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Amyotrophic lateral sclerosis (ALS) is a neurological disease that starts at a focal
point and gradually spreads to other parts of the nervous system. One of the
main clinical symptoms of ALS is muscle weakness. To study spreading patterns
of muscle weakness, we analyze spatiotemporal binary muscle strength data,
which indicates whether observed muscle strengths are impaired or healthy.
We propose a hidden Markov model-based approach that assumes the observed
disease status depends on two latent disease states. The model enables us to
estimate the incidence rate of ALS disease and the probability of disease state
transition. Specifically, the latter is modeled by a logistic autoregression in that
the spatial network of susceptible muscles follows a Markov process. The pro-
posed model is flexible to allow both historical muscle conditions and their
spatial relationships to be included in the analysis. To estimate the model param-
eters, we provide an iterative algorithm to maximize sparse-penalized likelihood
with bias correction, and use the Viterbi algorithm to label hidden disease
states. We apply the proposed approach to analyze the ALS patients’ data from
EMPOWER Study.
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1 INTRODUCTION

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurological disease that affects nerve cells
in the brain and the spinal cord which control voluntary muscle movements. Muscle weakness is a major symptom of
ALS. The weakness typically starts from a particular muscle group and then spreads to other muscles. As the disease
progresses, patients lose muscle movement in multiple muscles and finally die from the disease. Currently there is no
treatment for the disease. How the muscle weakness spreads across body regions remains unknown. Motivated closely
from the ALS patients’ data from EMPOWER Study, in this article we develop a hidden Markov model (HMM) to explore
the spreading pattern of the ALS disease progression. In particular, we model the dependence among susceptible muscles
by extending the classical HMM in order to account for both spatial and temporal mechanisms of disease progression.

The motivating data consists of space-time binary disease states (1 for impaired and 0 for healthy) of 16 mus-
cle groups of ALS patients during their longitudinal clinical visits. The observed disease states are determined in the
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clinical setting by thresholding the observed muscle strengths, leading to potential errors caused by measurement biases
and inappropriate thresholds. Indeed, there exist some trajectories of observed states that show contradictory patterns
of disease progression; for example, a muscle may appear to get healthier than before, which contradicts to the fact that
ALS is a progressive disease. Also, because ALS is technically not a muscular disease but a neurological disease, their true
disease states are difficult to observe precisely in practice. To overcome these difficulties, we adopt a hierarchical model-
ing framework for the disease spreading patterns, where patient’s true muscular conditions, which are latent, drive the
observed states recorded in the motivating data.

To model the spreading pattern of latent disease states, we notice that muscles are scattered over body locations and
their conditions evolve in time. We develop a logistic autoregressive model that assume the current muscle states depend
only on their previous states through the first-order Markov process. Specifically, for each muscle, the probability of
one-time transition from healthy state to impaired state is governed by the previous states of the other muscles via lagged
covariates. To reflect the fact that ALS is incurable as aforementioned, the transition probability from impaired state to
healthy state is always zero. The literatures on spatiotemporal models1-4 typically assume that spatially closer locations
have stronger associations and associations between locations are symmetric. Such dependencies are indeed restrictive
for ALS disease because human body parts are connected via a complex system whose neurological mechanisms remain
largely unknown. In this article, we propose a flexible logistic autoregressive model to not only allow resilient network
specification of neighboring muscle locations, but also allow autocovariates to have potential directional effects on the
entire network of muscles under investigation. Moreover, the proposed model allows for muscles to have different effects
to other muscles according to their previous states of being healthy or impaired.

Following the standard HMM-based approaches,5 we develop an iterative statistical method involving three major
steps for the proposed model in the study of ALS disease spreading patterns. In the first step, we derive the conditional dis-
tributions of observed states given hidden states, namely the emission probability, which helps calculate the observation
likelihood in Section 2.1. In this step, the false positive or negative rates of disease diagnosis are estimated. In the second
step, we compute the transition probability of hidden states based on the autoregressive model in Section 2.2. The model
parameters are estimated by maximizing a L1-penalized likelihood with bias correction, not only to obtain unbiased and
sparse estimates but also to obtain their asymptotic distribution according the theory of post-selection inference.6-8 For
the ease of implementation, we show that such regularized estimation can be converted to an estimation procedure car-
ried out in the generalized linear model (GLM) framework.9 In the third step, we identify the optimal time sequence
of hidden states for each muscle location using the Viterbi algorithm10 in Section 2.3. These three steps and associated
analysis goals are iterated, starting with a given initialization, until all estimates of the model parameters are converged.
We apply the proposed model and estimation method to analyze the motivating ALS patients’ data from the EMPOWER
Study of Biogen11 (Section 3).

2 HIDDEN MARKOV MODEL FOR SPATIOTEMPORAL BINARY STATES

Let Y i(uj, t) and Si(uj, t) denote an observed and a hidden binary state, respectively; 1 if a muscle at location uj is
impaired at time t, and 0 otherwise for subject i, where i= 1, … , N, j= 1, … , M, and t = 0, 1, … , ni. We assume that
all subjects are completely observed for all locations, but may have short or different lengths of time sequences due to
missing visits. Figure 1 shows the hierarchical structure of a HMM in that the observed states depend on the hidden
states (vertical arrows) and the current hidden states depend only on the previous hidden states (horizontal arrows). In
this article, we consider an HMM with two states corresponding to healthy and impaired muscle, respectively, at each
location.

