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Bayesian Spatial Homogeneity Pursuit of
Functional Data: An Application to the U.S.

Income Distribution∗

Guanyu Hu†, Junxian Geng‡, Yishu Xue§,‖, and Huiyan Sang¶

Abstract. An income distribution describes how an entity’s total wealth is dis-
tributed amongst its population. A problem of interest to regional economics re-
searchers is to understand the spatial homogeneity of income distributions among
different regions. In economics, the Lorenz curve is a well-known functional rep-
resentation of income distribution. In this article, we propose a mixture of finite
mixtures (MFM) model as well as a Markov random field constrained mixture of
finite mixtures (MRFC-MFM) model in the context of spatial functional data anal-
ysis to capture spatial homogeneity of Lorenz curves. We design efficient Markov
chain Monte Carlo (MCMC) algorithms to simultaneously infer the posterior dis-
tributions of the number of clusters and the clustering configuration of spatial
functional data. Extensive simulation studies are carried out to show the effec-
tiveness of the proposed methods compared with existing methods. We apply the
proposed spatial functional clustering method to state level income Lorenz curves
from the American Community Survey Public Use Microdata Sample (PUMS)
data. The results reveal a number of important clustering patterns of state-level
income distributions across the US.

Keywords: Lorenz curve, Markov random field, mixture of finite mixtures,
spatial functional data clustering.

MSC2020 subject classifications: Primary 62p20; secondary 91b72.

1 Introduction

Our study is motivated by an American Community Survey Public Use Microdata
Sample (PUMS) data that contains incomes of United States (US) households in year
2017, which can be accessed via the PUMS data registry (https://www.census.gov/
programs-surveys/acs/data/pums.html). Incomes of households and their states of
residence are recorded. Our primary goal is to cluster the state level Income Distribu-
tions (ID; O’sullivan and Sheffrin, 2007), i.e., how a state’s total wealth is distributed
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amongst its population. In order to avoid confusion between the economics term “In-
come Distribution” and the density or cumulative distribution of household income, we
use ID to represent this particular economics term in the rest of the paper. The ID
has been a central concern of economic theory since the time of classical economists
such as Adam Smith and David Ricardo. While economists have been conventionally
concerned with the relationship between the factors of production, land, labor, and
capital for ID, modern economists now focus more on income inequality. Particularly,
a balance between income inequality and economic growth is a desired goal for policy
makers. Capturing the homogeneity pattern of state level IDs is of great research inter-
est in economic studies, as it will improve understanding of income inequality among
different regions within a country, and provide policy makers with a reference point for
implementing differentiated policies for the identified regions. In macroeconomics, most
governments want to obtain an equitable (fair) distribution of income, which is a cru-
cial element of a functioning democratic society (Mankiw, 2014). To achieve this goal,
the distribution of income or wealth in an economy is represented by a Lorenz curve
(Lorenz, 1905), which is a function showing the proportion of total income received by
the bottom 100p% (p ∈ [0, 1]) of the population. The Gini coefficient, which is derived
from the Lorenz curve, is a frequently used indicator of income inequality (Gini, 1997),
and it has been widely adopted by numerous international organizations, such as the
United Nations and World Bank, to analyze income inequalities between countries and
regions. It is, on the other hand, a non-unique scalar summary of the statistical dis-
persion of ID, as two Lorenz curves can assume different shapes while still yielding the
same Gini value. The Gini index is defined as twice the area between the 45-degree line
and the Lorenz curve, which is insensitive to the changes in the Lorenz curve’s shape.
Similarly, the Hoover index (Hoover, 1936) is also derived from the Lorenz curve, and
exhibits the same lack of uniqueness.

Thus far, many methods for modeling Lorenz curves have been proposed, either di-
rectly or indirectly through the modeling of statistical distribution functions of house-
hold income. In general, popular parametric methods for modeling the density of per-
sonal incomes rely on heavy tail distributions, including the Pareto (Pareto, 1964), log-
normal (Gibrat, 1931), Weibull (Bartels and Van Metelen, 1975), gamma (Bartels and
Van Metelen, 1975), and generalized beta distributions (McDonald, 1984; McDonald
and Xu, 1995). Nonparametric methods include the commonly used empirical Lorenz
curve estimation method and several other extensions that introduce various smooth-
ing techniques (Ryu and Slottje, 1996; Cowell and Victoria-Feser, 2008). Most of these
existing methods only focus on modeling a univariate personal ID. There is a need for
the development of spatial functional data analysis techniques to jointly model Lorenz
curves across counties or states in economic studies. Without spatial homogeneity pat-
tern detection, each state needs to make its own policy, which could be a waste of public
resources, while with a few clusters of states, only a policy for each cluster is needed.

There are several major challenges in developing clustering algorithms for spatial
functional data. First, spatial functional data such as state-level Lorenz curves of-
ten exhibit strong location-related patterns. It is necessary to incorporate such spatial
structure into spatial functional data clustering algorithms. Nevertheless, most existing
functional clustering algorithms are designed under the assumption that the observed
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functions are i.i.d curves (e.g., see a review paper by Jacques and Preda, 2014). These
methods can be broadly divided into three categories: two-stage methods that reduce
the dimension by using basis representations before applying clustering approaches,
nonparametric methods that define specific dissimilarities among functions followed by
heuristic or geometric procedures-based clustering algorithms such as K-means, and
model-based methods that specify clustering models such as mixture of Gaussian for
basis coefficients. Recently, several works have been proposed to extend these functional
clustering algorithms to the spatial context. Romano et al. (2011) and Giraldo et al.
(2012) followed the second path to define dissimilarities among spatial functions based
on spatial variograms and cross-variograms. Jiang and Serban (2012) took the third
path to model cluster memberships using an auto-regressive Markov random field, and
introduce spatially dependent random errors in the conditional model for functions.

