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Abstract— We consider the problems of exploration and
point-goal navigation in previously unseen environments, where
the spatial complexity of indoor scenes and partial observability
constitute these tasks challenging. We argue that learning
occupancy priors over indoor maps provides significant ad-
vantages towards addressing these problems. To this end, we
present a novel planning framework that first learns to generate
occupancy maps beyond the field-of-view of the agent, and
second leverages the model uncertainty over the generated areas
to formulate path selection policies for each task of interest. For
point-goal navigation the policy chooses paths with an upper
confidence bound policy for efficient and traversable paths,
while for exploration the policy maximizes model uncertainty
over candidate paths. We perform experiments in the visually
realistic environments of Matterport3D using the Habitat sim-
ulator and demonstrate: 1) Improved results on exploration
and map quality metrics over competitive methods, and 2) The
effectiveness of our planning module when paired with the state-
of-the-art DD-PPO method for the point-goal navigation task.

I. INTRODUCTION

A major prerequisite towards true autonomy is the ability
to navigate and explore novel environments. This problem
is usually studied in the context of specific tasks such as
reaching a specified point goal [1], finding a semantic tar-
get [2], or covering as much area as possible while building
a map. Each of these tasks has its own idiosyncrasies,
but all of them represent examples where one must often
reason beyond what is currently observed and incorporate
the uncertainty over the inferred information into the decision
making process. For example, in point-goal navigation it is
important to predict whether a certain path can lead to a
dead-end. Likewise, in exploration strong confidence over a
particular region’s representation may prompt the agent to
visit new areas of the map.

We investigate the tasks of point-goal navigation and
exploration, and propose a planning module that leverages
contextual occupancy priors. These priors are learned by a
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map predictor module that is trained to estimate occupancy
values outside the field-of-view of the agent. Using the
epistemic (model) uncertainty associated with these predic-
tions we define objectives for path selection for each task
of interest. Earlier work in this field focused mainly on
learning how to actively control the agent for the purpose of
reducing the uncertainty over the map [3] (Active SLAM),
without considering navigation tasks in the process, while
methods that did consider navigation often operated in rel-
atively simple environments of artificially placed cylindrical
obstacles [4], [5].

With the recent introduction of realistic and visually
complex environments serving as navigation benchmarks [6],
[7], the focus shifted on learning-based end-to-end ap-
proaches [8], [9], [10]. While end-to-end formulations that
map pixels directly to actions are attractive in terms of
their simplicity, they require very large quantities of training
data. For instance, DD-PPO [10] needs 2.5 billion frames of
experience to reach its state-of-the-art performance on Gib-
son [7]. On the other hand, modular approaches [11], [12],
[13] are able to encode prior information into explicit map
representations and are thus much more sample efficient. Our
method falls into the latter category, but differs from other
approaches by its use of the uncertainty over predictions
outside the field-of-view of the agent during the planning
stage. In contrast to [13], [12] this allows our method more
flexibility when defining goal selection objectives, and does
not require re-training between different tasks.

In this paper, we introduce Uncertainty-driven Planner for
Exploration and Navigation (UPEN), in which we propose
a planning algorithm that is informed by predictions over
unobserved areas. Through this spatial prediction approach
our model learns layout patterns that can guide a planner
towards preferable paths in unknown environments. More
specifically, we first train an ensemble of occupancy map
predictor models by learning to hallucinate top-down oc-
cupancy regions from unobserved areas. Then, a Rapidly
Exploring Random-Trees [14] (RRT) algorithm generates a
set of candidate paths. We select paths from these candidates
using epistemic (model) uncertainty associated with a path
traversibility estimate as measured by the disagreement of
ensemble models [15], [16], and we choose appropriate
short-term goals based on the task of interest. Our contri-
butions are as follows:

• We propose UPEN, a novel planning framework
that leverages learned layout priors and formulates
uncertainty-based objectives for path selection in ex-
ploration and navigation tasks.
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Fig. 1: Occupancy map prediction (blue-occupied, green-free) and uncertainty estimation for a time-step t. The egocentric
depth observation is first ground-projected and passed through an ensemble f of encoder-decoder models that each infers
information in unobserved areas (m̂t). Each m̂t is then registered to a separate global map Mt. The final occupancy
probabilities and model uncertainty are given by the mean and variance over the set of global maps.

