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Abstract— Collecting new experience is costly in many

robotic tasks, so determining how to efficiently explore in a

new environment to learn as much as possible in as few trials

as possible is an important problem for robotics. In this paper,

we propose a method for exploring for the purpose of learning

a dynamics model. Our key idea is to minimize a score given

by a discriminator network as an objective for a planner which

chooses actions. This discriminator is optimized jointly with a

prediction model and enables our active learning approach to

sample sequences of observations and actions which result in

predictions considered the least realistic by the discriminator.

Comparable existing exploration methods cannot operate in

many prediction-planning pipelines used in robotic learning

without hardware modifications to standard robotics platforms

in order to accommodate their large compute requirements,

so the primary contribution of our adversarial exploration

method is scalability. We demonstrate progressively increased

performance of our adversarial exploration approach compared

to leading model-based exploration strategies as compute is

restricted in simulated environments. We further demonstrate

the ability of our adversarial method to scale to a robotic

manipulation prediction-planning pipeline where we improve

sample efficiency and prediction performance for a domain

transfer problem.

I. INTRODUCTION

Robotic learning solutions can accomplish complex tasks
but struggle from expensive data collection requirements [1]–
[10]. These model-based reinforcement learning methods are
typically trained with randomly collected [1], [2], [5], [7],
[11] or on-policy [6], [12], [13] data. Targeted exploration
policies collecting new experiences for training allow these
models to be trained on off-policy data with lower sample
complexity than random collection [14], [15].

Methods for curiosity maximize expected information gain
of predictive models which can be used to perform targeted
sampling [16]–[18]. Model-free curiosity derives rewards
after an action is taken and thus requires observation of the
action outcome. This approach necessitates integration with
model-free reinforcement learning in which rewards provide
feedback to an updated policy for selecting actions. In
contrast, model-based methods are active learning strategies
which use a prediction model directly to select actions, so
curiosity measurements can be made before the action is
taken to execute curious behavior. The fundamental differ-
ence between these approaches is visualized in Figure 2.

The active learning and active perception literature has
long established the ability of good sampling strategies to in-
crease sample efficiency and model performance in robotics
[19]–[21]. Model-based curiosity research distinguishes itself
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Fig. 1: Our adversarial objective for curiosity operates on
potential trajectories generated by a predictive model. These
predictions are evaluated with a discriminator and the tra-
jectory that corresponds to the least realistic prediction is
executed. The predictive model and the discriminator are
updated with the newly collected data.

within this broader set of work by focusing on objectives
for predictive model information gain. Existing model-based
curiosity methods which operate on high dimensional and
continuous state spaces rely on ensembles of prediction
models to estimate these objectives. We propose the first
model-based curiosity method which does not rely on the
use of an ensemble.

In work most similar to our own, model-based active
exploration (MAX) computes an estimate of the uncertainty
of model predictions derived from the variance of outcomes
computed within an ensemble of prediction models [14]. The
compute requirements of this ensemble-based approach scale
linearly with the number of models in the ensemble which
can become intractable for compute intensive prediction
models. For example, many modern vision-based prediction
methods require the full capacity of a GPU to train which
would require ensemble based approaches to use many GPUs
to explore. This requirement is unreasonable for hardware
constrained systems. In this work, we present an objective for
scalable exploration based on minimizing a score given by a
discriminator network in order to choose actions which result
in outcomes considered the least realistic by our adversarial
network visualized in Figure 1.