Second, certain spatial contiguous constraints on the clustering configuration are
desired to facilitate interpretations in the spatial context. In other words, a local cluster
is expected to include spatially connected components with flexible shapes and sizes.
In addition, in many economics applications, this spatial contiguity constraint may not
dominate the clustering configuration globally, in the sense that two clusters that are
spatially disconnected may still belong to the same cluster. For example, despite the
distance between them, the New England area and California may share similar demo-
graphic information. Although a large body of model based spatial clustering approaches
have been proposed in various spatial contexts, to the best of our knowledge, there is
still a lack of clustering methods that allow for both locally spatially contiguous clus-
ters and globally discontiguous clusters. Existing Bayesian spatial clustering methods
based on mixture models, for example, the finite mixture model used in the afore-
mentioned spatial functional clustering algorithm, can introduce spatial dependence in
cluster memberships but do not fully guarantee spatial contiguity (Jiang and Serban,
2012). Suarez et al. (2016) used conditionally independent Dirichlet process priors to
cluster each signal coefficient in a multiresolution wavelet basis. Among the methods
that ensure spatial contiguity, some impose certain constraints on cluster shapes (Knorr-
Held and Raßer, 2000; Kim et al., 2005; Lee et al., 2017), while others do not allow for
globally discontinuous clusters (Li and Sang, 2019; Zhang et al., 2022).

Finally, how to determine the number of clusters is an important consideration in
clustering. Most existing methods, such as Heaton et al. (2017), require the number
of clusters to be specified first. Dirichlet Process mixture models (DPM) have grown
in popularity in Bayesian statistics due to their flexibility in allowing for an unknown
number of clusters. Recently, Miller and Harrison (2018) proved that DPM can produce
an inconsistent estimate of the number of clusters, and proposed a mixture of finite
mixtures model to resolve the issue while inheriting many appealing mathematical and
computational properties of DPM. However, because this does not take into account
any spatial information, their method may not be sufficient for spatial clustering.

In this article, we develop a new Bayesian nonparametric method that combines the
ideas of Markov random field models and mixture of finite mixtures models to lever-
age geographical information to address these challenges when analyzing spatial income
Lorenz curves. A distinction of the method is its ability to capture both locally spatially
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contiguous clusters and globally discontiguous clusters. Furthermore, it employs an effi-
cient Markov chain Monte Carlo (MCMC) algorithm to estimate the number of clusters
and the clustering configuration simultaneously while avoiding complex reversible jump
MCMC or allocation samplers. We apply this new Bayesian nonparametric clustering
model to the analysis of the US state level household income Lorenz curves. In partic-
ular, we use a similarity measure among functional curves based on the inner product
matrix under elastic shape analysis (Srivastava and Klassen, 2016), which has a nice
invariance property under shape-preserving transformations. The findings of real-world
data analysis reveal intriguing clustering patterns of IDs across states, which provide
important information for studying regional income inequalities.

The remainder of this paper is structured as follows. Section 2 provides a detailed
introduction to the motivating PUMS data. Section 3.1 provides a brief overview of
elastic shape analysis of functions, followed by a discussion of nonparametric Bayesian
clustering methods in Section 3.2. In Section 3.3, we describe the proposed Markov
random field constrained mixture of finite mixtures prior model and introduce our func-
tional data clustering model. Section 4 introduces Bayesian inference, which includes
the MCMC sampling algorithm, the model selection criterion for parameter tuning,
post-MCMC inference, and convergence diagnostic criteria. Sections 5 and 6 present a
simulation and a case study using the PUMS data, respectively. Section 7 brings the
paper to a close with some conclusions and discussions.

2 Motivating Data

Our motivating data comes from the PUMS data registry’s 2018 submission. The in-
comes of US households and the states in which they reside are recorded for the 50
states plus Washington, DC. In the remainder of this paper, we will refer to them as
“51 states”. The Lorenz curve is a functional representation of income or wealth dis-
tribution that reflects inequality in wealth distribution. It, specifically, assumes that
the household income x follows a cumulative distribution function (CDF) F (x) with
a corresponding probability density function f(x). Let Q(p) = F−1(p) be the inverse
CDF defined as Q(p) = inf{y : F (y) ≥ p}. The Lorenz curve is defined as

L(p) =
1

μ

∫ p

0

Q(t)dt, for 0 ≤ p ≤ 1,

where μ =
∫ 1

0
Q(t)dt. The Lorenz curve, when plotted in a graph, always starts at

(0, 0) and ends at (1, 1), and measures for the poorest for 100p% of households, what
percentage 100L% of total income they have.

In practice, the empirical Lorenz curve can be constructed from data in a similar
fashion as constructing the empirical CDF. Define for state i

L̂i(pk) =

k∑
j=1

yi,(j)/

T∑
j=1

yi,(j),
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Figure 1: (a) Lorenz curves calculated based on the PUMS 2017 Household Income
data on the national level and for two selected states; (b) Lorenz curves for all US
states illustrated in dashed lines and the national curve in solid line.

where pk = k/n, for k = 1, . . . , n, and yi,(j) is the j-th order statistic observed in

state i. Under mild regularity conditions, L̂i converges uniformly for p ∈ [0, 1] to Li

with probability 1 (Gastwirth, 1972). As a derived measure, the Gini index is defined
as two times the area between the Lorenz curve and the 45 degree line of equality
from (0, 0) to (1, 1).

Figure 1 illustrates Lorenz curves computed with 2017 US household income data.
The Lorenz curve calculated at the national level using all observations is plotted as a
solid line, with a corresponding Gini coefficient of 0.4804. However, a closer examination
of the state-level Lorenz curves reveals that the IDs do vary between states. Figure 1(a)
also illustrates the Lorenz curves for two selected states, Utah and New York. While
Utah’s curve is above the national curve, indicating greater equality, New York’s curve
is below, suggesting a greater divide between rich and poor. In Figure 1(b), Lorenz
curves for all US states are plotted together alongside the national curve, forming a
“cloud” rather than being similar to each other. Lorenz curves’ ability to describe income
inequalities is clearly demonstrated here.

In addition to the Lorenz curves, descriptive statistics such as the Gini coefficient and
state median income are presented in Figure 2. Utah has the lowest income inequality
with a Gini coefficient of 0.423, while Washington, DC has the highest income inequality
with a Gini coefficient of 0.512. Washington, DC also has the highest median income,
$90,000, while Mississippi has the lowest, $43,500.
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Figure 2: Descriptive statistics for PUMS data on the US map to visualize economic
inequality: (a) Gini coefficient; (b) state median income.

3 Methodology

In this section, we treat the state-level Lorenz curves as spatial functional data. We

begin by discussing the functional representation of ID and the shape-based similarity

measure between two IDs. Next, a nonparametric Bayesian approach based on the

similarity measure is introduced for functional data clustering. Additionally, a Markov

random fields constraint mixture of finite mixtures model (MRFC-MFM) is proposed
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incorporating spatial constraints into the clustering prior. The hierarchical model under
MRFC-MFM is presented at the end of this section.

