], page 2). We will evaluate
performance via the expectation (taken over the training
data) of probability of misclassification, E[L(gm)]. In this
setting, choosing gm ∈ C via empirical risk minimization
(ERM) yields E[L(gm)] → L∗ as m → ∞ (see [3], Theorem
4.5).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, ACCEPTED, 2021 2

2.2 A Latent Position Graph
The generative model of interest in this paper involves

(X1, Y1), · · · , (Xn, Yn)
iid∼ FXY

with (Xi, Yi) ∈ Rd × {0, 1}. It is required that X>i Xj ∈
[0, 1], i.e., the inner product is a valid probability. Rather
than observing the Xi’s, we observe a latent position graph
G = (V,E) on n nodes with (binary, symmetric, hollow)
adjacency matrix A, that is generated by

Aij
ind∼ Bernoulli(X>i Xj)

for i < j. This is the so-called random dot product graph
(RDPG); see [4] for a recent survey.

For node classification, we observe the n × n matrix A,
and the class labels Yi are observed for only m nodes with
m < n. The task is to classify the remaining n −m nodes.
This is a simple case of the problem studied in [5].

2.3 Graph Embedding
Given the n × n matrix A and {Y1, · · · , Ym}, we approach
the node classification task via unsupervised graph embed-
ding followed by subsequent linear classification. Specifi-
cally, we consider embedding, denoted h : An×n → (Rd′

)n,
via two approaches: the adjacency spectral embedding (the
scaled leading eigenvectors Ud′ |Σd′ |1/2 of A) [6], and the
graph convolutional network (a stack of layers, each of
which consists of a graph convolution followed by a point-
wise nonlinearity; see Section 4.1 for details) [7], [8]. Other
graph embedding methods, not germane to our investiga-
tion but popular nonetheless, include Laplacian spectral
embedding [9], node2vec [10], non-negative matrix factor-
ization [11], [12], etc. See [13] for an overview.

For either ASE or unsupervised GCN, we denote X̂ =
{X̂1, · · · , X̂n} as the embedding. A classifier ĝ(·) is trained
on {(X̂i, Yi)}i∈{1,··· ,m}. For i > m the classified label is
ĝ(X̂i), and performance is measured via E[L(ĝ)]. Note that
d′ is the embedding dimension we choose (e.g., the embed-
ding dimension in ASE, or the neuron size of the last layer
in GCN), while d as in Section 2.2 is the true latent position
dimension.

Here E[L(gm)] is the target performance – the perfor-
mance we would achieve if we observed the latent positions
themselves. We cannot hope to do better, via an argument
reminiscent of the data processing lemma, as the inner
products X>i Xj are corrupted through the Bernoulli noise
channel into Aij . RDPG theory for ASE into dimension
d′ = rank(E[A]) (specifically the 2→∞ norm convergence
result presented in [14]) implies that E[L(ĝ)] → E[L(gm)]
as n → ∞. In other words, ASE is consistent for the
classification task.

However, to the best of our knowledge, there is no
such guarantee of consistency for GCN despite its empirical
success in applications. Theoretical work for GCN has been
focused on its expressive power [2], [15], [16], [17], [18], [19],
[20], [21], [22], stability [23] and transferability [24], [25]. As
pointed out in [26], most impossibility results (such as [16],
[17], [19]) are based on anonymous GCN where nodes have
the same attributes. In contrast, non-anonymous GCN with
discriminative node features are provably more powerful,

which could be Turing universal given sufficient capacity
and the right learning procedure [26]. Indeed, the learning
procedure is crucial, as some graph neural networks gener-
alize better than others [2]. Recent studies also suggest that
graph neural networks can be simplified as linear models
without negatively impacting their performance [27]. The
GCN algorithm studied in this paper can be viewed as
non-anonymous GCN embeddings trained from two different
learning procedures: unsupervised versus semisupervised.

3 FAILURE GEOMETRY

In this section we present a latent position model such that
unsupervised GCN fails. We shall start with an auxiliary
variable Z, then construct the latent position variable X
using srt (scale-rotate-translate) transformation. The srt
transformation is the key to the desired failure geometry,
where the first eigenvector of A is orthogonal to the support
of X (i.e., the classification signal). It changes the graph
topology but preserves the latent distribution.