Our Contributions We present an adversarial curiosity re-
ward which we use as an objective in model-based reinforce-
ment learning systems. We integrate this method into two
distinct prediction-planning pipelines. In the first pipeline,
we perform state-based prediction and plan with a Markov
Decision Process to generate exploration and exploitation
policies. We demonstrate the scalability of our approach by
comparing performance with MAX across varying compute
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Fig. 2: Our model-based curiosity approach compared to
established model-free formulations of curiosity. Existing
model-free approaches to curiosity calculate the curiosity
score after the action has been taken, while our approach
uses the curiosity score to decide which action to take.

restrictions in simulation and show progressively increased
performance of our method compared to MAX at lower com-
pute targets. We also integrate our discriminator with a video
prediction model and the cross-entropy method for planning,
a compute intensive prediction-planning pipeline for robotic
manipulation. This pipeline is trained with randomly sampled
data in all prior work and would require hardware modi-
fications on standard robotics platforms to be able to use
MAX as an exploration policy. Our method improved sample
efficiency without sacrificing task performance. In addition,
our method increased prediction performance. To the best
of our knowledge, this application is the first use of model-
based curiosity for vision-based robotic manipulation.

Our paper is organized as follows. First, we review the
literature on sampling with both curiosity and active learning
methods. Then, we present our adversarial curiosity objective
for sampling in a model-based reinforcement learning prob-
lem. Next, we favorably compare the ability of our method
to complete downstream tasks under computation constraints
with other curiosity methods using policies learned via ex-
ploration. Finally, we demonstrate the ability of our method
to scale to a robotic manipulation pipeline in which we
show increased sample efficiency and improved prediction
performance in a domain transfer problem.

II. RELATED WORK

We specify our method as an adversarial curiosity objec-
tive which we use to perform active learning in model-based
reinforcement learning. Thus, we contextualize our work in
the active learning and curiosity literature. The goal of both
active learning and curiosity is to select samples with which
to train a model such that the model gains the most possible
information from the sampled data.

Model-Free Curiosity Several existing methods use ex-
ploration incentives to estimate and seek visual novelty
in model-free reinforcement learning. Approaches include
rewarding policies based on state visit counts [22]–[24],
observed error in a prediction model [25]–[28], disagreement
in an ensemble [15], [29], and information gain in a Bayesian
neural network [30]. We present a model-based curiosity
method using the scores from a discriminator network. These

same scores could be used as feedback to a model-free
method, but we only evaluate the model-based case in this
work to highlight the key characteristic of our curiosity
approach: scalability.

Model-Based Curiosity There are far fewer model-based
curiosity methods than model-free. Discrete count-based
methods [31] estimate the learning progress of a potential
sample [32]. Ensemble-based approaches estimate the un-
certainty [15], [33] or entropy [14] of predictions. Bayesian
models are also used to minimize uncertainty [34]. Our
work differs from previous model-based active exploration
methods in that it is computationally efficiently in high-
dimensional continuous domains through the use of a dis-
criminator which provides scores for the realism of our
model predictions.

Adversarial Curiosity The concept of adversarial curios-
ity was first proposed prior to the integration of curiosity
with planning algorithms [35]. This work suggested that the
formulation of the minimax problem presented a method
of encoding introspective behavior in a model. Minimax
optimization problems such as the one we propose can be
argued to provide intrinsic motivation for a model to invent
novel information about which to learn [36]. This behavioral
paradigm is considered a form of curiosity [16], [18], [35],
[36]. We propose the first explicit model of adversarial
curiosity with experimental evaluation in this work.

Active Learning Active learning is the process where
a machine learning algorithm selects its training data to
improve its data efficiency and performance [37]. Many
methods for active learning have been proposed, including
work most similar to our own which samples the most
uncertain data points [38]–[40] and work most similar to our
experimental baselines which sample where an ensemble of
models disagrees [41]–[43]. Other active learning approaches
propose sampling data that will cause the largest expected
information gain [44], the largest expected change in the
model [45]–[47], the largest expected reduction in variance
[20], or the largest estimated error reduction [19], [48], [49].
To distinguish active learning from curiosity, active learning
is specifically formulated to determine samples to select
before sampling whereas the curiosity literature includes both
active methods [34] and methods in which rewards can only
be computed after sampling [15], [25]. Thus, the method we
propose in this work is both a method for curiosity and active
learning.