3.1 Functional Representation of Income Distribution

We begin the section by reviewing functional data shape analysis. To cluster functional
data, proper metrics need to be defined for quantifying similarity between functional
curves. Functional data has four critical characteristics: quantity, frequency, similarity,
and smoothness. Commonly used distance measures, such as the Euclidean distance, are
no longer suitable for assessing similarities between functions. In this article, we consider
the inner product matrix calculated using a specific representation of curves called the
square-root velocity function (SRVF; Srivastava et al., 2010). This inner product matrix
is a summary statistic that encapsulates information about the similarity between curves
for subsequent clustering analysis. It places a greater emphasis on the distinctions in
the shape of functions. By focusing on shapes, one is more concerned with the numbers
of and relative heights of peaks and valleys in a curve than with their precise locations.
This feature is more appropriate for assessing the variations in IDs between regions, as
exact locations or mean shifts have a smaller effect on ID inequality.

The SRVF of an absolutely continuous function f(t) : [0, 1] → Rp is defined as:

q(t) = sign
(
f ′(t)

)√
|f ′(t)|, (3.1)

where f ′(t) is the derivative of f . It can be seen that the SRVF is a curve of unit length.
There are a number of advantages to employing the SRVF to analyze functional data.
First, the scaling, rotation and re-parameterization variabilities still remain based on
the SRVF. In addition, the elastic metric is invariant to function reparameterization.
The SRVF represents unit-length curves as a unit hypersphere in the Hilbert manifold.
The SRVF for a given function can be obtained in R using the f to srvf() function
provided by the fdasrvf package (Tucker, 2019). For given functions f1 and f2 which
belong to F = {f : [0, 1] → Rp : f is absolutely continuous} and their corresponding
SRVFs, q1 and q2, the inner product is defined based on the definition in Zhang et al.
(2015) as follows:

Sf1,f2 = sup
γ∈Γ,O∈SO(p)

〈q1, (q2, (O, γ))〉 , (3.2)

where SO(p) is the collection of orthogonal p × p, i.e. p-dimensional rotation matri-
ces, and Γ represents the set of all orientation-preserving diffeomorphisms over the
domain [0,1]. The notation (O, γ) denotes a joint action of the rotation and reparam-
eterization operations, and (q2, (O, γ)) here represents a particular reparameterization
and rotation of q2. The maximization over SO(p) and Γ can be performed iteratively as
in Srivastava et al. (2010). The operation 〈·, ·〉 denotes the inner product in L

2([0, 1],Rp):

〈v, q〉 =
∫ 1

0
〈v(t), q(t)〉dt. The value of this integral ranges from −1 to 1, achieving the

value −1 if v = −q and 1 if v = q. The inner product of two functions can be calcu-
lated using the algorithm in Tucker et al. (2013). Computation in R is carried out with
the trapz() function in package pracma (Borchers, 2019). Given f1, . . . , fn, the n× n
pairwise inner product matrix S can be calculated using the definition in (3.2), and
fdasrvf and pracma.
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3.2 Mixture of Finite Mixtures for Distances Between Functional
Data

Next, we introduce nonparametric Bayesian methods to capture spatial homogeneity
of functional data. We start with a Fisher’s Z-transformation of the inner product
matrix S to transform each entry Sfi,fj ∈ (−1, 1) to the real line. The transformed
inner product matrix is denoted as S, with each entry being

Sij =
1

2
log

(
1 + Sfi,fj

1− Sfi,fj

)
.

The larger Sij is, the closer fi and fj are. We further assume that

Sij | μ, τ , k ∼ N(μij , τ
−1
ij ), μij = Uzizj ,

τij = Tzizj , 1 ≤ i ≤ j ≤ n,
(3.3)

where k is the number of true underlying clusters, N() denotes the normal distribu-
tion, zi ∈ {1, . . . , k} denotes the cluster membership of the i-th curve; U = [Urs] ∈
(−∞,+∞)k×k and T = [Trs] ∈ (0,+∞)k×k are symmetric matrices, with Urs = Usr

indicating the mean closeness of any function fi in cluster r and any function fj in
cluster s, and Trs = Tsr indicating the precision of closeness between any function fi in
cluster r and any function fj in cluster s. Note that in the above formulation, only the
upper triangle of matrix S is modeled, including the diagonal.

Let Zn,k =
{
(z1, . . . , zn) : zi ∈ {1, . . . , k}, 1 ≤ i ≤ n

}
denote all possible partitions

of n nodes into k clusters. Given z ∈ Zn,k, let S[rs] denote the nr × ns sub-matrix
of S consisting of entries Sij with zi = r and zj = s. Following the common practice
for stochastic block models (SBM; Holland et al., 1983), independence between entries
of S, or edges, is assumed. The joint likelihood of S under model (3.3) can be expressed
as

P (S | z,U ,T , k) =
∏

1≤r≤s≤k

P (S[rs] | z,U ,T ),

P (S[rs] | z,U ,T ) =
∏

1≤i<j≤n:zi=r,zj=s

1√
2πT−1

rs

exp

{
−Trs(Sij − Urs)

2

2

}
.

(3.4)

A common Bayesian specification when k is given can be completed by assigning inde-
pendent priors to z, U and T , and it can be easily incorporated into the framework of
a finite mixture model. As k is unknown, a frequent technique is to introduce Dirichlet
process mixture prior models (Antoniak, 1974) as follows:

Si ∼ F (·,θi), θi ∼ G(·), G ∼ DP (αG0), (3.5)

where Si = (Si1, Si2, . . . , Sin), θi = (θi1,θi2, . . . ,θin) and θij = (μij , τij).

The Dirichlet process (DP) is parameterized by a base measure G0 and a concentra-
tion parameter α. If a set of values of θ1, . . . ,θn are drawn from G, a conditional prior
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can be obtained by integration (Blackwell and MacQueen, 1973):

p(θn+1 | θ1, . . . ,θn) =
1

n+ α

n∑
i=1

δθi(θn+1) +
α

n+ α
G0(θn+1). (3.6)

Here, δθi(θj) = I(θj = θi) is the distribution concentrated at a single point θi. Equiv-
alent models can also be obtained by introducing cluster membership zi’s and letting
the unknown number of clusters K go to infinity (Neal, 2000):

Si | zi,θ∗ ∼ F (θ∗
zi),

zi | π ∼ Discrete(π1, . . . , πK),

θ∗
c ∼ G0,

π ∼ Dirichlet(α/K, . . . , α/K),

(3.7)

where π = (π1, . . . , πK). For each cluster c, the parameters θ∗
c determine the cluster

specific distribution F (· | θ∗
c ).