F I G U R E 1 The structure of a hidden Markov model where Si(uj, t) and Y i(uj, t) denote a hidden and an observed binary state,
respectively, for subject i, location uj and time t; Ei = emission probability from hidden state to observed state; Aijt = transition probability
from time t − 1 to t
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2.1 Emission probability

Emission probability refers to the conditional distribution of observations given hidden states. In the HMM, the observed
states are conditionally independent given the latent states, and each observed muscle state Y i(uj, t) is assumed to depend
only on the corresponding latent muscle state Si(uj, t), not on any other latent muscle states at different locations or time.
Denote the emission probability as e𝛿(𝛾) = P

(
Yi(uj, t) = 𝛾|Si(uj, t) = 𝛿

)
for 𝛿, 𝛾 ∈ {0, 1}, which for simplicity is assumed

to be homogeneous over all subjects, locations, and times. Obviously,
∑1

𝛾=0 e𝛿(𝛾) = 1, for 𝛿 ∈ {0, 1}. Further, we write the
four emission probabilities in the following 2× 2 matrix:

E =

(
e0(0) e0(1)
e1(0) e1(1)

)
=

(
1 − e0(1) e0(1)

e1(0) 1 − e1(0)

)
, (1)

where rows indexed by the subscript correspond to the hidden states and columns correspond to the observed states.
Here, e0(1) and e1(0) are the probabilities of misclassification between the hidden and observed states, which can also be
regarded as false positive rates and false negative rates, respectively.

If the hidden states Si(uj, t) were known, e𝛿(𝛾) could be estimated by the empirical frequencies of cross-classified
observed states as

ê𝛿(𝛾) =
N∑

i=1

M∑
j=1

ni∑
t=1

I
(

Yi(uj, t) = 𝛾|Si(uj, t) = 𝛿
)/ N∑

i=1

M∑
j=1

ni∑
t=1

I
(

Si(uj, t) = 𝛿
)
, for 𝛿, 𝛾 ∈ {0, 1},

where I(⋅) denotes the indicator function. These proportion estimators above are consistent and asymptotically normally
distributed by the classical statistical theories under the assumption of conditional independence.

2.2 Transition probability

In the HMM, the binary latent process is assumed to be a discrete Markov chain of order 1, which is governed by the
matrix of transition probabilities. A transition probability defines the probability law of lag-1 transition for a hidden state
at time t for muscle j, denoted by a𝛿′𝛿 = P

(
Si(uj, t) = 𝛿|Si(uj, t − 1) = 𝛿′

)
for 𝛿, 𝛿′ ∈ {0, 1}. For the ALS disease, we assume

that the impaired state cannot revert to the healthy state; that is, P(Si(uj, t)= 0 | Si(uj, t − 1)= 1)= 0. In other words, the
impaired state is an absorbing state. Here we are particularly interested in estimating the transition probability of a muscle
moving from its healthy state to the impaired state, namely pi(uj, t)=P(Si(uj, t)= 1 | Si(uj, t − 1)= 0). For this, we develop
a statistical model to accommodate spatially the disease spreading patterns, in addition to the temporal Markov dynamics
given by the classical HMM. The 2× 2 transition probability matrix from time t − 1 to t for location uj of subject i is

Aijt =

(
a00 a01

a10 a11

)
=

(
1 − pi(uj, t) pi(uj, t)

0 1

)
, t = 1, … ,ni, j = 1, … ,M, i = 1, … ,N, (2)

where each row corresponds to a hidden binary state occurring at time t − 1, and each column corresponds to a hidden
state occurring at time t, respectively. In this article, we assume that the transition probabilities can differ over locations
and times (ie, a nonstationary Markov chain). For notational simplicity, we drop the index i, j and t from a𝛿′𝛿 above and
in the remaining article as long as the context is subject to no confusion.

2.2.1 Logistic autoregression model

We propose a logistic autoregressive model for the transition probability pi(uj, t) in that the current state is only dependent
on the lag-1 historical states of neighbors:

logit{pi(uj, t)} = XT
i 𝜷 +

∑
j′∈ 0

ijt

𝜂0jj′S∗
i (uj′ , t − 1) +

∑
j′∈ 1

ijt

𝜂1jj′S∗
i (uj′ , t − 1) for t > 0 (3)
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for logit (x) = log{x∕(1 − x)}, where Xi and 𝜷 are the p× 1 vectors of subject-specific independent variables (eg, demo-
graphic characteristics or clinical information) and their regression coefficients, respectively. Also S∗

i (uj′ , t − 1) for ∀j′ ≠ j
denotes the centered autocovariates of other muscle conditions at different locations j′ from location j of interest at time
t − 1, defined by S∗

i (uj′ , t − 1) = Si(uj′ , t − 1) − 0.5. This centering on the autocovariates will make their spatial influences
balanced by converting 0 and 1 into −0.5 and 0.5, respectively. Without centering, only impaired neighboring muscle con-
ditions (ie, Si(uj′ , t − 1) = 1) would affect the transition while healthy neighbors (ie, Si(uj′ , t − 1) = 0) would not contribute
to the odds of transition. In reality, both healthy and impaired neighbors are expected to affect the transition probability.
This strategy of centering autocovariates is commonly used in the literatures.12,13

