Crystalline: Lowering the Cost for Developers to Collect and
Organize Information for Decision Making

Michael Xieyang Liu
Human-Computer Interaction
Institute, Carnegie Mellon University
Pittsburgh, PA, USA
xieyangl@cs.cmu.edu

ABSTRACT

Developers perform online sensemaking on a daily basis, such as
researching and choosing libraries and APIs. Prior research has
introduced tools that help developers capture information from
various sources and organize it into structures useful for subse-
quent decision-making. However, it remains a laborious process
for developers to manually identify and clip content, maintaining
its provenance and synthesizing it with other content. In this work,
we introduce a new system called Crystalline that automatically
collects and organizes information into tabular structures as the
user searches and browses the web. It leverages natural language
processing to automatically group similar criteria together to re-
duce clutter, and uses passive behavioral signals such as mouse
movement and dwell time to infer what information to collect and
how to visualize and prioritize it. Our user study suggests that
developers are able to create comparison tables about 20% faster
with a 60% reduction in operational cost without sacrificing the
quality of the tables.

CCS CONCEPTS

 Information systems — Decision support systems; « Soft-
ware and its engineering — Software design tradeoffs; « Human-
centered computing — Graphical user interfaces.

KEYWORDS

Sensemaking, Developer tools, Decision making, Behavior patterns,
Implicit signals

ACM Reference Format:

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2022. Crystalline:
Lowering the Cost for Developers to Collect and Organize Information
for Decision Making. In CHI Conference on Human Factors in Computing
Systems (CHI °22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3491102.3501968

1 INTRODUCTION

Developers spend a large portion of their time searching and making
sense of the web for solutions to their programming problems
[9, 108]. In many cases, the answers to such problems are not limited

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3501968

Aniket Kittur
Human-Computer Interaction
Institute, Carnegie Mellon University
Pittsburgh, PA, USA
nkittur@cs.cmu.edu

Brad A. Myers
Human-Computer Interaction
Institute, Carnegie Mellon University
Pittsburgh, PA, USA
bam@cs.cmu.edu

to a single solution, but developers discover that there are multiple
legitimate options, and they must identify relevant criteria and
constraints based on their unique contexts and carefully consider
the trade-offs among those possible options [42, 63, 77, 78, 81, 82, 92,
94, 100, 107]. For example, when converting an old web application
to use a modern JavaScript front-end framework, React.js [34] (with
its ability to be progressively adopted into existing code bases) may
be more suitable when one wants to gradually convert each separate
module while minimizing the overall system downtime, whereas
a more comprehensive framework such as Angular [47] might be
a better choice if one wants to take advantage of various official
utility packages like routing [44], animation [45] and data validation
[46].

There have been many commercial and research tools and sys-
tems that try to help people make sense of information about trade-
offs to facilitate further decision making, such as by helping with
easily capturing snippets of information [1, 5, 53, 110, 121] from
web pages or organizing and synthesizing information into useful
schema and representations [15, 29, 61, 71, 81, 122]. For example,
one common practice that people employ is copying pieces of text
as well as taking screenshots and putting them in a running Google
Doc as they search and browse the web [88]. One system that is
relevant to the context of programming is Unakite [81], which en-
ables developers to collect and organize information online into
comparison tables with options, criteria, and evidence to help with
making decisions (see Figure 2).

However, even with the above tools, it remains a challenging pro-
cess for developers to manually identify and capture the relevant
content, maintain its provenance (where it came from), and synthe-
size it with other content. Prior work suggests that one cause is that
people are often uncertain about which information will eventually
turn out to be relevant, valuable, and worth capturing, especially
at early stages of their learning and exploration when they are
overloaded with information [4, 37]. Under these circumstances,
people are hesitant to frequently pause and shift their focus from
the investigation itself to reasoning about what to capture for later
use [14, 58, 72, 109], or they could be too engaged in the sensemak-
ing process and forget to collect anything at all. Indeed, research
suggests that interactions for gathering information while perform-
ing active reading need to be quick and low effort, otherwise people
tend not to capture information in the first place [58, 81, 85, 118].
In addition, though existing tools provide users with the flexibility
and agency to synthesize the collected information into useful rep-
resentations, such as comparison tables [15, 81] or knowledge maps
[87], developers still need to perform these organizing operations
manually. This is often a laborious process, as developers need to

https://doi.org/10.1145/3491102.3501968
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491102.3501968
https://React.js
mailto:bam@cs.cmu.edu
mailto:nkittur@cs.cmu.edu
mailto:xieyangl@cs.cmu.edu

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

slick - the last carousel you' X [| Splide - Free, lightweight anc
@ splidejs.com

% Appleseed

9 © Javascript Carousel

2=

SPLIDE

Search...

Autoplay

Options:

@O sick @ splide @ swiper

Criteria:
*
() Lazy Load Images 7 -
* R -
FIF) Url Hash Navigation [/
(%) Add/Remove 7 fIT) Fade Transition

- g
(1) Center Mode ,?'\'@ Custom Plugin

* %
Autoplay 3 ED Infinite Loop

f."l.—
[T Right To Left (3~-

H

() Centered Auto:'
|
i
i
i
i
|

Centered [PI0) Ratio Breakpoints

. ; !
EED) Responsive Breakpoints -J‘ View Example Code

‘o
(D) Effect Fade @~

EZ) Breakpoints
_j v focused.

O o |

code. See this docume

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers

x @

Swiper Demos

A progress bar or play/pause buttons can be displayed by adding extra HTML

nt for more information.

® Autoplay is paused as default when the slider is hovered or internal elements are

O |

Figure 1: Crystalline’s list view UI (a). As the developer browses a web page (b), Crystalline attempts to automatically collect
options and criteria from the page, and display them in the options (c) and criteria panes (d) in the sidebar (a). In addition,
Crystalline leverages natural language processing to automatically group similar criteria together, as shown by the multiple-
pages icon (e). Crystalline uses behavioral signals such as mouse movement and dwell time to try to automatically detect the
relative importance of the criteria (shown by the display order, with most important at the top). Users can use the “See more”
and “See less” buttons (g) to adjust how many criteria are to be displayed at once. Crystalline will remind users of the existence
of additional related evidence through a red notification dot at the top right of a criterion (f). The sidebar can be toggled in
and out by clicking the browser extension icon (h). Users may pin (i) important criteria to the top of the list.

take stock of all the pieces of information, identify connections
among them, and directly manipulate the representation to reflect
the connections.

Another challenge reported in prior work is that developers’
needs for collecting and organizing information are often not dis-
covered until part of the way through an investigation process
[16, 81]. This could be due to several major reasons, including but
not limited to: 1) additional external requirements, constraints, or
user feedback are discovered or introduced in the middle of a project
which significantly complicates the original decision making prob-
lem [23, 30, 31]; 2) developers discover many more options, criteria,
and their trade-offs than they anticipated at the beginning [81];
and/or 3) developers are required to explain or document their deci-
sions and design rationale after the fact for the long-term maintain-
ability and success of a software project [25, 39, 75, 76, 79, 104, 112].
In these situations, it is hard and involves duplicate work for devel-
opers to recall and retrace their steps for reaching their current state

of sensemaking (the linear history visualization in almost all cur-
rent browsers is known to be not particularly effective [16, 67, 124])
and recollect all the relevant evidence again.

In our new work, we explore the idea of having a system dy-
namically help users keep track of and organize information by
leveraging the content they are browsing and the signals from their
browsing behavior. Although we focus on the domain of program-
ming due to strongly motivating prior work and ease of prototype
development due to regularities of the programming context, our
work may also generalize to other sensemaking contexts on the web.
We instantiate this idea in a prototype system called Crystalline,!
which is an extension to the Chrome web browser. Crystalline plays
the role of a user’s copilot and attempts to automatically identify
and keep track of the options, criteria, and the corresponding ev-
idence snippets from the web pages that a user has viewed, and
organize the snippets into both list and tabular formats. To achieve

!Crystalline is named after rocks made up of interlocking crystals. It stands for Clipping
Resulting in Your Structure as Tables And Lists Linked to Implicit Notetaking Easily.

Crystalline: Lowering the Cost for Developers to Collect and Organize Information for Decision Making

this, Crystalline mines a variety of behavioral signals while a user
browses the web, including scrolling patterns and mouse cursor
actions, and employs natural language understanding techniques
to automatically classify and organize the collected content. The
goal is that users can focus more on reading and understanding
web content while occasionally guiding the system when it makes
mistakes. We conducted a user study to evaluate the usability and ef-
fectiveness of Crystalline compared to Unakite as a baseline, which
found that developers are able to build comparison tables about 20%
faster with a 60% reduction in operational cost without sacrificing
the quality of the tables. In particular, it only requires around 12%
of the total task completion time for participants to use the tool to
build and maintain a table, compared to around 30% in the baseline
condition.
The primary contributions described in this paper include:

o evidence that it is possible to automatically identify options,
criteria, and relevant evidence from web pages that a user
is browsing using a set of natural language understanding
heuristics,

e a set of implicit behavioral signals that users exhibit when
browsing the web which can be used for prioritizing and
filtering that collected information,

e a prototype system called Crystalline that integrates the
heuristics and signals to automatically collect and organize
viewed information into list and comparison table views for
subsequent decision making,

e an evaluation that offers empirical insights into the usability,
usefulness, and effectiveness of those signals and the system.

2 RELATED WORK

2.1 Sensemaking in Software Development

Sensemaking is widely considered to be the process of searching,
collecting, and organizing information to iteratively develop a men-
tal model that best fits the evidence [96, 106]. As knowledge workers
[9], many activities that developers perform on a daily basis involve
extensive sensemaking, such as designing the overall software ar-
chitecture [56, 83], learning and understanding unfamiliar code and
concepts [26, 73], debugging and fixing incorrect software behaviors
[25, 74], planning and executing code refactorings [32, 41, 86], and
evaluating past code and design patterns for future reuse [82, 91].
In this work, we focus on the particular type of sensemaking activ-
ity where developers leverage web resources to make a decision to
solve their programming problem [9, 63]. Here, developers not only
need to find information pertinent to their problem [8, 59, 97, 115],
which is the first step in such complex sensemaking tasks [106, 123],
but also collect and synthesize relevant information into structured
knowledge so that they can make progress towards fully under-
standing the decision space [53, 71, 72, 81]. Indeed, our survey [63]
revealed that over half of the questions asked on Stack Overflow
contain answers with multiple options, each option valuable to
the programming community due to a unique set of criteria that it
fulfills.

Software engineering research has also identified that subse-
quent developers frequently need help with understanding the
rationale of design decisions and code implementations made by
previous developers [75, 76, 112]. This can be particularly difficult

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

if the previous developers failed to properly document the rationale
[120], or the documentation was incomplete or not up-to-date [38].
Granted, the fundamental challenge here is that it is effort- and time-
intensive for decision authors to document their rationale (either
in situ or after the fact) with little immediate payoff for themselves
[42]. Our previous Unakite tool [81] addressed this challenge by
encouraging authors to document their decision making processes
and results using the tool’s lightweight collecting and organizing
features. Building on top of this, Crystalline further transforms the
previously active capturing and organizing work [5, 81, 110] into
passive monitoring and error-fixing [80], which has been shown to
present a much lower entry barrier for people to start contributing
[37].

2.2 Tools for Collecting and Organizing
Information

To help people more effectively gather and process online informa-
tion, systems and tools like SenseMaker [3], SearchPad [5], Hunter
Gather [110], CoSense [93], Tabs.do [16], as well as commercial
systems like the Evernote clipper [33], enable people to take entire
pages or snippets of content from the web, classify them, and later
put them together into a document with a coherent narrative for
sensemaking, decision making or sharing and collaboration. How-
ever, one common characteristic of these tools is that it is mostly the
user’s responsibility to manually complete the information collec-
tion, triage, and organization process, while we attempt to do this
automatically with Crystalline as the user searches and browses
the web.

Other threads of prior research have explored different ways
for machines to help during sensemaking, which inspired and in-
formed our design. For example, systems like Entity Quick Click
[6, 66, 116] employ techniques like named-entity recognition [84]
to pre-process and highlight semantically meaningful entities in
web content, and enable users to collect and annotate relevant in-
formation with a single click. Previous work like Thresher [60]
and Dontcheva et al.’s personal web summarization tool [29] let
users annotate and curate patterns and templates of information
that they would like to collect on a few example web pages, then
automatically collect them from future pages. In addition, Chang
et al.” Mesh system [15] automatically retrieves relevant consumer
product facts and reviews from Amazon into a comparison table
to enable users to curate and explore nuanced options and criteria.
These systems have largely relied on natural language understand-
ing to analyze and transform the web content that users browse
and read, while we argue that leveraging the signals from users’
natural browsing behavior, such as dwell time and cursor move-
ments, would unlock a new design space for automated machine
support during online sensemaking, motivating us to use both NLP
heuristics and passive behavioral signals to infer what information
to collect and how to visualize and prioritize it in Crystalline.