By integrating out the mixing proportions π, we can obtain the prior distribution
of (z1, z2, . . . , zn) that enables automatic inference on the number of clusters k. This
is commonly known as the Chinese restaurant process (CRP; Aldous, 1985; Pitman,
1995; Neal, 2000). With the popular Chinese restaurant metaphor, zi, i = 2, . . . , n are
defined using the following conditional distribution (Pólya urn scheme, Blackwell and
MacQueen, 1973):

P (zi = c | z1, . . . , zi−1) ∝
{
|c|, at an existing table labeled c

α, if c is a new table
, (3.8)

where |c| is the size of cluster c.

While the CRP has a very attractive feature of simultaneous estimation of the num-
ber of clusters and the cluster configuration, a significant shortcoming of this model
was recently discovered. Miller and Harrison (2018) proved that the CRP produces ex-
traneous clusters in the posterior, resulting in inconsistent estimation of the number
of clusters even when the sample size approaches infinity. To address this issue, they
proposed a modification to the CRP, known as the mixture of finite mixtures (MFM)
model:

k ∼ p(·), (π1, . . . , πk) | k ∼ Dirichlet(γ, . . . , γ),

zi | k,π ∼
k∑

h=1

πhδh, i = 1, . . . , n,
(3.9)

where p(·) is a proper probability mass function (p.m.f.) on {1, 2, . . . , } and δh is a point-
mass at h. Compared to the CRP, introduction of new tables is slowed down by the
factor Vn(w + 1)/Vn(w), allowing for model-based pruning of tiny superfluous clusters.
The coefficient Vn(w) is precomputed as:

Vn(w) =

+∞∑
k=1

k(w)

(γk)(n)
p(k),
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where k(w) = k(k − 1) . . . (k − w + 1), and (γk)(n) = γk(γk + 1) . . . (γk + n − 1). By

convention, x(0) = 1 and x(0) = 1.

The conditional prior of θ under the MFM is as follows:

P (θn+1 | θ1, . . . ,θn) ∝
w∑
i=1

(ni + γ)δθ∗
i
+

Vn(w + 1)

Vn(w)
γG0(θn+1), (3.10)

where θ∗
1 , . . . ,θ

∗
w are the distinct values taken by θ1, . . . ,θn, and w is the number of

existing clusters. The cluster membership zi, for i = 2, . . . , n, in (3.9) can be defined in
a Pólya urn scheme similar to the CRP:

P (zi = c | z1, . . . , zi−1) ∝
{
|c|+ γ, at an existing table labeled c

Vn(w + 1)/Vn(w)γ, if c is a new table
,

(3.11)
where w is the number of existing clusters.

Adapting MFM to our model setting for functional clustering, the model and prior
can be expressed hierarchically as:

k ∼ p(·), where p(·) is a p.m.f. on {1,2, . . . },

Trs = Tsr
ind∼ Gamma(α, β), r, s = 1, . . . , k,

Urs = Usr
ind∼ N(μ0, k

−1
0 T−1

rs ), r, s = 1, . . . , k,

pr(zi = j | π, k) = πj , j = 1, . . . , k, i = 1, . . . , n, (3.12)

π | k ∼ Dirichlet(γ, . . . , γ),

Sij | z,U ,T , k
ind∼ N(μij , τ

−1
ij ), μij = Uzizj , τij = Tzizj , 1 ≤ i < j ≤ n.

We assume p(·) is a Poisson(1) distribution truncated to be positive through the rest of
the paper, which has been proved by Miller and Harrison (2018) and Geng et al. (2019)
to guarantee consistency for the mixing distribution and the number of clusters. We
refer to the hierarchical model in (3.12) as MFM-fCluster.

3.3 Markov Random Field Constrained MFM in Functional Data

A possible weakness of MFM for spatial functional data is its failure to account for
spatial structure or dependence, i.e., MFM ignores the spatial smoothness of a map,
and hence the resulting clustering scheme does not comply with any spatial constraint,
making it susceptible to noise in the data. This disadvantage can be overcome by intro-
ducing spatial coupling between adjacent features. Using a Markov random field prior
in spatial statistical modeling is a classical Bayesian approach widely used in image
segmentation problems (Geman and Geman, 1984). In this section, we use a similar
idea of combining Markov random fields with MFM to introduce spatial constraints for
clustering.

The Markov random field (MRF; Orbanz and Buhmann, 2008) provides a convenient
approach to address the difficult problem of modeling a collection of dependent random
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variables (Winkler, 2012). The dependence structure of different variables can be repre-
sented by a graph, with vertices representing random variables and an edge connecting
two vertices indicating statistical dependence, which can conveniently introduce the
spatial smoothness for both Gaussian and non-Gaussian data (e.g., mixture data). In-
teractions between variables are constrained to a small group that are typically assumed
to be spatially closer, in order to reduce the complexity of the problem. The neighbor-
hood dependence structure of a MRF is encoded by a weighted graph N = (VN, EN,WN)
in space, with vertices VN = (v1, . . . , vn) representing random variables at n spatial lo-
cations, EN denoting a set of edges representing statistical dependence among vertices,
and WN denoting the edge weights representing the magnitudes of dependence.

The MRF for a collection of random variables θ1, . . . ,θn on a graph N has a valid
joint distribution M(θ1, . . . ,θn) := 1

ZH
exp{−H(θ1, . . . ,θn)}, with H being the cost

function with the following form

H(θ1, . . . ,θn) :=
∑

A∈CN

HA(θA), (3.13)

where CN denotes the set of all cliques inN, each termHA is a non-negative function over
the variables in clique A, and ZH is a normalization term. By the Hammersley-Clifford
Theorem, the corresponding conditional distributions enjoy the Markov property, i.e.,
M(θi | θ−i) = M(θi | θ∂(i)), where ∂(i) := {j | (i, j) ∈ EN} denotes the set of
neighbors of variable i. Considering only pairwise interactions, we model the conditional
cost functions as

H(θi | θ−i) := −λ
∑

l∈∂(i)

I(θl = θi) = −λ
∑

l∈∂(i)

I(zl = zi), (3.14)

where λ ∈ R
+ is a parameter controlling the magnitude of spatial smoothness, with

larger values inducing stronger spatial smoothing. It can be seen that the function
takes a value in {0,−λ}.