3.1 The srt Transformation
Given a univariate Z ∈ [0, 1], we define the srt transforma-
tion srt(·) : [0, 1]→ R2:

X = srt(Z) =

[
cos(r) −sin(r)
sin(r) cos(r)

] [
sZ
0

]
+ t,

where s ∈ R+ is the scalar term, r ∈ [0, 2π) is the rotation
angle, and t ∈ R2 is the translation term. For X to be a valid
latent position for RDPG (namely X>i Xj ∈ [0, 1]), the range
of (s, r, t) needs to be a proper subset of R+ × [0, 2π)× R2.

As such, we may assume without loss of generality
that the marginal density fX is supported on S ⊂ R2

+ ∩
B(0, 1) (unit ball of dimension 2). Note that E[Asrt] is
positive semidefinite and, except for very special values
for (s, r, t) for which S is on a ray from the origin, we
have rank(E[Asrt]) = 2. Both L∗ and E[L(gm)] remain
unchanged under the srt transformation.

3.2 Visualize the Latent X
Figure 1 illustrates the failure mode for GCN. The density
fX is supported on the line segment S ⊂ R2

+ ∩ B(0, 1).
There are two angles of interest: θ⊥ is the angle between
R+ and the ray from the origin perpendicular to S; θE is
the angle between R+ and the ray from the origin to E[X].
When θE = θ⊥, the first eigenvector of E[Asrt] is orthogonal
to S and has no classification signal.

In Figure 1, we let fX|0 = srt(Beta(10, 3)), fX|1 =
srt(Beta(4, 3)), (s, r, t) = (1.1, 53π/32, [0.13, 0.97]>), and
class prior probability being 0.5 (so each class is equally
likely). In this case, θ⊥ = 5π/32 and θE = 3π/16 and hence
|θE−θ⊥| = π/32, which is designed to be almost orthogonal
but not exactly.

The srt-transformed graph is approximately regular
with almost constant node degree. As shown in the sim-
ulation section, unsupervised GCN (and also ASE into di-
mension d′ = 1) is only able to recover the first eigenvector,
thus performs poorly for Asrt. This phenomenon may be
generalized to other approximately regular graphs whose
inference signal lies on non-leading eigenvectors.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, ACCEPTED, 2021 3

θθ⊥

θθ⊥

Fig. 1. Geometry for the canonical case where ASE succeeds but GCN
fails. The top panel shows the density: the black line represents density
of fX , while the green line and red line represent the class-conditional
density of fX|0 and fX|1. The bottom panel shows one sample data
generation with n = 1000 and m = 100: the green crosses and red
crosses are training points from fX|0 and fX|1 respectively with known
label, while the black crosses are the remaining test points. Round dots
are ASE after Procrustes with same color setting. Contours are from
kernel density estimation of red dots and green dots. For this case,
indicated by the vertical line at |θE − θ⊥| = π/32 in Figure 2, both
ASE into dimension d′ = 1 and unsupervised two-layer GCN perform
poorly while ASE into two dimensions has nearly optimal performance.

4 FAILURE SIMULATION

In this section, we first introduce GCN in both unsupervised
and semi-supervised formulations, followed by the node

classification results under Asrt with varying parameter set-
tings, then provide simulations to demonstrate eigenvector
recovery in approximately regular graphs.

4.1 Graph Convolutional Networks

In this section we describe the architecture of unsupervised
GCN and semisupervised GCN. The former is directly
comparable with ASE as they produce graph embedding
without utilizing any additional node information, thus the
focus of comparison here.

We consider the two-layer GCN model [7] designed as

GCN(X, A) = ÃReLU(ÃXW0)W1 (1)

where X is the node feature matrix, Ã = D−1/2(A +
I)D−1/2 is the symmetrically normalized adjacency matrix,
and D is the node degree matrix. Since our latent position
graph does not have node features, the input X is set to
the n × n identity matrix by default, which is equivalent
to a non-anonymous GCN. Alternatively, by replacing ReLU
activation by the identity activation [27], it becomes a linear
GCN.

