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Abstract. Data-driven reduced order models (ROMs) recently emerged as powerful tool for
the solution of inverse scattering problems. The main drawback of this approach is that it was
limited to the measurement arrays with reciprocally collocated transmitters and receivers, that is,
square symmetric matrix (data) transfer functions. To relax this limitation, we use our previous work
[14], where the ROMs were combined with the Lippmann-Schwinger integral equation to produce a
direct nonlinear inversion method. In this work we extend this approach to more general transfer
functions, including those that are non-symmetric, e.g., obtained by adding only receivers or sources.
The ROM is constructed based on the symmetric subset of the data and is used to construct all
internal solutions. Remaining receivers are then used directly in the Lippmann-Schwinger equation.
We demonstrate the new approach on a number of 1D and 2D examples with non-reciprocal arrays,
including a single input/multiple outputs (SIMO) inverse problem, where the data is given by just a
single-row matrix transfer function.

1. Introduction. In this work we extend the reduced order model (ROM) ap-
proach which was used previously for inverse impedance, scattering and diffusion
[4, 6, 13, 11, 7, 8, 5, 2, 14, 10] to nonsymmetric data sets. Here, we consider the
inverse diffusion problem given spectral data, although the technique to handle non-
symmetric transfer functions can be applied to a much wider class of problems.

In the ROM framework for solving multidimensional inverse problems, the ROM
is constructed from a symmetric data set, that is, for coinciding source and receiver
pairs. That is, the ROM is chosen precisely to match this data set, see [13, 11, 7,
8, 5, 10, 9]. Then, the ROM is transformed to a sparse form (tridiagonal for single
input single output (SISO) problems, block tridiagonal for multiple input/output
(MIMO) problems) by Lanczos orthogonalization. The data-driven ROM, in this
orthogonalized form, can be viewed as a discrete network which has entries for which
their dependence on the unknown pde coefficients is approximately linear [4, 13, 6,
2, 10]. That is, the main nonlinearity of the inverse problem was absorbed by the
orthogonalization process. This process is related to the seminal works of Marchenko,
Gelfand, Levitan and Krein on inverse spectral problems, and to the idea of spectrally
matched second order staggered finite-difference grids first introduced in [12] and first
used for direct inversion in [3].

The data-driven ROM can be viewed as a projection operator, or Galerkin system
[1]. A crucial property, which was first noticed in [13], is that the Galerkin basis cor-
responding to the unknown coefficient is very close to the one from the homogeneous
problem. This led to the back projection algorithm [11], which allowed for direct
reconstructions in multiple dimensions. In [5], it was found that thanks to this weak
dependence of the basis functions on the unknown coefficients, the ROM can also be
directly used to generate internal solutions from boundary data only.

In the work [14], the data-generated internal solutions up (corresponding to un-
known coefficient p) introduced in [5] were used in the Lippmann-Schwinger integral
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equation framework. If we consider the data Fp for the unknown coefficient p and back-
ground data F0 corresponding to a known background, then the Lippmann-Schwinger
integral equation with respect to the unknown p can be written as

Fp − F0 = −〈u0, pup〉 (1.1)

where 〈, 〉 is the continuous L2 inner product on the PDE domain, and where up and u0

are the unknown and background internal solutions respectively. For the Lippmann-
Schwinger Lanczos integral equation (LSL IE), we use the data generated internal
solution up in place of up:

Fp − F0 ≈ −〈u0, pup〉. (1.2)

Since up is precomputed directly from the data without knowing p, (1.2) becomes
linear with respect to p.

The Lippmann-Schwinger-Lanczos approach resolves directly one of the main limi-
tations of the above mentioned works; that it applies only to symmetric data sets. This
is the subject of this manuscript. Indeed, while the ROM must still be constructed
from a symmetric subset of the data, the Lippmann-Schwinger Lanczos equation (1.2)
can be directly applied to any additional receivers, using the same internal solutions.
Furthermore, additional sources (with receivers in the symmetric part) can also be
added thanks to reciprocity. Adding this additional data increases the range of the
Lippmann-Schwinger-Lanczos linear operator on the r.h.s. of (1.2), thus improving
the quality of the solution of the inverse problem.