The Markov random field constrained MFM (MRFC-MFM) consists of an interac-
tion term modeled by an MRF cost function that captures spatial interactions among
vertices and a vertex-wise term modeled by an MFM. The resulting model defines a
valid MRF distribution Π, which can be written as

Π(θ1, . . . ,θn) ∝ P (θ1, . . . ,θn)M(θ1, . . . ,θn) (3.15)

with P (θ1, . . . ,θn) defined by the conditional distributions in (3.10) and M(θ1, . . . ,θn)
by the MRF model using (3.14) as the conditional cost function. As demonstrated in
Theorem 3.1 below, this constrained model has a critical property: the MRF constraints
affect only the finite component of the MFMmodel. The proof is deferred to Appendix 1.

Theorem 3.1. Let n
(−i)
k denote the size of the k-th cluster excluding θi, K

∗ denote
the number of clusters excluding the i-th observation, and assume H(θi | θ−i) is a valid
MRF conditional cost function. The conditional distribution of a MRFC-MFM takes the
form

Π(θi | θ−i) ∝
K∗∑
k=1

(n
(−i)
k + γ)

1

ZH
exp(−H(θi | θ−i))δθ∗

k
(θi) +

Vn(K
∗ + 1)

Vn(K∗)

γ

ZH
G0(θi).
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An immediate corollary of Theorem 3.1 is the following Pólya urn scheme. Let zi,
i = 1, . . . , n, denote the cluster memberships.

Corollary 1. Suppose the conclusion of Theorem 3.1 holds. Then,

Π(zi = c | z−i) ∝
{
[|c|+ γ] exp[λ

∑
l∈∂(i) I(zl = zi)], at an existing table labeled c

Vn(K
∗ + 1)/Vn(K

∗)γ, if c is a new table
,

where z−i = z\{zi}, i.e., all elements of z except for zi.

The above scheme offers an intuitive interpretation of MRFC-MFM again using the
Chinese restaurant metaphor: the probability of customer i sitting at a table depends
not only on the number of other customers already seated at that table, but also on the
number of other customers that have spatial ties to the i-th customer. The parameter λ
controls the strength of spatial ties, and ultimately, the number of clusters. The greater
the value for λ, the stronger the spatial smoothing effect and the fewer clusters. This
can be clearly observed in the simulation results presented in the sensitivity analysis
section of the supplemental material (Hu et al., 2022). In particular, the MFM model
developed in Miller and Harrison (2018) can be viewed as a special case of MRFC-MFM
when λ = 0. We use the notation MRFC-MFM(λ,G0) to represent the MRFC-MFM
prior with smoothness parameter λ and base distribution G0. The Markov random
field constraint-mixture of finite mixture-functional clustering method (MRFC-MFM-
fCluster) can be hierarchically written as

U ,T , z, k ∼ MRFC-MFM(λ,G0), (3.16)

Sij | z,U ,T , k
ind∼ N(μij , τ

−1
ij ), μij = Uzizj , τij = Tzizj , 1 ≤ i < j ≤ n,

where G0 is a normal-gamma distribution whose hyperparameters are the same as
in (3.12). While the model in (3.16) introduces spatial dependence to encourage lo-
cally contiguous clustering, it still allows any customer a chance to sit with any other
customer, so that globally discontiguous clustering can be captured.

4 Bayesian Inference

MCMC is used to draw samples from the posterior distributions of the model parame-
ters. In this section, we present the sampling scheme, the posterior inference of cluster
configurations, and metrics to evaluate the estimation performance and clustering ac-
curacy.

4.1 The MCMC Sampling Schemes

Our goal is to sample from the posterior distributions of the unknown parameters k, z =
(z1, . . . , zn) ∈ {1, . . . , k}n, U = [Urs] ∈ (−∞,+∞)k×k and T = [Trs] ∈ (0,+∞)k×k.
While methods such as reversible jump Markov chain Monte Carlo or even allocation
samplers can be used for inference, they frequently suffer from poor mixing and slow



G. Hu, J. Geng, Y. Xue, and H. Sang 13

convergence. We extend Miller and Harrison (2018)’s approach to exploit the Pólya urn
scheme for MRFC-MFM. Bayesian inference is performed using an efficient collapsed
Gibbs sampler that analytically marginalizes out k. The sampler for MFM is presented
in Algorithm 1 in the supplemental material, and the sampler for MRFC-MFM is pre-
sented in Algorithm 2 in the supplemental material. The only difference between the
two algorithms lies in the posterior probability of an observation assigned to an existing
cluster. Both algorithms efficiently cycle through the full conditional distributions of zi
given z−i, U , and T for i = 1, 2, . . . , n.

For the hyperparameters in both the simulation studies and the real data analysis, we
use α = 1, β = 1, k0 = 2 and γ = 1. For μ0, maxi,j Sij is assigned to diagonal terms and
mini,j Sij is assigned to off-diagonal terms in order to make it more informative. These
choices for μ0 ensure that the functions within a cluster are closer to each other than
those in different clusters. We arbitrarily initialized the algorithms with nine clusters,
and randomly allocated the cluster configurations. Various other choices were tested
and we did not find any evidence of sensitivity to the initialization.

4.2 Post MCMC Inference

Dahl’s method (Dahl, 2006) is a popular post-MCMC inference algorithm for the clus-
tering configurations z and the estimated parameters. The inferences in Dahl’s method
are based on the membership matrices, B(1), . . . , B(M), from the posterior samples. The
membership matrix B(t) for the t-th post-burn-in MCMC iteration is defined as:

B(t) = [B(t)(i, j)]i,j∈{1:n} = 1(z
(t)
i = z

(t)
j )n×n, t = 1, . . . ,M, (4.1)

where 1() denotes the indicator function, i.e., B(t)(i, j) = 1 indicates observations i and j
are in the same cluster in the t-th posterior sample after burn-in iterations. Based on
the membership matrices for the posterior samples, a Euclidean mean for membership
matrices is calculated by:

B =
1

M

M∑
t=1

B(t).