• We show improved exploration results over competitive
methods on the Matterport3D [17] dataset.

• We demonstrate the effectiveness of our planner when
used to complement existing end-to-end methods on the
point-goal navigation task.

II. RELATED WORK

a) Navigation approaches: Traditional approaches to
visual navigation focus on building a 3D metric map of the
environment [18], [3] before using that representation for
any downstream navigation tasks, which does not lend itself
favourably for task-driven learnable representations that can
capture contextual cues. The recent introduction of large-
scale indoor environments and simulators [7], [17], [6] has
fuelled a slew of learning based methods for indoor naviga-
tion tasks [1] such as point-goal [10], [19], [20], [21], [22],
object-goal [23], [24], [25], [26], [27], and image-goal [8],
[28], [29]. Modular approaches which incorporate explicit or
learned map representations [11], [23], [25] have shown to
outperform end-to-end methods on tasks such as object-goal,
however, this is not currently the case for the point-goal [10],
[20] task. In our work, we demonstrate how an uncertainty-
driven planning module can favourably complement DD-
PPO [10], a competitive method on point-goal navigation,
and show increased performance in challenging episodes.

b) Exploration methods for navigation: A considerable
amount of work was also devoted to planning efficient
paths during map building, generally referred to as Ac-
tive SLAM [30], [31], [32], [33], [34], [35]. For exam-
ple, [32], [35] define information gain objectives based on
the estimated uncertainty over the map in order to decide
future actions, while [33] investigates different uncertainty
measures. Recent methods focus on learning policies for
efficient exploration either through coverage [9], [13], [36],
[37] or map accuracy [12] reward functions. Furthermore,
several works have gone beyond traditional mapping, and
sought to predict maps for unseen regions [12], [38], [24],
[27], [39] which further increased robustness in the decision
making process. Our approach leverages the uncertainty over
predicted occupancy maps for unobserved areas and shows
its effectiveness on exploring a novel environment.

c) Uncertainty estimation: To navigate in partially ob-
served maps, uncertainty has been estimated across nodes in
a path [4], [40], via the marginal probability of landmarks
[5], and with the variance of model predictions across
predicted maps [24], [41]. Furthermore, uncertainty-aware
mapping has been shown to be effective in unknown and
highly risky environments [42], [43]. In our work, we
use uncertainty differently for exploration and point goal
navigation. In exploration, we estimate uncertainty over a
predicted occupancy map via the variance between models in
an ensemble. This variance across the ensemble specifically
estimates model (epistemic) uncertainty [44], [45]. We select
paths by maximizing epistemic uncertainty as a proxy for
maximizing information gain following prior work in ex-
ploration [16], [24]. In point goal navigation, we compute
traversability scores for candidate paths using an ensemble
of map predictors and compute uncertainty with respect to
these traversability scores using the variance over the scores
given by each model in the ensemble. We use this uncertainty
regarding path traversability to construct an upper confidence
bound policy for path selection to balance exploration and
exploitation in point goal navigation [46], [47], [48], [24].

III. APPROACH

We present an uncertainty-driven planning module for
exploration and point-goal navigation tasks, which benefits
from a learned occupancy map predictor module. Our ap-
proach takes as input the agent’s egocentric depth observation
and learns to predict regions of the occupancy map that
are outside of the agent’s field-of-view. Then it uses the
uncertainty over those predictions to decide on a set of
candidate paths generated by RRT. We define a separate
policy to select a short-term goal along a path for each task
of interest. In exploration we maximize uncertainty over the
candidate paths, while for point-goal navigation we choose
paths with an upper confidence bound policy for efficient
and traversable paths. Finally, a local policy (DD-PPO [10])
predicts navigation actions to reach the short-term goal.