Summary The closest exploration rewards to which we
compare our method in Section IV are prediction error [25]
and entropy over ensemble predictions [14]. Following the
notation in Figure 2, prediction error is computed as

r(st, at, st+1) = ||st+1 � ŝt+1||2 (1)

where ŝt+1 is the estimated future state by a prediction model
computed from st and at. However, computing a prediction
error reward requires access to the future state st+1, so
we can only use this reward with model-free reinforcement
learning methods. Entropy over ensemble predictions is
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computed via the Jensen-Rényi Divergence (JRD) as

r(st, at) = JRD{bs0,t+1, ...bsN,t+1} (2)

where bsi,t+1 for i 2 [0, N ] is the future state predictions
from each of the N + 1 models in an ensemble computed
from st and at. Therefor, this method is compatible with
model-based reinforcement learning, but the performance of
the method is dependent on the size of the ensemble. Our
discriminator computes a reward

r(st, at) = D(st, at, ŝt+1) (3)

where ŝt+1 is the estimated future state by a prediction model
computed from st and at. The true future state st+1 is used
to train D so that D can differentiate between (st, at, ŝt+1)
and (st, at, st+1), but when executing exploration, only the
predicted future state ŝt+1 is needed to evaluate the reward,
allowing it to be used with model-based approaches without
requiring an ensemble of prediction models. If the discrim-
inator can easily determine that a state ŝt+1 is a model
prediction versus a ground truth observation, this unrealistic
trajectory generated by our model is given a low score by
the discriminator. Thus, our exploration policy minimizes the
reward in equation 3. The full methodological details of our
approach are presented in Section III.

III. ADVERSARIAL CURIOSITY OBJECTIVE

Consider the dynamics of a system F mapping a context
window of C past states st�C:t, and H potential future
actions at:t+H , to future states via

st+1:t+H+1 = F (st�C:t, at:t+H) , (4)

We then denote by

x = (st�C:t, at:t+H , st+1:t+H+1) (5)

any trajectory generated by system (4), and denote by p(x)
the distribution over these trajectories. To lighten notational
burden going forward, we let a := at:t+H , c := st�C:t,
h := st+1:t+H+1.

Our model-based curiosity method is defined in terms of
the following three components:

1) We approximate the system (4) with a model M that
generates predictions of future states bs given a context
window of past states c and a sequence of potential
future actions a. Thus, our prediction model is given
by

bst+1:t+H+1 = M(c, a). (6)

2) A discriminator D, which assigns a score dt to each
real trajectory x generated by system (4) as well
as imagined trajectories generated by the prediction
model (6). To train the discriminator D jointly with a
model M, we solve the minimax optimization problem

min
M

max
D

Ex⇠p(x) [L (h,M (c, a))] + Ex⇠p(x) [logD (x)]

+ E(c,a)⇠p(x) [log (1�D (c, a,M(c, a)))] . (7)

The first term in the objective function of optimization
problem (7) computes the loss L for training the model
M, using whatever loss function would be used to
train the model without curiosity. The second term
captures the ability of the discriminator to identify
realistic trajectories generated by system (4), whereas
the third term simultaneously reflects the predictive
ability of the model M, as well as the ability of
the discriminator D to distinguish between real and
imagined trajectories.
The inner maximization trains the discriminator D
to differentiate between trajectories sampled from
the data distribution x and predicted trajectories
(c,a,M(c,a)). The outer minimization optimizes the
performance of the prediction model M. In summary,
this minimax problem sets up a competition in which
the prediction model tries to learn to make good
enough predictions to fool the discriminator while
the discriminator tries to improve differentiation of
predictions from data samples.
After D is trained, the discriminator scores for our
imagined trajectories are evaluated as

dt = D (c, a,M(c, a)) . (8)

3) With these pieces in place, we can now define the
curiosity based optimization problem that we solve
in order to select action sequences which optimize a
curiosity objective defined in terms of the discrimi-
nator score. In particular, we define a planner P that
selects an action sequence a of the H next actions
which minimize the discriminator score by solving the
optimization problem:

P(c, a,M,D) := argmin
a

D (c, a,M(c, a)) (9)

It then follows that the actions resulting in the least realistic
predictions are selected by the planner defined by optimiza-
tion problem (9), resulting in qualitatively more curious
behavior.