2.3 Implicit Behavioral Signals When Using
the Web
Prior research has investigated various implicit behavioral patterns

that people exhibit when reading and interacting with content on a
digital screen. One thread of research has explored using behaviors

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

< Cc O @& https://stackoverflow.com/qt

@l Collect a snippet by selecting the desired content

Numpy matrices are strictly 2-dimensional, while numpy arrays
(ndarrays) are N-dimensional. Matrix objects are a subclass of
ndarray, so they inherit all the attributes and methods of
ndarrays.

The main advantage of numpy matrices is t A Save to U{w

Collect a snippet by drawing a bounding box around
the desired content.

a=np.mat('4 3; 2 1')
b=np.mat('1 2; 3 4')
print(a)

a % @ B

how to represent matrices in numpy

‘; Comparison table
having built-in support fol having a convenient not Support arbitrar having long

verse and other matrix opera ation for matrix multiplic y dimensionala -term supp

tions ation rray ort
numpy <] 00 (e]'e)
matrix
I can basically do a*b
numpy
o Q o]]
Uncategorized Options Criteria Snippets Al Trashed M

Python 3.5 NumPy supports infix (@) operator for matrix multiplication

stackoverflow.com
Showing HTML snapshot
On the other hand, as of Python 3.5, NumPy supports infix matrix multiplication

using the @ operator, so you can achieve the same convenience of matrix
multiplication with ndarrays in Python >= 3.5.

import numpy as np

a=np.array([[4, 3], [2, 1]])
b=np.array([[1, 2], [3, 4]1)

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers

Q
Drop the snippet as a

piece of positive
evidence

Drop the snippet as
a piece of negative
evidence

Q

i [z = print (agh)
[[13 20]
print(b) # [5 8]]
[[1 2]

[3 4]]

print(a*b)
[[13 20]
[5 8]]

S

Add a comment

1
1
1
1
1
1
1
1
:
1
o [210]
1
1
1
1
1
1
1
1
1
1
1

On the other hand, as of Python 3.5, NumPy | J§ Save to Uw

matrix multiplication usmg the @ operator, so-you

the sar

vith ndarre ays in

o1 matrix muliuplicatio

o matrix will be deprecated in the future R .

Drop the snippet as a
@ piece of informational
evidence

ara N
I tried the infix operator and it worked like a charm! i i
P = ° Snippet repository

o I thought numpy matrix can't do high dimensional vector manipulations e Snippet cards

t' Webpage

e Unakite sidebar

Figure 2: Unakite’s user interfaces. With Unakite, a developer collects snippets by selecting the desired content (al) or by
dragging out a bounding box around the desired content (while holding the Option / Alt key) (a2) and clicking the “Save to
U” button. The collected snippets will show up under the “Uncategorized” tab in the snippet repository (c) inside the Unakite
sidebar (e). The developer can drag a snippet and drop it in one of the cells in the comparison table (b), and mark whether it
is positive (green thumbs-up) or negative (red thumbs-down) or just informational (yellow “i”). (f1-f3) show the details of the
three parts of each cell in the table where the snippet can be dropped. This figure is adapted from [81]. For full details, see

[81].

such as dwell time, cursor movements, clicks, scrolling patterns,
and gaze positions as implicit signals to approximate user interest
on web pages as well as search result relevance [22, 50, 51, 57, 65].
For example, Claypool et al. [22] had participants use a custom-built
browser to surf the web and concluded that the time spent on a page,
the amount of scrolling on a page, and the combination of time
and scrolling had a strong correlation with explicit user interest. In
addition, Hijikata [57] discovered that actions such as text tracing
and link pointing are decent behavioral indicators for perceived
interesting segments of web pages. Similarly, in the domain of web
searches, Buscher et al. [10-12], Guo and Agichtein [50, 51], and
Huang et al. [65] demonstrated that eye tracking, as well as inter-
actions like scrolling and cursor hovers, could accurately predict
user interests in search results pages.

Building on the empirical understanding laid out by this research,
in this work, we explore putting a combination of these implicit
behavioral signals into use to approximate user visual attention in
a working prototype. We used heuristics and pilot testing to devise
mechanisms that translate the raw behavioral signals into numeric
scores representing the “amount of attention” a user has given to

a particular piece of online content. We then use these scores to
filter out and rank the content of the evolving comparison table,
further reducing the cost for developers to manually manage and
prioritize collected information incrementally as they are searching
and browsing.

3 BACKGROUND AND DESIGN GOALS

In this work, we explore automatically keeping track of and organiz-
ing relevant information on the web about trade-offs for developers
as they are making decisions. To ground our research, we build
on the “Option-Criterion-Evidence” framework introduced in our
Unakite system [81]. We first briefly explain this framework as well
as the Unakite system to provide necessary background for this
research. Then we discuss the design goals for the new Crystalline
system.

3.1 The Unakite System

Unakite was designed to address both the need of developers to syn-
thesize online information about trade-offs when making

Crystalline: Lowering the Cost for Developers to Collect and Organize Information for Decision Making

programming decisions as well as the need of subsequent develop-
ers to be able to understand the rationale behind those decisions
[81]. As a Chrome extension, Unakite enables developers to manu-
ally collect any content from any web pages as snippets (pieces of
information, Figure 2-d) into the snippet repository (a holding tank
of information snippets, Figure 2-c) by selecting (Figure 2-al) or
dragging out a bounding box to enclose the desired content with
the mouse cursor (Figure 2-a2). To organize the collected content,
developers can use drag-and-drop to move the collected snippets
from the repository into a comparison table (Figure 2-b) options
(as row headers, e.g., a solution to solve a problem), criteria (as
column headers, e.g., a standard by which options are judged), and
evidence (“thumbs-up” or positive, “thumbs-down” or negative, and
“informational” (“i”) ratings that spread across the rest of the table
cells) that illustrates the trade-offs among various options on those
criteria. Developers can also rank the options and criteria in the
table to reflect their unique order of preferences. The resulting
comparison table is automatically saved and can be used by subse-
quent developers to understand the context of the previous decision
space: what options and alternatives were explored, what criteria
needed to be met, what trade-offs were discovered, and what was
considered the most important and why.

Although Unakite has been shown to incur less operational
overhead when it comes to collecting and organizing information in
situ compared to common baseline methods like using Google Docs
[81], developers still need to manually collect and structure each
piece of content, which can be a costly process [58, 71, 72, 85, 118].
In addition, it forces developers to start using the tool from the
outset to be able to capture the whole exploration, but, for cases in
which the needs for collecting and organizing information are not
discovered until partway through an investigation process (which
can be quite common in agile style software development [23, 30,
31, 81] that is widely adopted across the software development
industry), developers would have to retrace their exploration paths
from the beginning and re-collect and organize the content, wasting
time and causing duplicate work.

3.2 Design Goals

In order to address the above limitations of Unakite as well as other
similar sensemaking tools [3, 5, 16, 93], we formulated the following
design goals:

e Minimize the cost to collect information. The system
should attempt to automatically collect information in the
background without the user’s specific attention or direction.
This will help users focus on the main task of reading and
comprehending the content.

o Actively filter, organize, and prioritize information. The
system should actively filter, organize, and prioritize the col-
lected information that gets presented to the user and help
the user avoid information overload.

e Reduce the cost of incorrect automation support. In
cases where machine support is incorrect or undesirable,
the system should allow users to easily recover from those
mistakes [2, 62].

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

4 CRYSTALLINE

4.1 System Overview

Guided by prior work and our design goals, we designed and im-
plemented Crystalline, a Chrome extension prototype to help de-
velopers automatically collect and organize information relevant
to their decision making problems.

Users mainly interact with Crystalline through a sidebar (Figure
1a) that is injected directly into every web page. As a developer
opens and reads web pages, the sidebar will be updated with the
automatically collected options (Figure 1c) and criteria (Figure 1d)
in the list view (Figure 1c & d). The list view serves as a concise and
glanceable outline that reflects one’s exploration progress — what
options one has encountered and what criteria one has looked into.
Clicking on one of the criteria will enter a detailed view for that
criterion (Figure 3a), listing out all the collected evidence snippets
organized by options; similarly, clicking on an option will enter the
detailed view for that option, which lists all the related criteria and
the corresponding evidence associated with that option. Details
on how we currently implemented the automatic collection and
organization features are discussed in section 4.2.

In addition, developers can also switch to the comparison table
view (Figure 3c) that summarizes the decision making space and
the trade-offs among various options in detail. The order in which
a criterion gets presented both in the list and the comparison table
view are based on the estimated importance of the item to the user,
which we approximate by the amount of attention a user has given
to it. This, in turn, is derived from the user’s implicit behavioral
signals, which we will discuss in detail in section 4.2.2. To examine
a particular piece of evidence in the detailed view or a comparison
table cell, users can hover on it to zoom in (Figure 3b), or click on it
to teleport to the original web page and scroll position from where
it was previously collected.

Similar to previous systems [61, 81, 99], the sidebar can be tog-
gled in and out like a drawer by clicking the extension icon (Figure
1h) or using a keyboard shortcut. Developers can passively moni-
tor the sidebar as they are searching and browsing to make sure
the system performs correctly, and quickly correct or dismiss the
mistakes that the system makes. In addition, developers are free
to hide the sidebar to have an unobstructed view of the web page,
knowing that all the features for automatic information collection
and organization are still running in the background even if the
sidebar is in the hidden state.

4.2 Detailed Design

We now discuss how the different features in Crystalline are de-
signed and implemented, and how they support our design goals.

4.2.1 Collecting information about options and criteria. In Crys-
talline, we explore having the system automatically collect relevant
information in the background without the user having to explicitly
perform the action of collecting information. This has the benefit of
minimizing the distraction and cost of keeping track of information
as an extra step in addition to thinking about the content on a web
page, which, in turn, maximizes a user’s attention to reading and
understanding the content itself.

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers

© @ Javascript Carousel

Search... Q =

9 ® Javascript Carousel

I -

: : © slick O splide e S
ED Right To Le :
'@ :-aly Load DE}E s
images
e Swiper .
Right to Left =
'm Url Hash

Navigation

%
Add/Remove

*
(D) Fade Transition

Right To Left @ splide
=

*
Center Mode

N

* .
Zoomed-in evidence snippet () Custom Plugin

. . * Autoplay
Related criteria that you might have
missed:

I
Il

Right To

@ siick mentioned | 2]

*
D) Infinite Loop

e Detailed view

Figure 3: Additional Crystalline’s user interfaces. Clicking on one of the criterion in the criteria pane (Figure 1d) will enter
a detailed view for that criterion (a), listing out all the collected evidence snippets organized by options. Users can zoom in
on an evidence snippet (b) by moving the mouse cursor over it in the detailed view until the cursor becomes a magnifying
glass. Crystalline will actively look for and remind users of evidence for the same or similar criteria from pages that users
have visited but have not yet paid attention to (d). Finally, similar to Unakite [81], Crystalline offers a comparison table view

OI Comparison table view ‘

(c) that summarizes the decision making space and the trade-offs among various options in detail.

Specifically, Crystalline collects information about options, crite-
ria, and their associated evidence snippets as discussed previously,
which was reported by prior work as the key aspects developers
look for when solving decision making problems [63, 75, 81]. Cur-
rently, to automatically recognize the options, Crystalline employs
the following techniques: (1) it looks for the word or phrase between
any instances of “vs.” (or other variants like “v.s”, “versus”, etc.) in
web page titles and opening paragraphs and adds them as potential
options. For example, the Medium.com article titled “Tensorflow
vs Keras vs Pytorch: Which Framework is the Best?”? would yield
“Tensorflow”, “Keras”, and “Pytorch” as three potential options; (2)
it first runs noun phrase and entity extractions using the Google
Cloud Natural Language API [48] on the web page title, section
headers as well as the column and row headers of any HTML tables,
then checks if the identified entities are mentioned in the titles of
other visited pages. In addition, it also checks if the identified enti-
ties would frequently come up in each other’s Google autocomplete
results (the Google “vs” technique is described in [40, 82], which
issues queries in the form of “[option_name] vs” to the Google
Autocomplete API to get a list of autocomplete results that can
be interpreted as potential alternatives to “[option_name]”. An
earlier version of this technique was launched as an experimental

Zhttps://medium.com/@AtlasSystems/tensorflow-vs-keras-vs-pytorch-which-
framework-is-the-best-f92f95e11502

feature named Google Sets [21, 119]). Furthermore, it checks if the
identified entities are mentioned repeatedly across the main con-
tent of the current web page. All potential options will go through
a final deduplication process to produce the final list of options
presented in the options pane (Figure 1c) in the sidebar. We chose
and tuned these heuristics based on our internal usage and pilot
testing results. In the future, more advanced NLP techniques could
be used to augment the current set of heuristics.