The iteration with the least squared distance to B is obtained by

CLS = argmint∈(1:M)

n∑
i=1

n∑
j=1

{B(i, j)(t) −B(i, j)}2. (4.2)

The estimated parameters, together with the cluster assignments z, are then extracted
from the CLS-th post burn-in iteration. An advantage of Dahl’s method is that it utilizes
the information in the empirical pairwise probability matrix B.

A convergence diagnostic for the clustering algorithm is obtained using the Adjusted
Rand index (ARI; Hubert and Arabie, 1985). As a chance-adjusted version of the Rand
Index (RI; Rand, 1971), it measures the concordance between two clustering schemes.
Taking values between 0 and 1, a large ARI value indicates high concordance. In par-
ticular, when two cluster configurations are identical, ARI takes the value 1.
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4.3 Selection of λ

It is critical in our MRFC-MFM-fCluster algorithm to choose an appropriate value
for λ, which controls the extent of spatial smoothness. The deviance information crite-
rion (DIC; Spiegelhalter et al., 2002), the Bayesian equivalent of the Akaike information
criterion (AIC; Akaike, 1973), has been one of the most commonly used model selection
criteria under the Bayesian framework. However, the AIC does not exert enough penal-
ization for clustering problems, which often leads to over-clustering results. Because of
this, we suggest adopting a modified DIC (mDIC), in which the amount of the penalty
in the traditional DIC is modified to match the Bayesian information criterion (BIC;
Schwarz, 1978). The mDIC is calculated as

mDIC = Dev(θ) + log(
n× (n+ 1)

2
)pD, (4.3)

where

Dev(θ) = −2 log
∏

1≤i<j≤n:zi=r,zj=s

1√
2πT−1

rs

exp

{
−Trs(Sij − Urs)

2

2

}
,

θ = {1 ≤ i < j ≤ n : zi = r, zj = s, Urs, Trs}, and

pD = D(θ)−D(θ),

with θ being the estimated parameters based on Dahl’s method. The model with the
smaller value of mDIC is preferred.

5 Simulation

In this section, we detail the simulation settings, the evaluation metrics, and the com-
parison performance results.

5.1 Simulation Setting and Evaluation Metrics

The spatial adjacency structure of the 51 states is used in the data simulation. We
consider in total three partition settings with respective true number of clusters 3, 5,
and 4. The first partition setting shown in Figure 3 contains a cluster which consists
of two disjoint parts in the east and west. It is designed to mimic a fairly common
economic pattern where geographically distant regions share similar ID patterns, and
geographical proximity is not the only factor for determining homogeneity in ID. The
second setting is the five-cluster partition shown in Figure 4. The third and final setting
has four clusters, and the spatial constraint on clusters is “weaker” than under the other
two designs, so that these clusters are composed of many spatially discontiguous states
and regions, as shown in Figure 5.

Following Salem and Mount (1974), we generate 10, 000 simulated observations for
each state from a Gamma distribution to mimic the long-tailed pattern commonly ob-
served in econometrics data. In addition, to simulate the minor variations between IDs
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Figure 3: Illustration of the first partition setting with three true clusters, where the
first cluster consists of two disjoint components.

Figure 4: Illustration of the second partition setting with five clusters, where clusters 2
and 5 both have disjoint components.

Figure 5: Illustration of the third partition setting with four clusters, where all the
clusters are composed of disjoint states and regions.
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Figure 6: Histograms of Gini indices calculated from the simulated state-wise income
data (5,100 in each panel from 100 replicates) for weak and strong signals under the
three true partition settings.

of states within the same cluster, we add a noise term with probability 0.05 to each
observation that also follows the Gamma distribution. We assume each cluster has its
own set of distribution parameters shared by all the states within it. The true values
of the parameters are set so that the Lorenz curves computed from the simulated data
are comparable to those computed from real data (see Table 1). We consider two differ-
ent parameter settings with small and large differences in income distributions between
clusters, corresponding to weak and strong signal designs, respectively. For a total of
100 replicates, we show the Gini indices for different clusters of both weak and strong
signal designs in Figure 6, which clearly exhibits major and minor overlapping among
clusters, respectively.

The estimated number of clusters and ARI are used to evaluate the final clustering
performance. ARI is calculated using the final clustering result obtained by Dahl’s
method for each replicate, and we calculate an average ARI over all replicates in each
setting. The computation of ARI is carried out with the R package mclust (Scrucca
et al., 2016). In each replicate of the simulation, the outcome is a clustering of the
51 states into several clusters. If the number of clusters for a replicate equals the true
number of clusters (3 in the first design, 5 in the second, and 4 in the third), this
replicate is counted towards one time that the number of clusters is correctly inferred.
We report the total count of replicates with a correctly inferred number of clusters out
of 100 replicates.



G. Hu, J. Geng, Y. Xue, and H. Sang 17

Design Signal Cluster Design

Three Clusters
1 Γ(1.15, 50000) + Bin(0.05) · Γ(0.3, 50000)

Weak 2 Γ(1.20, 50000) + Bin(0.05) · Γ(0.3, 50000)
3 Γ(1.25, 50000) + Bin(0.05) · Γ(0.3, 50000)
1 Γ(1.10, 50000) + Bin(0.05) · Γ(0.5, 50000)

Strong 2 Γ(1.20, 50000) + Bin(0.05) · Γ(0.5, 50000)
3 Γ(1.30, 50000) + Bin(0.05) · Γ(0.5, 50000)

Five Clusters
1 Γ(1.10, 50000) + Bin(0.05) · Γ(0.3, 50000)
2 Γ(1.15, 50000) + Bin(0.05) · Γ(0.3, 50000)

Weak 3 Γ(1.20, 50000) + Bin(0.05) · Γ(0.3, 50000)
4 Γ(1.25, 50000) + Bin(0.05) · Γ(0.3, 50000)
5 Γ(1.30, 50000) + Bin(0.05) · Γ(0.3, 50000)
1 Γ(1.00, 50000) + Bin(0.05) · Γ(0.5, 50000)
2 Γ(1.10, 50000) + Bin(0.05) · Γ(0.5, 50000)

Strong 3 Γ(1.20, 50000) + Bin(0.05) · Γ(0.5, 50000)
4 Γ(1.30, 50000) + Bin(0.05) · Γ(0.5, 50000)
5 Γ(1.40, 50000) + Bin(0.05) · Γ(0.5, 50000)

Four Clusters
1 Γ(1.15, 50000) + Bin(0.05) · Γ(0.3, 50000)

Weak 2 Γ(1.20, 50000) + Bin(0.05) · Γ(0.3, 50000)
3 Γ(1.25, 50000) + Bin(0.05) · Γ(0.3, 50000)
4 Γ(1.30, 50000) + Bin(0.05) · Γ(0.3, 50000)
1 Γ(1.10, 50000) + Bin(0.05) · Γ(0.5, 50000)

Strong 2 Γ(1.20, 50000) + Bin(0.05) · Γ(0.5, 50000)
3 Γ(1.30, 50000) + Bin(0.05) · Γ(0.5, 50000)
4 Γ(1.40, 50000) + Bin(0.05) · Γ(0.5, 50000)

Table 1: Simulation designs with weak and strong signals. The symbol Γ denotes the
Gamma distribution, and “Bin” denotes the binomial distribution.