For model (3), we separate the effects of autocovariates based on their previous states through two types of neighbors:

 0
ijt = {j′|Si(uj′ , t − 1) = 0 and j′ ∈ j},

 1
ijt = {j′|Si(uj′ , t − 1) = 1 and j′ ∈ j},

where j contains both types of neighbors of uj, denoted by j = {j′|uj′ ∼ uj}. Here j can be specified as a complete
network among locations such that j = {j′|uj′ ≠ uj}, where every pair of muscles are connected each other; or alterna-
tively, it can be specified based on certain prior knowledge about their spatial dependencies among the states (see also
Appendix A for the schematic diagram of example networks). For the ALS disease, we use the complete network because
all muscles are collectively controlled by nerve cells in the brain and the spinal cord. This complete network results in two
unknown autoregressive coefficient vectors 𝜼0 and 𝜼1 of size M(M − 1), consisting of parameters {𝜂0jj′ }j≠j′ and {𝜂1jj′ }j≠j′

respectively. Coefficient 𝜂0jj′ represents the effect of a previously healthy neighbor uj′ on uj, and similarly, coefficient 𝜂1jj′

represents the effect of a previously impaired neighbor uj′ on uj. Moreover, we do not restrict the autocovariates to have
any symmetry effects but allow to have directed impacts on the transition probability in model (3);14 for example, the
effect of state uj on the transition probability of uj′ can differ from the effect of state uj′ on the transition probability of
state uj; that is, 𝜂0jj′ ≠ 𝜂0jj′ or 𝜂1jj′ ≠ 𝜂1j′j for any j ≠ j′.

In addition, we model the initial state probability, pi(uj, 0)=P(Si(uj, 0)= 1), using the standard logistic regression with-
out autocovariates such that logit{pi(uj, 0)} = XT

i 𝜶j for each location j. Alternatively, any marginal proportion of impaired
states can be used, for example, pi(uj, 0) =

∑N
i=1 Si(uj, 0)∕N for each j, or the most simply, one can set pi(uj, 0)= 0.5 for all

i and j.

2.2.2 Bias-corrected L1-regularized likelihood estimation

Provided that the true states Si(uj, t) are known, we seek to estimate the coefficients in model (3), denoted by 𝜽 =
(𝜷T, 𝜼T

0 , 𝜼
T
1 )

T. Note that we begin with the complete network assuming all other locations have potential effects on a given
location. It is desirable to impose sparsity regularization on both 𝜼0 and 𝜼1 such that we can identify those neighboring
muscle groups from all available other muscle groups that are truly relevant to a given muscle group. By selecting vari-
ables properly, we avoid over-fitting in estimation and improve the interpretation of the model. Therefore, we propose to
estimate the model parameters by maximizing the regularized likelihood function.

Under the assumption of HMM being a Markov process of order 1 in time, the hidden states with t > 0 are conditionally
independent given their previous states of neighbors. Thus, for given initial hidden states {Si(uj, 0)}, the full log-likelihood
of {Si(uj, t); t > 0} is

𝓁(𝜽) =
N∑

i=1

M∑
j=1

ni∑
t=1

log{ijt(𝜽)} I
(

Si(uj, t − 1) = 0
)
,

where I(⋅) denotes an indicator function and ijt(𝜽) denotes a conditional density of Si(uj, t) whose previous state was
healthy (ie, Si(uj, t − 1)= 0) as

ijt(𝜽) = P
(

Si(uj, t)|𝜽;Xi, {Si(uj′ , t − 1) ∀j′ ≠ j}
)
= pi(uj, t|𝜽)Si(uj,t){1 − pi(uj, t|𝜽)}1−Si(uj,t)

with pi(uj, t|𝜽) being a function of 𝜽 as in model (3). Note that any Si(uj, t) whose previous state was impaired (ie,
Si(uj, t − 1)= 1) does not contribute to the likelihood due to the absorbing feature of disease.
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We propose to penalize the coefficient estimation via the bias-corrected least absolute shrinkage and selection operator
(LASSO), which enables to select an optimal subset of autocovariates from a large number of pairwise links between
locations. Not only does this approach correct the bias of the classical LASSO estimator but also enables post-selection
inference based on asymptotic normality.7,8 To proceed, we first maximize the L1-penalized log-likelihood,

F𝜆(𝜽) = 𝓁(𝜽) − 𝜆
∑
j≠j′

(|𝜂0jj′ | + |𝜂1jj′ |), (4)

where the solution 𝜽̂𝜆 = arg𝜽 max F𝜆(𝜽) is the classical LASSO estimator. The tuning parameter 𝜆 > 0, which encourages
the amount of sparsity in the estimation solution, can be tuned by a data-dependent model selection criterion, such as gen-
eralized cross-validation (GCV),15 Bayesian information criterion (BIC)16 and extended Bayesian information criterion
(EBIC).17 We then correct the bias of the LASSO estimator 𝜃𝜆 as follows:

𝜽̃ = 𝜽̂𝜆 +
{
−𝓁′′(𝜽̂𝜆)

}−1
𝓁′(𝜽̂𝜆), (5)

where −𝓁′′(𝜽) = −𝜕2 log𝓁(𝜽)∕𝜕𝜽2 is the Hessian matrix and 𝓁′(𝜽) = 𝜕 log𝓁(𝜽)∕𝜕𝜽 is the vector of normal scores. It has
been shown7,8,18 that, under some regularity conditions, the bias-corrected estimator in (5), 𝜽̃, asymptotically behaves as
the oracle maximum likelihood estimator obtained by assuming the nonzero set of true parameters is known in advance,
which is consistent and asymptotically normally distributed.

In implementation, under model (3), we form the outcome vector of previously healthy states and the design matrix of
independent variables and autocovariates in suitable forms, so that we can make a direct use of standard software packages
to facilitate easy computation, rather than designing fully new optimization algorithms for objective function (4) from
scratch. Appendix C1 provides an R function that organizes independent variables and spatiotemporal binary data into,
respectively, a set of the outcome vector (y) and the design matrix of covariates (X). The resulting data formats can then be
used for the function glmnet(x=X, y=y,…) in the R package glmnet, where the option penalty.factor controls
the penalization. For example, one can set penalty.factor=c(0T

p , 1T
M(M−1), 1

T
M(M−1)) for the complete network j =

{j′|uj′ ∼ uj} where 0 corresponds to the case of 𝜆 = 0, namely no penalty is imposed to 𝜷, and 1 for L1-penalty to all 𝜼0
and 𝜼1. For a partial network, one can use Inf to avoid estimating certain 𝜂0jj′ and 𝜂1jj′ . The function cv.glmnet() in

Algorithm 1. Estimation of the proposed hidden Markov model

Input independent variables X i, observed states Yi(uj, t), and network structure j for ∀i, j, t
Set initial hidden states as S(0)

i (uj, 0) = Yi(uj, 0) and S(0)
i (uj, t) = max{Yi(uj, t), S(0)

i (uj, t − 1)} for ∀i, j, t(>0)
Start with q = 0
repeat

q ←− q + 1
Estimate emission probability matrix Ê

(q)
as (1) of Section 2.1, using

ê(q)
𝛿
(𝛾) ←−

∑
i,j,t I

(
Yi(uj, t) = 𝛾 ∣ S(q−1)

i (uj, t) = 𝛿
)/∑

i,j,t I
(

S(q−1)
i (uj, t) = 𝛿

)
for 𝛿, 𝛾 ∈ {0, 1}

Estimate transition probability matrix Ã
(q)
ijt for each i, j, t as (2) of Section 2.2 using

p̃(q)
i (uj, t) = logit−1{XT

i 𝜷̃
(q) +

∑
uj′ ∈ 0

ijt
𝜂
(q)
0jj′S

∗(q−1)
i (uj′ , t − 1) +

∑
uj′ ∈ 1

ijt
𝜂
(q)
1jj′S

∗(q−1)
i (uj′ , t − 1)

}
where 𝜽̃(q) = (𝜷̃(q)T, 𝜼̃

(q)T
0 , 𝜼̃

(q)T
1 )T are bias-corrected as in (5) for 𝜽̂

(q)
←− arg𝜽 max F𝜆(𝜽 ∣ X i, S(q−1)

i (uj, t) for ∀i, j, t)

Update hidden states for each i and j as in Section 2.3,

S(q)
ij = {S(q)

i (uj, 0),… , S(q)
i (uj,ni)} ←− arg max𝛿∈{0,1} v𝛿(ni ∣ 𝜋(q)

1ij , Ê
(q)
, Ã

(q)
ijt )

where 𝜋
(q)
1ij = P̂(S(q−1)

i (uj, 0) = 1 ∣ X i) is the predicted marginal probability for each i and j

until |̂e(q) − ê(q−1)| < 𝜖e and |𝜽̃(q) − 𝜽̃(q−1)| < 𝜖𝜃 for small enough 𝜖e and 𝜖𝜃 , respectively.
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the same package is used to select the tuning parameter 𝜆 using K-fold GCV method with the default value K = 10. Also
Appendix C2 provides an R function that computes the bias-corrected estimates (5) and their standard errors.

2.3 Hidden states by Viterbi algorithm

Given the observed sequences Yij = {Yi(uj, 1), … ,Yi(uj,ni)}T, we obtain the probability distribution of hidden states,
Sij = {Si(uj, 1), … , Si(uj,ni)}T, by using the Viterbi algorithm.10 Unlike other techniques such as the forward algorithm
and the forward-backward algorithm, the Viterbi algorithm finds the entire sequence of hidden states at once, rather than
a single hidden state at a time.5 The detail of this algorithm is given below.