Crystalline uses a similar set of heuristics to identify criteria from
the web pages, with an emphasis on examining section headers
and table headers (and entities extracted from them) rather than
website titles. In this work and in the context of programming,
we focus on using such heuristics to identify the criteria directly
mentioned in the content, such as extracting “learning curve” from
“React is widely considered to have quite a steep learning curve”
We leave the extraction of latent criteria for future work, which are
more commonly seen in domains other than programming, such
as extracting “price” from “I bought this mp3 player for almost
nothing” [98].

Further, users can always edit the options and criteria names,
delete unwanted options or criteria, or manually select and collect
any text as either an option or a criterion using the popup menu
(Figure 4) as a backup.

https://medium.com/@AtlasSystems/tensorflow-vs-keras-vs-pytorch-which-framework-is-the-best-f92f95e11502
https://medium.com/@AtlasSystems/tensorflow-vs-keras-vs-pytorch-which-framework-is-the-best-f92f95e11502
https://Medium.com

Crystalline: Lowering the Cost for Developers to Collect and Organize Information for Decision Making

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Implicit Selected References in Descriptions Strength of Score Function W

Behavioral Prior Research indication of

Signal user attention

Copying content | Developers frequently copy | Triggers when the user copies some text Strongest 40 for each triggering
sample code from the web from a content block b. This typically
to use in their own code happens when a developer copies sample
[8, 54, 55] code from web pages to try out in their

own code.

Text highlighting | People tend to highlight Triggers each time when some text in a Strong 20 for each triggering
text while reading to help content block b gets selected. Triggerings
focus their attention [105] where the selected text is shorter than 5

characters are disqualified.

Clicking Clicking on content, such as | Triggers when the user clicks on a content | Strong 20 for each triggering
widgets and links, is block b. This accounts for situations where
considered to be a decent the developer interacts with content on a
behavioral indicator for page, such as live demo widgets. Clicks that
perceived interesting are part of text highlighting are excluded.
elements on web pages [57]

Cursor hovering | People tend to use the Triggers each time when the mouse cursor | Weak 0.5t, where t is the duration (measured
cursor to guide their hovers over a content block b for at least 2 in seconds) of the cursor’s stay within
attention while reading web | seconds. This accounts for situations where the bounds of content block b. The maxi-
pages [18, 52, 57, 65, 103]. the developer naturally moves the mouse mum score is 10. In our pilot testing, users

cursor onto the content that is currently rarely spend more than 10 seconds read-
being read to guide his or her attention ing a text block.
[18, 64, 102, 103]. However, a cursor hover
triggering will be disqualified when the
system detects an extended period of idling
(2 minutes) without any user actions.
Content dwelling | The longer some content Triggers each time when a content block b | Weak 0.2t, where t is the duration (measured

stays visible, the more likely
that the user is interested in
it [22, 65].

gets scrolled into and stays in the visible
view port for at least 2 seconds. This
indicates that the developer has at least
paid attention to b. However, a dwell
triggering during idling is disqualified.

in seconds) of content block b’s stay in
the visible browser viewport. The maxi-
mum score is 4. In our pilot testing, users
rarely stay at one location for more than
10 seconds.

Table 1: Implicit behavioral signals used in Crystalline to track user attention. Column 1 lists the implicit signals; column 2
provides evidence from selected prior research on the efficacy of the signals; column 3 describes how the signals are used in
Crystalline; column 4 indicates the relative strength of a signal in terms of predicting user attention; column 5 details the
scoring function used to translate signal triggerings into numeric scores based on the relative signal strengths. The scoring
functions were empirically determined through iterative pilot testing,.

4.2.2 Organizing and prioritizing information. Not all options or
criteria are equally useful to a particular developer. Prior work has
suggested that a programming decision usually comes down to
how well each option matches the developer’s goals and criteria
that he or she deemed important [42, 77, 78, 82, 92, 94, 100, 107].
In this work, we explore using the amount of attention that one
pays to a particular criterion to approximate its perceived value
or importance. To operationalize this, for each web page that a de-
veloper visits, Crystalline processes all the content blocks (HTML
block-level elements, such as <p>, , <pre>, and <div>, etc.) to
detect what options and criteria are associated with each block.
Specifically, it prioritizes verbatim mentioning of options and cri-
teria within a block, then possible options and criteria identified
from section headers above the block, then web page titles. If no
options are detected, the page title is used as a placeholder.

Next, Crystalline tracks each triggering of five implicit behav-
ioral signals (copying content, text highlighting, clicking, cursor hov-
ering, and content dwelling) listed in Table 1 on any content block
and translates it into a numeric score (using column 5). The final

attention score A, representing the amount of attention that a user
pays to a particular criterion c is then calculated using equation (1):

Ae = Z 1(t,¢) x W(t) 1)
teT

where T is the set of all implicit signal triggerings; t is a particular
triggering; I(¢, c) returns 1 if t was triggered on a content block that
is associated with the criterion ¢, and returns 0 otherwise; and W (t)
is the corresponding scoring function found in the last column in
Table 1. The scoring functions were empirically determined through
iterative pilot testing.

To accommodate various behavioral patterns exhibited by dif-
ferent users, we iteratively recruited four batches of participants
with diverse backgrounds and job responsibilities both within our
lab and externally. We followed a diary study approach [101] by
monitoring their online searching and browsing behavior related to
programming through a custom chrome extension that logs trigger-
ings of the above behavior signals and ranks the importance of the
associated content blocks accordingly (the initial score functions

Performance and Development

Angular
Some hlﬁhllghlb i Save as: Option ~ Criterion hre:
* Has seamless third-party integrations for enhancing the functio
product/application.
* Provides a robust collection of components leading to simplifie
altering, and using the code.

Figure 4: Using the selection popup menu to manually col-
lect options and criteria.

were determined through our heuristics). At the end of each sense-
making episode, we prompted them to review how well the system
did in inferring what they thought was important, and tuned the
score function heuristics accordingly (favoring recall over preci-
sion). We leave more advanced and adaptive scoring models for
future work to investigate.

By default, the system shows the top 15 criteria ranked by de-
creasing attention scores in both the list and the table view. Users
can use the “See More” and “See Less” buttons to adjust how many
criteria that they would like to see at the same time (Figure 1g).
As the user browses more content and spreads his or her attention
on different content blocks, the order of these criteria changes ac-
cordingly in real-time, which provides the user with an ambient
awareness of what the system thinks are important. To provide
users with the flexibility to override the system’s ranking, they can
right-click on a criterion and use the “pin this criterion” feature
to pin it at the top (Figure 1i). They can additionally specify their
own order of preferences by dragging and dropping to reorder the
criteria in the table view, which will automatically pin a criterion
if it is not already pinned. Each time an implicit behavioral signal
triggering is detected, Crystalline also collects the target content
block as an evidence snippet, which is presented with its original
styling [81] in the detail views and the comparison table view as
mentioned above.

4.2.3 Managing connections and relationships. One way for Crys-
talline to actively manage the relationships among the collected
information is to automatically merge similar criteria together into
criteria groups (indicated by a “multiple items” icon at the end,
see Figure 1e). To achieve this, we leverage recent advances in
transformer machine learning models such as Universal Sentence
Encoder [13] and BERT [28] that can encode textual content into
semantically meaningful vector representations called embeddings
[43], i.e., two or more semantically close pieces of content will also
be close in the embedding vector space (measured by a distance
metric, e.g., the cosine similarity distance between vectors [113]).
Crystalline computes an embedding for every criterion as the aver-
age of its own embedding and its corresponding evidence snippet,
and automatically merges criteria that are within a specified se-
mantic distance threshold to each other into a group. For example,
as shown in Figure 3a, the system automatically merges “Right to
Left” (taken from the option “Splide”) and “RTL” (taken from the
option “Swiper”) together since they are semantically similar. The
distance threshold was determined empirically through iterative
pilot testing. This has the benefit of reducing clutter while helping
users make connections among the information that they have

seen, which is reported by prior work as one of the difficult steps
during sensemaking and schematization [37, 96, 106]. In case the
system fails to automatically group similar criteria together, users
can use drag and drop to manually make the grouping. Similarly,
users can easily split a criteria group by right-clicking on the group
and hitting the “split this criteria group” menu item.

In situations where a user reads and investigates some criterion
at one location, Crystalline will also actively look for evidence for
the same or similar criteria from other pages that the user has vis-
ited (including the current page) but has not (yet) paid attention to
according to the implicit signals. Crystalline will remind the user of
the existence of this additional evidence through a red notification
dot at the top right of a criterion (Figure 1f) as well as in the detailed
views (Figure 3d). This then serves as an additional way for the sys-
tem to help users uncover and manage unseen relationships among
the information space, as well as a springboard for users to jump
directly to the “overlooked” information for further investigation.

4.3 Implementation Notes

The Crystalline Chrome browser extension is implemented in HTML,
JavaScript, and CSS, using the React JavaScript library [34]. It also

uses Google’s Firebase for database synchronization and persis-
tence, back-end functions, and user authentication.

To produce the content embeddings, we used bert-as-a-service
[28] and the uncased_L-12_H-768_A-12 pre-trained BERT model
to implement a REST API that the extension can query on-demand.
The embedding calculations are known to incur significant com-
putational costs and delays. Therefore, to ensure a smooth user
experience, they are better suited to run on a remote server with
the necessary resources rather than locally in an end-user’s browser.

Unlike other systems [33, 95] that help users find more infor-
mation from new sources, Crystalline only collects information
from the web pages that a user has explicitly visited. This is an
intentional design choice we make in the current implementation:
the major role of Crystalline is to remove the burden for users to
actively keep track of relevant information that they have person-
ally seen and investigated so that it is easier for them to revisit and
recall. We leave the design space of automating the discovery of
new relevant information for future research to explore.

5 EVALUATION

We conducted an initial lab study to evaluate the usability of the
Crystalline system in helping developers collect and organize in-
formation.

5.1 Participants

We recruited 12 participants (7 male, 5 female) aged 22-35 (u =
27.6, 0 = 3.7) years old through emails and social media. The par-
ticipants were required to be 18 or older, fluent in English, and
experienced in programming. Participants had on average 6.9 years
of programming experience, with half of them currently working
or having worked as a professional developer and the rest having
programming experience in universities.

Crystalline: Lowering the Cost for Developers to Collect and Organize Information for Decision Making

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Manually select | Rename an | Delete an | Manually put Remove a Merge criteria | Split criteria | Pin or reorder | Overall

information and | option / option / information snippets | snippet from | into groups groups criteria

capture criteria criteria into the table the table
Task A | 27.0 (6.42) 167 (1.97) | 0.67 (1.03) | 16.5 (5.43) 0.50 (0.84) N/A N/A 6.00 (2.19) 52.3 (13.7)
Task B | 26.2 (5.56) 1.83 (1.60) | 1.50 (1.38) | 14.5 (5.28) 0.33 (0.82) N/A N/A 6.00 (1.79) 50.3 (14.3)
Average | 26.6 (5.74) | 175.71) | 1.08(1.24) | 15.5(5.21) | 042(079) | N/A N/A | 6.00(1.91) | 51.3(13.9)

(a) Unakite condition

Manually select | Rename an | Delete an | Manually put Remove a Merge criteria | Split criteria | Pin or reorder | Overall

information and | option / option / information snippets | snippet from | into groups groups criteria

capture criteria criteria into the table the table
Task A | 0.83(0.75) 217 (1.17) | 0.50 (0.84) | 0.17 (0.41) 0.33 (0.52) 2.33 (0.82) 0.83(0.75) | 5.33(1.97) 12.5 (3.02)
TaskB | 1.00 (1.26) 1.67 (0.82) | 0.50 (0.55) | 0.33(0.52) 0.33 (0.52) 1.83 (0.75) 0.67 (0.82) | 5.50 (2.74) 11.8 (3.31)
Average | 0.92 (1.00) | 1.92(1.00) | 0.50 (0.67) | 0.25(0.45) | 033(049) | 2.08(0.79) | 0.75(0.75) | 5.42(2.27) | 12.2(3.04)

(b) Crystalline condition
Table 2: Statistics for the average number of interactions performed by users to perform the tasks in the user study. Standard

deviations are included in the parentheses.