Unsupervised GCN

Unsupervised GCN (Variational Graph Auto-Encoder [8])
estimates the latent graph embedding matrix X̂ using a
variational auto-encoder architecture without seeing any
labels. The variational inference model of X̂ is given by

q(X̂|X, A) =
n∏

i=1

q(X̂i|X, A)

with q(X̂i|X, A) = N (X̂i|μi, diag(σ
2
i)). In our featureless

setting where X = I , the parameters of the inference model
μ,σ (the matrix of mean vectors μi and variance vectors σi

respectively) are estimated by

μ = GCNμ(X, A) = ÃReLU(ÃW0)W
μ
1 (2)

logσ = GCNσ(X, A) = ÃReLU(ÃW0)W
σ
1 (3)

where GCNμ and GCNσ share the first layer weights W0

and learn the second layer weights Wμ
1 ,Wσ

1 independently.
Unsupervised GCN is trained by reconstructing the in-

put graph. It optimizes the variational lower bound L with
respect to W0,W

μ
1 ,Wσ

1 :

Lunsup = Eq(X̂|X,A)[log p(A|X̂)]−KL[q(X̂|X, A)||p(X̂)]
(4)

where the KL[q(·)||p(·)] term represents the Kullback-
Leibler divergence between q(·) and p(·). We assume a
Gaussian prior p(X̂) =

∏
i N (X̂i|0,1). In the training stage,

the embedding is estimated using the reparameterization
trick [28] as X̂ = μ + εσ. After training, the graph embed-
ding X̂ = μ is used for node classification, as described in
Section 2.3.

Semisupervised GCN

The semisupervised GCN produces the class probabilities as

P = softmax(GCN(X, A)), (5)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, ACCEPTED, 2021 4

trained with m labels via cross-entropy loss

Lsemisup = −
m∑
i=1

K∑
k=1

Yij logPij (6)

and evaluated on the remaining n−m labels. Besides deep
learning, other types of semisupervised learning methods
exist, typically involved constructing the graph from the
input data [29]; and see [30] for a survey.

4.2 Experiment 1
Here we consider the latent graph Asrt as in Section 3 and
Figure 1. Everything else being the same, we vary the srt
transformation as follows: Let (s, r, t) = (1.1, 53π/32, t),
where t ranges linearly from [0.25, 0.97]� to [0.02, 0.97]�

and preserves the inner product constraint for RDPG. As
a result, |θE − θ⊥| ranges from 0 to π/14, i.e., from exact
orthogonality to less orthogonal between the first eigenvec-
tor of E[Asrt] and the support of X . Figure 2 shows the
classification performance of each method at m = 100 and
n = 1000 and increasing angle difference.

Fig. 2. Performance for the canonical case where ASE succeeds but
two-layer unsupervised GCN fails. ERM in the legend stands for empir-
ical risk minimization classifier. We run 100 Monte Carlo replicates and
report the average classification error.

For the given Asrt, the optimal Bayes error is L∗ ≈ 0.25
and E[L(g100)] ≈ 0.26 regardless of t. ASE into two dimen-
sions always works well, while both unsupervised GCN
and ASE into one dimension yield much worse performance
when |θE − θ⊥| ≈ 0. As the angle becomes less orthogonal,
the first eigenvector of Asrt captures more classification
signal, and all methods perform better.

Note that nonlinear GCN (Relu activation) performs
similarly as linear GCN (linear activation). In this experi-
ment, unsupervised GCN (either linear or nonlinear) uses
the two-layer GCN model with hidden size 2 (because the
underlying latent variable lies in R

2), learning rate 0.01, no
weight decay, and a maximum of 500 epochs with early
stopping at a patience of 100 epochs.

4.3 Experiment 2
The same phenomenon always holds regardless of the
training data ratio m/n. Figure 3 summarizes the clas-
sification error at fixed n = 500, increasing m/n in
{0.02, 0.05, 0.1, 0.3, 0.5, 0.7}, using three different model ge-
ometries with 100 Monte Carlo replicates. As m increases,
every method has slightly better classification error, yet ASE
at d = 2 exhibits consistent advantages against unsuper-
vised GCN.

Fig. 3. Effects of changing m/n on the classification performance for
different methods. Vertical dash line indicates m/n = 0.1 used in
Figure 2.

Note that ASE into d′ = 2 always performs well because
it selects the correct embedding representation under the la-
tent position model. ASE into d′ = 1 is sub-optimal because
it only selects the first eigenvector — the same reason why
unsupervised GCN fails (see Section 4.5). As angle increases,
ASE with d′ = 1 slightly outperforms unsupervised GCN,
because neural networks typically has larger estimation
variance. Moreover, Relu activation performs slightly better
than linear activation for the same reason: as the graph itself
and the first eigenvector are all non-negative in each entry,
Relu shall have less estimation variance than linear.