For the sequence of observed states up to t recorded as {Yi(uj, 1), … ,Yi(uj, t)}T = (𝛾1, … , 𝛾t)T for 𝛾1, … , 𝛾t ∈ {0, 1},
we define the joint probability of the most probable sequence of hidden states up to t with the ending state Si(uj, t) = 𝛿

for 𝛿 ∈ {0, 1} as

v𝛿(t) = max
Si(uj,1),… ,Si(uj,t−1)

P
(

Si(uj, 1), … , Si(uj, t − 1), Si(uj, t) = 𝛿, Yi(uj, 1) = 𝛾1, … ,Yi(uj, t) = 𝛾t
)
, (6)

for each subject i and location j. This probability (6) can be recursively calculated as

v𝛿(t) = max
𝛿′∈{0,1}

v𝛿′ (t − 1) a𝛿′𝛿 e𝛿(𝛾t) (7)

with v𝛿(1) = 𝜋𝛿e𝛿(𝛾1) at t = 1 where 𝜋𝛿 = P
(

Si(uj, 0) = 𝛿
)

denotes the marginal probability of initial hidden state being
𝛿 ∈ {0, 1} (a.k.a. the prior probability or starting probability); a𝛿′𝛿 = P

(
Si(uj, t) = 𝛿|Si(uj, t − 1) = 𝛿′

)
denotes the tran-

sition probability of hidden states changing from 𝛿′ to 𝛿 as in Section 2.2; and e𝛿(𝛾t) = P
(

Yi(uj, t) = 𝛾t|Si(uj, t) = 𝛿
)

denotes the emission probability of the observed state Yi(uj, t) = 𝛾t given the hidden state, Si(uj, t) = 𝛿, as in
Section 2.1.

We then estimate the hidden states by finding the most likely sequence of hidden states such that Ŝij =
arg max𝛿∈{0,1}v𝛿(ni) for each i and j, given the estimated probabilities, 𝜋, â, and ê. The function viterbi() in the R
package HMM can be used to implement the above algorithm.

Finally, we repeat the three-step procedure in Sections 2.1 to 2.3 until all parameter estimates for the prob-
abilities are converged. The iterative algorithm with a reasonable convergence criterion produces solutions very
close to the theoretical roots.19 The initial set of hidden states can be defined as the same as the observed states,
except for a correction to account for the absorbing feature of the impaired states. Specifically, the healthy states
following the impaired states are forced to be always the impaired states, that is, Si(uj, 0)=Y i(uj, 0) and Si(uj, t) =
max{Yi(uj, t), Si(uj, t − 1)} for t > 0 for all i and j at the first iteration. Algorithm 1 shows the initial set up and the detailed
following steps for the entire procedure including the estimation of the model parameters described in the previous
sections.

3 DATA APPLICATION

3.1 ALS patients’ data

We analyzed data from the EMPOWER Study, a double-blind and placebo-controlled phase III clinical trial on
dexpramipexole in ALS patients.11 As there is no treatment effect, data from the two arms of the EMPOWER
study are pooled together in this research. There are a total of N = 926 patients, 18 to 80 years old with first
symptom onset 24 months or less before study entry. Their muscle strengths at M = 16 body locations were mea-
sured at study entry and every two months thereafter for up to 12 months (t = 0, 2, 4, 6, 8, 10, 12). The measured
muscles were the right and left side of wrist extensors (WRSTEXT), elbow extensors (ELBEXT), elbow flexors
(ELBFLEX), shoulder flexors (SHDFLEX), ankle dorsiflexors (ANKLDOR), knee flexors (KNEFLEX), knee exten-
sors (KNEEXT) and hip flexors (HIPFLEX), as illustrated in Figure 2. Each patient’s demographical characteristics,
such as age, sex, and weight, and clinical records, such as symptom onset site and symptom duration, were also
recorded.
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F I G U R E 2 Muscles measured for the ALS patients in
EMPOWER Study; the right and left sides of eight pairs of muscle
groups (16 muscles in total) are examined [Colour figure can be
viewed at wileyonlinelibrary.com]

The muscle strength data are dichotomized into states of “healthy” or “impaired” by comparing a patient’s muscle
strengths to the strengths expected when he or she were healthy. Here, the expected strengths were computed based on
their gender, age, height, and weight following the results of previous studies on muscle strengths of healthy people.20,21

We then assessed each muscle’s disease state as impaired (=1) if its strength is 40% less than the computed expected
strength and healthy (=0) otherwise. Figure 3 shows the trajectories of observed muscle strengths and their binary states
for a selected patient, who could not control the left ankle muscle at all at the initial visit. Although the ALS disease is
incurable, some muscles seemed to gain some strength over time (eg, the elbow flexors at t= 8 and the right knee extension
at t = 8 in Figure 3). This is probably due to measurement errors. In this analysis, we considered such dichotomized muscle
strength data as the observed states, which may not be absorbing at the impaired state, and assumed that these observed
states depend on the hidden disease states, which are absorbing at the impaired state.

3.2 Setup

We included the visit time (t), the symptom onset site (binary variable whether it is on bulbar (=1) or others (=0)), and
the symptom duration when patients entered the study for the independent variables, X. Note that patients’ biological
information such as age, sex, height, and weight were not included in X because they were used to compute their expected
muscle strengths, which were the reference for the data dichotomization as described in Section 3.1.