A. Occupancy Map Prediction
The first component in our planning module aims to cap-

ture layout priors in indoor environments. Such information
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Fig. 2: Examples of path selections for exploration (top row) and point-goal navigation (bottom-row) tasks. Given the model
uncertainty and occupancy probabilities we first generate a set of paths which are evaluated either with an exploration
objective (section III-B) or an upper confidence bound objective (section III-C). The agent position is denoted as a dark
green dot, the goal is shown as magenta, and red dots signify short-term goals.

can lead to a more intelligent decision making process for a
downstream navigation task. Following the recent success of
[12], [24] we formulate the occupancy map prediction as a
semantic segmentation problem. Our model takes as input a
depth image Dt at time-step t which is ground projected to
an egocentric grid m

0
t
2 R|C|⇥h⇥w, where C is the set of

classes containing unknown, occupied, and free, and h, w
are the dimensions of the local grid. The ground projection
is carried out by first using the camera intrinsic parameters
to unproject Dt to a 3D point cloud and then map each
3D point to the h ⇥ w grid coordinates: x0 = bx

r
c + w�1

2 ,
z
0 = b z

r
c+ h�1

2 , where x
0, z0 are the grid coordinates, x, z

are the 3D points, and r is the grid cell size. Since the agent
has a limited field of view, m0

t
represents a local incomplete

top-down occupancy grid of the area surrounding the agent.
Our objective is to predict the missing values and produce
the complete local occupancy map m̂t 2 R|C|⇥h⇥w. To do
so, we pass m0

t
through an encoder-decoder UNet [49] model

f that outputs a prediction for each grid location over the
set of classes C. The model f is trained with a pixel-wise
cross-entropy loss:

L = � 1

K

KX

k

CX

c

mk,c log m̂k,c (1)

where K = h⇥w corresponds to the number of cells in the
local grid and mk,c is the ground-truth label for pixel k. The
ground-truth occupancy is generated by ground-projecting
the available semantic information of the 3D scenes. To
ensure diversity in the training examples, we sample training
pairs across shortest paths between two randomly selected
locations in a scene, where m

0
t

can contain a variable number
of ground-projected depth images. Unlike [12] we do not use
the RGB images during training, as we have found that the
aforementioned sampling strategy is sufficient for the model

to converge. This enables us to define a smaller and less
memory intensive model f .

During a navigation episode, we maintain a global map
Mt 2 R|C|⇥H⇥W . Since f predicts a probability distribution
over the classes for each grid location, we register m̂t by
updating Mt using Bayes Theorem. The global map Mt is
initialized with a uniform prior probability distribution across
all classes.

B. Exploration Policy

The main goal of exploration task is to maximize map
coverage which requires navigating to new map regions
around obstacles. To this end, we propose selecting paths
using uncertainty of our map predictions as an objective in
our planning algorithm. We are explicitly minimizing map
uncertainty by collecting observations to improve the pre-
dicted global map Mt. Implicitly map coverage is maximized
by minimizing map uncertainty because high coverage is
required for predicting an accurate map with low uncertainty.

We use the epistemic (model) uncertainty as an objective
for exploration [45], [44], [16], [24]. In order to estimate
epistemic uncertainty, we construct f as an ensemble of
N occupancy prediction models defined over the parame-
ters {✓1, ..., ✓N}. Variance between models in the ensemble
comes from different random weight initializations in each
network [16]. Our model estimates the true probability distri-
bution P (mt|m0

t
) by averaging over sampled model weights,

P (mt|m0
t
) ⇡ E✓⇠q(✓)f(m

0
t
; ✓) ⇡ 1

N

P
N

i=1 f(m
0
t
; ✓i) where

the parameters ✓ are random variables sampled from the
distribution q(✓)[50], [51]. Then, following prior work [15],
[16], [24], the epistemic uncertainty can be approximated
from the variance between the outputs of the models in the
ensemble, Var f(m0

t
; ✓).

For path planning during exploration, our proposed objec-
tive can be used with any planner which generates a set S
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of candidate paths. Each path s 2 S can be expressed as
a subset of grid locations in our map. Each of these grid
locations k has an associated uncertainty estimate given by
the variance between model predictions in our ensemble.
We specify this uncertainty map as uk := Var f(m0

t
; ✓) 2

R1⇥h⇥w. We use this map to score each path s and construct
the objective

argmax
s2S

1

|s|
X

k2s

uk (2)

which selects the path with the maximum average epistemic
uncertainty on the traversed grid.

In this work, we incorporate our uncertainty-based ob-
jective in RRT to plan to explore. We expand RRT for a
set number of iterations, which generates candidate paths in
random directions. We select between these paths using our
objective from equation 2. In practice, equation 2 is evaluated
over the accumulated global map Mt. Figure 1 shows the
occupancy map prediction and the uncertainty estimation
process using the ensemble f , while Figure 2 (top row)
shows an example of path selection using the exploration
objective.