4.4 Experiment 3
The unsupervised GCN results presented in Section 4.2
are obtained without hyper-parameter search. To show the
phenomenon is invariant to parameters, we further present
the results using cross validation on the hyperparameters.
We also include semisupervised GCN in this experiment,
which improves on the unsupervised version but does not
outperform ASE with d′ = 2 (again due to the larger
estimation variance of neural networks).

We consider the following parameter in GCN:

• Hidden size: [2, 4, 8, 16, 32]
• Learning rate: [0.01, 0.001].

The hyper-parameter search is repeated on 3 different
weight initializations, and 20% validation set from the train-
ing data. We pick the model with the best average training
accuracy, and report the testing error.

The results are presented in Figure 4: there is little change
to the performance of unsupervised GCN after optimizing
for hyper-parameters (orange stars). The semisupervised
GCN performs slightly worse than ASE into two dimensions

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, ACCEPTED, 2021 5

Fig. 4. Adding parameter cross validation results for unsupervised GCN,
and include semisupervised GCN. The curves for GCN models are
obtained without hyper-parameter search, while the stars represent the
best results after hyper-parameter search.

(yellow line for the no cross validation case, and yellow star
for cross validated case).

4.5 Experiment 4
In this experiment, we numerically demonstrate that unsu-
pervised GCN only recovers the first eigenvector in certain
approximately regular graphs. We consider two settings: the
first setting is the same latent position graph Asrt as in
Figure 1; then the second setting uses a simple Erdos-Renyi
graph where Aij

i.i.d.∼ Bernoulli(0.1), for which the degree
of each node is about n

10 .
In each setting, we compute the unsupervised GCN em-

bedding at output and hidden dimension 4, then calculate
the angle difference between each embedding dimension
and each eigenvector of the graph adjacency. The results
are summarized in Table 1 for the top three eigenvectors: all
GCN dimensions are very close to the leading eigenvector
(which is a scalar multiple of ones), and almost exactly
orthogonal to the remaining eigenvectors. As ASE at d′ = 1
is the first eigenvector (up-to a scalar), and ASE at d′ = 2
includes the first two eigenvectors, Table 1 can also be
viewed as the angle difference between unsupervised GCN
and ASE, i.e., GCN embedding is always very similar to
ASE at d′ = 1.

The phenomenon is the same throughout small to large
d, and the embedding is always orthogonal to all remaining
eigenvectors of A. This illustrates why unsupervised GCN
fails in the proposed latent position model Asrt, and po-
tentially any approximately regular graph whose inference
signal lies beyond the first eigenvector.

5 DISCUSSION

The purpose of this short paper is to characterize a spec-
tral failure mode for graph convolutional networks in the

TABLE 1
Computing the angle difference (rounded to two digits) between

unsupervised GCN embedding and the eigenvectors of approximately
regular graphs at n = 1000. GCN embedding dimensions are always

very close to the first eigenvector, and almost orthogonal to later
eigenvectors.

The Latent Position Graph
GCN Dim 1 Dim 2 Dim 3 Dim 4
Eig 1 0.98 0.98 0.99 0.98
Eig 2 90 90 90 90
Eig 3 90 90 90 90

An Erdos-Renyi Graph
GCN Dim 1 Dim 2 Dim 3 Dim 4
Eig 1 2.8 2.8 2.9 2.8
Eig 2 90 90 90 90
Eig 3 90 90 90 90

context of the classical statistical learning framework. The
failure mode in a latent position graph comes down to:
1) the classification signal lies mostly beyond the leading
eigenvector of the graph adjacency matrix; 2) the graph
embedding mainly recovers the leading eigenvector. The
fundamental idea and geometry insights are presented in
its fullest simplicity.

The failure mode can be generalized to a wide variety
of settings, such as multivariate X , more complicated gen-
erative model and discriminant boundary, etc. Take mul-
tivariate X as an example: one may consider the random
variable X ∈ R

d (after srt transformation) supported on
S ⊂ R

d
+ ∩ B(0, 1) (unit ball of dimension d). VE is a ray

from the origin to E(Z). When VE ⊥ S, the srt-transformed
random dot product graph is still an approximately regular
graph with classification signal on the non-leading eigen-
vectors.

The stochastic block model [31] offers another special
case of our RDPG followed by srt model, and from [32]
Lemma 3 we see that our model encompasses the mixed
membership stochastic block model, as well as the de-
gree corrected stochastic block model [33]. Furthermore,
the failure mode can easily be extended to the case of
rank(E[A]) > 2 with multiple non-leading eigenvectors,
and to weighted and/or directed graphs.