5.2 Simulation Results

We first examine the inference results for the number of clusters, as well as the ac-
curacy of clustering results from both MFM-fCluster and MRFC-MFM-fCluster. Each
parameter setting listed in Table 1 is run with 100 replicates. For MRFC-MFM-fCluster,
λ ∈ {0.5, 1, 1.5, 2, 2.5, 3} are considered, and the best λ value is selected using mDIC
within each replicate. The graph distance (GD; Bhattacharyya and Bickel, 2014) is used
as the distance measure to construct the neighborhood graph used in the Markov ran-
dom field model. Different upper limits of distance for two states to be considered as
“neighbors” are used for the three designs. For the first three-cluster partition, the up-
per limit is set to 3. For the second five-cluster partition, however, due to the relatively
small true cluster sizes, an upper limit of 1, i.e., only immediate neighbors, is adopted.
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Figure 7: (a) Histogram of the number of clusters inferred by MRFC-MFM-fCluster
and MFM-fCluster under different designs and signal strength settings. The grey bars
correspond to the correct number of clusters. (b) Plot of the average ARI for all four
methods under different designs and signal strength settings.

Similarly, for the third design, as the clusters have more disjoint components, and a
state is more likely to have neighbors that belong to a different cluster from its own, we
also use an upper limit of 1.

In addition to MFM-fCluster, we also consider two other competing methods. In the
first competing method, we treat the SRVFs derived from Lorenz curves as vectors, and
use K-means to cluster them. The second competing method is the model-based clus-
tering for sparsely sampled functional data proposed by James and Sugar (2003), which
is available in the R package funcy, and can be performed with the function funcit()

using the option method=‘‘fitfclust’’. The clustering recovery performance of all
three methods is measured using the ARI. For our proposed method, we present the
average of the ARIs corresponding to the λ value selected by mDIC in each replicate.
As neither K-means nor model-based clustering can estimate the number of clusters
but instead require it to be provided, to make a fair comparison, for these methods we
use the same number of clusters inferred for each replicate by the selected optimal λ.

Performances are visualized in Figure 7, and the average optimal λ’s selected by
mDIC are presented in Table 2. In Figure 7(a), it can be seen that under design 1,
MFM-fCluster exhibits severe over-clustering, which produces four final clusters for
more than 60 replicates under the weak signal setting, and more than 50 replicates in
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Design 1 Design 2 Design 3

Signal Weak 1.535 1.715 1.630
Signal Strong 1.680 1.630 1.610

Table 2: Average λ selected by mDIC for 100 simulation replicates for each combination
of signal strength and true cluster design.

the strong signal setting. In contrast, even under the weak signal setting, MRFC-MFM-
fCluster is able to correctly infer the true number of clusters for more than 50 replicates,
and a notable number of 69 for the strong signal. Under design 2, as cluster sizes are
relatively small, it is rather difficult for both MRFC-MFM-fCluster and MFM-fCluster
to infer the number of clusters under the weak signal setting, as can be seen from the
top middle two plots. With the strong signal, however, MRFC-MFM-fCluster is able
to correctly identify the true number of clusters for more than half of the simulation
replicates, while the performance of MFM-fCluster remains poor. Under design 3, as
the true clusters are “messy” in the sense that there are no clear spatially contiguous
states that belong to the same cluster, the performance of MRFC-MFM-fCluster is
similar to that of MFM-fCluster in the weak signal setting. With the strong signal,
however, MFM-fCluster again overclusters, producing for 67 replicates the correct K,
while this number for MRFC-MFM-fCluster is 79. In Figure 7(b), our proposed method
has the highest average ARI over 100 replicates for all six combinations of signal and
partition design. The model-based functional clustering has the second best performance
in designs 1 and 2, and the third best performance in design 3, while MFM-fCluster has
the second best performance in design 3, and the third best in designs 1 and 2. In all
cases, K-means performs the worst.

In addition, computation times for all methods are benchmarked using R package
microbenchmark (Mersmann, 2019) on a desktop computer running Windows 10 En-
terprise, with i7-8700K CPU@3.70GHz using single-core mode. A total of 20 replicates
are performed to compute the average running time for each method. As expected, K-
means takes the least time of 1.62 seconds due to its simple iterative algorithm. Unlike
K-means which can only provide clusters without making statistical inference for clus-
ter memberships and sizes, our proposed method utilizes conjugate forms for efficient
Bayesian inference that provides not only estimates of clusters but also their uncertainty
measures at only a slightly higher computation cost. Indeed, it takes on average 20.79
seconds for one simulated dataset with 500 MCMC iterations, as in our empirical stud-
ies 500 iterations are sufficient for the chain to converge and stabilize. The model-based
approach, however, takes more than three minutes to finish. Due to the time-consuming
nature of the model-based approach, the actual simulation studies are conducted on a
16-core desktop computer using parallel computation. The code is submitted for review
and will be made publicly available at GitHub after the acceptance of the manuscript.

Finally, in the peer review process, an anonymous reviewer suggested the possibility
of using more than a univariate measure of similarity. We have modified the code to
take two similarity matrices, and run another 100 simulations under Design 1 to make a
comparison of performance. Although the average ARIs remain over 0.9, the inference
forK is rather poor. More details are included in Section 5 of the supplemental material.
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Figure 8: Illustration of the four clusters identified by the proposed method for the 51
states.