5.2 Procedure

The study was a within-subjects design, where participants were
presented with two tasks and were asked to complete one of them
using Unakite (baseline condition) and the other using Crystalline
(experimental condition), in a counterbalanced order. For each task,
participants were presented a programming decision-making prob-
lem, a set of four web pages, some necessary background of the
problem, and a list of three options available to solve the problem
that they were required to investigate. The provided web pages
were either documentation pages of specific options or comprehen-
sive review articles reviewing several options together. Participants
were instructed to read through the provided web pages, and use
either Unakite or Crystalline to collect and organize information
into a comparison table containing all the given options and at least
8 different criteria in the order of their perceived importance. We
imposed a 20-minute limit per task to keep participants from get-
ting caught up in one of the tasks. However, they were instructed
to inform the researcher when they have collected 8 criteria as well
as the associated evidence. If they wished to continue beyond this
checkpoint, they were allowed to, until they felt like they could
make no further progress. Specifically, the two tasks were to use
the corresponding system in each condition to build a comparison
table of:

e (A) Choosing a JavaScript carousel library to build a photo
sharing web application. The available options were: Splide.js®,
Slick?, and Swiper5 .

e (B) Choosing a front-end framework to implement a basic
personal portfolio website. The available options were: Re-
act.js®, Angular’, and Vue.js®.

We chose Unakite over other commercially available tools such
as Google Docs as the baseline condition because: 1) it can be easily
used to capture richer contexts such as formatted text (example
code), images, and links; 2) similar to Crystalline, it also provides a

Shttps://splidejs.com/
“https://kenwheeler.github.io/slick/
Shttps://swiperjs.com/
Ohttps://reactjs.org/
"https://angular.io/
Shttps://vuejs.org/

sidebar that allows participants to view and organize the collected
information directly rather than switching context over to another
browser tab or application to paste in and structure information;
and 3) Unakite was shown to be easy to learn and use in prior
research and incurs significantly less overhead cost than using
Google Docs [81].

In addition, rather than letting participants search for their own
pages to research, we provided them with the predefined set of
pages to ensure a fair comparison of the results, and since helping
to find relevant web pages is not a goal of Crystalline. Requiring
participants to only read the predefined pages (each contains on
average 7 screenfuls of content) also helps ensure that the two tasks
are of roughly equal difficulty in terms of reading and cognitive
processing effort. Furthermore, to ensure realism and participant
engagement, the tasks were selected based on actual questions
asked and discussed on programming forums and websites. We
specifically simplified the requirements and background of task
B to match that of task A, since otherwise, choosing a JavaScript
framework (e.g., to build interactive industry-level web applica-
tions) would arguably be more substantial and involve deeper and
much more careful comparisons and team discussions that are be-
yond the scope of this lab study. In fact, as shown in section 6.1
there was no significant difference by task.

Each study session started by obtaining consent and having par-
ticipants fill out a demographic survey. Participants were then given
a 10-minute tutorial showcasing the various features of Unakite and
Crystalline and a 10-minute practice session on both systems before
starting. At the end of the study, the researcher conducted a survey
and an interview eliciting subjective feedback on the Unakite and
Crystalline experience. Each study session took approximately 60
minutes, using a designated MacBook Pro computer with Chrome,
Unakite and Crystalline installed. All sessions were carried out in
person, with participants and the researcher appropriately masked
following COVID-19 mitigation protocols. All participants were
compensated $15 for their time. The study was approved by our
institution’s IRB office.

https://splidejs.com/
https://kenwheeler.github.io/slick/
https://swiperjs.com/
https://reactjs.org/
https://angular.io/
https://vuejs.org/

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers

Question Statements Crystalline condi- | Unakite condition
tion

I would consider my interactions with the tool to be understandable and clear. ‘ 6.17 (0.39) ‘ 6.08 (0.67)

I would consider it easy for me to learn how to use this tool. ‘ 6.08 (0.79) ‘ 6.00 (1.04)

I enjoyed the features provided by the tool. ‘ 6.25 (0.45) ‘ 6.17 (0.58)

Using this tool would make solving programming problems at my work more efficient and effective. ‘ 6.08 (0.29)* ‘ 5.75 (0.45)"

If possible, I would recommend the tool to my friends and colleagues doing programming work. ‘ 6.17 (0.58)* ‘ 5.58 (0.51)"

Table 3: Statistics of scores in the post-tasks survey. Participants were asked to rate their agreement with statements related to
their experience interacting with Crystalline and Unakite on a 7-point Likert scale from “Strongly Disagree” (a score of 1) to
“Strongly Agree” (a score of 7). Statistics in column 2 and 3 are presented in the form of mean (standard deviation). Statistically
significant differences (p < 0.05) through paired t-tests are marked with an *.

6 RESULTS
6.1 OQuantitative Results

All participants were able to complete all of the tasks in both con-
ditions, and nobody went over the pre-imposed time limit. Figure
1, together with Figure 3, shows an example table built by one of
the participants in the study for task A.

To examine how Crystalline performs compared to the baseline
Unakite condition, we measured the time it took for participants
to finish each task. A two-way repeated measures ANOVA was
conducted to examine the within-subject effects of condition (Crys-
talline vs. Unakite) and task (A vs. B) on task completion time. There
was a statistically significant effect of condition (F(1, 20) = 8.06,
p = 0.01) such that participants completed tasks significantly
faster (21.6% faster) with Crystalline (Mean = 611.8 seconds, SD
= 144.6 seconds) than in the Unakite condition (Mean = 780.3 sec-
onds, SD = 137.6 seconds). There was no significant effect of task
(F(1,20) = 0.11, p = 0.74), indicating the two tasks were indeed of
roughly equal difficulty. These results suggest Crystalline helped
participants build up comparison tables faster overall, even the
majority of their time was necessarily spent reading through the
material in both conditions.

To account for this reading time, we also compared the overhead
cost [81] of using both tools to collect and organize information. For
the Crystalline condition, we calculated the overhead cost as the
portion of the time participants spent on directly interacting with
Crystalline (scrolling through the list and table view to examine
the evidence collected so far, splitting and merging criteria, pinning
important criteria, manually collecting information, etc.) out of the
total time they used for a task (vs. reading and comprehending
the web pages). Similarly, in the Unakite condition, the overhead
cost was calculated as the percent of time participants spent on
directly using Unakite features (selecting and collecting information
snippets, drag and dropping snippets into the comparison table,
etc.), in the same way as was done to compare Unakite to Google
Docs [81].

A two-way repeated measures ANOVA was conducted to exam-
ine the within-subject effects of condition (Crystalline vs. Unakite)
and task (A vs. B) on overhead cost. There was a statistically sig-
nificant effect of condition (F(1,20) = 77.5, p < 0.001) such that
the overhead cost was significantly lower (almost 60% lower) in
the Crystalline condition (Mean = 11.6%, SD = 0.04) than in the
Unakite condition (Mean = 28.4%, SD = 0.07). Again, there was no

significant effect of task (F(1,20) = 0.53, p = 0.48)). Thus, using
Crystalline resulted in reduced overhead costs of collecting and
organizing information.

To gain deeper insights into why the overhead cost was signif-
icantly lower in the Crystalline condition, we tallied the number
of interactions performed in each task while collecting and orga-
nizing information to build the comparison tables (Table 2). Here,
we notice that the majority of interactions in the Unakite condi-
tion are to manually collect information snippets (on average 26.6
times) and place them into the comparison table (on average 15.5
times). In contrast, in the Crystalline condition, the majority of in-
teractions are to merge criteria into groups (on average 2.08 times)
and pin or reorder the criteria in the table (on average 5.42 times).
This suggests that, to some extent, Crystalline has transformed
the previously active capturing and organizing work into passive
monitoring and error-fixing, which explains the lower overhead
cost.

In the survey, participants reported (in 7-point Likert scales) that
they thought the interactions with Crystalline were understandable
and clear (Mean = 6.17, SD = 0.39), Crystalline was easy to learn
(Mean = 6.08, SD = 0.79), and they enjoyed Crystalline’s features
(Mean = 6.25, SD = 0.45). In addition, compared to Unakite (Mean
= 5.75, SD = 0.45), they thought using Crystalline (Mean = 6.08,
SD = 0.29) would help them solve programming problems more
efficiently and effectively, and would recommend Crystalline (Mean
=6.17, SD = 0.58) over Unakite (Mean = 5.58, SD = 0.51) to friends
and colleagues doing programming work, both differences were
statistically significant under paired t-tests. Details of the survey
questions and scores are presented in Table 3.

6.2 Qualitative Observations

6.2.1 Usability and usage patterns. Overall, participants appreci-
ated the increased efficiency afforded by various Crystalline fea-
tures. Many (9/12) mentioned that the perceived workload to collect
and organize what they have investigated was minimal, saying that
“I feel like I got a table for free” (P3), “the fact that I can see what
I’ve paid a lot of attention to automatically bubbles up to the top is
quite magical” (P9), and “It feels as if was sitting in the passenger
seat and not having to do all the steering and maneuvering” (P7).
Some (3/12) participants also reported having taken advantage of
the overlooked information reminder feature (Figure 3d) to guide
their research. Furthermore, participants reflected that Crystalline

Crystalline: Lowering the Cost for Developers to Collect and Organize Information for Decision Making

relieves them of the burden of trying to anticipate the value of a
particular piece of information before collecting it since “the impor-
tant bits will eventually be at or near the top, hopefully” (P12), and
they could “focus on reading the page itself and not context switch to
bookkeeping mode again and again” (P5).

However, some did voice concerns about the system’s ability at
the beginning of the tasks, arguing that they were “skeptical if it will
actually collect the right things” (P1), and reported that they would
“skim through the list view and the table view quite frequently at the
beginning” (P7). However, as they progressed through the tasks,
their confidence in Crystalline increased, and they only occasionally
checked the sidebar. We observed that three of the 12 participants
ended up not examining and editing the system’s output until they
felt like they had finished reading and processing all the given
pages, and they made minimal edits to the results.

6.2.2 Working with machine suggestions. Participants generally
thought that the benefits of automating the collection and orga-
nization process outweighed the costs of dealing with occasional
unhelpful machine suggestions, such as incorrectly merging criteria
together or prioritizing unimportant criteria at the top of the list.
For example, P7 reflected, “it feels like a mind reader. I know it’s
not perfect, but I also don’t expect it to be, and would actually prefer
occasionally peeking into what it’s been doing and fixing whatever
that’s not correct than grabbing everything by myself all the time.”

Some did raise concerns about the ordering of criteria getting
changed too frequently (“they [the criteria] were jumping around”,
P7) at the beginning. This is likely due to the fact that users were
skimming through a web page without paying particular attention
to anything at the beginning, causing their attention scores to be
relatively indistinguishable. For future iterations of the system, we
could experiment with less frequent UI update intervals under these
circumstances so it would cause less distraction.