Moreover, the use case considered herein — a large num-
ber of nodes n but a small number of labeled nodes m — is
relevant in many applications, such as text classification [7],
traffic prediction [34], molecular property prediction [35].
The failure mode has significant implications in molecular
applications, as many molecules are regular graphs, e.g.,
decaprismane C20H20 and dodecahedrane C20H20 are ex-
amples of 3-regular graphs, see Figure 3 in [36].

Finally, it is not surprising that there exist specific tasks
for which GCN perform worse than other methods —
every embedding method has its own bias, and fails when
the bias of the task at hand does not coincide with the
methods bias. For example, the Laplacian embedding and
the adjacency embedding are both consistent, but one may
work better than another depending on the graph structure
[37]. Moreover, when spectral embedding provides a good
representation and the training sample size is small, then

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, ACCEPTED, 2021 6

it is likely that the added GCN embedding complexity
will prove to be a hindrance in terms of the bias-variance
trade-off. As noted in [3]: “Simple rules survive.” This short
paper provides the foundation for further study: 1) design
GCN architectures and learning procedure that are provably
better; 2) investigate more general settings to compare GCN
and spectral embedding approaches.

REFERENCES

[1] P. Goyal and E. Ferrara, “Graph embedding techniques, applica-
tions, and performance: A survey,” Knowledge-Based Systems, vol.
151, pp. 78–94, 2018.

[2] K. Xu, J. Li, M. Zhang, S. S. Du, K. ichi Kawarabayashi,
and S. Jegelka, “What can neural networks reason about?” in
International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=rJxbJeHFPS

[3] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pat-
tern Recognition, ser. Stochastic Modelling and Applied Probability.
Springer New York, 1997.

[4] A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T.
Vogelstein, K. Levin, V. Lyzinski, Y. Qin, and D. L. Sussman,
“Statistical inference on random dot product graphs: a survey,”
Journal of Machine Learning Research, vol. 18, no. 226, pp. 1–92, 2018.

[5] M. Tang, D. L. Sussman, and C. E. Priebe, “Universally consistent
vertex classification for latent positions graphs,” Annals of Statis-
tics, vol. 41, no. 3, pp. 1406–1430, 2013.

[6] D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe, “A con-
sistent adjacency spectral embedding for stochastic blockmodel
graphs,” Journal of the American Statistical Association, vol. 107, no.
499, pp. 1119–1128, 2012.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[8] ——, “Variational graph auto-encoders,” arXiv preprint
arXiv:1611.07308, 2016.

[9] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[10] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–864.

[11] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–
791, 1999.

[12] Q. Wang, X. He, X. Jiang, and X. Li, “Robust bi-stochastic graph
regularized matrix factorization for data clustering,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2020.

[13] W. L. Hamilton, “Graph representation learning,” Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, vol. 14, no. 3,
pp. 1–159.

[14] J. Cape, M. Tang, and C. E. Priebe, “The two-to-infinity norm
and singular subspace geometry with applications to high-
dimensional statistics,” Annals of Statistics, vol. 47, no. 5, pp. 2405–
2439, 10 2019.

[15] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “Computational capabilities of graph neural networks,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 81–102, 2009.

[16] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proc. ICLR, 2019, pp. 1–17.

[17] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen,
G. Rattan, and M. Grohe, “Weisfeiler and leman go neural: Higher-
order graph neural networks,” Association for the Advancement of
Artificial Intelligence, 2019.

[18] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence
between graph isomorphism testing and function approximation
with gnns,” in Advances in Neural Information Processing Systems,
2019, pp. 15 868–15 876.

[19] Z. Chen, L. Chen, S. Villar, and J. Bruna, “Can graph neural
networks count substructures?” arXiv preprint arXiv:2002.04025,
2020.

[20] S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang,
and K. Xu, “Graph neural tangent kernel: Fusing graph neural
networks with graph kernels,” in Advances in Neural Information
Processing Systems, 2019, pp. 5723–5733.

[21] Q. Li, Z. Han, and X.-M. Wu, “Deeper Insights into Graph Convo-
lutional Networks for Semi-Supervised Learning,” in The Thirty-
Second AAAI Conference on Artificial Intelligence. AAAI, 2018.

[22] K. Oono and T. Suzuki, “Graph neural networks exponentially
lose expressive power for node classification,” in International
Conference on Learning Representations, 2019.

[23] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph
neural networks,” IEEE Transactions on Signal Processing, vol. 68,
pp. 5680–5695, 2020.