6 Analysis of PUMS Data

In this section, we apply the proposed MRFC-MFM-fCluster to a study of US household
incomes in 2017. As with the simulation studies, the Lorenz curves for all states are
obtained for the purpose of functional clustering. Based on (3.1) and (3.2), we get the
inner product matrix S. The spatial smoothing parameter λ is considered within the
range of {0, 0.2, 0.4, . . . , 3}, with λ = 0 corresponding to MFM-fCluster. The upper
limit for considering states to be “neighbors” is considered within the range {1, 2, 3}.
The mDIC is used to determine the optimal combination of these two parameters. From
the sensitivity analyses presented in the supplemental material, the value of γ has only
a marginal impact on the clustering performance. Therefore, it is set to be the same
as in the simulation studies described in Section 4.1. In addition, consistent with the
simulations, we choose α = 1 and β = 1.

The final model with the smallest mDIC value has λ = 0.8 and upper limit 2 for
defining neighbors. The final cluster configuration is visualized in Figure 8. There are,
respectively, 14, 14, 15 and 8 states in clusters 1, 2, 3 and 4. Cluster 4 is the highest in
terms of income inequality, and has an average Gini coefficient of 0.491. Cluster 2, with
an average Gini of 0.435, exhibits the most equal income distribution among the four.
Clusters 1 and 3 have average Gini values of 0.458 and 0.477.

A significant advantage of our proposed method is that it allows for globally discon-
tinuous clusters. As illustrated in Figure 8, New Mexico and Tennessee are clustered
together. Their 2017 Gini values are 0.4851 and 0.4858, respectively. Based on the 2010
American Community Survey from the U.S. Census Bureau (https://factfinder.
census.gov/), their Gini coefficients have been historically very close. In addition,

https://factfinder.census.gov/
https://factfinder.census.gov/
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there are several government policies that could be modified to affect certain clusters.
For the states in Clusters 3 and 4, increasing the minimum wage and expanding the
earned income tax credit are two strategies for improving the equality of ID. The median
household incomes in the majority of Cluster 1 states are fairly low. Reduced income
taxation will assist them in increasing their overall household income, at the cost of
a little compromise in ID equality. Furthermore, an increase in government spending
directly benefits the states in Cluster 1 by increasing household income. The states in
Cluster 2 have the most balanced IDs and a mid-level median household income. Most
of their government policies can be maintained to ensure sustainable economic growth.
Another finding is that states with big urban regions tend to have less balanced IDs,
which is consistent with the findings in Glassman and Branch (2017). According to
Janikas et al. (2005) and Rey (2018), who evaluated income data from the Bureau of
Economic Analysis, states with high (low) levels of internal inequality tend to be located
near others with high (low) levels of internal inequality. This assertion corroborates the
regional homogeneity tendencies for IDs across states identified by our method. Taking
Clusters 1 and 2 as examples, these two clusters include a large number of neighboring
states with low levels of internal inequality.

The posterior estimate of U in (3.16) is

Û =

⎛⎜⎜⎝
4.885 4.186 4.293 3.692
4.186 4.700 3.710 3.341
4.293 3.710 4.821 4.042
3.692 3.341 4.042 4.524

⎞⎟⎟⎠ . (6.1)

It is noticeable that the diagonal entries of U are larger than the off-diagonal entries,
which suggests the within-cluster similarity is much higher than between-cluster simi-
larities. Cluster 1 has the least similarity to Cluster 4 based on (6.1), which is consistent
with the results presented in Figure 9.

Finally, to make sure the cluster configuration presented here is not a random oc-
currence but reflects the true pattern demonstrated by the data, we ran 100 separate
MCMC chains with different random seeds and initial values, and obtained 100 final
clustering schemes. The RI between each scheme and the present clustering scheme
in Figure 8 is calculated, and they average to 0.899, indicating high concordance of
the conclusions regardless of random seeds. As suggested by a reviewer, we also use the
sequentially-allocated latent structure optimization (SALSO) algorithm implemented in
the R package salso (Dahl, 2020) to check for uncertainties in the presented clustering
result. The details are included in Section 6 of the supplemental material.

7 Discussion

In this paper, we proposed both MFM-fCluster and MRFC-MFM-fCluster to capture
spatial homogeneity of ID using the functional inner product of Lorenz curves. Param-
eter tuning is achieved using a modified version of DIC, the popular Bayesian model
selection criterion. Extensive simulation studies demonstrate that MRFC-MFM outper-
forms the traditional MFM model in the pursuit of spatial homogeneity. It also outper-
forms K-means and model-based methods across a range of designs, and the comparison
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Figure 9: Average Lorenz curves for states in the four identified clusters.

of performance is relatively robust with respect to choices of the spatial smoothing pa-
rameters. A case study using the PUMS data reveals a number of important findings
for IDs across the 51 states in the US. The results shown in Section 6 indicate that
states that are near each other tend to be clustered together by our method, which is
reasonable as they often share similar demographic information as well as median in-
come, tax rate and urbanization. The results provide valuable insights to both residents
and governors: residents could gain a better understanding of their state’s conditions,
and hence vote with their feet accordingly; governors, equipped with more objective and
principled analysis of IDs, could make better data-informed policy design decisions.

A few topics beyond the scope of this paper are worth further investigation. In this
paper, Fisher’s Z-transformation of the inner product matrix is used. Modeling the
original inner product matrix is an interesting alternative in future work. Independence
is assumed between elements of the inner product matrix S for modeling and com-
putational simplicity and convenience, and extending SBM to incorporate such edge
dependence similar to Yuan and Qu (2018) is an interesting but nontrivial problem for
future research. In addition, tuning of λ is criterion-based. Treating it as an unknown pa-
rameter and proposing a prior in a hierarchical model for it may improve the efficiency.
Besides the geographical information, other auxiliary covariates, such as demographic
information, could also be taken into account for clustering in our future work. While
our clustering methods are based on a similarity matrix or dissimilarity matrix, the pro-
posed MRFC-MFM clustering prior model can be adapted to other hierarchical model
settings, including the case with multiple similarity matrices as responses (Paul et al.,
2016; Lei et al., 2020) Extending our prior on functional data model with basis coeffi-
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cients (Suarez et al., 2016) is also another interesting direction for future work. Finally,
nonstationarity is an important consideration of spatial dependence. Considering a non-
stationary cost function in our clustering process has the potential of broadening the
applications of our proposed methods, and is worth further investigation.

Supplementary Material

Supplementary to “Bayesian Spatial Homogeneity Pursuit of Functional Data: an Ap-
plication to the U.S. Income Distribution” (DOI: 10.1214/22-BA1320SUPP; .pdf).
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