We assumed the complete network among muscles, j = {j′|uj′ ≠ uj} for any fixed j= 1, … , 16, so that any group of
muscles (any set of autocovariates) can affect any other muscles (outcome), regardless of their physical distances. As a
result, each vector of 𝜼0 and 𝜼1 had the length 16× 15= 240, and the selected subset of this complete network would be
estimated by the bias-corrected LASSO.

We estimated the marginal probability of initial hidden states, 𝜋𝛿 , for each muscle uj at every iteration using the stan-
dard logistic regression (glm() in R), where the outcomes are {S1(uj, 0), … , SN(uj, 0)}T and the independent variables
include the onset site and the symptom duration that are recorded at the initial visit (t = 0).

At the first iteration of Algorithm 1, we obtained the optimal 𝜆 as the largest value of pre-specified sequence of 𝜆’s
such that error is within 1-standard error of the 𝜆 with the minimum of deviances computed by 10-fold cross-validation
(ie, lambda.1se of cv.glmnet object), and we fixed 𝜆 at this optimal value for the subsequent iterations such that
𝜆(q) = 𝜆 for ∀q> 1. The iterations were stopped when all estimates had only little change as much as less than 5% relative
difference.

http://wileyonlinelibrary.com
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F I G U R E 3 Normalized muscle strength measurements, (observed strength − expected strength)/expected strength ×100%, for a
selected patient; binary states are obtained as “impaired (= 1)” if strength is 40% less than healthy people’s expected strength, drawn by
horizontal solid lines, and “healthy (= 0)” otherwise [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Estimated
𝛽-coefficients of the autologistic
model for the ALS patients’ data
from EMPOWER Study

X 𝜷 95% Confidence Interval P-value

Intercept −0.841 (−1.000,−0.682) <0.001

Visiting Time (t) −0.023 (−0.037,−0.010) <0.001

Onset Site (bulbar or others) 0.083 (−0.017, 0.184) 0.103

Symptom Duration Before Entry −0.009 (−0.017,−0.001) 0.037

3.3 Result summary

3.3.1 Emission probability

The probabilities of misclassification between the observed and hidden states, which are the elements of the emission
probability matrix E, were estimated as ê0(1) = 863∕23493 = 0.0367 (false positive rate) with 95% confidence interval,
(0.0344, 0.0392), and ê1(0) = 1783∕50539 = 0.0353 (false negative rate) with 95% confidence interval, (0.0337, 0.0369).
Note that these results were based on 40% cut-off for dichotomized muscle strength data as described in Figure 3.

3.3.2 Transition probability

The transition probability of disease states are modeled as in (3), where the 𝛽-estimates are summarized in Table 1 and the
𝜂-estimates are illustrated in Figure 4 (see also Tables B1 and B2 for the numerical results with 95% confidence intervals
calculated using the bias-corrected LASSO inference).

The estimates of 𝜷 can be better interpreted with the predicted probability values computed as logit−1(XT𝜷). For
example, the estimated overall probability of disease progression with no contributions from independent variables or
autocovariates was logit−1(−0.841)≈ 0.30, which is reasonably low, and this would decrease over time because 𝛽 = −0.023
for the visiting time with p< 0.001. This implies that the individual muscles would stay healthy if there were no

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 4 Estimated 𝜂-coefficients of the autologistic model for the ALS patients’ data from the EMPOWER Study; the circle nodes
with abbreviated muscle names followed by “R”(right) or “L”(left) are drawn in their relative positions on a human body; the arrows show the
direction of effects from autocovariate muscles to outcome muscles (uj′ → uj); the arrows with darker and wider edges indicate stronger effects

inter-muscle lag-1 spatial dependency and other risk factors. However, a patient who entered the study shortly after the
first symptom tends to have a higher probability of disease progression as 𝛽 = −0.009 for the symptom duration variable
with p= 0.037.

The estimates of 𝜼0 in Figure 4A indicate the autocovariate effects of the muscles when they were previously healthy.
Specifically, 𝜂0jj′ > 0 indicates that muscle uj is likely to stay healthy when muscle uj′ was previously healthy (here, positive
estimates indicate the negative impacts on the probability of transition from healthy to impaired because autocovariate
terms, Si(uj, t − 1)= 0, are centered to the negative terms, S∗

i (uj, t − 1) = −0.5). For example, if the left shoulder muscle
was healthy at t − 1, the elbow and wrist muscles on the same side would likely be healthy at t (𝜂0jj′ = 1.91 and 1.32 for uj=
ELBEXTL and WRSTEXTL, respectively, and uj′ = SHDFLEXL). Similarly, the knee flexor muscles tend to stay healthy if
the hip and ankle muscles were previously healthy (𝜂0jj′ = 1.39 and 0.55 for uj = KNEFLEXL and uj′ = ANKLDORL and
HIPFLEXL, respectively).