The structure of our extended multi-input/multi-output (MIMO) measurement
array can be summarized with the help of (1.3). The column and row numbers corre-
spond respectively to the indices of the receivers (outputs) and transmitters (inputs).
The conventional data-driven ROM requires collocated receiver and transmitter ar-
rays (the symmetric data set), so the measurements in this case are given by a square
matrix, that is, the left upper block of (1.3). We assume reciprocity, implying sym-
metric transfer functions, thus it is sufficient just to measure their upper triangular
parts. The extended receivers are shown in the upper right block. A common case
is when all added receivers measure responses from one of the transmitters, resulting
in adding a column. However, added receivers can potentially just measure responses
from certain transmitters, resulting in an arbitrary sparsity pattern in the upper right
block. Likewise, one can add transmitters by adding elements to the lower left block.
By reciprocity, they can be symmetrically reflected into the right upper one.




. . . . .

. . . .
. . .

. .
.


. .
.
. .
. .
. .


(1.3)

This paper is organized as follows. In Section 2 we describe the entire process
in detail for a one dimensional single input multiple output (SIMO) problem. We
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briefly describe the construction of the ROM from the single input/ single output
(SISO) part of data, the Lanczos orthogonalization process and the generation of the
internal solutions. We then show its use in the Lippmann-Schwinger equation for the
full SIMO data. The generalization of this process to SIMO or nonsymmetric MIMO
arrays in higher dimensions is described in Section 3. Section 4 contains numerical
experiments.

2. One dimensional SIMO problem. We begin this work with a one dimen-
sional problem to demonstrate the approach. In the first subsection we describe the
problem setup one source and two receivers, one of which is at the source. We note
the transfer function for this problem has the SISO transfer function as a component,
which we use to construct the ROM. We review this briefly in the second subsection,
along with tridiagonalization of the ROM and generation of the internal solutions.
In the last subsection we show how to use the full transfer function and the internal
solutions in the Lippmann-Schwinger equation in order to solve the fully nonlinear
SIMO inverse problem.

2.1. Description of the SIMO problem. We start by considering the follow-
ing single input multiple output (SIMO) inverse problem in one dimension

− d2u

dx2
(x, λ) + p(x)u(x, λ) + λu(x, λ) = g(1)(x)

du

dx
|x=0 = 0,

du

dx
|x=L = 0, (2.1)

where 0 < L ≤ ∞. The source g(1)(x) is assumed to be a compactly supported real
distribution localized near the origin, for example, roughly speaking, g(1) = δ(x − ε)
with small ε > 0. We also use a similar distribution g(2) near the right boundary
x = L to represent the second receiver. Consider λj ∈ C \R−, j = 1, . . . ,m, since for
nonnegative p the above resolvent is well defined for λ off of the negative real axis.
We note that the above formulation can be obtained via the Laplace transform of the
one dimensional diffusion or wave problem. The SIMO transfer function is then

F (λ) =

[∫ L

0

g(1)(x)u(x, λ)dx,

∫ L

0

g(2)(x)u(x, λ)dx

]
(2.2)

=
[
〈g(1), u〉, 〈g(2), u〉

]
(2.3)

where throughout the paper we use 〈, 〉 to denote the continuous Hermitian L2 inner
product

〈w, v〉 =

∫ L

0

w̄(x)v(x)dx,

which in the one dimensional case is L2(0, L).
For simplicity of exposition we consider 2m real spectral data points that is, we

consider the data

F (λ)|λ=λj
∈ R,

dF (λ)

dλ
|λ=λj

∈ R for j = 1, . . . ,m. (2.4)

In this case all solutions are real and the conjugates are unnecessary. For complex
data points, all of the following holds, see [14]. The SIMO inverse problem is then to
determine p(x) in (2.1) from the data (2.4).
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2.2. Construction of the data-driven ROM, orthogonalization and in-
ternal solutions. The first component of the transfer function (2.2) is a SISO trans-
fer function,

Fσ := (F (λ))1

is the symmetric portion of F , and can be used to construct the ROM exactly as in
previous works e.g. [14]. We describe this now briefly. The exact solutions to (2.1) ,
{u(x, λj)}, form a basis for the projection subspace

U = span{u1(x) = u(x, λ1), . . . , um(x) = u(x, λm)}.

We define the data-driven ROM as the Galerkin system corresponding to U

(S + λM)c = b (2.5)

where S,M ∈ Rm×m are symmetric positive definite matrices with the stiffness matrix
S given by

Sij = 〈u′i, u′j〉+ 〈pui, uj〉

and mass matrix M given by

Mij = 〈ui, uj〉.