IV. EXPLORATION RESULTS UNDER COMPUTATION
CONSTRAINTS

We compare our curiosity method to two model-based
exploration methods [14].1 Model-based active exploration
(MAX) rewards exploration with the Jensen-Shannon or
Jensen-Rényi divergence between an ensemble of prediction
models to measure prediction uncertainty. The Jensen-Rényi
divergence is used for continuous state spaces as is the case
in our experiments. Trajectory variance active exploration
(TVAX) computes the variance in sampled trajectories be-
tween an ensemble of prediction models as an exploration
reward. We also compare our method to PERX, a model-
free prediction error approach [25], and JDRX, a model-free
version of MAX, as well as to random exploration.

1For additional implementation details and to reproduce our results, please
refer to our released code: https://github.com/bucherb/adversarial-curiosity
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Fig. 3: Maze coverage results in the Ant Maze OpenAI environment averaged over 5 trials initiated with random seeds. Our
approach outperforms ensemble-based methods when low ensemble sizes are used due to computation constraints. Perception
models in robot learning applications often use the full capacity of a GPU to train, so the size of the ensemble would
correspond with the number of needed GPUs making ensemble-based exploration strategies computationally intractable.
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Fig. 4: Extrinsic rewards from running and flipping task completion in the Half Cheetah OpenAI environment averaged over
5 trials initiated with random seeds broken down by each distinct method for exploration used in training. All ensemble
based curiosity methods (MAX, JDRX, TVAX) were trained with an ensemble size of 32. Our overall task performance is
a close second to MAX even in this case where compute is not restricted.

In order to execute a fair comparison, we use the same
prediction-planning pipeline proposed with the MAX al-
gorithm across all of our simulated experiments so that
performance differences can be based solely on the different
exploration policy approaches. All methods use an ensemble
of fully connected neural networks trained with a negative
log-likelihood loss jointly with our discriminator to predict
next state distributions. Next state predictions are given
by the distribution mean. We emphasize that this use of
ensembles as a predictive model is not necessary in the
case of our curiosity method other than to standardize the
prediction approach for comparison purposes whereas MAX,
JDRX, and TVAX all require an ensemble-based prediction
approach to derive their curiosity rewards. Similarly, the dis-
criminator is only used for our curiosity method but trained
with every method to standardize the prediction approach.
The model-free methods use soft-actor critic (SAC) [50] to
learn a policy. The model-based methods are trained with
data gathered by an MDP using an exploration objective
following the framework presented used originally by MAX

[14].
We first compare maze coverage results in the OpenAI Ant

Maze environment in our experiments presented in Figure 3.
We note that the key contribution of our approach comes
from the scalability of the discriminator. We observe that at
high ensemble sizes (16 or more prediction models), MAX
outperforms our discriminator. However, as ensemble size
decreases, our method significantly outperforms MAX. Thus,
we show that when compute restrictions prevent the use
of large ensembles of prediction models, the performance
of ensemble based methods are significantly compromised
while our method continues to perform well. We demonstrate
the significance of this result in Section V where we integrate
our method in an established prediction-planning pipeline for
robotic manipulation for which hardware changes would be
required to run an ensemble based approach.