6.3 Evaluation Discussion

Similar to what was reported in prior work [99], since our par-
ticipants were not explicitly told how the system worked to au-
tomatically collect and rank information, they had to form their
own mental models and hypotheses about how the system works
and how they could affect it with their behavior. For example, P8
noticed that “it looks like if I spend a little bit more time on a partic-
ular place on a page, the corresponding criterion would get picked up
and bumped up quickly; and if I click on that part a bunch of times,
which happens to be what I typically would do when I try to focus
my attention on something now that I'm thinking about it, it’s [the
corresponding criterion] going to go up even faster.” This suggests
that our implicit signals were working, and further, that with ex-
perience users might adapt to explicitly steer the system towards
their goal of collecting and prioritizing information, resulting in, to
some extent, a mixed-initiative collection approach that still would
require much less effort than the baseline methods. Future research
could explore the costs and benefits of a wide variety of interactions
and signals that lie on the spectrum between implicit behavioral
signals to full manual direct manipulations, and any differences
caused by directly instructing users about the implicit signals being
used.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Though the current version of Crystalline mainly focuses on
reducing the cost for developers to collect and organize informa-
tion, which was exactly what we tested in the lab study, we were
also interested in making sure that the quality of the comparison
tables built using Crystalline does not degrade as seen in other
automation scenarios [49, 111]. Since there is not a gold standard
comparison table, we evaluated the correctness of Crystalline’s
automatic approaches by how much editing participants had to
do in order to fix Crystalline’s mistakes and make sure that all
the content in the table was eventually filled out and ranked cor-
rectly according to their understanding as per the study protocol.
As shown in Table 2(b), participants only had to perform on aver-
age 12.2 edits to the automatically generated comparison tables,
compared to the 51.3 actions that they had to manually perform in
the baseline Unakite condition (the difference is statistically signif-
icant, p < 0.01). Among these, edits that are related to collecting
information, such as manually selecting information and capture
(0.92 times), renaming (1.92 times), and deleting information (0.50
times) were minimal, suggesting that our combination of NLP and
behavioral signal heuristics was working effectively to collect infor-
mation that the users thought was important. However, participants
pinned or reordered the criteria that were automatically ranked by
Crystalline on average 5.42 times (SD = 2.27 times). One possible
explanation is that the universal scoring functions (in Table 1) did
not necessarily apply to every single participant, suggesting the
need for a more sophisticated and personalized scoring mechanism
in future iterations of Crystalline and systems that leverage signals
from users’ natural browsing behavior.

In addition, we asked and coded their opinions about using these
tables as if they were the subsequent developers trying to under-
stand the design rationale. In general, participants were excited
about using comparison tables automatically built by Crystalline.
For example, P10 highlighted scenarios where Crystalline would
be useful for his own purposes, saying that “it’s sort of like a never-
erased whiteboard that would most likely help me remember what I
looked at three months ago.” In addition, some reflected that com-
pared to having no clue of why a decision was made in a particular
way in the first place, they would appreciate at least having access
to a Crystalline table even if it was not actively monitored and
maintained during the initial developer’s sensemaking process. For
example, P4 said: “I think being able to read something like this [Crys-
talline table] is going to make a big difference when you’re banging
your head against the wall trying to understand why this particularly
old API was chosen, I mean, especially when the guy who wrote the
code was long gone, I could at least ‘read a transcription of his mind’
in some sense.” Here, we see preliminary evidence that our approach
of automatically collecting and organizing information on behalf of
developers is useful and valuable. We leave the formal evaluation
of the quality of fully automatically built comparison tables with
possibly more advanced versions of Crystalline for future work.

7 LIMITATIONS

Currently, Crystalline works best on a limited set of web pages in
the programming domain, including documentation pages that are
dedicated to a particular library or a set of APIs, as well as review ar-
ticles or question answering pages that discuss and compare several

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

options together. We chose to optimize for these types of web pages
in the current prototype as they are reported in prior work [63, 81]
as well as our formative discussions with developers as some of the
most frequently consulted programming resources when it comes
to making decisions. However, the performance reported on the
web pages used in the study is not necessarily representative of
how Crystalline would operate even on web pages of these types
for users in general. In addition, Crystalline currently relies heavily
on the overall structure of the web pages being standard, mean-
ing that a page uses HTML tags appropriately according to their
semantics (e.g., enclosing headers and list items in <h> and <1i>
tags rather than wrapping everything with <div> tags) and that
there is a strong semantic coherence between a section header and
its corresponding content. Though this is sufficient to demonstrate
the idea of automatic collecting and organization and the benefits
they offer, future research is needed to make Crystalline-style tools
work on a more diverse set of web pages, as well as how to be
clear upfront about its limitations in parsing web pages that do not
follow appropriate web standards.

Furthermore, our lab study has several limitations. Given the
short amount of training and practice time participants had, some
might not have been able to fully grasp the various features of
Crystalline, or they might have been confused about what Unakite
(the baseline system) has to offer. The study tasks might not be what
participants typically encounter in their daily work, depending on
whether they are in a position to make decisions, and thus they may
not be equipped with the necessary motivation or context that they
would otherwise have in real life. We mitigate these risks in the
study setup by: 1) having participants perform a practice task for
each condition simulating what they would have to do in the real
tasks; 2) choosing the study tasks based on actual questions that
are discussed by developers on Stack Overflow and other popular
programming community forums; and 3) providing participants
with sufficient background information and context to help them
get prepared. In fact, 7 out of 12 participants reported that the tasks
were indeed similar to what they would deal with in their daily
work. We would like to further address these limitations in the
future by having developers use Crystalline on their own work
and personal projects, which would provide them with sufficient
motivation as well as experience with Crystalline enriched over
time.

Finally, the overhead cost measurement in the study could be
conservative, as we did not account for the time participants spent
simply glancing or looking at the sidebars without any explicit
interactions with it. However, from our observations during the
study, participants rarely spent any extended time doing this. Nev-
ertheless, we would like to take advantage of more advanced tools
such as eye tracking [7, 89, 90, 103] in the future to more accurately
account for the proportion of time when a participant’s gaze is
fixated on the user interface of the tools rather than on actual web
content.

8 FUTURE WORK

Through designing and evaluating Crystalline, we gained deeper
insights into the benefits and trade-offs of automatically collecting
and organizing information for developers as they make sense of

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers

the web to make programming decisions. This motivates some ideas
for future work.

While Crystalline’s approach provides developers with an inex-
pensive way of capturing knowledge in the browser, it represents
only one piece of a larger puzzle of how to support a developer’s ev-
eryday work that involves sensemaking and decision making. One
dimension to characterize this is that developers also frequently per-
form activities outside their browsers, such as in IDEs, code editors
[108], command-line interfaces [19], literate programming note-
books [68, 69], or threads of discussions during formal or informal
meetings [125]. Further research would be needed to understand
how to collect and organize information from these sources as well
as how to integrate them together to provide a more comprehensive
picture of the decision making context. Another dimension that is
relevant is the lifecycle of the knowledge captured via systems like
Unakite and Crystalline. Early evidence from the user study has
suggested there is a benefit of Crystalline’s organization from the
perspective of a subsequent developer who may need to understand
a previous developer’s decision. Future research could investigate
how well developers are able to understand and potentially reuse
these automatically assembled knowledge artifacts, possibly with-
out any manual interventions from the initial knowledge authors,
which could, in turn, eliminate the starting cost associated with
initial knowledge creation [37] and unlock the virtuous cycle of
accelerated programming knowledge reuse [37, 82].

Though the current set of mechanisms for deriving the impor-
tance of criteria from implicit behavioral signals generally works
well for the setting of this research, there could be situations where
a user’s default browsing behaviors and patterns fall outside the
limited set of signals and heuristics that Crystalline is currently
looking for. For example, a user might not have the habit of uncon-
sciously using the cursor as a reading guide or might not interact
with the page at all while reading, which would render the tracking
of some of the behavioral signals moot. In addition, users could
exhibit different or additional behavior patterns when generalized
to other tasks domains that involve information-backed decision
making, such as comparison shopping, trip-planning, etc. [15, 53].
For example, when interacting with a map view to find the best
local dining option, a user may frequently pan around and zoom
(in and out) to view different restaurants, and both the duration of
stay on a particular restaurant and how many times it is viewed
back and forth could be leveraged to approximate the user’s interest
and investment of effort. One way to address these concerns is to
leverage a more diverse set of behavioral signals and potentially
signal combinations, such as scrolling, mouse panning, zooming,
eye tracking [35, 36, 89, 90], and facial gestures tracking [70, 117] to
collect a more accurate picture of what users are seeing on screen.
Another future direction that could be fruitful is to take a machine
learning approach instead of the current rule-based approach for
approximating content importance using behavioral signals. Specif-
ically, we could leverage recent advances in crowdsourcing and
labeling [17, 20, 27, 114] to log, annotate, and construct a large-
scale data set that maps a variety of behavioral signals to the per-
ceived importance of content blocks that they are triggered on, and
train on this data set to obtain scoring functions that would work
more widely. Alternatively, an online learning approach could also
be promising, where the system continuously learns, adapts, and

Crystalline: Lowering the Cost for Developers to Collect and Organize Information for Decision Making

improves from an individual user’s behavior over time, as suggested
by Horvitz [62].

Last but not least, automation afforded by systems like Crys-
talline enable people to focus their attention on reading and compre-
hending the web pages rather than splitting attention with having
to collect and organize the information at the same time. However,
prior work in learning science, such as Bransford et al. [24], found
that people who personally performed the actions of collecting,
categorizing, and organizing information were more likely to be
able to recall it correctly and in detail, and exhibited increased con-
fidence in the final outcome. This raises an interesting tension and
trade-off between full-on automation and direct manipulation —
future research would be required to examine the long term effect
on people’s learning outcome as well as confidence in their deci-
sions using systems like Crystalline, and determine the appropriate
levels and circumstances when automatic information bookkeeping

should be applied.
9 CONCLUSION

This paper explored how automatically collecting and organizing
information as developers search and browse the web can better
support them in decision making scenarios. Our designs were mo-
tivated by the growing complexity of the decisions that developers
need to make, and the lack of tooling support to help them efficiently
gather and synthesize evidence without causing much interruption
to their main focus of reading and understanding content online.
We introduced Crystalline, a browser extension that instantiates
this idea by leveraging natural language processing and users’ be-
havior signals such as mouse movement and dwell time to infer
what information to collect and how to organize and prioritize it on
behalf of a user. Through a lab study with 12 participants, we found
promising evidence that using Crystalline as a copilot to collect
and organize information is much faster and more efficient, and the
resulting knowledge artifacts are potentially useful and valuable
for the initial user as well as for subsequent consumption by people
who need to understand the original decision-making context.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CCF-1814826 and
FW-HTF-RL-1928631, Google, Bosch, the Office of Naval Research,
and the CMU Center for Knowledge Acceleration. Any opinions,
findings, conclusions, or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the
views of the sponsors. We would like to thank our study partici-
pants for their kind participation and our anonymous reviewers for
their insightful feedback. We are genuinely grateful to Yongsung
Kim, Joseph Chee Chang, and Amber Horvath for their valuable
feedback. In addition, we sincerely thank Jinlei Chen, Tianying
Chen, Yulan Feng, Nan Gao, Haojian Jin, Toby Jia-Jun Li, Franklin
Mingzhe Li, Julia Jiayin Qian, Haitian Sun, Jiachen Wang, Eric Yiyi
Wang, Ziyan Wang, Zheng Yao, and Yi Zhou for their constant
support, especially during the COVID-19 pandemic.

REFERENCES

[1] 2012. Google Notebook. https://www.google.com/googlenotebook/faq.html
[2] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Igbal, Paul N. Bennett, Kori Inkpen,

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

]

]

]

]

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
Al Interaction. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (CHI "19). ACM, New York, NY, USA, 3:1-3:13. https:
//doi.org/10.1145/3290605.3300233 event-place: Glasgow, Scotland Uk.
Michelle Q. Wang Baldonado and Terry Winograd. 1997. SenseMaker: An
Information-exploration Interface Supporting the Contextual Evolution of a
User’s Interests. In Proceedings of the ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI 97). ACM, New York, NY, USA, 11-18. https:
//doi.org/10.1145/258549.258563

David Bawden, Clive Holtham, and Nigel Courtney. 1999. Perspectives on
information overload. Aslib Proceedings 51, 8 (Jan. 1999), 249-255. https:
//doi.org/10.1108/EUM0000000006984 Publisher: MCB UP Ltd.

Krishna Bharat. 2000. SearchPad: explicit capture of search context to support
Web search. Computer Networks 33, 1 (June 2000), 493-501. https://doi.org/10.
1016/S1389-1286(00)00047-5

Eric A. Bier, Edward W. Ishak, and Ed Chi. 2006. Entity quick click: rapid text
copying based on automatic entity extraction. In CHI '06 Extended Abstracts on
Human Factors in Computing Systems (CHI EA "06). Association for Computing
Machinery, New York, NY, USA, 562-567. https://doi.org/10.1145/1125451.
1125570

Jeffrey P. Bigham, Mingzhe Li, Samuel C. White, Xiaoyi Zhang, Qi Shan, and
Carlos E. GUESTRIN. 2021. On-the-fly calibration for improved on-device eye
tracking. https://patents.google.com/patent/US11106280B1/en

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-centric Programming: Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY, USA, 513-522. https:
//doi.org/10.1145/1753326.1753402

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klem-
mer. 2009. Two Studies of Opportunistic Programming: Interleaving Web For-
aging, Learning, and Writing Code. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '09). ACM, New York, NY, USA,
1589-1598. https://doi.org/10.1145/1518701.1518944 event-place: Boston, MA,
USA.