C. Point-goal Policy
In the problem of point-goal navigation, the objective is

to efficiently navigate past obstacles to a given goal location
from a starting position. We again use RRT as a planner
which generates a set of paths S between the agent’s current
location and the goal location. Thus, the primary objective
when we select a path from these candidates to traverse is
for the path to be unobstructed. Given a predicted occupancy
map from model i in our ensemble and a candidate path
s 2 S generated by our planner, we evaluate whether or not
the path is obstructed by taking the maximum probability of
occupancy in any grid cell k along each path. Specifically,

pi,s = max
k2s

�
m̂

i

k,occ
|k2s

�
(3)

where m̂
i

k,occ
|k2s is the map of occupancy probabilities

defined on the subset of grid cells k 2 s predicted by model
i in the ensemble f . Choosing the path s 2 S by minimizing
pi,s chooses the path we think most likely to be unobstructed.
We can minimize this likelihood by selecting argmin

s2S
µs

where µs :=
1
N

P
N

i=1 pi,s. However, we note that there may
be multiple unobstructed candidate paths generated by our
planner. We differentiate between these in our selection by
adding a term ds to our objective to incentivize selecting
shorter paths. Furthermore, as an agent navigates to a goal,
it makes map predictions using its accumulated observations
along the way. Therefore, to improve navigation performance
we can incorporate an exploration component in our navi-
gation objective to incentivize choosing paths where it can
gain the most information regarding efficient traversability.

We estimate uncertainty associated with efficient
traversability of a particular path s for our exploration
objective. Since there is zero uncertainty associated with
path lengths ds, we design our exploration objective to
maximize information gain for path traversability. We

denote PsNT (mt|m0
t
) as the probability the path s is

not traversable (NT ) estimated by µs. We recall that µs

is computed by averaging traversability scores over an
ensemble of models. We compute the variance of these
scores Vari2N pi,s to estimate uncertainty of our model
approximating PsNT (mt|m0

t
).

We combine exploration and exploitation in our full objec-
tive using an upper confidence bound policy [47], [46], [48],
[24]. Our objective for efficient traversable paths is specified
as

argmin
s2S

PsNT (mt|m0
t
) + ds (4)

and can be reconstructed as a maximization problem
argmax

s2S
�PsNT (mt|m0

t
) � ds. We denote �s :=p

Vari2N pi,s and observe the upper bound

� PsNT (mt|m0
t
)� ds  �µs + ↵1�s � ds (5)

holds with some fixed but unknown probability where ↵1

is a constant hyperparameter. Using our upper bound to
estimate �PsNT (mt|Dt), our full objective function as a
minimization problem is

argmin
s

µs � ↵1�s + ↵2ds (6)

where ↵2 is a hyperparameter weighting the contribution of
path length. Similarly to our exploration policy, in practice,
equation 6 is evaluated over the accumulated global map
Mt. Figure 2 (bottom row) illustrates path selection using
our objective during a point-goal episode.

IV. EXPERIMENTS

Our experiments are conducted on the Matterport3D
(MP3D) [17] dataset using the Habitat [6] simulator. We
follow the standard train/val/test environments split of MP3D
which contains overall 90 reconstructions of realistic indoor
scenes. The splits are disjoint, therefore all evaluations
are conducted in novel scenes where the occupancy map
predictor model has not seen during training. Our observation
space consists of 256⇥ 256 depth images, while the action
space contains four actions: MOVE FORWARD by 25cm,
TURN LEFT and TURN RIGHT by 10� and STOP.

We perform two key experiments. First, we compare to
other state-of-the-art methods on the task of exploration
using both coverage and map accuracy metrics (sec. IV-B).
Second we evaluate on the point-goal navigation task and
demonstrate increased performance when DD-PPO [10] is
complemented with our planning strategy (sec. IV-C).

A. Implementation Details
The Unet [49] model used for the occupancy map pre-

diction has four encoder and four decoder convolutional
blocks with skip connections and it is combined with a
ResNet18 [53] for feature extraction. We use Pytorch [54]
and train using the Adam optimizer with a learning rate of
0.0002. The grid dimensions are h = w = 160 for local,
and H = W = 768 for global, while each cell in the
grid is 5cm ⇥ 5cm. For the path generation process, we
run the RRT every 30 navigation steps for exploration and
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Fig. 3: Exploration example with T=1000 showing the trajectory followed by our agent (red line). The top row shows RGB
images observed by the agent. The ground-truth map is visualized in the bottom right corner.