Next, we evaluate the performance of our method when
compute is not restricted. We learn running and flipping
tasks in the OpenAI Half Cheetah environment which
has an 18-dimensional continuous observation space and
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Fig. 5: Active sampling to enable domain transfer. In
our robotics experiments, our method trains an action-
conditioned prediction model and a discriminator on the
dataset in the initial domain. It then samples actions from
the new domain that result in the most uncertain predictions,
allowing it to train a prediction model in the new domain
with a small number of samples.

a 6-dimensional continuous action space [51]. Following
MAX [14], we add Gaussian noise of N (0, 0.02) to the
actions to increase the difficulty. Policies are trained purely
with each exploration strategy and then used to execute
downstream tasks. We compare the performance of each
exploration method by evaluating achieved extrinsic rewards
in these tasks over 5 randomly seeded trials and present
them in Figure 4. We find that our method either slightly
underperforms or performs comparably to all the baselines
in both downstream tasks: running and flipping. However,
we note that these comparisons were evaluated using an
ensemble of 32 models, which is the optimal number for
MAX [14].

V. ROBOTIC MANIPULATION

We demonstrate the ability of our adversarial curiosity
method to meaningfully scale to robotics problems by inte-
grating our approach in a prediction-planning pipeline com-
monly studied robot learning approaches to manipulation.
Large amounts of data are required for training robot learning
models which is time consuming to collect. To address this
challenge, recent research demonstrated the ability of a class
of these data-driven methods to transfer across platforms
[7]. This capability allows for publicly available datasets to
be leveraged for the bulk of the training, and only a small
amount of data needs to be collected for fine-tuning in the
new domain. We demonstrate increased sample efficiency
and gains in prediction performance from incorporating our
discriminator in this pipeline to perform targeted sampling
as illustrated in Figure 5. This pipeline modification and
improvement was not possible with existing model-based
curiosity methods including MAX without hardware mod-
ifications. All prior methods rely on the use of ensembles,
and pipelines leveraging video prediction models typically
utilize the full capacity of the GPU as is the case for the
pipeline we use in our experiment.

States are RGB images in this set of experiments. We
use a variant [7] of the Visual Foresight video prediction
model [5]. A stack of convolutional LSTMs is used to predict

a flow field from an image st and action at. This flow field
is then applied directly to the input image st to predict the
next image frame bst+1. The true next image frame st+1

is observed after the given action is taken. This network
is optimized with an L1 loss between the predicted image
bst+1 and true image st+1. In practice, these models perform
predictions out to some horizon H using a context of C

image frames in which the flow field estimates are applied
recursively across the prediction horizon.

In the training procedure described by Step 1 in Fig-
ure 6, our prediction model is optimized jointly with the
discriminator defined in Section III. This is similar to the loss
used by Stochastic Adversarial Video Prediction [52], where
the combination of prediction error and an adversarial loss
were shown to improve prediction quality and convergence.
We use this prediction model and the cross-entropy method
(CEM) [53] to optimize for a sequence of actions that
minimize Equation 9. This procedure causes the robot to
select a sequence of actions that generate unrealistic looking
predictions.

A. Sampling Analysis
We evaluate the ability of our curiosity objective to effec-

tively explore the environment by comparing the behavior
of our curious policy to the behavior of the random policy
used in prior work. To make this comparison, we execute
Steps 1 and 2 visualized in Figure 6. First, our prediction
model and discriminator is jointly trained on Sawyer data
from the RoboNet dataset [7] by optimizing equation (7).
Then, we use each policy to separately sample trajectories
on a Baxter robot platform. Our curious policy was able to
visit a more diverse array of states and grasp more objects
than the existing random policy.

Our policy is able to significantly increase the quantity of
objects that the robot grasps. Since the interaction between
the robot and objects are some of the most difficult things
to predict in the tabletop manipulation setting, having more
data about robot-object interactions makes a collected dataset
more effective in training prediction models. Figure 8 shows
a histogram of when the grippers of the robot experienced
non-zero forces during data collection for both the curious
and the random policies. Non-zero forces indicate that an
object is between the grippers, preventing them from fully
closing. When following the curious policy, the robot spends
a larger portion of its time grasping objects.