The estimates of 𝜼1 in Figure 4B indicate the autocovariate effects of the muscles when they were previously
impaired. Specifically, 𝜂1jj′ > 0 indicates that muscle uj is likely to get impaired when muscle uj′ was previously
impaired. It was remarkable that the every muscle had strong effect to its opposite side (right to left, or left to right)
despite being physically far apart. For example, if the left hip flexor was at the impaired state at t − 1, the right hip
flexor would be the most likely infected at t, and vice versa (𝜂1jj′ = 4.01 and 𝜂1j′j = 2.34 for uj = HIPFLEXR and uj′ =
HIPFLEXL).

Comparing 𝜼̂0 and 𝜼̂1, the muscles had different effects depending on their previous states; for example, the shoulder
muscles had stronger effects on the elbow and wrist muscles when they were healthy than when they were impaired
(eg, 𝜂0jj′ = 1.56 > 𝜂1jj′ = 0.83 for uj = SHDFLEXL and uj′ = ELBFLEXL). The previously healthy muscles had directional
effects (𝜂0jj′ ≠ 𝜂0j′j for j ≠ j′) while the previously impaired muscles mostly had bidirectional effects (𝜂1jj′ ≈ 𝜂1j′j for j ≠ j′).
Also the impaired muscles had a denser network of autoregressive effects than that of the healthy muscles (

∑
j≠j′I(𝜂0jj′ >

0) = 26 <
∑

j≠j′I(𝜂1jj′ > 0) = 61).

3.3.3 Hidden states

Figure 5 shows the time sequence of the hidden states, estimated by the Viterbi algorithm as in Section 2.3, for the observed
states of a selected subject and muscle; Ŝij and Yij for a selected i and j. As expected, the estimated sequence refined
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F I G U R E 5 The time sequence of the observed and
hidden states for a selected subject and muscle

the observed sequence to follow the absorbing features of the disease; Y i(uj, 0)= 1 turned out to be a false positive with
Si(uj, 0)= 0, and Y i(uj, 10)= 0, followed by two 1’s, turned out to be a false negative with Si(uj, 10)= 1.

4 DISCUSSION

We developed a HMM-based approach to delineate the spreading patterns of muscle weakness in patients with ALS, where
the probability of one-step transition of hidden spatio-temporal binary processes is modeled by the logistic autoregres-
sion in which neighboring locations’ previous states are included as autocovariates. The proposed model is flexible in that
it can describe disease progression by allowing different effects conditioning on previous states, asymmetric and direc-
tional effects between locations, and a data-driven approach to determining actual neighborhood structures through a
complete network structure of muscles. Along with the estimation of the emission probability for examining the accuracy
of ALS disease diagnosis, the estimated most probable hidden states can help clinicians better understand ALS patients’
underlying disease conditions.

Our research indicates that muscle weakness in ALS mostly spreads from previously impaired muscles to the con-
tralateral sides, followed by within the upper left/right muscle groups and within the lower left/right groups. Our finding
also suggests that healthy muscles, particularly for shoulder muscles, can slow down the spreading, although their influ-
ence is not as strong as that of impaired muscles. The estimated mis-classification error rates were less than 4%, indicating
that it is reasonable to diagnose a muscle’s disease status by comparing to 40% of healthy people’s expected strength.

The proposed methodology can be, with some straightforward modifications, applicable to a range of spatiotemporal
binary processes to study spreading patterns. ALS disease serves as a motivating example to illustrate the usefulness of
our approach. Basically, our model requires three general components in the model specification: (i) an observed binary
spatiotemporal process of interest; (ii) the existence of an unknown complex network (maybe more complex than a purely
spatial distance-based network) that dictates the disease/event spreading; and (iii) the inclusion of absorbing states in the
hidden process. Examples include crop virus spreading in farm land, and virus attacks of computer networks. Depending
on specific real-world problems, our model may also be further extended (i) to allow estimate the emission probability
through a regression model with some covariates, instead of simple empirical frequencies considered in this article, and
(ii) to allow multi-states for observed or hidden states in which the dimension of emission or transition probability matrix
will be large.

Other penalty methods can be useful to achieve sparsity. Examples include adaptive LASSO,22 smoothly clipped abso-
lute deviation (SCAD),23 minimax concave penalty (MCP),24 and reciprocal L1-regularization (rlasso).25 These are all
undergone the L1-norm penalization, and thus produce shrinkage in estimation with biases (possibly smaller biases)
similar to the LASSO estimator. In this type regularized estimation, bias correction is a necessary step to obtain an asymp-
totically distributed inferential quantity. Other methods of high-dimensional inferences such as sample splitting26 and
bootstrap27 are potential alternatives.

We previously proposed an autologistic network model (ANM) for spatiotemporal binary data of disease progression
in ALS.18 The HMM-based model proposed in this article differs from the previous ANM mainly in two aspects. First,
ANM ignores potential mis-classification and treats the observed states as the hidden states in the modeling. Second, ANM
focuses on the modeling of autoregression in the space domain for current observed states and only uses limited infor-
mation from previous states for classifying neighbors, while the HMM model proposed in this article captures the lag-1
spatial dependence of current and previous hidden states under the Markovian assumption and is hence more suitable
for predicting muscle’s future states. In like manner, our approach methodologically differs from other HMM-based spa-
tiotemporal data analyses28-30 in that we estimated autoregressive spatial dependency of hidden processes with absorbing
states by maximizing L1-penalized likelihood.