Noisy Noise-free
Method Map Acc (m2) IoU (%) Map Acc (m2) IoU (%)
ANS(depth) [12] 72.5 26.0 85.9 34.0
OccAnt(depth) w/o AR [12] 92.7 29.0 104.7 38.0
OccAnt(depth) [12] 94.1 33.0 96.5 35.0
FBE [52] + DD-PPO [10] 100.9 28.7 120.2 44.7
UPEN + DD-PPO [10] 110.3 25.8 141.6 45.6

TABLE I: Exploration results on MP3D test scenes evaluating map
quality at T=500. The “w/o AR” refers to the baseline that is trained
without the anticipation reward in [12].

Cov (m2) Cov (%)
ANS(rgb) [13] 73.28 52.1
FBE [52] + DD-PPO [10] 85.3 53.0
UPEN + DD-PPO [10] 113.0 67.9

TABLE II: Exploration results on MP3D test
scenes evaluating area coverage at T=1000.

20 for point-goal. The RRT is set to generate a maximum
of 10 paths every run, with a goal sampling rate of 20%.
Finally, the RRT expands new nodes with a distance of
5 pixels at a time. A single step in a navigation episode
requires 0.37s on average that includes map prediction and
registration, planning using RRT, and DD-PPO. The timing
was performed on a laptop using i7 CPU @ 2.20GHz and a
GTX1060 GPU. All experiments are with ensemble size of 4.
We provide code and trained models: https://github.
com/ggeorgak11/UPEN.

B. Exploration
The setup from [12] is followed for this experiment, where

the objective is to cover as much area as possible given a
limited time budget T = 1000. Unless stated otherwise, the
evaluation is conducted with simulated noise following the
noise models from [13], [12]. We use the following metrics:
1) Map Accuracy (m2): as defined in [12] the area in the
predicted occupancy map that matches the ground-truth map.
2) IoU (%): the intersection over union of the predicted
map and the ground-truth. 3) Cov (m2): the actual area
covered by the agent. 4) Cov (%): ratio of covered area to
max scene coverage. We note that the two coverage metrics
are computed on a map containing only ground-projections
of depth observations. Our method is validated against
the competitive approaches of Occupancy Anticipation [12]
(OccAnt) and Active Neural SLAM [13] (ANS), which are
modular approaches with mapper components. Both use rein-
forcement learning to train goal selection policies optimized
over map accuracy and coverage respectively. Furthermore,

we compare against the classical method of Frontier-based
Exploration [52] (FBE). Since both UPEN and FBE are
combined with DD-PPO and use the same predicted maps,
this comparison directly validates our exploration objective.

We report two key results. First, in Table I our method
outperforms all baselines in the noise-free case in both Map
Accuracy and IoU. In fact, we show 21.4m2 and 36.9m2

improvement over FBE and OccAnt respectively on the Map
Accuracy metric. In the noisy case even though we still
surpass all baselines on Map Accuracy, our performance
drops significantly in both metrics. In addition, the Map Ac-
curacy increasing while IoU drops is attributed to increased
map coverage with reduced accuracy. This is not surprising
since unlike OccAnt and Neural SLAM we are not using a
pose estimator. Second, in Table II we demonstrate superior
performance on coverage metrics with a margin of 27.7m2

from FBE and 39.7m2 from ANS. This suggests that our
method is more efficient when exploring a novel scene, thus
validating our uncertainty-based exploration policy. Figure 3
shows an exploration episode.

C. Point-goal Navigation
We evaluate the performance of our uncertainty-driven

planner when used to augment DD-PPO [10] against its
vanilla version. DD-PPO is currently one of the best per-
forming methods on point-goal navigation, achieving 97%
SPL on the Gibson [7] validation set as shown in [10]. We
follow the point-goal task setup from [1] where given a target
coordinate the agent needs to navigate to that target and stop
within a 0.2m radius. The agent is given a time-budget of
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Dataset MP3D Val MP3D Test MP3D Val-Hard
Method Success (%) SPL (%) Success (%) SPL (%) Success (%) SPL (%)
DD-PPO [10] 47.8 38.7 37.3 30.2 38.0 28.1
UPEN-Occ + DD-PPO [10] 43.8 30.2 36.3 25.3 42.3 26.9
UPEN-Greedy + DD-PPO [10] 48.9 36.0 37.5 28.1 43.0 28.8
UPEN + DD-PPO [10] 49.8 36.9 40.8 30.7 45.7 31.6

TABLE III: Point-goal navigation results of our method against the vanilla DD-PPO[10]. “Occ” signifies a policy that uses
only occupancy predictions, while “Greedy” refers to a policy taking into consideration path length without uncertainty.