The right hand side b ∈ Rm is a column vector with components

bj = 〈uj , g〉,

and the Galerkin solution for the system is determined by the vector c ∈ Rm depend-
ing on λ. Note that c = c(λ) corresponds to a column vector of coefficients of the
solution with respect to the above basis of exact solutions. The matrices S and M
can be obtained directly from the data, without knowing the exact solutions, from
the formulas

Mij =
Fσ(λi)− Fσ(λj)

λj − λi
, Mii = −dF

σ

dλ
(λi). (2.6)

and

Sij =
Fσ(λj)λj − Fσ(λi)λi

λj − λi
, Sii =

d(λF σ)

dλ
(λi). (2.7)

Due to the matching conditions, the ROM transfer function corresponding to this
Galerkin system

F̃σ(λ) = b>c

matches (the symmetric part of) the data exactly. This is well known; a proof of this
for real λi is in [5], and for complex λ in [14]. Furthermore, for any λ, the solution to
(2.1) is close to its Galerkin projection

u(λ) ≈ ũ(λ) = V c = V (S + λM)−1b
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where V represents the row vector of basis functions ui,

V = [u1, . . . , um].

Next we perform a change of basis, that is, we orthogonalize by using the Lanczos
algorithm. More precisely, we run m steps of the M -symmetric Lanczos algorithm
corresponding to matrix A = M−1S and initial vector M−1b. This yields tridiagonal
matrix T ∈ Rm×m and M -orthonormal Lanczos vectors qi ∈ Cm, such that

AQ = QT, Q>MQ = I, (2.8)

where

Q = [q1, q2, . . . , qm] ∈ Cm×m,

and

q1 = M−1b/
√
b>M−1b.

The new basis is orthonormal in L2(0, L) and is given by the vector

V Q = [

m∑
j=1

qj1uj , . . . ,

m∑
j=1

qjmuj ].

The Galerkin solutions and transfer function can then be written in this new basis as

ũ(λ) =
√
b>M−1bV Q(T + λI)−1e1, (2.9)

F̃σ(λ) = (b>M−1b)e>1 (T + λI)−1e1 (2.10)

where e1 = (1, 0, . . . , 0)T is the first coordinate column vector in Rm.

Now, we use this orthogonalized ROM to produce internal solutions. Of course,
we do not know p, so we don’t know the original basis of exact solutions V . What
we do instead is to replace the unknown orthogonalized internal solutions V Q with
orthogonalized background solutions V0Q0 corresponding to background p0 = 0. Here
V0 is the row vector of background solutions

V0 = [u0
1, . . . , u

0
m]

to (2.1) corresponding to p = p0 = 0 and the same spectral points λ = λ1, . . . λm. A
ROM for this background problem is computed in the same way, and Q0 is computed
from its Lanczos orthogonalization. That is, one can compute an approximation u to
the unknown internal solution u(x, λ) using

u ≈ u =
√
b>M−1bV0Q0(T + λI)−1e1 (2.11)

which is obtained from data only.
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2.3. Nonlinear inverse problem. We now use the Lippmann-Schwinger for-
mulation to solve the nonlinear inverse problem for all of the data, not just the
symmetric part, which is the SISO transfer function in this case. From (2.2) and its
background counterpart we obtain the Lippmann-Schwinger equation

F0(λj)− F (λj) =

[∫
u

(1)
0 (x, λj)u(x, λj)p(x)dx,

∫
u

(2)
0 (x, λj)u(x, λj)p(x)dx

]
(2.12)

for j = 1, . . . ,m where u
(i)
0 is the solution to the background problem

− d2u
(i)
0

dx2
(x, λ) + λu

(i)
0 (x, λ) = g(i)(x) (2.13)

with zero Neumann conditions. Correspondingly, F0 is the background transfer func-
tion

F0 =
[
〈g(1), u

(1)
0 〉, 〈g(2), u

(1)
0 〉
]
. (2.14)

For real λj ∈ R we then have 2× 2m equations

F0(λj)− F (λj)

=

[∫
u

(1)
0 (x, λj)u(x, λj)p(x)dx,

∫
u

(2)
0 (x, λj)u(x, λj)p(x)dx

]
, (2.15)

d

dλ
(F0 − F )|λ=λj

=

[∫
d

dλ
[u

(1)
0 (x, λ)u(x, λ)]λ=λj

p(x)dx,

∫
d

dλ
u

(2)
0 (x, λ)u(x, λ)]λ=λj

p(x)dx

]
(2.16)

for j = 1, . . . ,m. If we put the background solutions in the vector

U0 =
[
u

(1)
0 , u

(2)
0

]
we can write (2.15) and (2.16) as

F0(λj)− F (λj) =

∫
U0u(x, λj)p(x)dx, (2.17)