The proposed Algorithm 1 is along the line of the expectation-maximization (EM) algorithm, where we iteratively
compute the posterior expected values of hidden state-sequences given observed data via the Viterbi algorithm (E-step),
while maximizing the likelihood with each hidden state substituted by the corresponding expected value (M-step).
Different from the EM algorithm proposed by Bartolucci et al,31 our algorithm allows to estimate transition probabilities
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with the constraint of absorbing states and to learn the network with sparsity regularization via the bias-corrected LASSO
method.

A future study of interest would be to explore the continuous measurements of muscle strengths rather than the
dichotomized data to retain more information. One can assume that the loss of muscle strength is monotone, as assumed
in this study, and that the impaired state of hidden sequence is absorbing. Another further analysis of the data would
be to consider a autoregressive model with time varying coefficients. Such a model can explore the time-course dynamic
change in the network structures as the disease progresses.
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APPENDIX A. NETWORK SPECIFICATION

Figure A1A shows the complete network, j = {j′|uj′ ∼ uj}, where every pair of muscles is connected to each other.
Figure A1B shows the partial network where all is connected except between arm and leg muscles. We used the complete
network for the ALS data analysis in Section 3.
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(A) Complete network
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(B) Partial network

F I G U R E A1 Example networks

APPENDIX B. NUMERICAL RESULTS OF 𝜼-ESTIMATES

Tables B1 and B2 show the numerical results of the estimates of 𝜼0 and 𝜼1, respectively, which were illustrated in Figure 4.
The 95% confidence intervals for non-zero estimates are also included.
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APPENDIX C. R CODES

C.1. Data transformation
We provide R function designXy() that transforms independent variables and two-dimensional spatiotemporal binary
data for a subject into the vector of outcomes and the design matrix of covariates. The argument DAT is input data of
ni × (p+M) matrix, and names_independent and names_location are the names of p columns of independent
variables and M columns of locations, respectively. The returning outputs include a column of the outcome vector, with
length of niM0

i , and columns of the design matrix of covariates, with dimension of niM0
i × (p + 2M(M − 1)) where M0

i is
the number of previously healthy locations for subject i. The stacked outputs for all subjects, i= 1, … , N, can then be
used for the function glmnet() in the R package glmnet.

designXy = function(DAT, names_independent, names_location){
y = X = NULL
tempY = as.matrix(DAT[, names_location]); colnames(tempY) = NULL
nloc = length(names_location)
N = nrow(DAT)
if (N < 2) { result = NULL }
if (N >= 2){

for (ntime in 2:N){
if(sum(DAT[ntime, names_location] == DAT[ntime-1, names_location]) ==

nloc)next
Xb = do.call("rbind", replicate(nloc, DAT[ntime, names_independent],

simplify = F))
I0 = matrix(0, nloc, nloc*(nloc-1));
I1 = matrix(0, nloc, nloc*(nloc-1));
S = matrix(0, nloc, nloc*(nloc-1));
for(i in 1:nloc){

I0[i, (1+(i-1)*(nloc-1)):(i*(nloc-1))] = (tempY[ntime-1,]==0)[-i]
I1[i, (1+(i-1)*(nloc-1)):(i*(nloc-1))] = (tempY[ntime-1,]==1)[-i]
S[i, (1+(i-1)*(nloc-1)):(i*(nloc-1))] = (tempY[ntime-1,])[-i]

}
activeid = (tempY[ntime-1, ]==0);
if (sum(activeid)==0) next
X = rbind(X, (as.matrix(cbind(Xb, (S-.5)*I0, (S-.5)*I1)))[activeid,,drop =

F])
y = c(y, tempY[ntime,,drop = F][activeid])

}
result = cbind(Y = y, X = X)
if(!is.null(result) & !is.null(DAT$SUBJID)) {
rownames(result) = rep(DAT$SUBJID[1], nrow(result))
}

}
return(result)

}

C.2. Bias correction
We provide R function correct_bias() for correcting the bias of the classical LASSO estimates, for example, the
estimates obtained from glmnet(). The argument est is the vector of LASSO estimates, and X and y are the design
matrix and the outcome vector respectively that were used to obtain est. The resulting matrix includes bias-corrected
estimates with standard errors.
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correct_bias = function(est, X, y){

invlink = function(x){exp(x)/(1 + exp(x))};
invlinkdiv = function(x){exp(x)/(1 + exp(x)) ̂ 2};

evec = function(beta, X, y){ y - sapply(drop(X%*%beta), invlink)
pmat = function(beta, X, y){ out = sapply(drop(X%*%beta), invlinkdiv);
diag(out)

n = length(y); p = length(est)
P = pmat(est, X, y)
e = evec(est, X, y)

Sigmahatinv = crossprod(X, P%*%X); Sigmahat = ginv(Sigmahatinv)

A = tcrossprod(Sigmahat, X)
est.corrected = drop(est + AA%*%e)
sehat = sqrt(diag(Sigmahat))

return(cbind(est = est.corrected, se = sehat))
}