Our curious policy also explores a different distribution of
robot states. Figure 7 shows a heatmap of the amount of time
the robot’s end effector spends at each location in the xy-
plane. The curious policy explores more interesting regions
of the state space, such as edges of the bins. The walls of the
bin are interesting because they block the motion of objects,
causing the objects to have more complicated dynamics than
when they are in the center of the bin.

B. Prediction Performance Improvement
We also evaluated the ability of the model trained with

data collected under different policies to perform prediction
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Fig. 6: The process used for online training with a curiosity objective provided by the loss from our discriminator network
in a domain transfer problem. The model and the discriminator are initially trained on an existing dataset from domain A
(1). The model and discriminator are used to select and execute sequences of actions that optimize the curiosity objective
in domain B, generating a new dataset (2). The dataset from domain B is used to train the model (3). The model is used to
select sequences of actions that optimize a task-based objective, allowing the robot to perform useful tasks in domain B (4).
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Fig. 8: Histograms of the non-zero gripper forces experienced
while executing each policy. Each policy was executed for
650 trajectories of 30 timesteps. Non-zero force occurs when
a large enough object is grasped by the robot’s fingers.
The curious policy spends significantly more time grasping
objects than the random policy.

Fig. 9: The blue squares show mean percent improvement in
L2 error for the prediction model trained with curious data
over the prediction model trained with the random data on the
control dataset. The bars show standard error of the percent
improvement. The prediction model trained with curious
data performs better by more than the standard error on all
but one quantity of samples. The improved performance is
particularly pronounced when lower numbers of samples are
used in training.

for robotic control by executing Steps 3 and 4 visualized in
Figure 6.

The samples collected with our curious policy enable
statistically significant prediction improvement on control
tasks over samples collected with our random policy. Fig-
ure 9 shows the L2 error improvement for the model trained
with the data collected with the curious policy at different
numbers of samples. The blue squares in the figure show the
mean percent improvement in L2 error, and the bars show the
standard error of the percent improvement. The improvement
provided by our method is statistically significant when the
entire range of the error bars in Figure 9 is positive. Error
improvement for the curious policy is especially pronounced
at lower numbers of samples. Qualitative prediction results
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Fig. 10: Example predictions on the control dataset. All models were trained with 650 samples. In the model trained with
the curious data, the object becomes more blurry, but its motion is much more accurate.

are shown in Figure 10. The model trained with the curious
data more accurately tracks the position of the object.

Given an improved prediction model, we experimented
with planning performance. We used CEM for planning with
a task-based objective function first proposed by Finn and
Levine [2], using the exact formulation and implementation
from Dasari et al. [7]. We executed the same pushing tasks
presented in Dasari et al. [7]. Despite the significant im-
provement in our prediction model, we found that the models
trained with curious and random data resulted comparable
control performance. Experimentally, prior work has shown
an association between improved prediction performance and
improved performance in control in this prediction-planning
pipeline [3], [9]. However, theoretical results in model pre-
dictive control do not guarantee that improved prediction
performance will results in improved control performance for
pipelines using video prediction models with CEM planners.
In future work, we intend to investigate the conditions in
which improved prediction performance yields improved
control performance for this pipeline in our experiments.

VI. CONCLUSION

We presented an adversarial curiosity approach which
we use to actively sample data used to train a prediction
model. Our method optimizes an objective given by the
score from a discriminator network to choose the sequence
of actions that corresponds to the least realistic sequence
of predicted observations. We compared our approach in
simulated task execution to existing model-based curiosity
methods and demonstrated significant advantages of our
method in the case of compute constrained environments.
We then integrated our exploration strategy in a practical
robotic manipulation pipeline in which existing model-based
curiosity methods could not run due to computational in-
tractability. We demonstrated increased sample efficiency and
improved prediction performance in this setting for a domain

transfer problem. In future work, we plan to look into ways to
guarantee improvement with active exploration methods for
manipulation task performance in robotic learning pipelines.
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