Georg Buscher, Edward Cutrell, and Meredith Ringel Morris. 2009. What do you
see when you’re surfing? using eye tracking to predict salient regions of web
pages. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. Association for Computing Machinery, New York, NY, USA, 21-30.
https://doi.org/10.1145/1518701.1518705

Georg Buscher, Andreas Dengel, and Ludger van Elst. 2008. Eye movements as
implicit relevance feedback. In CHI '08 Extended Abstracts on Human Factors
in Computing Systems. Association for Computing Machinery, New York, NY,
USA, 2991-2996. https://doi.org/10.1145/1358628.1358796

Georg Buscher, Ludger van Elst, and Andreas Dengel. 2009. Segment-level
display time as implicit feedback: a comparison to eye tracking. In Proceedings
of the 32nd international ACM SIGIR conference on Research and development in
information retrieval (SIGIR "09). Association for Computing Machinery, New
York, NY, USA, 67-74. https://doi.org/10.1145/1571941.1571955

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence En-
coder. arXiv:1803.11175 [cs] (April 2018). http://arxiv.org/abs/1803.11175 arXiv:
1803.11175.

Joseph Chee Chang, Nathan Hahn, and Aniket Kittur. 2016. Supporting Mobile
Sensemaking Through Intentionally Uncertain Highlighting. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology (UIST ’16).
ACM, New York, NY, USA, 61-68. https://doi.org/10.1145/2984511.2984538
Joseph Chee Chang, Nathan Hahn, and Aniket Kittur. 2020. Mesh: Scaffolding
Comparison Tables for Online Decision Making. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (UIST °20).
Association for Computing Machinery, New York, NY, USA, 391-405. https:
//doi.org/10.1145/3379337.3415865

Joseph Chee Chang, Yongsung Kim, Victor Miller, Michael Xieyang Liu, Brad A
Myers, and Aniket Kittur. 2021. Tabs.do: Task-Centric Browser Tab Management.
In The 34th Annual ACM Symposium on User Interface Software and Technology.
Association for Computing Machinery, New York, NY, USA, 663-676. https:
//doi.org/10.1145/3472749.3474777

Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. 2018. Learn-
ing to Detect Human-Object Interactions. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). 381-389. https://doi.org/10.1109/
WACV.2018.00048

Mon Chu Chen, John R. Anderson, and Myeong Ho Sohn. 2001. What can
a mouse cursor tell us more? correlation of eye/mouse movements on web
browsing. In CHI 01 Extended Abstracts on Human Factors in Computing Systems
(CHI EA °01). Association for Computing Machinery, New York, NY, USA, 281-
282. https://doi.org/10.1145/634067.634234

Yan Chen, Jaylin Herskovitz, Walter S. Lasecki, and Steve Oney. 2020. Bashon:
A Hybrid Crowd-Machine Workflow for Shell Command Synthesis. In 2020 IEEE

https://www.google.com/googlenotebook/faq.html
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/258549.258563
https://doi.org/10.1145/258549.258563
https://doi.org/10.1108/EUM0000000006984
https://doi.org/10.1108/EUM0000000006984
https://doi.org/10.1016/S1389-1286(00)00047-5
https://doi.org/10.1016/S1389-1286(00)00047-5
https://doi.org/10.1145/1125451.1125570
https://doi.org/10.1145/1125451.1125570
https://patents.google.com/patent/US11106280B1/en
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518705
https://doi.org/10.1145/1358628.1358796
https://doi.org/10.1145/1571941.1571955
http://arxiv.org/abs/1803.11175
https://doi.org/10.1145/2984511.2984538
https://doi.org/10.1145/3379337.3415865
https://doi.org/10.1145/3379337.3415865
https://doi.org/10.1145/3472749.3474777
https://doi.org/10.1145/3472749.3474777
https://doi.org/10.1109/WACV.2018.00048
https://doi.org/10.1109/WACV.2018.00048
https://doi.org/10.1145/634067.634234

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

[20

[21]

[22

[23

[24

[25

[27

(28]

[29

"
=

[31]

(32]

®
3

[34

[35

[36

[37

&
&,

(39

(40

Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 1-8.
https://doi.org/10.1109/VL/HCC50065.2020.9127248 ISSN: 1943-6106.

Yan Chen, Maulishree Pandey, Jean Y. Song, Walter S. Lasecki, and Steve Oney.
2020. Improving Crowd-Supported GUI Testing with Structural Guidance. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1-13.
https://doi.org/10.1145/3313831.3376835

Alex Chitu. 2011. Google Sets Will Be Shut Down. http://googlesystem.blogspot.
com/2011/08/google-sets-will-be-shut-down.html

Mark Claypool, Phong Le, Makoto Wased, and David Brown. 2001. Implicit
interest indicators. In Proceedings of the 6th international conference on Intelligent
user interfaces (IUI '01). Association for Computing Machinery, New York, NY,
USA, 33-40. https://doi.org/10.1145/359784.359836

A. Cockburn and]J. Highsmith. 2001. Agile software development, the people
factor. Computer 34, 11 (Nov. 2001), 131-133. https://doi.org/10.1109/2.963450
Conference Name: Computer.

National Research Council and others. 2000. How people learn: Brain, mind,
experience, and school: Expanded edition. National Academies Press.

Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Kathia M. de Oliveira.
2005. A study of the documentation essential to software maintenance. In
Proceedings of the 23rd annual international conference on Design of commu-
nication: documenting & designing for pervasive information (SIGDOC °05).
Association for Computing Machinery, New York, NY, USA, 68-75. https:
//doi.org/10.1145/1085313.1085331

R. DeLine, M. Czerwinski, and G. Robertson. 2005. Easing Program Com-
prehension by Sharing Navigation Data. In IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’05). IEEE, 241-248. https:
//doi.org/10.1109/VLHCC.2005.32

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. 248-255. https://doi.org/10.1109/
CVPR.2009.5206848 ISSN: 1063-6919.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. arXiv:1810.04805 [cs] (May 2019). http://arxiv.org/abs/1810.04805
arXiv: 1810.04805.

Mira Dontcheva, Steven M. Drucker, Geraldine Wade, David Salesin, and
Michael F. Cohen. 2006. Summarizing Personal Web Browsing Sessions.
In Proceedings of the 19th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST '06). ACM, New York, NY, USA, 115-124. https:
//doi.org/10.1145/1166253.1166273

Tore Dyba and Torgeir Dingsgyr. 2008. Empirical studies of agile software
development: A systematic review. Information and Software Technology 50, 9
(Aug. 2008), 833-859. https://doi.org/10.1016/j.infsof.2008.01.006

Dora Dzvonyar, Stephan Krusche, Rana Alkadhi, and Bernd Bruegge. 2016.
Context-Aware User Feedback in Continuous Software Evolution. In 2016
IEEE/ACM International Workshop on Continuous Software Evolution and Delivery
(CSED). 12-18. https://doi.org/10.1109/CSED.2016.011

Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton.
2015. Measure it? Manage it? Ignore it? software practitioners and technical
debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). Association for Computing Machinery, New York,
NY, USA, 50-60. https://doi.org/10.1145/2786805.2786848

Evernote. [n. d.]. Best Note Taking App - Organize Your Notes with Evernote.
https://evernote.com

Facebook. 2018. React - A JavaScript library for building user interfaces. https:
//reactjs.org/

Mingming Fan, Zhen Li, and Franklin Mingzhe Li. 2020. Eyelid Gestures
on Mobile Devices for People with Motor Impairments. In The 22nd Inter-
national ACM SIGACCESS Conference on Computers and Accessibility (AS-
SETS °20). Association for Computing Machinery, New York, NY, USA, 1-8.
https://doi.org/10.1145/3373625.3416987

Mingming Fan, Zhen Li, and Franklin Mingzhe Li. 2021. Eyelid gestures for
people with motor impairments. Commun. ACM 65, 1 (Dec. 2021), 108-115.
https://doi.org/10.1145/3498367

Kristie Fisher, Scott Counts, and Aniket Kittur. 2012. Distributed Sensemaking:
Improving Sensemaking by Leveraging the Efforts of Previous Users. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12).
ACM, New York, NY, USA, 247-256. https://doi.org/10.1145/2207676.2207711
Beat Fluri, Michael Wursch, Emanuel Giger, and Harald C Gall. 2009. Analyzing
the co-evolution of comments and source code. Software Quality Journal 17, 4
(Dec. 2009), 367-394.

Andrew Forward and Timothy C. Lethbridge. 2002. The relevance of software
documentation, tools and technologies: a survey. In Proceedings of the 2002 ACM
symposium on Document engineering (DocEng °02). Association for Computing
Machinery, New York, NY, USA, 26-33. https://doi.org/10.1145/585058.585065
David Foster. 2020. The Google ‘vs’ Trick. https://medium.com/applied-data-
science/the-google-vs-trick-618c8fd5359f

[41]

[42]

[43

[44

[45

[46

[47
[48

[49]

[50]

[51]

[52]

[53

[54]

[55

[56

[57

[58]

[59

[60

[61]

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers

Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

Andreas Gizas, Sotiris Christodoulou, and Theodore Papatheodorou. 2012. Com-
parative Evaluation of Javascript Frameworks. In Proceedings of the 21st Interna-
tional Conference on World Wide Web (WWW 12 Companion). ACM, New York,
NY, USA, 513-514. https://doi.org/10.1145/2187980.2188103

Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al’s negative-sampling word-embedding method. arXiv:1402.3722 [cs, stat] (Feb.
2014). http://arxiv.org/abs/1402.3722 arXiv: 1402.3722.

Google. [n.d.]. Angular - Angular Routing. https://angular.io/guide/routing-
overview

Google. [n.d.]. Angular - Introduction to Angular animations. https://angular.
io/guide/animations

Google. [n.d.]. Angular - Validating form input. https://angular.io/guide/form-
validation

Google. 2019. Angular - One Framework. Mobile & Desktop. https://angular.io/
Google. 2021. Cloud Natural Language. https://cloud.google.com/natural-
language

Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang, and Owain Evans.
2018. Viewpoint: When Will AI Exceed Human Performance? Evidence from
Al Experts. Journal of Artificial Intelligence Research 62 (July 2018), 729-754.
https://doi.org/10.1613/jair.1.11222

Qi Guo and Eugene Agichtein. 2008. Exploring mouse movements for inferring
query intent. In Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval (SIGIR "08). Association for
Computing Machinery, New York, NY, USA, 707-708. https://doi.org/10.1145/
1390334.1390462

Qi Guo and Eugene Agichtein. 2010. Ready to buy or just browsing? detecting
web searcher goals from interaction data. In Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information retrieval
(SIGIR ’10). Association for Computing Machinery, New York, NY, USA, 130-137.
https://doi.org/10.1145/1835449.1835473

Qi Guo and Eugene Agichtein. 2010. Towards predicting web searcher gaze
position from mouse movements. In CHI ’10 Extended Abstracts on Human
Factors in Computing Systems. Association for Computing Machinery, New York,
NY, USA, 3601-3606. https://doi.org/10.1145/1753846.1754025

Nathan Hahn, Joseph Chee Chang, and Aniket Kittur. 2018. Bento Browser:
Complex Mobile Search Without Tabs. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). ACM, Montreal QC, Canada,
251:1-251:12. https://doi.org/10.1145/3173574.3173825

Bjoérn Hartmann, Mark Dhillon, and Matthew K. Chan. 2011. HyperSource:
Bridging the Gap Between Source and Code-related Web Sites. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11).
ACM, New York, NY, USA, 2207-2210. https://doi.org/10.1145/1978942.1979263
event-place: Vancouver, BC, Canada.

Andrew Head, Elena L. Glassman, Bjérn Hartmann, and Marti A. Hearst. 2018.
Interactive Extraction of Examples from Existing Code. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/
3173574.3173659

Tom-Michael Hesse and Barbara Paech. 2013. Supporting the collaborative de-
velopment of requirements and architecture documentation. In 2013 3rd Interna-
tional Workshop on the Twin Peaks of Requirements and Architecture (TwinPeaks).
22-26. https://doi.org/10.1109/TwinPeaks-2.2013.6617355

Yoshinori Hijikata. 2004. Implicit user profiling for on demand relevance feed-
back. In Proceedings of the 9th international conference on Intelligent user interfaces
(IUI °04). Association for Computing Machinery, New York, NY, USA, 198-205.
https://doi.org/10.1145/964442.964480

Ken Hinckley, Xiaojun Bi, Michel Pahud, and Bill Buxton. 2012. Informal
Information Gathering Techniques for Active Reading. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). ACM,
New York, NY, USA, 1893-1896. https://doi.org/10.1145/2207676.2208327 event-
place: Austin, Texas, USA.