[24] R. Levie, W. Huang, L. Bucci, M. M. Bronstein, and G. Kutyniok,
“Transferability of spectral graph convolutional neural networks,”
2020.

[25] L. Ruiz, L. F. O. Chamon, and A. Ribeiro, “Graphon neural
networks and the transferability of graph neural networks,” 2020.

[26] A. Loukas, “What graph neural networks cannot
learn: depth vs width,” in International Conference
on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=B1l2bp4YwS

[27] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Sim-
plifying graph convolutional networks,” in International Conference
on Machine Learning, 2019, pp. 6861–6871.

[28] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[29] Y. Yuan, X. Li, Q. Wang, and F. Nie, “A semi-supervised learning
algorithm via adaptive laplacian graph,” Neurocomputing, vol. 426,
pp. 162–173, 2021.

[30] X. J. Zhu, “Semi-supervised learning literature survey,” 2005.
[31] P. Holland, K. Laskey, and S. Leinhardt, “Stochastic blockmodels:

First steps,” Social Networks, vol. 5, no. 2, pp. 109–137, 1983.
[32] P. Rubin-Delanchy, C. E. Priebe, and M. Tang, “Consistency of ad-

jacency spectral embedding for the mixed membership stochastic
blockmodel,” arXiv preprint arXiv:1705.04518, 2017.

[33] Y. Zhao, E. Levina, and J. Zhu, “Consistency of community detec-
tion in networks under degree-corrected stochastic block models,”
Annals of Statistics, vol. 40, no. 4, pp. 2266–2292, 2012.

[34] A. Rahimi, T. Cohn, and T. Baldwin, “Semi-supervised user ge-
olocation via graph convolutional networks,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Melbourne, Australia: Association for
Computational Linguistics, Jul. 2018, pp. 2009–2019. [Online].
Available: https://www.aclweb.org/anthology/P18-1187

[35] Z. Hao, C. Lu, Z. Huang, H. Wang, Z. Hu, Q. Liu, E. Chen, and
C. Lee, “Asgn: An active semi-supervised graph neural network
for molecular property prediction,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 731–752.

[36] R. Sato, “A survey on the expressive power of graph neural
networks,” arXiv preprint arXiv:2003.04078, 2020.

[37] C. Priebe, Y. Parker, J. Vogelstein, J. Conroy, V. Lyzinskic, M. Tang,
A. Athreya, J. Cape, and E. Bridgeford, “On a ’two truths’ phe-
nomenon in spectral graph clustering,” Proceedings of the National
Academy of Sciences, vol. 116, no. 13, pp. 5995–5600, 2019.

Carey E. Priebe received the BS degree in
mathematics from Purdue University in 1984,
the MS degree in computer science from San
Diego State University in 1988, and the PhD
degree in information technology (computa-
tional statistics) from George Mason Univer-
sity in 1993. From 1985 to 1994 he worked
as a mathematician and scientist in the US
Navy research and development laboratory
system. Since 1994 he has been a professor
in the Department of Applied Mathematics

and Statistics at Johns Hopkins University. His research interests
include computational statistics, kernel and mixture estimates, sta-
tistical pattern recognition, model selection, and statistical infer-
ence for high-dimensional and graph data. He is a Senior Member
of the IEEE, an Elected Member of the International Statistical
Institute, a Fellow of the Institute of Mathematical Statistics, and
a Fellow of the American Statistical Association.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, ACCEPTED, 2021 7

Cencheng Shen received the BS degree in
Quantitative Finance from National Univer-
sity of Singapore in 2010, and the PhD de-
gree in Applied Mathematics and Statistics
from Johns Hopkins University in 2015. He is
assistant professor in the Department of Ap-
plied Economics and Statistics at University
of Delaware. His research interests include
testing independence, correlation measures,
dimension reduction, and statistical infer-
ence for high-dimensional and graph data.

Ningyuan (Teresa) Huang received the BS de-
gree in Statistics from the University of Hong
Kong, the MS degree in Data Science from
New York University, and is currently pursu-
ing her PhD in the Department of Applied
Mathematics and Statistics at Johns Hopkins
University. She is interested in representa-
tion learning, the theory of deep learning,
and inter-disciplinary research in data sci-
ence.

Tianyi Chen received the BS degree in Statis-
tics from Renmin University of China, and
is currently pursuing his PhD in the Depart-
ment of Applied Mathematics and Statistics
at Johns Hopkins University.