d

dλ
(F0 − F )|λ=λj

=

∫
d

dλ
[U0(x, λ)u(x, λ)]λ=λj

p(x)dx (2.18)

for j = 1, . . . ,m. As usual, the internal solutions u(x, λj) and their derivatives with
respect to λ are unknown, and depend on p, so the system (2.12-2.15) is nonlinear
with respect to p. Now, just as in [14] we replace u(x, λ) in (2.12-2.15) with its
approximation

u ≈ u =
√
b∗M−1bV0Q0(T + λI)−1e1,

which we obtained from the ROM constructed from the symmetric part of the data.
We can write the new system for p as

δF =

∫
W (x)p(x)dx (2.19)
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where

δF = [(F0−F )(λ1), . . . , (F0−F )(λm),
d

dλ
(F0−F )(λ1), . . . ,

d

dλ
(F0−F )(λm)] ∈ R4m,

and

W = [uU0(λ1), . . . ,uU0(λm),
d

dλ
(uU0)|λ=λ1

, . . . ,
d

dλ
(uU0)|λ=λm

]

is a 4m-dimensional vector of functions on (0, L). Recall u is computed directly from
the symmetric part of the data without knowing p, by using (2.11), making nonlinear
system (2.19) linear. We continue to refer to (2.19) as a Lippmann-Schwinger-Lanczos
system. Setup (2.19) corresponds to the full 1 × 2 array in (1.3).

3. Multidimensional MIMO problem. In this section we consider a more
general multidimensional case where we may have any number of sources and re-
ceivers. The symmetric part of the transfer function will consist of all of the data
from coinciding source/receiver pairs, that is, it corresponds to the left upper block of
(1.3). Again, the symmetric part will be used to build the ROM as in [14], while the
remaining data will be used later in the Lippmann-Schwinger formulation. We will
assume that the nonsymmetric, or remaining part of the transfer function consists of
receivers, that is, they will be located in the right upper block of (1.3). As it was
already mentioned in the introduction, this is without loss of generality, since any
remaining sources can equivalently be viewed as receivers by reciprocity.

3.1. Description of the MIMO problem. We consider a formulation that
can be obtained via the Laplace transform of the diffusion or wave problem, which
can be written as the following boundary value problem on Ω ∈ Rd:

−∆u(r) + pu(r) + λu = g(r),
du

dν
|∂Ω = 0, r = 1, . . . , K, (3.1)

where g(r) are K localized sources, e.g., boundary charge distributions, supported
near or at an accessible part S of ∂Ω. Consider also a set of distributions representing
our receivers, which will include all of the sources distributions. That is, let

G = [g(1), g(2), . . . , g(K), . . . , g(L)],

where L ≥ K. Let

U = [u(1), u(2), . . . , u(K)]

be our solution functions corresponding to the K sources. Then the multiple-input
multiple output (MIMO) transfer function is a K × L matrix valued function of λ

F (λ) = 〈G,U〉 ∈ RK×L (3.2)

where 〈, 〉 represents the continuous L2(Ω) inner product, that is,

〈G,U〉 =

∫
Ω

U>Gdx,

is matrix valued with

(F (λ))ij =

∫
Ω

u(i)g(j)dx.
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We consider the inverse problem with data given by 2m real symmetric K×L matrices,
that is,

F (λ)|λ=λj
∈ RK×L,

and

F (λ)

dλ
|λ=λj

∈ RK×L,

for real spectral points {λj}j=1,...m, while we note again that complex data will follow
in the same way [14].

3.2. Construction of the data-driven ROM, block Lanczos, and internal
solutions. We now construct the ROM based on the symmetric part of the transfer
function:

Fσ(λ) := (F (λ))|i,j=1...K

and correspondingly define

Gσ = [g(1), g(2), . . . , g(K)].

We consider the mK dimensional projection subspace

U = span{U1(x) = U(x, λ1), . . . , Um(x) = U(x, λm)}

and define the MIMO data-driven ROM as the system

(S + λM)C = B (3.3)

where S,M ∈ RmK×mK are symmetric positive definite matrices, B ∈ RmK×K is the
symmetric part of the data

B = 〈Gσ, U〉,

and the system solution C = C(λ) ∈ RmK×K is a matrix valued function of λ, again
corresponding to coefficients of the solution with respect to the above basis of exact
solutions. Stiffness and mass matrices are block versions of (2.5), with blocks given
by

S = (Sij = 〈U ′i, U ′j〉) + 〈pUi, Uj〉)

and

M = (Mij = 〈Ui, Uj〉).