Raphael Hoffmann, James Fogarty, and Daniel S. Weld. 2007. Assieme: Finding
and Leveraging Implicit References in a Web Search Interface for Programmers.
In Proceedings of the 20th Annual ACM Symposium on User Interface Software
and Technology (UIST *07). ACM, New York, NY, USA, 13-22. https://doi.org/
10.1145/1294211.1294216 event-place: Newport, Rhode Island, USA.

Andrew Hogue and David Karger. 2005. Thresher: automating the unwrapping
of semantic content from the World Wide Web. In Proceedings of the 14th inter-
national conference on World Wide Web (WWW °05). Association for Computing
Machinery, New York, NY, USA, 86-95. https://doi.org/10.1145/1060745.1060762
Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon,
Emma Paterson, Kazi Jawad, Andrew Macvean, and Brad Myers. 2021. Un-
derstanding How Programmers Can Use Annotations on Documentation.
arXiv:2111.08684 [cs] (Nov. 2021). http://arxiv.org/abs/2111.08684 arXiv:
2111.08684.

https://doi.org/10.1109/VL/HCC50065.2020.9127248
https://doi.org/10.1145/3313831.3376835
http://googlesystem.blogspot.com/2011/08/google-sets-will-be-shut-down.html
http://googlesystem.blogspot.com/2011/08/google-sets-will-be-shut-down.html
https://doi.org/10.1145/359784.359836
https://doi.org/10.1109/2.963450
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/1166253.1166273
https://doi.org/10.1145/1166253.1166273
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1109/CSED.2016.011
https://doi.org/10.1145/2786805.2786848
https://evernote.com
https://reactjs.org/
https://reactjs.org/
https://doi.org/10.1145/3373625.3416987
https://doi.org/10.1145/3498367
https://doi.org/10.1145/2207676.2207711
https://doi.org/10.1145/585058.585065
https://medium.com/applied-data-science/the-google-vs-trick-618c8fd5359f
https://medium.com/applied-data-science/the-google-vs-trick-618c8fd5359f
https://doi.org/10.1145/2187980.2188103
http://arxiv.org/abs/1402.3722
https://angular.io/guide/routing-overview
https://angular.io/guide/routing-overview
https://angular.io/guide/animations
https://angular.io/guide/animations
https://angular.io/guide/form-validation
https://angular.io/guide/form-validation
https://angular.io/
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
https://doi.org/10.1613/jair.1.11222
https://doi.org/10.1145/1390334.1390462
https://doi.org/10.1145/1390334.1390462
https://doi.org/10.1145/1835449.1835473
https://doi.org/10.1145/1753846.1754025
https://doi.org/10.1145/3173574.3173825
https://doi.org/10.1145/1978942.1979263
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1109/TwinPeaks-2.2013.6617355
https://doi.org/10.1145/964442.964480
https://doi.org/10.1145/2207676.2208327
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1060745.1060762
http://arxiv.org/abs/2111.08684

Crystalline: Lowering the Cost for Developers to Collect and Organize Information for Decision Making

[62] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings

of the SIGCHI conference on Human Factors in Computing Systems (CHI "99).
Association for Computing Machinery, New York, NY, USA, 159-166. https:
//doi.org/10.1145/302979.303030

[63] Jane Hsieh, Michael Xieyang Liu, Brad A. Myers, and Aniket Kittur. 2018. An

Exploratory Study of Web Foraging to Understand and Support Programming
Decisions. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 305-306. https://doi.org/10.1109/VLHCC.2018.8506517
ISSN: 1943-6092.

[64] Jeff Huang, Thomas Lin, and Ryen W. White. 2012. No search result left be-

hind: branching behavior with browser tabs. In Proceedings of the fifth ACM
international conference on Web search and data mining - WSDM ’12. ACM Press,
Seattle, Washington, USA, 203. https://doi.org/10.1145/2124295.2124322

Jeff Huang, Ryen W. White, Georg Buscher, and Kuansan Wang. 2012. Improv-
ing searcher models using mouse cursor activity. In Proceedings of the 35th
international ACM SIGIR conference on Research and development in information
retrieval (SIGIR ’12). Association for Computing Machinery, New York, NY, USA,
195-204. https://doi.org/10.1145/2348283.2348313

Zachary Ives, Craig Knoblock, Steve Minton, Marie Jacob, Partha Talukdar,
Rattapoom Tuchinda, Jose Luis Ambite, Maria Muslea, and Cenk Gazen. 2009.
Interactive Data Integration through Smart Copy & Paste. arXiv:0909.1769 [cs]
(Sept. 2009). http://arxiv.org/abs/0909.1769 arXiv: 0909.1769.

Harish Kandala, B. K. Tripathy, and K. Manoj Kumar. 2018. A Framework to Col-
lect and Visualize User’s Browser History for Better User Experience and Person-
alized Recommendations. In Information and Communication Technology for In-
telligent Systems (ICTIS 2017) - Volume 1 (Smart Innovation, Systems and Technolo-
gies), Suresh Chandra Satapathy and Amit Joshi (Eds.). Springer International
Publishing, Cham, 218-224. https://doi.org/10.1007/978-3-319-63673-3_26
Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York,
NY, USA, 1265-1276. https://doi.org/10.1145/3025453.3025626

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). Association for Computing Machinery,
New York, NY, USA, 1-11. https://doi.org/10.1145/3173574.3173748
Mohammad Kianpisheh, Franklin Mingzhe Li, and Khai N. Truong. 2019. Face
Recognition Assistant for People with Visual Impairments. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3 (Sept.
2019), 90:1-90:24. https://doi.org/10.1145/3351248

Aniket Kittur, Andrew M. Peters, Abdigani Diriye, and Michael Bove. 2014.
Standing on the Schemas of Giants: Socially Augmented Information Foraging.
In Proceedings of the 17th ACM Conference on Computer Supported Cooperative
Work & Social Computing (CSCW ’14). ACM, New York, NY, USA, 999-1010.
https://doi.org/10.1145/2531602.2531644

Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael R.
Bove. 2013. Costs and Benefits of Structured Information Foraging. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13).
ACM, New York, NY, USA, 2989-2998. https://doi.org/10.1145/2470654.2481415
Amy]. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing (VLHCC ’04). IEEE Computer
Society, Washington, DC, USA, 199-206. https://doi.org/10.1109/VLHCC.2004.
47

Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (Dec. 2006), 971-987. https://doi.org/10.1109/TSE.2006.116
Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer Questions
About Code. In Evaluation and Usability of Programming Languages and Tools
(PLATEAU ’10). ACM, New York, NY, USA, 8:1-8:6. https://doi.org/10.1145/
1937117.1937125

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental
Models: A Study of Developer Work Habits. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE *06). ACM, New York, NY, USA,
492-501. https://doi.org/10.1145/1134285.1134355

[77] John Lawrence, Jonas Malmsten, Andrey Rybka, Daniel Sabol, and Ken Triplin.

2017. Comparing TensorFlow Deep Learning Performance Using CPUs,
GPUs, Local PCs and Cloud. Publications and Research (May 2017). https:
//academicworks.cuny.edu/bx_pubs/50

K. Lei, Y. Ma, and Z. Tan. 2014. Performance Comparison and Evaluation of
Web Development Technologies in PHP, Python, and Node.js. In 2014 IEEE 17th
International Conference on Computational Science and Engineering. 661-668.
https://doi.org/10.1109/CSE.2014.142

T.C. Lethbridge, J. Singer, and A. Forward. 2003. How software engineers use
documentation: the state of the practice. IEEE Software 20, 6 (Nov. 2003), 35-39.
https://doi.org/10.1109/MS.2003.1241364 Conference Name: IEEE Software.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[80] Franklin Mingzhe Li, Di Laura Chen, Mingming Fan, and Khai N. Truong.

2019. FMT: A Wearable Camera-Based Object Tracking Memory Aid for Older
Adults. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 3, 3 (Sept. 2019), 95:1-95:25. https://doi.org/10.1145/3351253
Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. 2019. Unakite:
Scaffolding Developers’ Decision-Making Using the Web. In Proceedings of the
32Nd Annual ACM Symposium on User Interface Software and Technology (UIST
’19). ACM, New Orleans, LA, USA, 67-80. https://doi.org/10.1145/3332165.
3347908 event-place: New Orleans, LA, USA.

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not
To Reuse? A Framework and System for Evaluating Summarized Knowledge.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (April 2021),
166:1-166:35. https://doi.org/10.1145/3449240

Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. 2006. Exploring the
Structure of Complex Software Designs: An Empirical Study of Open Source
and Proprietary Code. Management Science 52, 7 (July 2006), 1015-1030. https:
//doi.org/10.1287/mnsc.1060.0552 Publisher: INFORMS.

Alireza Mansouri, Lilly Suriani Affendey, and Ali Mamat. 2008. Named entity
recognition approaches. International Journal of Computer Science and Network
Security 8, 2 (2008), 339-344. Publisher: Citeseer.

Catherine C. Marshall and Sara Bly. 2005. Saving and Using Encountered In-
formation: Implications for Electronic Periodicals. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '05). ACM, New York,
NY, USA, 111-120. https://doi.org/10.1145/1054972.1054989 event-place: Port-
land, Oregon, USA.

Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We
Refactor, and How We Know It. IEEE Transactions on Software Engineering 38, 1
(Jan. 2012), 5-18. https://doi.org/10.1109/TSE.2011.41 Conference Name: IEEE
Transactions on Software Engineering.

Phong H. Nguyen, Kai Xu, Andy Bardill, Betul Salman, Kate Herd, and
B.L. William Wong. 2016. SenseMap: Supporting browser-based online sense-
making through analytic provenance. In 2016 IEEE Conference on Visual Analyt-
ics Science and Technology (VAST). 91-100. https://doi.org/10.1109/VAST.2016.
7883515

Srishti Palani, Zijian Ding, Austin Nguyen, Andrew Chuang, Stephen Mac-
Neil, and Steven P. Dow. 2021. CoNotate: Suggesting Queries Based on Notes
Promotes Knowledge Discovery. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (CHI "21). Association for Computing
Machinery, New York, NY, USA, 1-14. https://doi.org/10.1145/3411764.3445618
Alexandra Papoutsaki, James Laskey, and Jeff Huang. 2017. SearchGazer: We-
bcam Eye Tracking for Remote Studies of Web Search. In Proceedings of the
2017 Conference on Conference Human Information Interaction and Retrieval
(CHIIR ’17). Association for Computing Machinery, New York, NY, USA, 17-26.
https://doi.org/10.1145/3020165.3020170

Alexandra Papoutsaki, Patsorn Sangkloy, James Laskey, Nediyana Daskalova,
Jeff Huang, and James Hays. 2016. WebGazer: Scalable Webcam Eye Tracking
Using User Interactions. In Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI). AAAI 3839-3845.

Soya Park, April Yi Wang, Ban Kawas, Q. Vera Liao, David Piorkowski, and
Marina Danilevsky. 2021. Facilitating Knowledge Sharing from Domain Experts
to Data Scientists for Building NLP Models. In 26th International Conference on
Intelligent User Interfaces (IUI °21). Association for Computing Machinery, New
York, NY, USA, 585-596. https://doi.org/10.1145/3397481.3450637
Priyadarshini Patil, Prashant Narayankar, Narayan D.G., and Meena S.M. 2016.
A Comprehensive Evaluation of Cryptographic Algorithms: DES, 3DES, AES,
RSA and Blowfish. Procedia Computer Science 78 (Jan. 2016), 617-624. https:
//doi.org/10.1016/j.procs.2016.02.108

Sharoda A. Paul and Meredith Ringel Morris. 2009. CoSense: Enhancing Sense-
making for Collaborative Web Search. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '09). ACM, New York, NY, USA,
1771-1780. https://doi.org/10.1145/1518701.1518974

Ksenia Peguero, Nan Zhang, and Xiuzhen Cheng. 2018. An Empirical Study
of the Framework Impact on the Security of JavaScript Web Applications. In
Companion Proceedings of the The Web Conference 2018 (WWW ’18). International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 753-758. https://doi.org/10.1145/3184558.3188736 event-
place: Lyon, France.