Avg GD (m) Avg GEDR Min GEDR
Gibson Val 5.88 1.37 1.00
MP3D Val 11.14 1.40 1.00
MP3D Test 13.23 1.42 1.00
MP3D Val-Hard 8.28 3.19 2.50

TABLE IV: Geodesic distance (GD) and geodesic to Eu-
clidean distance ratio (GEDR) between different evaluation
sets for point-goal navigation.

Fig. 4: Point-goal navigation examples from the MP3D Val-
Hard set where the vanilla DD-PPO [10] fails to reach the
target while our method is successful.

T = 500 steps to reach the target. For evaluation we use
the standard metrics [1]: Success: percentage of successful
episodes, and SPL: success rate normalized by path length.
For this experiment we assume noise-free poses are provided
by the simulator. To combine DD-PPO with our planner, we
set the current short-term goal estimated by our approach as
the target that DD-PPO needs to reach. For the vanilla DD-
PPO we use the final target location in each test episode.

DD-PPO essentially solves Gibson point-goal navigation
task so we turn our attention to MP3D where DD-PPO has
lower performance due to the episodes having larger average
geodesic distance (GD) to goal. However, we noticed that
the average geodesic to euclidean distance ratio (GEDR)
in MP3D is still low (a GEDR of 1 means there is a
straight line path between the starting position and the goal).

In order to demonstrate the effectiveness of our proposed
method, we generated a new evaluation set (MP3D Val-
Hard) with minimum GEDR=2.5. This created episodes
which frequently involve sharp u-turns and multiple obstacles
along the shortest path. Table IV illustrates episode statistics
between different evaluation sets1. In addition to MP3D Val-
Hard, we also test our method on the publicly available sets
of MP3D Val and MP3D Test. We note that MP3D Val-
Hard was generated using the same random procedure as
its publicly available counterparts.

We define two variations of our method in order to
demonstrate the usefulness of our uncertainty estimation
by choosing different values for the ↵1 and ↵2 parameters
of Eq. 6 from section III-C. First, UPEN-Occ + DD-PPO
(↵1 = 0, ↵2 = 0) considers only the occupancy probabilities
when estimating the traversability difficulty of a path, while
UPEN-Greedy + DD-PPO (↵1 = 0, ↵ = 0.5) considers
the path length and not the uncertainty. Our default method
UPEN + DD-PPO uses ↵1 = 0.1 and ↵2 = 0.5.

The results are illustrated in Table III. We outperform all
baselines in all evaluation sets with regards to Success. The
largest gap in performance is observed in the MP3D Val-
Hard set which contains episodes with much higher average
GEDR that the other sets. This suggests that our method is
able to follow more complicated paths by choosing short-
term goals, in contrast to the vanilla DD-PPO which has
to negotiate narrow passages and sharp turns only from
egocentric observations. Regarding SPL, our performance
gains are not as pronounced as in Success, since our policy
frequently prefers paths with lower traversability difficulty in
favor of shortest paths, to ensure higher success probability.

V. CONCLUSION

We introduced a novel uncertainty-driven planner for
exploration and navigation tasks in previously unseen envi-
ronments. The planner leverages an occupancy map predictor
that hallucinates map regions outside the field of view of the
agent and uses its predictions to formulate uncertainty based
objectives. Our experiments on exploration suggests that our
method is more efficient in covering unknown areas. In terms
of point-goal navigation, we showed how DD-PPO [10]
augmented with our method outperforms its vanilla version.
This suggests that end-to-end navigation methods can benefit
from employing an uncertainty-driven planner, especially in
difficult episodes.

1The Gibson val, MP3D val, and MP3D test sets were downloaded from
https://github.com/facebookresearch/habitat-lab before 09/09/2021.
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