Again S and M are obtained by imposing the conditions that the ROM transfer
function F̃σ(λ) = B>C matches the data. Next, we perform block Lanczos tridiago-
nalization, with matrix

A = M−1S

and initial block vector M−1B. From this we obtain the block-tridiagonal matrix

T ∈ RKm×Km
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withK×K blocks, and block-vectors qi ∈ RmK×K which are orthonormal with respect
to the M inner product, which again corresponds to continuous L2 orthonormality.
From this we obtain the block counterpart of (2.8)

Q = [q1, q2, . . . , qm] ∈ RmK×mK ,

where

q1 = M−1B(B>M−1B)−1/2.

The Galerkin projection of the true solution or state solution can then be written in
the new Lanczos basis as

Ũ(λ) =
√
B>M−1BV Q(T + λI)−1E1, (3.4)

where E1 ∈ RmK×K consists of the first K columns of identity matrix I ∈ RmK×mK .
We express the orthogonalized basis as

V Q = [
m∑
j=1

Ujqj1, . . . ,
m∑
j=1

Ujqjm]

where
{
qji ∈ RK×K

}m
i,j=1

are the blocks of matrix Q and Uj = [u
(1)
j (x), . . . u

(K)
j (x)]

are the corresponding vectors of solutions. Note that this basis depends on the un-
known internal solutions, so as before we replace the basis V Q in (3.4) with its back-
ground counterpart V0Q0. This yields the data generated vector of internal solutions

U :=
√
B>M−1BV0Q0(T + λI)−1E1. (3.5)

3.3. Nonlinear MIMO inverse problem. We now solve the fully nonlinear
inverse problem using the entire non-symmetric data set. From (3.2) and the equation
for the background solutions we obtain the Lippman-Schwinger formulation

F0(λj)− F (λj) =

∫
U>(x, λj)U0(x, λj)p(x)dx, j = 1, . . . ,m. (3.6)

Here U0 represents all L background solutions with p = 0. For λj ∈ R we will have

(F0 − F )|λj
=

∫
U>(x, λj)U0(x, λj)p(x)dx,

d

dλ
(F0 − F )|λj

=

∫
d

dλ
(U>(x, λj)U0(x, λ))|λ=λj

p(x)dx. (3.7)

Now we replace U(x, λ) with its approximation U in (3.6) and (3.7). Again, precom-
puting U from the data only (3.5) will yield the linear system for p, which is given
by the upper triangular part of (3.8) and (3.9):

(F0 − F )|λj
=

∫
U>(x, λj)U0(x, λj)p(x)dx, (3.8)

d

dλ
(F0 − F )|λj =

∫
d

dλ
(U>(x, λj)U0(x, λ))|λ=λjp(x)dx. (3.9)

This setup corresponds to the full upper triangular K×L (1.3) . However, as already
mentioned, removal of any element of the data matrix with the column number larger
than K does not affect the computation of U, so we can use any sparsity patterns
in the right upper blocks of (F0 − F ) and d

dλ (F0 − F ). Note that these patterns can
also vary for different matching frequencies. This would result in the reduction of the
range of the forward linear operator without changing the remaining columns.
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4. Numerical experiments.

4.1. One dimensional SIMO problem. We first demonstrate numerical re-
sults here for a one dimensional reconstruction problem as a proof of concept. The
setup is exactly as in Section 2, although computations are done on a square, using
finite elements and N = 100× 100 elements to compute the synthetic data. The LSL
system is solved here using the background solutions as a basis for the unknown p.
We use m = 6 positive spectral values λ = 1, 2, 14, 50, 128, 262.2672. Note in Figure
4.1 that the SISO data, which is used to create the internal solutions, reconstructs
the bar closer to the source quite well. Using the same internal solutions, we add data
from the receiver on the right hand side, and we see that the second bar is captured.
The Born approximation does not work well for this high contrast example.

Fig. 4.1. True one dimensional medium (top left) and its reconstructions using SIMO data and
the Born approximation (top right), Lippmann Schwinger Lanczos using SISO data only (bottom
left), and Lippmann Schwinger Lanczos using SIMO data (bottom right)

.