Pinterest. [n. d.]. Pinterest. https://www.pinterest.com/

Peter Pirolli and Stuart Card. 2005. The Sensemaking Process and Lever-
age Points for Analyst Technology as Identified Through Cognitive Task
Analysis. In Proceedings of International Conference on Intelligence Analy-
sis. http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-
Process-Pirolli-and- Card.pdf

Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack
Overflow in the IDE. In 2013 35th International Conference on Software Engineer-
ing (ICSE). IEEE, San Francisco, CA, USA, 1295-1298. https://doi.org/10.1109/
ICSE.2013.6606701

https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1109/VLHCC.2018.8506517
https://doi.org/10.1145/2124295.2124322
https://doi.org/10.1145/2348283.2348313
http://arxiv.org/abs/0909.1769
https://doi.org/10.1007/978-3-319-63673-3_26
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3351248
https://doi.org/10.1145/2531602.2531644
https://doi.org/10.1145/2470654.2481415
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1134285.1134355
https://academicworks.cuny.edu/bx_pubs/50
https://academicworks.cuny.edu/bx_pubs/50
https://doi.org/10.1109/CSE.2014.142
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1145/3351253
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1145/3449240
https://doi.org/10.1287/mnsc.1060.0552
https://doi.org/10.1287/mnsc.1060.0552
https://doi.org/10.1145/1054972.1054989
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/VAST.2016.7883515
https://doi.org/10.1109/VAST.2016.7883515
https://doi.org/10.1145/3411764.3445618
https://doi.org/10.1145/3020165.3020170
https://doi.org/10.1145/3397481.3450637
https://doi.org/10.1016/j.procs.2016.02.108
https://doi.org/10.1016/j.procs.2016.02.108
https://doi.org/10.1145/1518701.1518974
https://doi.org/10.1145/3184558.3188736
https://www.pinterest.com/
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
https://doi.org/10.1109/ICSE.2013.6606701
https://doi.org/10.1109/ICSE.2013.6606701

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

[98

[99

[100

[101]

[102

[103

[104

[105

[106

[107

[108

[109

[110

[111

Soujanya Poria, Erik Cambria, Lun-Wei Ku, Chen Gui, and Alexander Gelbukh.
2014. A rule-based approach to aspect extraction from product reviews. In
Proceedings of the second workshop on natural language processing for social
media (SocialNLP). 28-37.

Napol Rachatasumrit, Gonzalo Ramos, Jina Suh, Rachel Ng, and Christopher
Meek. 2021. ForSense: Accelerating Online Research Through Sensemaking
Integration and Machine Research Support. In 26th International Conference on
Intelligent User Interfaces (IUI °21). Association for Computing Machinery, New
York, NY, USA, 608-618. https://doi.org/10.1145/3397481.3450649

Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. 2010. JSMeter:
Comparing the Behavior of JavaScript Benchmarks with Real Web Applications.
In Proceedings of the 2010 USENIX Conference on Web Application Development
(WebApps’10). USENIX Association, Berkeley, CA, USA, 3-3. http://dl.acm.org/
citation.cfm?id=1863166.1863169 event-place: Boston, MA.

John Rieman. 1993. The diary study: a workplace-oriented research tool to guide
laboratory efforts. In Proceedings of the INTERACT 93 and CHI *93 Conference
on Human Factors in Computing Systems (CHI *93). Association for Computing
Machinery, New York, NY, USA, 321-326. https://doi.org/10.1145/169059.169255
Kerry Rodden and Xin Fu. 2007. Exploring how mouse movements relate to eye
movements on web search results pages. (2007).

Kerry Rodden, Xin Fu, Anne Aula, and Ian Spiro. 2008. Eye-mouse coordination
patterns on web search results pages. In CHI ‘08 Extended Abstracts on Human
Factors in Computing Systems. Association for Computing Machinery, New York,
NY, USA, 2997-3002. https://doi.org/10.1145/1358628.1358797

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How Do
Professional Developers Comprehend Software?. In Proceedings of the 34th Inter-
national Conference on Software Engineering (ICSE °12). IEEE Press, Piscataway,
NJ, USA, 255-265. http://dl.acm.org/citation.cfm?id=2337223.2337254

Nirmal Roy, Manuel Valle Torre, Ujwal Gadiraju, David Maxwell, and Claudia
Hauff. 2021. Note the Highlight: Incorporating Active Reading Tools in a Search
as Learning Environment. In Proceedings of the 2021 Conference on Human
Information Interaction and Retrieval (CHIIR "21). Association for Computing
Machinery, New York, NY, USA, 229-238. https://doi.org/10.1145/3406522.
3446025

Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and Stuart K. Card. 1993. The
Cost Structure of Sensemaking. In Proceedings of the INTERACT 93 and CHI 93
Conference on Human Factors in Computing Systems (CHI *93). ACM, New York,
NY, USA, 269-276. https://doi.org/10.1145/169059.169209

N. Rutar, C. B. Almazan, and J. S. Foster. 2004. A comparison of bug finding tools
for Java. In 15th International Symposium on Software Reliability Engineering.
245-256. https://doi.org/10.1109/ISSRE.2004.1

Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How Develop-
ers Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY,
USA, 191-201. https://doi.org/10.1145/2786805.2786855

Bill N. Schilit, Gene Golovchinsky, and Morgan N. Price. 1998. Beyond paper:
supporting active reading with free form digital ink annotations. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI "98).
ACM Press/Addison-Wesley Publishing Co., USA, 249-256. https://doi.org/10.
1145/274644.274680

M. C. schraefel, Yuxiang Zhu, David Modjeska, Daniel Wigdor, and Shengdong
Zhao. 2002. Hunter Gatherer: Interaction Support for the Creation and Manage-
ment of Within-web-page Collections. In Proceedings of the 11th International
Conference on World Wide Web (WWW °02). ACM, New York, NY, USA, 172-181.
https://doi.org/10.1145/511446.511469

Ben Shneiderman. 2020. Human-Centered Artificial Intelligence: Reliable, Safe
& Trustworthy. International Journal of Human—Computer Interaction 36, 6
(April 2020), 495-504. https://doi.org/10.1080/10447318.2020.1741118 Publisher:

[112

[113

[114

[115

[116

[117

[118

[119

[120

[121

[122

[123

[124

[125

]

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers

Taylor & Francis _eprint: https://doi.org/10.1080/10447318.2020.1741118.
Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions Program-
mers Ask During Software Evolution Tasks. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (SIG-
SOFT *06/FSE-14). ACM, New York, NY, USA, 23-34. https://doi.org/10.1145/
1181775.1181779

Amit Singhal and others. 2001. Modern information retrieval: A brief overview.
IEEE Data Eng. Bull. 24, 4 (2001), 35-43.

Jean Y. Song, Stephan J. Lemmer, Michael Xieyang Liu, Shiyan Yan, Juho Kim,
Jason J. Corso, and Walter S. Lasecki. 2019. Popup: reconstructing 3D video
using particle filtering to aggregate crowd responses. In Proceedings of the 24th
International Conference on Intelligent User Interfaces (IUI ’19). Association for
Computing Machinery, Marina del Ray, California, 558-569. https://doi.org/10.
1145/3301275.3302305

J Stylos and Brad A. Myers. 2006. Mica: A Web-Search Tool for Finding API
Components and Examples. In Visual Languages and Human-Centric Computing
(VL/HCC’06). 195-202.

Jeffrey Stylos, Brad A. Myers, and Andrew Faulring. 2004. Citrine: providing
intelligent copy-and-paste. In Proceedings of the 17th annual ACM symposium
on User interface software and technology (UIST "04). Association for Computing
Machinery, New York, NY, USA, 185-188. https://doi.org/10.1145/1029632.
1029665

Wei Sun, Franklin Mingzhe Li, Benjamin Steeper, Songlin Xu, Feng Tian, and
Cheng Zhang. 2021. TeethTap: Recognizing Discrete Teeth Gestures Using
Motion and Acoustic Sensing on an Earpiece. In 26th International Conference
on Intelligent User Interfaces (IUI "21). Association for Computing Machinery,
New York, NY, USA, 161-169. https://doi.org/10.1145/3397481.3450645

Craig S. Tashman and W. Keith Edwards. 2011. Active reading and its discontents:
the situations, problems and ideas of readers. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '11). Association for
Computing Machinery, New York, NY, USA, 2927-2936. https://doi.org/10.
1145/1978942.1979376

Simon Tong and Jeff Dean. 2008. United States Patent: 7350187 - System and
methods for automatically creating lists. https://patft.uspto.gov/netacgi/nph-
Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-
advhtm&r=1&p=1&f=G&l=50&d=PTXT&S1=7,350,187.PN.&OS=pn/7,350,
187&RS=PN/7,350,187

Michael L Van De Vanter. 2002. The documentary structure of source code.
Information and Software Technology 44, 13 (Oct. 2002), 767-782.

Laton Vermette, Shruti Dembla, April Y. Wang, Joanna McGrenere, and Par-
mit K. Chilana. 2017. Social CheatSheet: An Interactive Community-Curated
Information Overlay for Web Applications. Proc. ACM Hum.-Comput. Interact.
1, CSCW (Dec. 2017), 102:1-102:19. https://doi.org/10.1145/3134737

Austin R. Ward and Robert Capra. 2021. OrgBox: Supporting Cognitive and
Metacognitive Activities During Exploratory Search. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR °21). Association for Computing Machinery, New York, NY, USA,
2570-2574. https://doi.org/10.1145/3404835.3462790

Ryen W. White, Bill Kules, Steven M. Drucker, and m ¢ schraefel. 2006. Sup-
porting Exploratory Search, Introduction, Special Issue, Communications of the
ACM. Commun. ACM 49 (April 2006), 36-39. https://eprints.soton.ac.uk/263649/
Sungjoon Steve Won, Jing Jin, and Jason I. Hong. 2009. Contextual web history:
using visual and contextual cues to improve web browser history. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 1457-1466. https://doi.org/10.
1145/1518701.1518922

Amy X. Zhang and Justin Cranshaw. 2018. Making Sense of Group Chat Through
Collaborative Tagging and Summarization. Proc. ACM Hum.-Comput. Interact.
2, CSCW (Nov. 2018), 196:1-196:27. https://doi.org/10.1145/3274465

https://doi.org/10.1145/3397481.3450649
http://dl.acm.org/citation.cfm?id=1863166.1863169
http://dl.acm.org/citation.cfm?id=1863166.1863169
https://doi.org/10.1145/169059.169255
https://doi.org/10.1145/1358628.1358797
http://dl.acm.org/citation.cfm?id=2337223.2337254
https://doi.org/10.1145/3406522.3446025
https://doi.org/10.1145/3406522.3446025
https://doi.org/10.1145/169059.169209
https://doi.org/10.1109/ISSRE.2004.1
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/274644.274680
https://doi.org/10.1145/274644.274680
https://doi.org/10.1145/511446.511469
https://doi.org/10.1080/10447318.2020.1741118
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1145/3301275.3302305
https://doi.org/10.1145/3301275.3302305
https://doi.org/10.1145/1029632.1029665
https://doi.org/10.1145/1029632.1029665
https://doi.org/10.1145/3397481.3450645
https://doi.org/10.1145/1978942.1979376
https://doi.org/10.1145/1978942.1979376
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=7,350,187.PN.&OS=pn/7,350,187&RS=PN/7,350,187
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=7,350,187.PN.&OS=pn/7,350,187&RS=PN/7,350,187
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=7,350,187.PN.&OS=pn/7,350,187&RS=PN/7,350,187
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=7,350,187.PN.&OS=pn/7,350,187&RS=PN/7,350,187
https://doi.org/10.1145/3134737
https://doi.org/10.1145/3404835.3462790
https://eprints.soton.ac.uk/263649/
https://doi.org/10.1145/1518701.1518922
https://doi.org/10.1145/1518701.1518922
https://doi.org/10.1145/3274465
https://doi.org/10.1080/10447318.2020.1741118

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sensemaking in Software Development
	2.2 Tools for Collecting and Organizing Information
	2.3 Implicit Behavioral Signals When Using the Web

	3 Background and Design Goals
	3.1 The Unakite System
	3.2 Design Goals

	4 Crystalline
	4.1 System Overview
	4.2 Detailed Design
	4.3 Implementation Notes

	5 Evaluation
	5.1 Participants
	5.2 Procedure

	6 Results
	6.1 Quantitative Results
	6.2 Qualitative Observations
	6.3 Evaluation Discussion

	7 Limitations
	8 Future Work
	9 Conclusion
	Acknowledgments
	References