4.2. Two dimensional examples. Here we show our numerical reconstructions
of a 2D two-bump media. We assumed that the data is noiseless. The construction of
the data-driven ROM may become unstable in the presence of noise, however, one can
regularize it using the SVD-based algorithm of [8]. For simplicity, we omitted that
part in this paper. We chose frequencies that provide enough sensitivity to recover
the unknown scatterers, but so that the data is still non-redundant. In our first
experiment, we considered the medium shown on the top left in Fig.4.2. The data
acquisition setup mimics one from surface geophysical exploration, that is, we consider
K sources L receivers on the top boundary of the domain. We use m = 5 positive
spectral values λ = 1, 2, 14, 50, 128. The forward problem was discretized on a regular
triangular grid using a finite-element method with N = 451×151 elements. Equation
(3.8) was approximated using nodal quadrature on a 901 × 301 grid. The obtained
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linear system is ill-conditioned, and we solved it via projecting onto its dominant
eigenvectors. On the top right of Fig.4.2 we plotted the reconstruction using the
LSL IE for the square data matrix when K = L = 2. Red crosses and green circles
on plots show source(s) and receiver(s) locations, respectively. Then, we expanded
the data matrix to the rectangular one by adding 10 receivers. For this scenario, the
reconstruction using Born linearization, i.e. when U(x, λ)) in (3.7) is replaced by with
U0(x, λ))), is shown on bottom left of Fig.4.2. For the same data, the image produced
by the extended LSL IE is plotted on the bottom right of Fig.4.2. As one can observe,
it improves the image compared to both Born and the square LSL IE. In fact, in
Fig.4.3 we plotted the solutions of (3.7) assuming the exact internal solution U(x, λ))
is available, which we call ”Cheated IE”. This represents the best possible result if
one were to apply an iterative (aka distorted) Lippmann-Schwinger algorithm which
converged. (Iterative Lippman-Schwinger would require multiple solutions of forward
problems, which can be costly even if such an algorithm converges.) The cheated
reconstructions are identical to the corresponding results for the LSL IE in Fig.4.2,
and, obviously, in both cases improvements are obtained compared to the rectangular
data just because of the additional receivers.

In the second experiment we considered a SIMO medical imaging setup with
K = 1 source and L = 20 receivers located on all four sides of square domain (see
top left in Fig.4.4) and compared it to SISO scenario K = L = 1. We discretized
the problem using finite elements on a uniform triangular grid with N = 151 × 151
elements. Equation 3.8 was approximated using quadrature on 451 × 451 grid. In
this example we considered m = 6 spectral values λ = −24, 1, 2, 14, 50, 128, that is,
we added a negative one to the set from the previous example. In Fig.4.4 we plotted
the images obtained using the LSL IE for SIMO (top right) and SISO (bottom right)
scenarios as well as the Born reconstruction for SIMO (bottom left). In this case the
SISO LSL image is qualitatively wrong. Both SIMO LSL IE and born images are
qualitatively correct, however the LSL IE image is quantitatively more accurate. To
strengthen this argument we compared a slice (the red line in Fig 4.4 top left ) of the
true p with its Born and LSL IE SIMO images in Fig. 4.5.

Fig. 4.2. Experiment 1: True medium (top left) and its reconstructions using the LSL IE for
square data K = L = 2 (top right), Born linearization for rectangular data K = 2, L = 12 (bottom
left) and extended LSL IE for the same rectangular data(bottom right)

5. Conclusion and discussion. Using the previously developed Lippmann-
Schwinger-Lanczos (LSL) algorithm, we are able to extend successfully the model
reduction approach to arrays with nonreciprocal subsets, including SIMO data sets.
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Fig. 4.3. Experiment 1: LSL IE image with exact internal solution U(x, λ)) (Cheated IE) for
square data K = L = 2 (left) and for rectangular data K = 2, L = 12 (right)

Fig. 4.4. True p with its LSL SIMO, Born SIMO, and LSL SISO images. The SIMO recon-
structions are qualitatively correct, while the SISO reconstruction is not. The LSL SIMO (IE) is a
quantitatively better approximation to the true p than Born.

The main novelty of this algorithm is the exploitation of the product structure of the
Lippmann-Schwinger equation. It allows us to plug in an approximate internal solu-
tion computed using only the data appropriate for the ROM construction (symmetric)
subset of the data, and then using all of the given data to solve the enlarged linear
LSL system. Even though all of the derivations here are made for the second order
Schrodinger equation in the Laplace domain, and assuming exact data, we plan to
extended them to first order systems and the time domain, as well as regularized noisy
ROM formulations of [8, 2]. Future directions also include using iterative methods
for very sparse data sets. We have already obtained promising preliminary results for
the monostatic (SAR) problem, which is an important case of such data sets.
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